
Implementation
of Compressed
Suffix Trees

Sadakane shows that lcp values can be
stored in 2n+o(n) bits so that each value
can be computed in constant time. We
modified Kasai et al. [5] algorithm to
directly construct the compressed lcp
values in linear time.

Munro et al. [6] show that, using 4n bits
balanced parantheses (BP)
representation of the tree together with
small data structures taking o(n) bits, one
can simulate tree traversals in constant
time per step. We modified related earlier
implementations to solve these tasks.

We developed an algorithm to construct
BP representation by scanning
(compressed) lcp values from left to right,
maintaining the right-most path of the tree
using only O(n) bits extra space. Similar
algorithm has also been proposed by Hon
and Sadakane [4].

FM-index [2,3] is a compressed variant of
suffix array (SA) supporting O(|P|) time
algorithm to count how many times a
pattern P occurs in a text. Main incredience
of FM-index is Burrows-Wheeler (BW)
transform [1].

It is possible to construct a dynamic FM-
index using no more space than the
compressed index itself [7]. This provides
us with the BW-transform.

Sadakane shows that suffix links from
leaves and labels of edges can be
computed by means of compressed suffix
arrays (CSA) that support functions SA[i],
SA-1[i], substring(i,j).

Our result: We show that, given BW-
transform, we can construct the above CSA
using no additional space.

Suffix links from internal nodes can be
computed using lowest common ancestor
(lca) queries. Space-efficient structures for
constant time lca-queries were studied by
Sadakane. We engineered a practical
version by adding a space/time tradeoff.

Suffix tree is probably the most important data structure when it
comes to analyse strings. It finds applications in sequence
comparison, pattern discovery, string algorithms, information
retrieval, etc. It is hard to find a non-trivial question on strings
whose efficient solution wouldn't require a suffix tree to be
build. The bottleneck in the practical use of suffix trees has
been its space-greedyness. Recently, compressed suffix trees
have been proposed that work in significantly smaller space,
and support all typical suffix tree operations with a slight
slowdown. We offer the first implementation of such structure
[8] together with a space-economical construction algorithm.

Department of Computer Science

Faculty of Science

Kashyap Dixit, Wolfgang Gerlach, Veli Mäkinen, and Niko Välimäki

Implementation available at
http://www.cs.helsinki.fi/group/suds

[1] M. Burrows and D. Wheeler. A block sorting lossless data
compression algorithm. Techical report 124, DEC, 1994.

[2] P. Ferragina and G. Manzini. Indexing compressed texts.
JACM, 52(4):552-581, 2005.

[3] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro.
Compressed representattions of sequences and full-text
indexes. ACM TALG, in press.

[4] W.-K. Hon and K. Sadakane. Space-economical algorithms
for finding maximum unique matches. In Proc. CPM 2002,
pp. 133-152.

suffixtree(abac$)

$

5

a bac$
c$

bac$
c$

1 3

2 4

12345

Sadakane [8]

lcp: 0 1 0 0
BP: ((5) ((1) (3)) (2) (4))ii)

i) labels (=substrings), suffix links
SA: 5 1 3 2 4

(4,5)=

ii)

Our implementation

abac$

i)

O
(n

 lo
g

n
lo

g
|

|)
tim

e

suffix tree takes
about 5 n log n bits

compressed suffix tree takes |CSA|+6n+o(n) bits.
In our implementation |CSA|=n log | | (1+o(1)).

[5] T. Kasai et al. Linear-time longest-common-prefix
computation in suffix arrays and its applications.
In Proc. CPM 2001, pp. 181-192.

[6] I. Munro, V. Raman, and S. Rao. Space efficient suffix trees.
JALG, 39(2):205-222, 2001.

[7] V. Mäkinen and G. Navarro. Dynamic entropy-compressed
sequences and full-text indexes. In Proc. CPM 2006,
pp. 306-307.

[8] K. Sadakane. Compressed suffix trees with full functionality,
Theory of Computing Systems, to appear.

Space requirement in practice

2,50 10,00

40,00

320,60

9,00
31,60

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

DNA
(2bits/char)

DNA
(byte/char)

suffix array suffix tree compressed
suffix array

compressed
suffix tree

text / index

M
B

Construction time on 10MB DNA

13 14

178

733

0

100

200

300

400

500

600

700

800

suffix array suffix tree compressed
suffix array

compressed
suffix tree

index

tim
e

(s
ec

on
ds

)

Longest Common SubString (LCSS) computation

1,00

10,00

100,00

1000,00

10000,00

0,10 0,5 1 5 10 15 20 25 30

MB

tim
e

(s
ec

on
ds

)

brute force
suffix tree
compressed suffix tree

http://www.cs.helsinki.fi/group/suds

