
Final Report 0.9

SQUID

Helsinki 3rd May 2005

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Mikko Jormalainen
Samuli Kaipiainen
Aki Korpua
Esko Luontola
Aki Sysmäläinen

Client
Lauri J. Pesonen
Fabio Donadini
Tomas Kohout

Project Masters
Juha Taina
Jenni Valorinta

Homepage
http://www.cs.helsinki.fi/group/squid/

Change Log
Version Date Modifications
0.9 3.5.2005 First version (Esko Luontola)

i

Contents

1 Introduction 1

2 Organization 1

3 Amount of Work 1

4 Debriefing 3

4.1 Overview . 4

4.2 Project . 4

4.3 People . 7

4.3.1 Team members’ evaluations of themselves 7

4.3.2 Team members’ evaluations of each others 8

Appendices

1 Hours of Mikko Jormalainen

2 Hours of Samuli Kaipiainen

3 Hours of Aki Korpua

4 Hours of Esko Luontola

5 Hours of Aki Sysmäläinen

1

1 Introduction

This document tells how the student project at the Department of Computer Science of
University of Helsinki for building a new user interface for the SQUID magnetometer at
the Department of Geophysics of the University of Helsinki went. The clients were Lauri
Pesonen with his assistants Fabio Donadini and Tomas Kohout from the Department of
Geophysics.

The name of the produced program is Ikayaki. The name comes from a japanese seafood
- dried, grilled squid.

The project took place from 25.1.2005 to 6.5.2005.

2 Organization

The people related to this project are shown in Figure 1.

Name Role E-Mail
Mikko Jormalainen Project Team mtjormal@cc.helsinki.fi
Samuli Kaipiainen Project Team samuli.kaipiainen@cs.helsinki.fi
Aki Korpua Project Team aki.korpua@cs.helsinki.fi
Esko Luontola Project Team (Manager) esko.luontola@cs.helsinki.fi
Aki Sysmäläinen Project Team aki.sysmalainen@helsinki.fi
Lauri J. Pesonen Client lauri.pesonen@helsinki.fi
Tomas Kohout Client tomas.kohout@helsinki.fi
Fabio Donadini Client fabio.donadini@helsinki.fi
Juha Taina Course Manager taina@cs.helsinki.fi
Jenni Valorinta Instructor valorint@cs.helsinki.fi

Figure 1: The people who were part of this project

3 Amount of Work

The amount of work that the team did is shown in Figure 2.

The estimated size of the program was a maximum of 13000 lines of code. The final size
of the program is some 21500 lines of code. So the estimation that was made at the very
beginning of the project (before the team even understood what they were doing ;) was
more than 65% too low.

During the project was also produced HourParser, a program for managing the team’s
work hours. Its size is 1000 lines of code.

The final schedule for the project is in Figure 3.

2

Figure 2: How many hours of work the team members did.

3

Task Start End Days
Project Plan 25.1.2005 8.2.2005 14
HourParser 8.2.2005 9.2.2005 1
Definition 25.1.2005 1.3.2005 35
- Prototype 24.2.2005
- Requirements Document 2.3.2005
Design 1.3.2005 22.3.2005 21
- Design Document 22.3.2005
Production 22.3.2005 14.4.2005 23
Testing 14.4.2005 28.4.2005 14
- Testing Plan 22.4.2005
- Testing Report 29.4.2005
Installing 28.4.2005 5.5.2005 7
- Final Report 3.5.2005
- User Manual xx.5.2005
- Realization Document xx.5.2005

Figure 3: Final project schedule

4 Debriefing

The writings in this section are based on the answers that the project team members gave
to the following questions:

• How did you like the theme of the program?

• How was the project in general?

• How has the project team been?

• How was the amount of work?

• What did you learn?

• Where have we succeeded and where failed?

• What should have been done better?

• What do you think about the tools and techniques that were used? Which of them
would your recommend to others? (goal-derived UI design, meetings, hour man-
agement, email, irc, Java, Swing, Latex, Dia, CVS, IntelliJ IDEA, JGoodies Looks,
virtual serial ports, JUnit, XML...)

• What do you think about the project model that was used? (waterfall model)

• How was the relation of the design and the production? Could something have been
expected or done differently?

4

• How did the time table change from what was planned? Why were there changes
and what effects did they have?

• What problems did the existing hardware, software and their documentation bring?
How were the problems solved?

• Describe shortly the operation of the client.

• How was it to work with an English speaking client? How did it affect the project?

• How did the instructor do her work?

• Evaluate the operation of each team member, also yourself. If you would describe
each one of them with one word, what would that be?

