
BIOINFORMATICS Vol. 00 no. 00 2006
Pages 1–2

Compressed Suffix Tree — A Basis for Genome-scale
Sequence Analysis
Niko Välimäki a, Wolfgang Gerlach b, Kashyap Dixit c, and Veli Mäkinen a

aDepartment of Computer Science,
P.O. Box 68 (Gustaf Hällströmin katu 2b), FI-00014 University of Helsinki, Finland.
bTechnische Fakultät, Universität Bielefeld, Germany.
cIndian Institute of Technology, Kanpur, India.

ABSTRACT
Summary Suffix tree is one of the most fundamental data structures
in string algorithms and biological sequence analysis. Unfortunately,
when it comes to implementing those algorithms and applying them
to real genomic sequences, often the main memory size becomes
the bottleneck. This is easily explained by the fact that while a DNA
sequence of length n from alphabet Σ = {A, C, G, T} can be sto-
red in n log |Σ| = 2n bits, its suffix tree occupies O(n log n) bits. In
practice, the size difference easily reaches factor 50.

We provide an implementation of the compressed suffix tree very
recently proposed by Sadakane (Theory of Computing Systems, in
press). The compressed suffix tree occupies space proportional to
the text size, i.e. O(n log |Σ|) bits, and supports all typical suffix tree
operations with at most log n factor slowdown. Our experiments show
that, e.g. on a 10 MB DNA sequence, the compressed suffix tree
takes 10% of the space of normal suffix tree. Typical operations are
slowed down by factor 60.
Availability: The C++ implementation under GNU license is available
at http://www.cs.helsinki.fi/group/suds/cst/. An exam-
ple program implementing a typical pattern discovery task is included.
Experimental results in this note correspond to version 0.95.
Contact: vmakinen@cs.helsinki.fi

1 TEXT
Myriad non-trivial combinatorial questions concerning strings turn
out to have efficient solutions via extensive use ofsuffix trees. This
is no surprise, since suffix trees summarize the whole substring con-
tent of atextstring in an economic way; suffix trees contain a root
to leaf path for each suffix of the text such that each substring of
the text can be read as a prefix of some path. Edges of the tree are
labeled with text substrings, and can be represented by pointers to
the text. The tree hasn leaves and at mostn− 1 internal nodes, and
hence pointers in the tree occupy overallO(n) computer words,n
being the text length. This linear space dependency has madesuffix
trees attractive for many applications.

Bioinformaticsis a field where suffix trees would seem to have
the strongest potential; unlike the natural language textsformed by
words and delimiters, biological sequences are streams of symbols
without any predefined word boundaries, but rather containing yet
more hidden motifs and structures. Suffix trees treat any substring
equally, regardless of it being a word or not. This perfect synergy has
created a vast literature describing suffix tree -based algorithms for
sequence analysis problems. Several implementations exist as well
(seehttp://en.wikipedia.org/wiki/Suffix tree).

Unfortunately, the theoretically attractive properties of suffix trees
do not always meet the practical realm. The main reason why suf-
fix trees have remained mainly as theoretical tools is their immense
space consumption. Even for a reasonable size genomic sequence
of 100 MB, its suffix tree may require5GB of main memory. This
phenomenon is not just a consequence of constant factors in the
implementation of the structure, but rather an asymptotic effect.
When examined more carefully, one notices that a sequence of
lengthn from an alphabetΣ requires onlyn log |Σ| bits of space,
whereas its suffix tree requiresO(n log n) bits. Hence, the space
requirement is by no means linear when measured in bits.

The size bottleneck of suffix trees has made the research turninto
looking for more space-economic variants of suffix trees. One popu-
lar alternative is thesuffix array. It basically removes the constant
factor of suffix trees to1, as what remains from suffix trees is a lexi-
cographically ordered array of starting positions of suffixes in the
text. That occupiesn log n bits. Many tasks on suffix trees can be
simulated bylog n factor slowdown using suffix arrays.

A recent twist in the area of text indexes is the extensive useof
abstract data structures; the operations supported by a data struc-
ture are identified and the best possible implementation is sought
for that supports those operations. This line of development has led
to compressed suffix arrays. These data structures take, in essence,
n log |Σ|(1 + o(1)) bits of space. More importantly, they simulate
suffix array operations with logarithmic slowdowns, and support
some operations (like pattern search) even faster than plain suffix
arrays or suffix trees. These structures are also calledself-indexes
as they do not need the text to function; the text is represented
compressed within the index.

Very recently Sadakane (Theory of Computing Systems, in press)
extended the abstract data structure concept to cover suffixtrees,
identifying typical operations suffix trees are assumed to possess.
Some of these operations, like navigating in a tree, were already
extensively studied by other people. In addition to these navigatio-
nal operations, suffix trees have several other useful operations such
as suffix links, constant time lowest common ancestor (lca) que-
ries, possibility to attach additional information to eachnode/edge,
and pattern search capabilities. Sadakane developed a fully func-
tional suffix tree structure by combining compressed suffix arrays
with several other non-trivial new structures. Each operation was
supported by at mostlog n slowdown, often the slowdown being
only constant. The space requirement was shown to be still asym-
ptotically optimal, more accurately,|CSA|+6n+ o(n) bits, where
|CSA| is the size of the compressed suffix array used.

c© Oxford University Press 2006. 1

Mäkinen et al.

