Requirements document

SQUID

Helsinki 25th February 2005 Software Engineering Project UNIVERSITY OF HELSINKI Department of Computer Science

Course

581260 Software Engineering Project (6 cr)

Project Group

Mikko Jormalainen Samuli Kaipiainen Aki Korpua Esko Luontola Aki Sysmäläinen

Client

Lauri J. Pesonen

Project Masters

Juha Taina Jenni Valorinta

Homepage

http://www.cs.helsinki.fi/group/squid/

Change Log

Version	Date	Modifications
0.1	9.2.2005	First version (Aki Sysmäläinen)
0.2	18.2.2005	Use case list (Samuli Kaipiainen)
0.3	21.2.2005	Some use cases expanded (Samuli Kaipiainen)
0.4	22.2.2005	User requirements (Mikko Jormalainen)
0.5	23.2.2005	More use cases expanded (Samuli Kaipiainen)
0.6	25.2.2005	All use cases expanded (Samuli Kaipiainen)

Contents

1	Intro	ntroduction				
	1.1	Glossary	1			
2	Ove	rview	1			
3	3 Use cases					
	3.1	Measuring	2			
	3.2	Exporting	4			
	3.3	Printing	5			
	3.4	Projects	6			
	3.5	Sequences	7			
4	User	r requirements	9			
	4.1	Functional requirements	9			
	4.2	Quality requirements	11			
	4.3	Environment	12			
	4.4	Maintainability	12			
	4.5	Restrictions	12			
5	System requirements / Functions 12					
	5.1	System restrictions	12			
6	User	rinterface	12			
	6.1	Goal-derived use cases	12			
		6.1.1 Goal-derived use case 1: Erkki	12			
		6.1.2 Goal-derived use case 2: Fabio	12			
		6.1.3 Goal-derived use case 3: Tomas	12			
7	Arcl	nitecture overview	12			
8	External interfaces 1					
	8.1	Existing program	13			
	8.2	Hardware control protocols	13			
9	Vali	dation	14			

Appendices

- 1 Automated Sample Handler System Protocol
- 2 Automatic Sample Degaussing System Protocol
- **3 Superconducting Rock Magnetometer Protocol**

1 Introduction

This document describes client requirements and system requirements for a SQUID magnetometer program that will be designed and implemeted as a software engineering student project at University of Helsinki at the Computer Science Department. The client is the Department of Geophysics.

This document serves as a contract between client and us..

Expected readership of this document here..

1.1 Glossary

Technical terms here ..

2 Overview

A brief overview of the problem domain..

3 Use cases

Describes planned use cases for the program. Use cases are derived from user interface prototype and user requiremets. All use cases are performed by any ordinary user and in program main screen.

Use cases are divided to different sections, grouping logically similar use cases together.

Use case format:

UCU: Use case identifier and the		
Scenario a	First scenario for doing the use case.	
Scenario b	Second scenario for doing the use case.	
Scenario c		
Precondition	Preconditions for use case.	
Postcondition	Postconditions for use case.	
Error condition	Error handling, mainly if anything special needs to be done.	
Goal-derived	Goal-derived use case(s) in which this use case occurs (if any);	
	see section 6.1.	
Requirements	Requirement(s) from which this use case derives; see section 4.	

UC0: Use case identifier and title

3.1 Measuring

UC1: Do single step measuring without demagnetization

UC1: Do single step measuring without demagnetization		
Scenario a	Enter as next AF demagnetization step "0" or empty (default for	
	new projects), meaning no demagnetization, and click "Single	
	step".	
Precondition	AF project open, sample in sample holder.	
Postcondition	Sample measured, results on screen and appended to current	
	project.	
Error condition	The program shall let the user know if something went wrong.	
Goal-derived	6.1.3, first few steps.	

