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Abstract—A bottleneck router typically resides close to the
edge of the network where the aggregate traffic is often limited
to a single or a few users only. With such limited aggregate traffic
Random Early Detection (RED) on the bottleneck router is not
able to properly respond to TCP slow start that causes rapid
increase in load of the bottleneck. This results in falling back
to tail-drop behavior or, at worst, triggers the RED maximum
threshold cutter that drops all packets causing undesired break
for all traffic that is passing through the bottleneck. We explain
how TCP slow start, ACK clock and RED algorithm interact in
such a situation, and propose Harsh RED (HRED) to properly
address slow start in time. We perform a simulation study
to compare HRED behavior to that of FIFO and RED with
recommended parameters. We show that HRED avoids tail-drop
and the maximum threshold cutter, has smaller queues, and
provides less bursty drop distribution.

Keywords-Harsh RED (HRED); Random Early Detection
(RED); Limited aggregate traffic; TCP slow start; Non-core
bottleneck; Constant bit-rate (CBR) traffic; Wireless broadband

I. INTRODUCTION

Random Early Detection (RED) [1] is an algorithm for a

router to perform Active Queue Management (AQM) [2] by

reacting pro-actively to an incipient congestion. RED aims at

keeping long timescale queuing at low level, while allowing

short timescale burstiness to occur. To achieve this, RED

allows a number of its parameters to be configured in order to

take into account heterogeneous path characteristics present in

the Internet. However, it is generally perceived as challenging

task to come up with right parameterization for RED [3], [4],

[5], [6], [7].

Typically RED is thought to be placed on a router that

aggregates significant amount of traffic. Previous studies have

mainly provided suggestions on how to improve RED when

the bottleneck is on a core router instead of residing near

the edge of the Internet. As such, the effect of a single

TCP flow in slow start to the overall utilization of such

bottleneck is relatively small [8], [9]. This, however, leaves

one essential part missing from the earlier proposals; they all

are too “gentle” to handle fast changes due to TCP slow start,

when the aggregate traffic is limited.

In this paper, we focus on a common case where the

bottleneck is close to the edge of the Internet and even a single

flow alone is able to saturate the link in question. Such link

is subject to highly varying load changing rapidly from light

load to overload in time as short as two round-trips because of

the TCP slow start. This is very common behavior with mobile

cellular and home access for example, as such bottleneck links

typically carry traffic of a single or a few users only and TCP

flows tend to be short, staying in slow start mainly. RED with

recommended set of parameters [1], [10] is too slow to respond

to such a limited aggregate traffic due to the small weight (wq)

used in calculating the moving average for the RED queue.

Therefore, it either falls back to tail-drop when the physical

queue is set to a small value, or if the physical quuee size

is big, the RED queue average exceeds the RED maximum

threshold (thmax) causing large number of drops.

According to our knowledge, there are few studies on RED

with limited aggregate traffic, especially with various buffer

size settings. We find out that something based RED algorithm

itself is not satisfactory due to the nature of RED to over-

correct slow start when the number of flows it regulates is

small. But at the same time it is an algorithm that exist in a

large number of hardware that is already deployed. Therefore,

we find it logical to try to take advantage of RED instead of

coming up with a new queue controller. Even though such

controller might better suited to the task, it would be unlikely

to be deployed in the near (or far) future.

For the purpose of countering slow start, we propose Harsh

RED (HRED). By taking advantage of well-defined TCP slow-

start behavior, we make HRED queue average to cross HRED

minimum threshold (thmin) on a timely manner in order to

begin “a count-down” for actual HRED dropping. It is made

possible by setting the HRED weight (wq) and the upper

bound for the marking probability (maxp) to a very large value

compared with the recommended values [1], [10]. In addition,

we ensure that HRED drops before the physical buffer can run

out during the final round-trip of the slow start.

We conduct a simulation study in an environment mimick-

ing a wireless broadband access with a typical workload of

Web browsing. In Web pages individual objects are typically

small and the flows transferring them spend most or all

of their lifetime in slow start which motivates our focus.

