Requirements document

SQUID

Helsinki 26th February 2005 Software Engineering Project UNIVERSITY OF HELSINKI Department of Computer Science

Course

581260 Software Engineering Project (6 cr)

Project Group

Mikko Jormalainen Samuli Kaipiainen Aki Korpua Esko Luontola Aki Sysmäläinen

Client

Lauri J. Pesonen

Project Masters

Juha Taina Jenni Valorinta

Homepage

http://www.cs.helsinki.fi/group/squid/

Change Log

•

Contents

1	Intro	ntroduction		
	1.1	Glossary	1	
2	Over	view	1	
3	Use cases			
	3.1	Measuring	2	
	3.2	Exporting	5	
	3.3	Printing	5	
	3.4	Projects	6	
	3.5	Sequences	7	
4	User	requirements	9	
	4.1	Functional requirements	9	
		4.1.1 Magnetometer	9	
		4.1.2 Project files	10	
		4.1.3 Measurements	11	
		4.1.4 Others	12	
	4.2	Quality requirements	12	
4.3 Environment		Environment	13	
		Maintainability	13	
	4.5	Restrictions	13	
5	Syste	m requirements / Functions	13	
	5.1	System restrictions	14	
6	User	interface	14	
	6.1	Goal-derived use cases	14	
		6.1.1 Goal-derived use case 1: Erkki	14	
		6.1.2 Goal-derived use case 2: Fabio	14	
		6.1.3 Goal-derived use case 3: Tomas	14	
7	Arch	tecture overview	14	

8	8 External interfaces		
	8.1	Existing program	15
	8.2	Hardware control protocols	15
9 Validation		lation	16
Ap	pend	ices	

ii

1 Automated Sample Handler System Protocol

2 Automatic Sample Degaussing System Protocol

3 Superconducting Rock Magnetometer Protocol

1 Introduction

This document describes client requirements and system requirements for a SQUID magnetometer program that will be designed and implemeted as a software engineering student project at University of Helsinki at the Computer Science Department. The client is the Department of Geophysics.

1

This document serves as a contract between client and us..

Expected readership of this document here..

1.1 Glossary

Technical terms here ..

2 Overview

A brief overview of the problem domain..

3 Use cases

Describes planned use cases for the program. Use cases are derived from user interface prototype and user requiremets. All use cases are perfomed by any ordinary user and in program main screen. A simplified use case diagram is presented in Figure 1.

Use cases are divided to different sections, grouping logically similar use cases together.

Use case format:

UC0: Use case identifier and title

[POSSIBLY TEMPO	RARY NOTE HERE FOR PROJECT GROUP; SHALL BE REMOVED
FROM FINAL VERS	ION.]
Scenario A	First scenario for doing the use case.
Scenario B	Second scenario for doing the use case
Precondition	Preconditions for use case.
Postcondition	Postconditions for use case.
Error condition	Error handling, mainly if anything special needs to be done.
Goal-derived	Goal-derived use case(s) in which this use case occurs (if any);
	see section 6.1.
Requirements	Requirement(s) from which this use case derives; see section 4.

Figure 1: Use case diagram

3.1 Measuring

UC1: Single step measuring without demagnetization

Scenario A	Enter as next AF demagnetization step "0" or empty (default for	
	new projects), meaning no demagnetization, and click "Single	
	step".	
Precondition	AF project open, sample in sample holder.	
Postcondition	Sample measured, results on screen and appended to current project.	
Error condition	The program shall let the user know if something went wrong.	
Goal-derived	6.1.3, first few steps.	
UC2: Single step measuring with (AF) demagnetization		
Scenario A	Enter as next AF demag step anything greater than zero, and click	
-	Single step".	
Precondition	AF project open, sample in sample holder.	
Postcondition	Sample demagnetized (possibly ruined) and measured, results on	
	screen and appended to current project.	
Error condition	The program shall let the user know if something went wrong,	
	and, should the demagnetization field not be coming down, warn	
	user with an alarm sound :)	