4.1 Overview

The project has been a lot of work, some pain, some nice moments and reasonable enough
results. Everybody in the team though that the theme of the program was both challenging
and interesting. It was motivating to solve some real-world problems, even when it was
out of our world. Nobody knew anything about the subject when we started, and it took
us some weeks to understand what the people at Geophysics are actually doing and what
it was that they really wanted. At start everything as a bit confusing and stressful, but
towards the end we were more and more confident about the result and chemistry between
the project team members got better and better.

The team was strong and people were supporting each other well. We were only five guys
doing it all, and sicknesses and other courses took a huge amount of our time from the
project. It took some time before the whole team was functional, but the team got better
and better during the project. The amount of work was much and it was shared unevenly.

All team members learned working in a team. Some other things that were learned are:
diplomatic negotiation skills with the client, the importance of meetings, the importance
of design and how things fall apart. Some technical things that were learned: Latex, CVS,
more Java, new features of Java 1.5, IRC. The English of some improved.

4.2 Project

We succeeded in making a program that works and the client appears to be pleased with
it. We mostly succeeded in everything, but failed to put the last effort and add a finishing
touch to every step. The meetings with the client and communication could have been
better, and as a result it was not possible to guess all of the requirements that the client
would have wanted. The user requirements and the program could have been designed
better. Testing the program was not as thorough as it should have been. The work did not
keep up with the schedule, so in the end there was more work than in the beginning. The
work load could have been distributed better.

5

What the project team thinks about the following:

• Goal-Derived UI Design:
The UI would never have been even nearly as good if we would not have payed spe-
cial attention to it. User observations gave us a better idea about client’s workflow
with the old software. The prototypes were also essential in designing the program.

• Meetings:
Needed for the people to communicate. Things could work in plain irc/email, but
not when everyone is committed enough to it, so regular meetings are needed.

• Hour management with HourParser:
Great system, it’s good that other members can see your hours right a way. The
created program is much better than any previous ones. :) Other teams should try
it.

• E-Mail:
Good for coordination and communication. Mailing lists are good for communica-
tion within the project team. Much of the communication with the client was by
e-mail.

• IRC:
Was in important role when we were not working face-to-face, which was the case
in about 90% of all work. Has been very helpful when many people are working on
the same thing at the same time, especially so right before a deadline. It was also
possible that while some are testing with the SQUID equipment, others stay home
and program fixes for the found bugs, so that they can be tested right away.

• Java and Swing:
Good choice here. It’s a safe choice when the coders are not too experienced. It
would never have been possible for all to learn C++ well enough to make a program
half this complicated. Performance was not a program with current hardware.

• Latex:
Hell and pain. Chainsaw internals massacre.

• Dia:
At least the Windows version was buggy and the UI was designed to kill. Missed
code generating features. A better tool for writing UML would be needed.

• CVS:
Necessary for file management, even if a bit limited (can not rename/move files).
The commandline version is clumsy - keep away from it. IDEA has a nice CVS
front-end and propably so have many other IDEs.

• IntelliJ IDEA:
Really well designed IDE for Java coding. The UI Designer makes the creation of
complex layouts easy. For example it took for a first-timer only about 30 minutes to

6

make the device configuration dialog’s layout. Only stupid people write Java GUIs
100% by hand. :P

• JGoodies Looks:
Looks better than the standard Swing look. :)

• Virtual serial ports:
Helped at some point a lot. Was a necessity for the development of serial API.

• JUnit:
Could have been used more. We didn’t get too much in to it, but worked well for
serial testing.

• XML:
Easy, effective and expandable. Was the best option for the new file format.

The waterfall project model that was used is a bit stiff, but it works. It is suitable for such
short student projects as this. There would not have been time to use a more complicated
model. The amount of documentation is a bit too much, though. A more flexible project
model would be recommendable.

Those parts that were designed well, were produced according to the design. Those that
were not designed, were produced more or less without plans. The user interface was
produced accurately according to plans (use cases and prototypes) and so were also the
Project data classes (ikayaki.*). The amount of time spent on designing could have been
huge, but with this timetable the results were fair. If there had been time, we should have
made the program requirements more detailed (requires more communication with the
client) and design the program code better (can be hard with GUI classes and their huge
API).

Every phase was delayed, as expected. Mayby it would have hold better if the amount of
work done by everyone were constant (20 h/week) all the time. Always someone (some-
times many) didn’t do the jobs when supposed to; nothing much to help it, as everyone
had other things than this project to do. Morale was low at times, which is inevitable in
such a long project. The client also gave some extra requirements, which required some
time to produce (luckily not too much). As a result, there was not enough time to test the
program properly.