Two wireless link types resembling Enhanced Data rates for

GSM Evolution (EDGE) [11] and High-Speed Packet Access

(HSPA) [12] were chosen. Besides avoiding tail-drop fallback

and the maximum threshold cutter that occurs with RED,



HRED successfully reduces the queue length and provides

less bursty drop distribution than FIFO or RED with the

recommended parameters.

The rest of the paper is organized as follows. First we

introduce related work in Section II. Then we focus on

TCP slow start and its interactions with RED algorithm in

Section III and derive Harsh RED from that knowledge in

Section IV. We present simulation result where we compare

Harsh RED performance against FIFO and recommended set

of RED parameters in Section V. Finally, we discuss aspects

related to Harsh RED and RED algorithm in Section VI and

conclude the paper in Section VII.

II. RELATED WORK

The initial guidelines to configure RED parameters are

provided by the designers of RED [1], [10]. As pointed out

in [3] the standard setting of RED exhibits no significant

advantage compared to tail-drop and in overloaded situation

even suffers both high delay and high packet loss. To seek a

solution, several studies investigate the RED parametrization

from different perspectives with the support of queuing theory

and simulation tests [13], [14], [15]. A modification to reduce

the RED queue average faster when the instantaneous queue

shrinks is presented in [13], but it does not discern whether the

queue average is trending upwards or downwards. Therefore,

it mis-operates during slow start as empty or decreasing queue

does not guarantee that the system load is decreasing because

of RTT long feedback loop in the TCP response.

Various RED alternatives have been proposed to leverage

the limitation of RED in challenging environments, including

Adaptive RED (ARED) [16], [17], Gentle RED (GRED) [18]

and Stabilized RED (SRED) [19]. In ARED, the upper bound

on the marking probability (maxp) is adjusted to target a

value for queue average within the RED minimum and maxi-

mum threshold range over long timescales. However, in short

timescales this adaptation adds yet another component that is

behind the current situation. As TCP slow start is very rapid,

ARED adaption cannot address it. In addition, the authors

of ARED [17] acknowledged RTT effect but incorrectly set

weight (wq) to a small value based on ten RTTs of 100 ms

each which typically corresponds to multiple RTTs (or even

to eternity in environments such as data-centers). As such,

ARED queue average responds too slowly similar to standard

RED. GRED [18] is identical with the standard RED below

the maximum threshold which is where RED operates during

the initial slow-start from idle. In addition, ARED is shown

to yield poor performance with Web traffic [7]. SRED [19]

focuses on finding out the number of flows which is significant

for TCP congestion avoidance mode but quite irrelevant with

slow start because the aggregated window growth rate in slow

start does not depend on number of flows. In addition, Data-

Center TCP (DCTCP) [20] is a TCP variant that includes end-

host modifications and uses RED implemented on routers in

a degenerated fashion. Because of the need for end-host mod-

ifications, we find DCTCP unsuitable for other than isolated

environments such as data-centers as otherwise fairness issues

would arise.

To evaluate RED performance, research at INRIA [21],

[6] provides an analytical model and experimental results for

tuning RED by taking into account both queuing delay and

drop rates at the router. Based on their analysis, RED routers

with standard parameters behave similar to tail-drop routers

when queue length is close to the maximum threshold. Other

experiments focusing on Web traffic indicate that for loads

below 90% link utilization, RED exhibits little improvement

in response time compared to tail-drop [5].

III. ANATOMY OF RED

RED maintains an exponentially weighted moving average

(EWMA) of queue size. Typically, RED queue average (avg)
is calculated when a packet arrives:

avg ← (1− wq)avg + wqqlen
The EWMA weight is specified with wq . A large weight

makes the average to follow instantaneous queue length qlen
more closely, while a small weight makes the queue average

response slower. Purpose of the average queue size is to allow

some burstiness, yet keeping the queue small even if the burst

turns out to be non-temporary in nature.

A TCP flow has two modes of operation called slow start

and congestion avoidance both affecting RED queue average

differently. In the slow start TCP probes the network with

an exponentially increasing window in order to reach an

equilibrium [8]. Congestion avoidance is much “friendlier” to

the network imposing only additive increase per RTT at most.