UC3: Automatic demagnetization-measuring sequence (AF sequence)

Scenario A Enter the AF sequence (see section 3.5 for ways to enter it) and click "Measure". Precondition AF project open, sample in sample holder. Sample demagnetized according to entered AF sequence (possi-Postcondition bly ruined) and measured after each demagnetization, results on screen and appended to current project. The program shall let the user know if something went wrong, **Error condition** and, should the demagnetization field be uncalm, warn user with an alarm sound x) **Goal-derived** 6.1.1 whole sequence, 6.1.3 sequence after few single steps at the beginning.

UC4: Pause automatic measuring sequence

Scenario A	While measure sequence is running, click "Pause".
Precondition	Ongoing measuring sequence (UC3).
Postcondition	Measure sequence halts after current step is done, results on
	screen.
Error condition	Program tells if sequence can't be paused (and something has
	gone terribly wrong).
Goal-derived	6.1.3, Tomas pauses the sequence as the meteor demagnetizes too
	rapidly.

UC5: Abort automatic measuring sequence

	and measuring sequence
Scenario A	While measure sequence is running or paused, click "Stop imme-
	diately".
Precondition	Ongoing or paused measuring sequence (UC3).
Postcondition	Measure sequence halts immediately [and program enters "fully
	manual" mode?]
Error condition	Program tells if sequence can't be aborted (and something has
	gone terribly wrong).

UC6: Thellier measuring

Scenario A	Click "Single step". (Temperature can be entered later, as it won't
	affect measuring.)
Precondition	TH project open, sample in sample holder.
Postcondition	Sample measured, results on screen and appended to current
	project.
Error condition	As usual.
Goal-derived	6.1.2, temperatures already entered, one step at 380 °C.

UC7: Thermal measuring

[EXACTLY THE SAME AS THELLIER?]

Scenario A Click "Single step". (Temperature can be entered later, as it won't affect measuring.)

- **Precondition** TH project open, sample in sample holder.
- **Postcondition** Sample measured, results on screen and appended to current project.
- **Error condition** As usual.

UC8: Measure magnetometer ground noise

[2005-02-23 NOT	IN CURRENT UI PROTO, NOR PLANNED FOR IMPLEMENTA-
TION.]	
Scenario A	Click "Ground noise" and "Calibrate".
Precondition	No ongoing measurements.
Postcondition	Ground noise measured, results on screen and appended to
	"Ground noise" project.

UC9: Measure empty sample holder noise

Scenario A	Click "Holder noise" and "Calibrate".
Precondition	No ongoing measurements, empty sample holder.
Postcondition	Holder noise measured, results on screen and appended to
	"Holder noise" project.
Goal-derived	6.1.1, calibration at the beginning.

UC10: Measure standard sample

Scenario A	Click "Standard sample" and "Calibrate".
Precondition	No ongoing measurements, standard sample in sample holder.
Postcondition	Standard sample measured, results on screen and appended to
	"Standard sample" project, and, predefined .std file.
Postcondition	Holder noise measured, results on screen and appended to
	"Holder noise" project.

UC11: Fully manual measuring

[2005-02-25 STILL NOT CLEAR HOW FULLY MANUAL IS SUPPOSED TO WORK; TOMAS WILL BE BACK ON TUESDAY 1.3. AND MIGHT TELL US.]

- Scenario A Click any of the manual control components.
- PreconditionManual mode enabled.PostconditionManual action done, result on screen.

UC12: Enable manual mode

Scenario A	Click "Manual" checkbox above the manual control components.
Precondition	No ongoing measurement.
Postcondition	Manual mode enabled.