The legacy C code was a nightmare. If we had known about the existense of protocol
documentation, we could have dumped the old code sooner, because it was pretty hard
to read and had no documentation. It was a good choice to start everything from ground.
Using the old code would have created too many new risks and slowed us down.

The protocol documentation was incomplete and did not mach the reality, so creating an
emulator was not very useful. The created SerialProxy class gave much undocumented
information about the protocol, so looking at how the old program does the things on
protocol level made our day. Hardware was actually good and safe to use when you
learned it, which helped a lot when testing and cleared errors in the documentation.

7

4.3 People

In the beginning the information from the client were sometimes inconsistent and we
did not always known who to follow, but this got much better towards the end. The
client probably didn’t fully understood the process of software development (we could
have been more describing about this) which also complicated things unnecessarily. For
example, it was hard to get an official acceptance for all documents and things agreed to
be left out from the software (in requirements phase) somehow popped up again later and
there were new requirements added in the testing phase. There should have been more
communication with the client. But overall they were committed to project and ready to
help us and use their time for us as much as they could.

Apparently most of the team members (4 out of 5) had never been talking that much
English. The use of English slowed down the process in the beginning, but later on it
has been just a minor issue. Sometimes it was a bit hard to understand everything and
sometimes it took time to find the right words, but it did not affect the project in the end.
In overall the use of English has been good practice for the future.

The instructor did her work well, silently observing project team when everything was
going well and stepping in to direct when time was running out or team was going to
make a mistake. At very beginning there was some confusion about the authority between
her and the project manager, but that was then sorted out. She kept the project and the
group on trail and emphasized things that got less attention. She could have been a bit
more relaxed on some issues when the internal pressure of the group was already high.
On the other side our pressure tolerances got much better and more ready for real world
challenges. In general she was nice and fair to us.

4.3.1 Team members’ evaluations of themselves

Mikko Jormalainen
- Poor.

Samuli Kaipiainen
- Tried to do my jobs on time, some (but not many) failings to do so though, tried a couple
of times to silently keep the project in one piece, lost some (or at few times, a lot) morale
in the end.

Aki Korpua
- Lazy parasite :D

Esko Luontola
- Maybe I worked a bit too much, but the work does not disappear by itself. Running a
project team was new for me and what made it more difficult, was that everybody in the
team were strangers at the beginning of the project. I’ll try to improve in delegating work
to others in the future. I know that I’m overconscientious.

Aki Sysmäläinen
- At the beginning his use of time for the project was minimal but towards the end it got

8

better. He was eager to take the lead when it was quiet on that front. At least tried to add
some diplomacy to client-project group relations.

4.3.2 Team members’ evaluations of each others

Mikko Jormalainen
- That one guy. Could have been more in contact with other members. Did his work well
anyway.
- Didn’t have that much interest in the project, or so it seemed at the beginning, but not so
much towards the end. Was most always ready to have a meeting of some sort. Had some
weird problems with cvs updating frequency x)
- Communication was lagging quite much. Does he even have 24/7 internet access at
home?
- Did his part in documenting. Could have done more coding. He was also a bit distant
from the group from time to time.

Samuli Kaipiainen
- Nice work buddy ;)
- Did what was assigned to him and did it well.
- Good.
- Did a great job with the project explorer which is an achievement of usability. But when
he got full of the coding the whole group got a bit affected by that. His sense of humor
and analytic attitude on problems were invaluable to group and the project.

Aki Korpua
- Fast worker, didn’t care so much for perfection :) Did his part even when tired and out
of morale. Had some good sympathy for the clients, which drove him to try and make a
working final software.
- Was also good in what he did. Did a good job in digging into the SQUID and the old
program. Had time for the project in spite of WoW. :)
- Good.
- He did a lot of work with interface and emulator. Some of his emotional reactions at
the beginning distracted other group members. His support and hard work kept the group
going during the black spots.

Esko Luontola
- Hero.
- Kept the project in one piece. Did something like 80% of all coding, and was good at
it too. Didn’t care (or so it seemed) about work hours being accumulated to him. Made
some vague changes to others’ codings =)
- Excellent.
- At the start it took some time of him to take the lead but after that he’s work has been
pretty convincing. His contribution to coding was huge and he kept the code together and
fixed and added a lot to other guys coding.

Aki Sysmäläinen
- Sleepyhead, hehe. Dont try to do all courses at same time.

9

- Had many other project going on at the same time 8) But, did his part in the end, such
as the graphs for the program, which would have been a shame not to have. Took the lead
sometimes, when things didn’t go forwards.
- Was a bit too busy with life outside the project. Was good in asking questions for
example when designing the UI. Also good in communicating with the client.
- OK.