UC2: Do single step measuring with demagnetization

UC2. Do single step measuring with demagnetization		
Enter as next AF demag step anything greater than zero, and click		
"Single step".		
AF project open, sample in sample holder.		
Sample demagnetized (possibly ruined) and measured, results on		
screen and appended to current project.		
The program shall let the user know if something went wrong, and, should the demagnetization field not be coming down, warn user with an alarm sound :)		

UC3: Do automatic demagnetization-measuring sequence

Saamamia a	Enter the AF sequence (see section 3.5 for ways to enter it) and
Scenario a	click "Measure".
Precondition	AF project open, sample in sample holder.
Postcondition	Sample demagnetized according to entered AF sequence (possi-
	bly ruined) and measured after each demagnetization, results on
	screen and appended to current project.
Error condition	The program shall let the user know if something went wrong,
	and, should the demagnetization field be uncalm, warn user with
	an alarm sound x)
Goal-derived	6.1.1 whole sequence, 6.1.3 sequence after few single steps at the
	beginning.

UC4: Pause automatic measuring sequence

Scenario a	While measure sequence is running, click "Pause".
Precondition	Ongoing measuring sequence (UC3).
Postcondition	Measure sequence halts after current step is done, results on
	screen.
Error condition	Program tells if sequence can't be paused (and something has
	gone terribly wrong).
Goal-derived	6.1.3, Tomas pauses the sequence as the meteor demagnetizes too
	rapidly.

UC5: Abort automatic measuring sequence

While measure sequence is running or paused, click "Stop imme-
diately".
Ongoing or paused measuring sequence (UC3).
Measure sequence halts immediately [and program enters "fully
manual" mode?]
Program tells if sequence can't be aborted (and something has
gone terribly wrong).

UC6: Do thellier measuring

Scenario a	Click "Single step". (Temperature can be entered later, as it won't
	affect measuring.)
Precondition	TH project open, sample in sample holder.
Postcondition	Sample measured, results on screen and appended to current
	project.
Error condition	As usual.
Goal-derived	6.1.2, temperatures already entered, one step at 380 °C.

UC7: Do thermal measuring

[Exactly the same as thellier?]

Scenario a	Click "Single step". (Temperature can be entered later, as it won't	
	affect measuring.)	
Precondition	TH project open, sample in sample holder.	
Postcondition	Sample measured, results on screen and appended to current	
	project.	
Error condition	As usual.	

UC8: Measure magnetometer ground noise

[2005-02-23 not in current UI proto, nor planned for implementation]

Scenario a	Click "Ground noise" and "Calibrate".
Precondition	No ongoing measurements.
Postcondition	Ground noise measured, results on screen and appended to
	"Ground noise" project.

UC9: Measure empty sample holder noise

Scenario a	Click "Holder noise" and "Calibrate".	
Precondition	No ongoing measurements, empty sample holder.	
Postcondition	Holder noise measured, results on screen and appended to	
	"Holder noise" project.	
Goal-derived	6.1.1, calibration at the beginning.	

UC10: Measure standard sample

Scenario a	Click "Standard sample" and "Calibrate".
Precondition	No ongoing measurements, standard sample in sample holder.
Postcondition	Standard sample measured, results on screen and appended to
	"Standard sample" project, and, predefined .std file.
Postcondition	Holder noise measured, results on screen and appended to
	"Holder noise" project.

UC11: Fully manual measuring

[2005-02-25 still not clear how fully manual is supposed to work; Tomas will be back on tuesday 1.3. aScenario a Click any of the manual control components.Precondition Manual mode enabled.

Postcondition Manual action done, result on screen.

UC12: Enable manual mode

Scenario a	Click "Manual" checkbox above the manual control components.
Precondition	No ongoing measurement.
Postcondition	Manual mode enabled.

3.2 Exporting

UC13: Export project data into .dat file

Scenario a	In project explorer file list, right-click on desired project file, click
	"Export .dat in current directory".
Scenario b	In project explorer file list, right-click on desired project file, click
	"Export .dat to disk drive A:".
Scenario c	In project explorer file list, right-click on desired project file, click
	"Export .dat", chooce directory and filename to export.
Scenario d	In project explorer file list, select multiple files with shift-click
	and ctrl-click, and make any of above actions.
Precondition	At least 1 project file in current (selected) directory.
Postcondition	Project data exported to .dat file.
Error condition	Notify if file error occurs (such as no disk in A: drive).