3.2 Exporting

UC13: Export project data into .dat file Scenario A In project explorer file list right-click on desired project file click

Scenario A	In project explorer file list, right-click on desired project file, click
	"Export .dat in current directory".
Scenario B	In project explorer file list, right-click on desired project file, click
	"Export .dat to disk drive A:".
Scenario C	In project explorer file list, right-click on desired project file, click
	"Export .dat", chooce directory and filename to export.
Scenario D	In project explorer file list, select multiple files with shift-click
	and ctrl-click, and make any of above actions.
Precondition	At least 1 project file in current (selected) directory.
Postcondition	Project data exported to .dat file.
Error condition	Notify if file error occurs (such as no disk in A: drive).

UC14: Export (thellier) project data into .tdt file

Scenario A	In project explorer file list, right-click on desired project file, click
	"Export .tdt in current directory".
Scenario B	In project explorer file list, right-click on desired project file, click
	"Export .tdt to disk drive A:".
Scenario C	In project explorer file list, right-click on desired project file, click
	"Export .tdt", chooce directory and filename to export.
Scenario D	In project explorer file list, select multiple files with shift-click
	and ctrl-click, and make any of above actions.
Precondition	At least 1 project file in current (selected) directory.
Postcondition	Project data exported to .tdt file.
Error condition	Notify if file error occurs (such as no disk in A: drive).

UC15: Export single measurement details into .srm file

Scenario A	In measurement result table, right-click on desired measurement
	line(s), click "Export .srm in current directory".
Scenario B	In measurement result table, right-click on desired measurement
	line(s), click "Export .srm to disk drive A:".
Scenario C	In measurement result table, right-click on desired measurement
	line(s), click "Export", chooce directory and filename to export.
Scenario D	In measurement result table, select multiple lines with shift-click
	and ctrl-click, and make any of above actions.
Precondition	At least 1 measurement result in current project.
Postcondition	Measurement details exported to .srm file.
Error condition	Notify if file error occurs (such as no disk in A: drive).

3.3 Printing

[2005-02-25 not in current UI prototype, implementation priority low.]

UC16: Print measurement results

Scenario A	Click "Print", "Measurement results".
Precondition	Open project.
Postcondition	Measurement results printed via [Java] standard printing window.
Error condition	Let know if printing error occurs.

UC17: Print graph sheet (with 7 different graphs; described elsewhere)

Scenario A	Click "Print", "Grap sheet".
Precondition	Open project.
Postcondition	Measurement results printed via [Java] standard printing window.
Error condition	Let know if printing error occurs.

3.4 Projects

As in project files, which store all measurement results.

UC18: Automatically save all measurement cycles in project file

[PROPABLY MORE OF A REQUIREMENT THAN USE CASE AND SHALL BE RE-MOVED FROM HERE.]

Scenario A	Make any measurement action (see section 3.1 for those).
Precondition	Project file open.
Postcondition	After measurement (step) is done, new results appended to project
	file.
Goal-derived	6.1.1, 6.1.2, 6.1.3.

UC19: Create new project

Scenario A	Click the empty line below filenames in project explorer, enter
	new project name, chooce AF/TH (thellier) project, click "Create
	new" or press enter.
Precondition	Project explorer in desired directory (UC21).
Postcondition	New project created and selected.
Goal-derived	6.1.1 after calibration, 6.1.3 at the beginning.

UC20: Load project

. .	
Scenario A	Click any filename in project explorer.
Precondition	Project explorer in desired directory (UC21).
Postcondition	Existing project loaded and selected.
Goal-derived	6.1.2 all samples already as project files.
Scenario B	Click "Browse" in project explorer, use standard [Java] file
	chooser to select project file to be opened.
Precondition	None.
Postcondition	Existing project loaded and selected, project explorer in opened
	project's directory.

