Vol. 00 no. 00 2006
Pages 1-2

Compressed Suffix Tree — A Basis for Genome-scale

Sequence Analysis

Niko Valimaki?, Wolfgang Gerlach®, Kashyap Dixit¢, and Veli Makinen 2

aDepartment of Computer Science,

P.O. Box 68 (Gustaf Hallstromin katu 2b), FI-00014 University of Helsinki, Finland.

bTechnische Fakultat, Universitat Bielefeld, Germany.
¢Indian Institute of Technology, Kanpur, India.

ABSTRACT

Summary Suffix tree is one of the most fundamental data structures
in string algorithms and biological sequence analysis. Unfortunately,
when it comes to implementing those algorithms and applying them
to real genomic sequences, often the main memory size becomes
the bottleneck. This is easily explained by the fact that while a DNA
sequence of length n from alphabet ¥ = {A,C,G, T} can be sto-
red in nlog|X| = 2n bits, its suffix tree occupies O(nlogn) bits. In
practice, the size difference easily reaches factor 50.

We provide an implementation of the compressed suffix tree very
recently proposed by Sadakane (Theory of Computing Systems, in
press). The compressed suffix tree occupies space proportional to
the text size, i.e. O(nlog|X|) bits, and supports all typical suffix tree
operations with at most log n factor slowdown. Our experiments show
that, e.g. on a 10 MB DNA sequence, the compressed suffix tree
takes 10% of the space of normal suffix tree. Typical operations are
slowed down by factor 60.

Availability: The C++ implementation under GNU license is available
athttp://ww. cs. hel sinki . fi/group/suds/cst/.Anexam-
ple program implementing a typical pattern discovery task is included.
Experimental results in this note correspond to version 0.95.
Contact: vmakinen@cs.helsinki.fi

1 TEXT

Myriad non-trivial combinatorial questions concerningrggs turn
out to have efficient solutions via extensive usesuffix trees This
is no surprise, since suffix trees summarize the whole sulgston-

Unfortunately, the theoretically attractive propertiésuffix trees
do not always meet the practical realm. The main reason why su
fix trees have remained mainly as theoretical tools is timeinéense
space consumption. Even for a reasonable size genomic regzjue
of 100 MB, its suffix tree may requir6G' B of main memory. This
phenomenon is not just a consequence of constant factofsein t
implementation of the structure, but rather an asymptofiece
When examined more carefully, one notices that a sequence of
lengthn from an alphabek requires onlyn log |X| bits of space,
whereas its suffix tree requirg3(nlogn) bits. Hence, the space
requirement is by no means linear when measured in bits.

The size bottleneck of suffix trees has made the researclintiarn
looking for more space-economic variants of suffix treese Popu-
lar alternative is thesuffix array It basically removes the constant
factor of suffix trees td, as what remains from suffix trees is a lexi-
cographically ordered array of starting positions of s@xn the
text. That occupies log n bits. Many tasks on suffix trees can be
simulated bylog n factor slowdown using suffix arrays.

A recent twist in the area of text indexes is the extensiveaise
abstract data structureshe operations supported by a data struc-
ture are identified and the best possible implementatiomus)lst
for that supports those operations. This line of develogrhan led
to compressed suffix array$hese data structures take, in essence,
nlog |X|(1 + o(1)) bits of space. More importantly, they simulate
suffix array operations with logarithmic slowdowns, and o
some operations (like pattern search) even faster than plafix
arrays or suffix trees. These structures are also cadindexes

tent of atextstring in an economic way; suffix trees contain a root as they do not need the text to function; the text is represent

to leaf path for each suffix of the text such that each sulzstoin

compressed within the index.

the text can be read as a prefix of some path. Edges of the &ee ar Very recently Sadakand fieory of Computing Systenis press)

labeled with text substrings, and can be represented bygysito
the text. The tree hasleaves and at most — 1 internal nodes, and

hence pointers in the tree occupy ovei@lln) computer wordsyn

being the text length. This linear space dependency has sudfible

trees attractive for many applications.

extended the abstract data structure concept to cover gtefs,
identifying typical operations suffix trees are assumeddsspss.
Some of these operations, like navigating in a tree, weradly
extensively studied by other people. In addition to thesagaio-
nal operations, suffix trees have several other useful tipesasuch

Bioinformaticsis a field where suffix trees would seem to have as suffix links, constant time lowest common ancestor (le&-q

the strongest potential; unlike the natural language textaed by

words and delimiters, biological sequences are streamgnolbsls

without any predefined word boundaries, but rather contairyiet

more hidden motifs and structures. Suffix trees treat angtsinigy

equally, regardless of it being a word or not. This perfeciesygy has

created a vast literature describing suffix tree -basedridihgos for
sequence analysis problems. Several implementationsaxisell
(seehttp://en.w ki pedi a. org/wi ki/Suffixtree).

ries, possibility to attach additional information to eawde/edge,
and pattern search capabilities. Sadakane developedyaftiui¢-
tional suffix tree structure by combining compressed suffiays
with several other non-trivial new structures. Each operatvas
supported by at modbg n slowdown, often the slowdown being
only constant. The space requirement was shown to be gtithas
ptotically optimal, more accuratelyC’'S A| + 6n + o(n) bits, where
|C'S Al is the size of the compressed suffix array used.