Space requirement on 10MB DNA

2,5 10,0 9,0
33,2 50,0

213,9

347,5

46,6 46,6

0,0
50,0

100,0
150,0
200,0
250,0
300,0
350,0
400,0

D
N
A

(2
bi
ts

/c
ha

r)

D
N
A

(b
yt

e
/ c

ha
r)

C
SA

C
ST S

A

S
T-

he
ap

ad
m

in S
T

C
SA

, m
ax

C
ST, m

ax

text and index

M
B

Fig. 1. Comparison of space requirements. We have added the text size to
theSA andST sizes, as they need the text to function as indexes, whereas
CSA andCST work without. HereST-heapadmin is the space used by
suffix tree without the heap administration overhead; this large overhead is
caused due to the allocation of many small memory fragments.For other
indexes, this overhead is negligible. Two last values on theright report the
maximum space usage during the construction; maximum is reached already
during the construction of the compressed suffix array.

We implemented the structure following closely the original
proposal. The time-requirement of our construction algorithm is
O(n log n log |Σ|). The construction uses the same asymptotic
space as the final structure. The final structure supports allthe men-
tioned suffix tree operations, each with at mostO(log n log |Σ|)
slowdown. The implementation details and references to earlier
work can be found in the technical report that can downloadedfrom
the same page as the software.

We report experimental results on a50 MB DNA sequence
(http://pizzachili.dcc.uchile.cl/texts/dna/
dna.50MB.gz).We used a version of the compressed suffix
tree CST whose theoretical space requirement isnH0 + 10n +
o(n log |Σ|) bits (H0 ≤ log |Σ| being the zeroth order entropy
of the sequence); other variants are possible by adjusting the
space/time tradeoff parameters. Heren(H0 + 1)(1 + o(1)) + 3n

comes from the compressed suffix arrayCSA, and 6n + o(n)
from the other structures. The maximum slowdown on suffix tree
operations isO(log n) under this tradeoff.

We compared the space usage against classical text indexes:a
standard pointer-based implementation of suffix treesST, and a
standard suffix arraySA were used. Figure 1 reports the space
requirements on a10 MB prefix of the sequence. One can see that
the achieved space-requirement is attractive;CST takes less space
than a plain suffix array, even when the extra space used during
construction is added.

For the time requirement comparison, we measured both the con-
struction time and the usage time (see Fig. 2). For the latter, we
implemented a well-known solution to thelongest common sub-
string (LCSS)problem using both the classical suffix tree and the
compressed suffix tree. The LCSS problem asks to find the longest
substringC shared by two given input stringsA andB. One can
solve it by constructing the suffix tree of the concatenationA$B,
searching for the node whose string depth is largest and its sub-
tree contains both a suffix fromA and fromB. For sanity check,

we also implemented anO(n3) (O(n2) expected case) brute-force
algorithm.

Construction time on DNA

247

2023
3778

41

338
633

5

41
77

5

36

152052

1

10

100

1000

10000

100000

1000000

0,1 0,5 1 5 10 15 20 25 30 40 50

text length (x million characters)

ti
m

e
(s

e
c
o

n
d

s
)

CST

CSA

SA

ST

LCSS computation time

48979

123

835 1427

2

14

355750

1

10

100

1000

10000

100000

1000000

0,1 0,5 1 5 10 15 20 25 30 40 50

text length (x million characters)

ti
m

e
(s

e
c
o

n
d

s
)

brute force

CST

ST

Fig. 2. Comparison of time requirements. For LCSS computation, we trea-
ted the first half of the sequence asA, the second asB. The irregular
sampling of text lengths up to 5 MB is chosen in order to visualize the
behavior of the brute-force algorithm.

The dramatic change in the behavior of suffix tree on sequences
larger than 30 MB is due to running out of main memory; this con-
firms the evident fact that suffix trees in external memory areway
slower than compressed suffix trees in main memory.

The experiments show that even though the compressed suffix
tree is significantly slower than a classical suffix tree whenboth
fit in main memory, it has an important application domain on
genome-scale analysis tasks; when memory is the bottleneckfor
using classical suffix trees and brute-force solutions too slow, com-
pressed suffix trees can provide a new opportunity to solve the
problem at hand without running out of space or time.

ACKNOWLEDGMENT
The software builds on a compressed suffix array implementation
by Veli Mäkinen and Rodrigo González and a balanced parenthe-
ses implementation by Gonzalo Navarro. We wish to thank them
for providing us a basis. The discussions with Kunihiko Sadakane,
Wing-Kai Hon, and Juha Kärkkäinen gave us better insightshow to
design the implementation.

The project was funded by the Academy of Finland under grant
108219, and by the From Data to Knowledge -research unit.

2