UC21: Change project explorer directory

Scenario A	Click into current directory textbox in project explorer, write di-
	rectory to change to, press enter.
Scenario B	Click into current directory textbox in project explorer, start writing directory; when autocomplete-results appear below, use up/down+enter or mouseclick to select the directory.
Scenario C	Click the down-arrow on the right side of current directory textbox in project explorer, choose desired directory from appearing directory history.
Scenario D	Click "Browse" in project explorer, use standard [Java] file chooser to select directory to change to.
Precondition	Project explorer in desired directory.
Postcondition	New project created and selected.
Goal-derived	6.1.1, 6.1.2, 6.1.3.

UC22: Insert/edit project data

Scenario A	Click any of the project data checkboxes, or textboxes and enter
	value.
Precondition	Open project (usually just created).
Postcondition	Project data changed, saved automatically to project file.
Goal-derived	6.1.1 after creating new project.

3.5 Sequences

As in automatic demagnetization-measuring sequences (AF sequences), or, thellier temperature sequences.

UC23: Insert sequence with start-step-stop values

Scenario A	Click "Start" textbox, insert start value, click "Step" textbox, in-
	sert step value, click "Stop" checkbox, insert stop value, click
	"Add sequence" or press enter.
Scenario B	Click "Start" textbox, insert start value, press tab, insert step
	value, press tab, insert stop value, press enter or click "Add se-
	quence".
Precondition	An open project.
Postcondition	Sequence from start to stop, increasing by step for every step,
	appended to measurement result table, and selected.
Goal-derived	6.1.3 after creating new project.

UC24: Load sequence

Scenario A	Click down-arrow in right side of "Load set" combo box; from
	appearing list, click sequence to load.
Precondition	An open project, at least 1 saved sequence.
Postcondition	Selected sequence appended and selected to measurement result table.
Goal-derived	6.1.1, after typing project data, load "Basalt" set; 6.1.2 set already loaded for each project file (when created).

UC25: Edit sequence on-the-fly

· · · · · · · · · · · · · · · · · · ·	
Scenario A	Click any unmeasured "Tesla" or "Temp" column in measurement
	result table, enter new value.
Scenario B	Click any unmeasured line in measurement result table, press del
	to delete that line.
Scenario C	Right-click any unmeasured line in measurement result table,
	choose "Delete" to delete that line.
Scenario D	Click-drag any unmeasured line in measurement result table to
	new position within unmeasured lines.
Scenario E	Select multiple unmeasured lines in measurement result table with
	shift-clicks and ctrl-clicks, make any of above actions (except en-
	ter new value).
Precondition	Unmeasured lines in current project's measurement result table
	(note that measuring sequence can be going on).
Postcondition	Editing committed.
Error condition	Editing or screwing up measured lines won't be allowed
	Editing of screwing up measured lines won't be anowed.
Goal-derived	6.1.3, when sequence demagnetizes too rapidly, Tomas deletes
	unmeasured lines.

UC26: Save sequence

Scenario A	Click "Load set" combo box, enter new sequence name, click
	"Save set". [2005-02-25 not in current (almost final) UI proto-
	type!]
Scenario B	Right-click any line in measurement result table, choose "Save
	full sequence", enter name, press enter.
Scenario C	Select any lines in measurement result table with shift-clicks and
	ctrl-clicks, right-click on selected lines, choose "Save selected se-
	quence", enter name, press enter.
Precondition	At least 1 line in measurement results table (although you
	propably don't want to save a sequence with only one step x).
Postcondition	New sequence set saved to predefined sequence file and available
	from "Load set" combo box.
Error condition	Ask whether to overwrite, if sequence with the same name already
	exists (allow to enter new name if choose not to overwrite).

UC27: Edit stored sequence

Scenario A	UC24 "Load sequence" -> UC25 "Edit sequence" -> UC26 "Save
	sequence" with same name as the loaded sequence.
Scenario B	Click menu "Options"->"Sequences", edit any sequence in ap-
	pearing window [2005-02-25 not in UI prototype, must be im-
	provised :)]
Precondition	At least 1 saved sequence.
Postcondition	Changes saved to predefined sequence file.