(© Oxford University Press 2006.

Makinen et al.

H 3 2
Space requirement on 10MB DNA we al_so implemented af(n’) (O(n*) expected case) brute-force
400,0 5475 algorithm.
350,0
300,0 Construction time on DNA
250,0 2139
2 2000
150,0 1000000
1288 . .. 335 500 46,6 46,6 152052
oo =2 = T W ‘ ‘ T T 100000 =
QO Q T A e & A g N - f/
NGRS €€ T 10000 3778 | = CST
P @ R X £ 2023
) o &P O 8 paa |2 CSA
5 & A & 1000 2T 33 —o-SA
text and index g 100 77 | |—e—sT
10 A
Fig. 1. Comparison of space requirements. We have added the textssiz 14 5

0105 1 5 10 15 20 25 30 40
text length (x million characters)

the SA and ST sizes, as they need the text to function as indexes, whereas
CSA and CST work without. HereST- heapadmi n is the space used by
suffix tree without the heap administration overhead; thigé overhead is
caused due to the allocation of many small memory fragmetus.other
indexes, this overhead is negligible. Two last values orritte report the
maximum space usage during the construction; maximum cheshalready

50

LCSS computation time

during the construction of the compressed suffix array. 1000000 355790
100000
_ /A48979 /
€ 10000
g / 83(7/ .;lﬁ —aA— brute force
o
8 1000 /A/ 1;3/2/9/94:!——13]'—- —B8-CST
3 ——ST
. . . E 100
We implemented the structure following closely the origina = A/ 14
proposal. The time-requirement of our construction akoni is 10 2
O(nlognlog|X|). The construction uses the same asymptotic 1

0105 1 5 10 15 20 25 30 40 50
text length (x million characters)

space as the final structure. The final structure supportealhnen-
tioned suffix tree operations, each with at métlog n log |X|)
slowdown. The implementation details and references ttieear
work can be found in the technical report that can downloddad
the same page as the software.

We report experimental results on @ MB DNA sequence
(http://pizzachili.dcc.uchile.cl/texts/dna/
dna. 50MB. gz).We used a version of the compressed suffix
tree CST whose theoretical space requirementnifl, + 10n +
o(nlog|X]|) bits (Hy < log|X]| being the zeroth order entropy
of the sequence); other variants are possible by adjustieg t
space/time tradeoff parameters. Her@do + 1)(1 + o(1)) + 3n
comes from the compressed suffix arr@gA, and 6n + o(n)
ggg;ggngtgr(;tgr%tfﬁjé:;E?S ?::gg#m slowdown on suffie tre The experiments show that even though the compressed suffix

Y . . tree is significantly slower than a classical suffix tree wibeth

We compared the space usage against classical text |nd&19xes.f.t in main memorv. it has an important apolication domain on
standard pointer-based implementation of suffix tr&&s and a ! Y. !) P PPl
standard suffix array5A were used. Figure 1 reports the space genome-scale analysis tasks; when memory is the bottlefueck

- i : using classical suffix trees and brute-force solutions toaw,scom-
requirements on &0 MB prefix of the sequence. One can see that) . .
the achieved space-requirement is attract®®7 takes less space pressed suffix tregs can pro.V|de a new opportgmty to solee th
. . __problem at hand without running out of space or time.
than a plain suffix array, even when the extra space usedglurin
construction is added.

For the time requirement comparison, we measured both tie co
struction time and the usage time (see Fig. 2). For the Jatter The software builds on a compressed suffix array implemiemtat
implemented a well-known solution to tHengest common sub- by Veli Makinen and Rodrigo Gonzalez and a balanced pheent
string (LCSS)problem using both the classical suffix tree and the Ses implementation by Gonzalo Navarro. We wish to thank them
compressed suffix tree. The LCSS problem asks to find the fnge for providing us a basis. The discussions with Kunihiko Sade,
Substringc shared by two given input String& and B. One can Wing-Kai Hon, and Juha Karkkainen gave us better InSIQsz to
solve it by constructing the suffix tree of the concatenatithiz, ~ design the implementation.
searching for the node whose string depth is largest anculis s~ The project was funded by the Academy of Finland under grant
tree contains both a suffix from and from B. For sanity check, 108219, and by the From Data to Knowledge -research unit.

Fig. 2. Comparison of time requirements. For LCSS computation, ree-t
ted the first half of the sequence as the second a3. The irregular
sampling of text lengths up to 5 MB is chosen in order to vigeathe
behavior of the brute-force algorithm.

The dramatic change in the behavior of suffix tree on sequence
larger than 30 MB is due to running out of main memory; this-con
firms the evident fact that suffix trees in external memoryeag
slower than compressed suffix trees in main memory.

ACKNOWLEDGMENT