UC14: Export (thellier) project data into .tdt file

Scenario a	In project explorer file list, right-click on desired project file, click
	"Export .tdt in current directory".
Scenario b	In project explorer file list, right-click on desired project file, click
	"Export .tdt to disk drive A:".
Scenario c	In project explorer file list, right-click on desired project file, click
	"Export .tdt", chooce directory and filename to export.
Scenario d	In project explorer file list, select multiple files with shift-click
	and ctrl-click, and make any of above actions.
Precondition	At least 1 project file in current (selected) directory.
Postcondition	Project data exported to .tdt file.
Error condition	Notify if file error occurs (such as no disk in A: drive).

UC15: Export single measurement details into .srm file

Scenario a	In measurement result table, right-click on desired measurement
	line(s), click "Export .srm in current directory".
Scenario b	In measurement result table, right-click on desired measurement
	line(s), click "Export .srm to disk drive A:".
Scenario c	In measurement result table, right-click on desired measurement
	line(s), click "Export", chooce directory and filename to export.
Scenario d	In measurement result table, select multiple lines with shift-click
	and ctrl-click, and make any of above actions.
Precondition	At least 1 measurement result in current project.
Postcondition	Measurement details exported to .srm file.
Error condition	Notify if file error occurs (such as no disk in A: drive).

3.3 Printing

[2005-02-25 not in current UI prototype, implementation priority low.]

UC16: Print measurement results		
Scenario a	Click "Print", "Measurement results".	
Precondition	Open project.	
Postcondition	Measurement results printed via [Java] standard printing window.	
Error condition	Let know if printing error occurs.	

UC17: Print graph sheet (with 7 different graphs; described elsewhere)	

Click "Print", "Grap sheet".
Open project.
Measurement results printed via [Java] standard printing window.
Let know if printing error occurs.

3.4 Projects

As in project files, which store all measurement results

UC18: Automatically save all measurement cycles in project file		
[Propably more of a requirement than use case and shall be removed from here]		
Scenario a	Make any measurement action (see section 3.1 for those).	
Precondition	Project file open.	
Postcondition	After measurement (step) is done, new results appended to project	
	file.	
Goal-derived	6.1.1, 6.1.2, 6.1.3.	

UC19: Create new project

Scenario a	Click the empty line below filenames in project explorer, enter
	new project name, chooce AF/TH (thellier) project, click "Create
	new" or press enter.
Precondition	Project explorer in desired directory (UC21).
Postcondition	New project created and selected.
Goal-derived	6.1.1 after calibration, 6.1.3 at the beginning.

UC20: Load project

Scenario a	Click any filename in project explorer.
Precondition	Project explorer in desired directory (UC21).
Postcondition	Existing project loaded and selected.
Goal-derived	6.1.2 all samples already as project files.
Scenario b	Click "Browse" in project explorer, use standard [Java] file
	chooser to select project file to be opened.
Precondition	None.
Postcondition	Existing project loaded and selected, project explorer in opened project's directory.

UC21: Change project explorer directory

Scenario a	Click into current directory textbox in project explorer, write di- rectory to change to, press enter.
Scenario b	Click into current directory textbox in project explorer, start writing directory; when autocomplete-results appear below, use
	up/down+enter or mouseclick to select the directory.
Scenario c	Click the down-arrow on the right side of current directory textbox in project explorer, choose desired directory from appear- ing directory history.
Scenario d	Click "Browse" in project explorer, use standard [Java] file chooser to select directory to change to.
Precondition	Project explorer in desired directory.
Postcondition	New project created and selected.
Goal-derived	6.1.1, 6.1.2, 6.1.3.

UC22: Insert/edit project data

Scenario a	Click any of the project data checkboxes, or textboxes and enter
	value.
Precondition	Open project (usually just created).
Postcondition	Project data changed, saved automatically to project file.
Goal-derived	6.1.1 after creating new project.

3.5 Sequences

As in automatic demagnetization-measuring sequences (AF sequences), or, thellier temperature sequences

UC23: Insert sequence with start-step-stop values	
Scenario a	Click "Start" textbox, insert start value, click "Step" textbox, in-
	sert step value, click "Stop" checkbox, insert stop value, click
	"Add sequence" or press enter.
Scenario b	Click "Start" textbox, insert start value, press tab, insert step
	value, press tab, insert stop value, press enter or click "Add se-
	quence".
Precondition	An open project.
Postcondition	Sequence from <i>start</i> to <i>stop</i> , increasing by <i>step</i> for every step,
	appended to measurement result table, and selected.
Goal-derived	6.1.3 after creating new project.