UC28: Delete stored sequence

- Scenario AClick down-arrow in right side of "Load set" combo box; from
appearing list, right-click sequence to delete, choose "Delete".Scenario BClick menu "Options"->"Sequences...", delete sequence in ap-
- pearing window... [2005-02-25 not in UI prototype, must be improvised :)]
- **Precondition** At least 1 saved sequence.
- **Postcondition** Sequence deleted, changes saved to predefined sequence file.

UC29: Rename stored sequence

Scenario A	Click down-arrow in right side of "Load set" combo box; from ap- pearing list, right-click sequence to rename, choose "Rename",
	enter new name, press enter.
Scenario B	Click menu "Options"->"Sequences", rename any sequence in appearing window [2005-02-25 not in UI prototype, must be improvised :)]
Precondition	At least 1 saved sequence.
Postcondition	Sequence renamed, changes saved to predefined sequence file.

4 User requirements

Goals of the software set by client ..

4.1 Functional requirements

4.1.1 Magnetometer

Identifier: R1 Name: SQUID control and usage Description: Able to control Squid-magnetometer and make measurements with it. Priority: 1

Identifier: R2 Name: Manual control Description: Able to operate the magnetometer manually. (TODO: what this means?) **Priority:** 2

Identifier: R3

Name: Calibration reminder

Description: Magnetometer must be calibrated every 24 hours. The program will remind the user when it would be time to do calibration. **Priority:** 2

4.1.2 Project files

Identifier: R4

Name: Create project

Description: Create a new project file which will include the measurement sequence, measurement results and information about the sample. The file format will be custom made for this program.

Priority: 1

Identifier: R5 Name: Autosave project Description: Program will save measurement data and project information after every measurement step and modification. Priority: 1

Identifier: R6 Name: Load project Description: Saved projects can be loaded into program. Priority: 1

Identifier: R7 Name: Edit project Description: Ability edit project information and measurement data afterwards. (TODO: which data fields?) Priority: 2

Identifier: R8 Name: Recalculate derived measurement data Description: When the measurement data or the mass/volume of the specimen is changed, recalculate all numbers that have been derived from the modified data. Priority: 2

Identifier: R9

Name: Append project Description: New measurements can be added to existing projects. Priority: 2

Identifier: R10 Name: Export to other file formats Description: Measurements can be saved in .dat, .tdt and .srm files. Priority: 1

4.1.3 Measurements

Identifier: R11 Name: Create a measurement sequence Description: Able to create AF and Thellier measurement sequences with several different sized steps. Priority: 2

Identifier: R12 Name: Automatic sequence Description: Do all the measurement steps automatically. Priority: 2

Identifier: R13 Name: Single step sequence Description: Do only one measurement step at a time. Priority: 2

Identifier: R14 Name: Pause automatic sequence Description: Able to stop the measurement sequence after current step. After being stopped, the user can make modifications to the sequence and continue from where the sequence was left. Priority: 2

Identifier: R15 **Name:** Panic abort **Description:** Able to stop any measurement immediately. The demagnetizer will be turned off and the sample holder will stop where it is. The current measurement data will be discarded.

Priority: 1

Identifier: R16 Name: Numeric presentation of measurements Description: Program shows measurement data in numbers. Measurement data will be displayed using scientic notation (1.23e4). Priority: 1

Identifier: R17Name: Graphic presentation of measurementsDescription: Program draws graphs from measurement data. Available graph types are: Stereo Plot, Intensity, Zijderveld, Difference Vectors, Susteptibility, O63, Great Circles. (TODO: what are the definitions of these graphs? priorities per graph?)Priority: 4

4.1.4 Others

Identifier: R18 Name: Hotkeys Description: The program has hotkeys for the most often used operations. Priority: 3

Identifier: R19 Name: Change hotkeys Description: Possibility to change hotkey assignments. Priority: 4

Identifier: RXX Name: Description: Priority:

4.2 Quality requirements

Identifier: QR1 Name: Accuracy of measurements Description: The calculations that the program makes from measurements, must be done right. Priority: 1

Identifier: QR2 Name: Ease of use **Description:** Program should be easy to use for first time users after it has been explained to them how to take measurements with the magnetometer. **Priority:** 1

Identifier: QR3 Name: User guide Description: Program should have good help pages. Priority: 3

Identifier: QRXX Name: Description: Priority:

4.3 Environment

The computer that will run this program will be equal or better to 1GHz CPU, 256MB RAM, 1280x1024 resolution. The program must run under Windows XP. The hardware and communication with it is described in the section "External interfaces".

4.4 Maintainability

It must be possible to continue the development of the program. The documentation must be complete so that other teams can quickly continue the development even if they have not studied user interface designing. It must be possible to add new graph types to the program and export the measurement data to other programs.

4.5 Restrictions

Program will be used in normal PC which is connected to magnetometer. Taking into account rapid phase of computer evolution it is possible that computer in which program is used can change, accordingly the program should be able to be installed by outsiders. We need not prepare to changing of magnetometer, as new magnenetometer will probably have its own program.

5 System requirements / Functions

Specific explanation of the functions to be implemented

Figure 2: Architecture overview

5.1 System restrictions

6 User interface

Overview of UI described here ..

6.1 Goal-derived use cases

- 6.1.1 Goal-derived use case 1: Erkki...
- 6.1.2 Goal-derived use case 2: Fabio...
- 6.1.3 Goal-derived use case 3: Tomas...

7 Architecture overview

The program architecture can be divided into three parts: SQUID interface, measurement project and user interface. The program will also communicate with the SQUID hardware and local file system. A graphical representation of the architecture can be seen in Figure 2.

SQUID interface is responsible for controlling the hardware in an orderly manner. It will provide high- and low-level controls for using the hardware. Communication with

the hardware is done via COM ports. The SQUID interface will hide the protocol-level commands from the programmer and prevent illegal use of the hardware.

Measurement project is responsible for managing the project information, measurement sequence and measurement data. It will recieve commands from the user interface and notify the UI when the state of the project changes. It will send commands to the SQUID interface, recieve measurement data and save it. When the internal data of the project changes, the copy on the local file system will be automatically synchronized after a short delay (1 second or less).

User interface is responsible for communicating with the user of the program. It will update itself whenever the state of the measurement project is changed. It will send commands from the user to the program.

8 External interfaces

Interfaces to existing software and hardware are described here.

8.1 Existing program

The existing software for using the SQUID is "2G Enterprises Data Acquisition". We have access to the source code for version 2.99.3 of the program. From the old source code we will reuse basically only the SerialIO component. We will build an interface for communicating with the SQUID hardware by using Java and JNI (Java Native Interface).

8.2 Hardware control protocols

The SQUID consists of three independent units:

- Automated Sample Handler System (MODEL 2G800)
- Automatic Sample Degaussing System (MODEL 2G600)
- Superconducting Rock Magnetometer (MODEL 755R or 760R)

Automated Sample Handler System controls the movement and rotation of the sample holder. Its protocol is described in Appendix 1.

Automatic Sample Degaussing System controls the demagnetizer. Its protocol is described in Appendix 2.

Superconducting Rock Magnetometer reads the measurements from the magnetometer. Its protocol is described in Appendix 3.

9 Validation

Description of how to validate the set requirements.

Appendix 1. Automated Sample Handler System Protocol

Korvaa tämä sivu tiedostolla "Automated Sample Handler System - Protocol.pdf"

Appendix 2. Automatic Sample Degaussing System Protocol

Korvaa tämä sivu tiedostolla "Automatic Sample Degaussing System - Protocol.pdf"

Appendix 3. Superconducting Rock Magnetometer Protocol

Korvaa tämä sivu tiedostolla "Superconducting Rock Magnetometer - Protocol.pdf"