
Implementation
of Compressed
Suffix Trees

Sadakane shows that lcp values can be
stored in 2n+o(n) bits so that each value
can be computed in constant time. We
modified Kasai et al. [5] algorithm to
directly construct the compressed lcp
values in linear time.

Munro et al. [6] show that, using 4n bits
balanced parantheses (BP)
representation of the tree together with
small data structures taking o(n) bits, one
can simulate tree traversals in constant
time per step. We modified related earlier
implementations to solve these tasks.

We developed an algorithm to construct
BP representation by scanning
(compressed) lcp values from left to right,
maintaining the right-most path of the tree
using only O(n) bits extra space. Similar
algorithm has also been proposed by Hon
and Sadakane [4].

FM-index [2,3] is a compressed variant of
suffix array (SA) supporting O(|P|) time
algorithm to count how many times a
pattern P occurs in a text. Main incredience
of FM-index is Burrows-Wheeler (BW)
transform [1].

It is possible to construct a dynamic FM-
index using no more space than the
compressed index itself [7]. This provides
us with the BW-transform.

Sadakane shows that suffix links from
leaves and labels of edges can be
computed by means of compressed suffix
arrays (CSA) that support functions SA[i],
SA-1[i], substring(i,j).

Our result: We show that, given BW-
transform, we can construct the above CSA
using no additional space.

Suffix links from internal nodes can be
computed using lowest common ancestor
(lca) queries. Space-efficient structures for
constant time lca-queries were studied by
Sadakane. We engineered a practical
version by adding a space/time tradeoff.

Suffix tree is probably the most important data structure when it
comes to analyse strings. It finds applications in sequence
comparison, pattern discovery, string algorithms, information
retrieval, etc. It is hard to find a non-trivial question on strings
whose efficient solution wouldn't require a suffix tree to be
build. The bottleneck in the practical use of suffix trees has
been its space-greedyness. Recently, compressed suffix trees
have been proposed that work in significantly smaller space,
and support all typical suffix tree operations with a slight
slowdown. We offer the first implementation of such structure
[8] together with a space-economical construction algorithm.
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suffix tree takes
about 5 n log n bits

compressed suffix tree takes |CSA|+6n+o(n) bits.
In our implementation |CSA|=n log | | (1+o(1)).
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Space requirement in practice
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Longest Common SubString  (LCSS) computation
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