UC24: Load sequence

Scenario a	Click down-arrow in right side of "Load set" combo box; from
	appearing list, click sequence to load.
Precondition	An open project, at least 1 saved sequence.
Postcondition	Selected sequence appended and selected to measurement result
	table.
Goal-derived	6.1.1, after typing project data, load "Basalt" set; 6.1.2 set already
	loaded for each project file (when created).

UC25: Edit sequence on-the-fly

e ozor zan soquen	Click any unmeasured "Tesla" or "Temp" column in measurement
Scenario a	•
	result table, enter new value.
Scenario b	Click any unmeasured line in measurement result table, press del
	to delete that line.
Scenario c	Right-click any unmeasured line in measurement result table,
	choose "Delete" to delete that line.
Scenario d	Click-drag any unmeasured line in measurement result table to
	new position within unmeasured lines.
Scenario e	Select multiple unmeasured lines in measurement result table with
	shift-clicks and ctrl-clicks, make any of above actions (except en-
	ter new value).
Precondition	Unmeasured lines in current project's measurement result table
	(note that measuring sequence can be going on).
Postcondition	Editing committed.
Error condition	Editing or screwing up measured lines won't be allowed.
Goal-derived	6.1.3, when sequence demagnetizes too rapidly, Tomas deletes
	unmeasured lines.

UC26: Save sequence

Scenario a	Click "Load set" combo box, enter new sequence name, click
	"Save set". [2005-02-25 not in current (almost final) UI proto- type!]
Scenario b	Right-click any line in measurement result table, choose "Save full sequence", enter name, press enter.
Scenario c	Select any lines in measurement result table with shift-clicks and ctrl-clicks, right-click on selected lines, choose "Save selected se-
	quence", enter name, press enter.
Precondition	At least 1 line in measurement results table (although you propably don't want to save a sequence with only one step x).
Postcondition	New sequence set saved to predefined sequence file and available from "Load set" combo box.
Error condition	Ask whether to overwrite, if sequence with the same name already exists (allow to enter new name if choose not to overwrite).

UC27: Edit stored sequence

Scenario a	UC24 "Load sequence" -> UC25 "Edit sequence" -> UC26 "Save
	sequence" with same name as the loaded sequence.
Scenario b	Click menu "Options"->"Sequences", edit any sequence in ap-
	pearing window [2005-02-25 not in UI prototype, must be im-
	provised :)]
Precondition	At least 1 saved sequence.
Postcondition	Changes saved to predefined sequence file.

UC28: Delete stored sequence

Scenario a	Click down-arrow in right side of "Load set" combo box; from
	appearing list, right-click sequence to delete, choose "Delete".
Scenario b	Click menu "Options"->"Sequences", delete sequence in ap-
	pearing window [2005-02-25 not in UI prototype, must be im-
	provised :)]
Precondition	At least 1 saved sequence.
Postcondition	Sequence deleted, changes saved to predefined sequence file.

UC29: Rename stored sequence

Scenario a	Click down-arrow in right side of "Load set" combo box; from appearing list, right-click sequence to rename, choose "Rename",
	enter new name, press enter.
Scenario b	Click menu "Options"->"Sequences", rename any sequence in
	appearing window [2005-02-25 not in UI prototype, must be
	improvised :)]
Precondition	At least 1 saved sequence.
Postcondition	Sequence renamed, changes saved to predefined sequence file.

4 User requirements

Goals of the software set by client ..

4.1 Functional requirements

Identifier: R1 Name: Basic Description: Able to control Squid-magnetometer and make measurements with it. Priority: 1

Identifier: R2 Name: Saving Description: Measurements can be saved in .dat, .dtd and .srm files.

Priority: 1

Identifier: R3 Name: Auto saving Description: Program will save mesurement data after every measurement step. Priority: 1

Identifier: R4 Name: Loading Description: Saved mesurement date can be loaded into program. Priority: 2

Identifier: R5 Name: Filemanagement Description: New data can be added to existing datafiles. Priority: 2

Identifier: R6 Name: Numeric presentation of data Description: Program shows measurement data in numbers. Priority: 1

Identifier: R7 Name: Graphic presentation of data Description: Program draws graphs from measurement data. Priority: 3

Identifier: R8 Name: Editing Description: Ability edit data afterwards. Priority: 2

Identifier: R9 Name: Recalculation Description: Recalculate based on changed data. Priority: 2

Identifier: R10 Name: Control Description: Ability to stop any action immediately. Priority: 1 Identifier: R11 Name: Sequence Description: Able to create measuring sequences with several different sized steps. Priority: 2

Identifier: R12 Name: Sequence control Description: Able to stop sequence after current step. Priority: 2

Identifier: R13 Name: Hotkeys Description: Possibility to create and change hotkeys. Priority: 4

Identifier: R14 Name: Manual Description: Able to operate magnetometer manually. Priority: 2

ReqIdR15 Name: Calibration Description: Magnetometer must be calibrated every 24h.. Priority: 2

ReqIdRXX Name: Description: Priority:

4.2 Quality requirements

Identifier: QR1 Name: Ease of use Description: Program should be easy to use for first time users. Priority: 1

Identifier: QR2 Name: Help pages Description: Program should have good help pages. Priority: 3

4.3 Environment

The computer that will run this program will be equal or better to 1GHz CPU, 256MB RAM, 1280x1024 resolution. The program must run under Windows XP. The hardware and communication with it is described in the section "External interfaces".

4.4 Maintainability

4.5 Restrictions

Program will be used in normal PC which is connected to magnetometer. Taking into account rapid phase of computer evolution it is possible that computer in which program is used can change, accordingly the program should be able to be installed by outsiders. We need not prepare to changing of magnetometer, as new magnenetometer will probably have its own program.

5 System requirements / Functions

Specific explanation of the functions to be implemented

5.1 System restrictions

6 User interface

Overview of UI described here ..

6.1 Goal-derived use cases

- 6.1.1 Goal-derived use case 1: Erkki...
- 6.1.2 Goal-derived use case 2: Fabio...
- 6.1.3 Goal-derived use case 3: Tomas...

7 Architecture overview

8 External interfaces

Interfaces to existing software and hardware are described here.

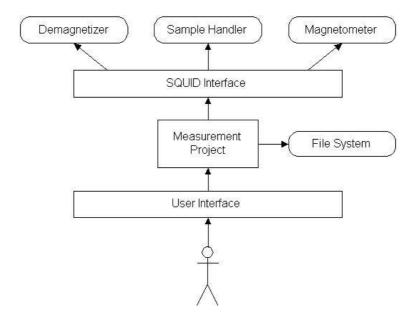


Figure 1: Architecture overview

8.1 Existing program

The existing software for using the SQUID is "2G Enterprises Data Acquisition". We have access to the source code for version 2.99.3 of the program. From the old source code we will reuse basically only the SerialIO component. We will build an interface for communicating with the SQUID hardware by using Java and JNI (Java Native Interface).

8.2 Hardware control protocols

The SQUID consists of three independent units:

- Automated Sample Handler System (MODEL 2G800)
- Automatic Sample Degaussing System (MODEL 2G600)
- Superconducting Rock Magnetometer (MODEL 755R or 760R)

Automated Sample Handler System controls the movement and rotation of the sample holder. Its protocol is described in Appendix 1.

Automatic Sample Degaussing System controls the demagnetizer. Its protocol is described in Appendix 2.

Superconducting Rock Magnetometer reads the measurements from the magnetometer. Its protocol is described in Appendix 3.

9 Validation

Description of how to validate the set requirements.

Appendix 1. Automated Sample Handler System Protocol

Korvaa tämä sivu tiedostolla "Automated Sample Handler System - Protocol.pdf"

Appendix 2. Automatic Sample Degaussing System Protocol

Korvaa tämä sivu tiedostolla "Automatic Sample Degaussing System - Protocol.pdf"

Appendix 3. Superconducting Rock Magnetometer Protocol

Korvaa tämä sivu tiedostolla "Superconducting Rock Magnetometer - Protocol.pdf"