TCP flows transferring Web objects spend most of the transfer

in slow start as Web objects are typically short. Therefore we

mainly focus to slow start in the analysis of this paper. If a TCP

flow does not use Delayed ACKs [22], the congestion window

of the TCP flow is doubled on each RTT (with Delayed ACKs,

factor of 1.5 increase is expected). It implies that the load on

the bottleneck can grow from 50% to 100% over a single

RTT and go much beyond on the next RTT. Therefore, RED

cannot wait many RTTs until marking or otherwise the load

and queue would be very large. On the other hand, marking too

early leads easily to under-utilization. Even if more than one

flow is sharing the link, the growth rate is the same because

every packet transmitted over the bottleneck triggers at most

a single ACK clock tick regardless of flow.

At the main operating region above thmin, RED marking

probability is composed of two components. First, the initial

probability pinitial is a linearly increasing function of average

queue size between thmin and thmax. Second, final marking

probability is formed using uniform random variables:

pfinal =
pinitial

1−count∗pinitial
.

In this function the number of packets (count) that have

arrived since the last marking or since the avg exceeded

thmin is quite significant factor. It rapidly increases the final

marking probability when count approaches 1/pinitial. The
constant maxp can be used for the initial marking probability

to adjust the weight of these two components. RED has two

other operating regions. First, when the queue average is
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Fig. 1: Instantaneous and RED average queue during slow start

below thmin, no marking is performed and the count is reset.
Second, if the queue average is above thmax, all packets are

marked. This mode is “a safety valve” of RED allowing return

to main operating region if the load is too extreme for the

main operating region to handle. In general, RED should not

be configured such that this mode is ever used under normal

operation like TCP slow start.

Figure 1 shows with a solid line the instantaneous router

queue when TCP is in slow start. The router queue grows

even when the link is not even near of being fully utilized

due to the sender injecting packets on each RTT during a

“slow-start burst” at higher rate than the bottleneck link is

able to drain the queue. Without Delayed ACKs, the surplus

is equal to the rate of ACK clock (half of the double). Yet, the

queuing is only transient in nature and on each RTT an idle

periods follows the slow-start burst. The transient spikes have

an increasing magnitude and the idle period becomes shorter

because of exponentially increasing TCP congestion window.

Eventually the link becomes saturated and instantaneous queue

will not reach zero anymore.

Each slow-start burst increases the RED queue average

shown in Figure 1 with the dashed line. When the buffer

becomes empty, the average is calculated using approxima-

tion formula that simulates RED clock ticks using phantom

packets between the time when the last packet left the queue

(timequeueempty) and the next real packet arrival at now:
avg ← (1− wq)

(now−timequeueempty)/savg.
The time to transmit a phantom packet (s) is configurable.

All phantom packets are assumed to be of the same size

(some form of average packet size should be used in RED

configuration). When a slow-start burst is small, the average

falls back to zero before the burst on the next RTT begins.

If idle period is short enough, this formula leaves significant

residual queue average.

IV. HARSH RED

As a basis for Harsh RED (HRED), we take the assumption

that there is a slow start which causes a rapid utilization

increase from 50% to 100% utilization (assuming no delayed

ACKs). Recommended RED parameters [10] are too slow

to react allowing queue to build up. HRED should operate

on region below thmin only when the link is not saturated

and quickly enter the main operating region as soon as the

link becomes overloaded. A transient slow-start burst should

not, or should not be likely to, cause losses while the queue

is expected to drain slightly later. At the same time, HRED

must be “warmed up” during these early RTTs. This warm-up

ensures that transition to the main operating region happens

soon after the load changes from under-utilization to overload.

It is not enough to let HRED to perceive this from the ever

growing queue because of inherent sluggishness in reaching a

high enough count value to force a drop. Instead, HRED must

enter the main operating region earlier in the “final burst”,

which will not let the queue to return back to zero. We take

advantage of the residual queue average (see Figure 1) in

order to enable rapid transition to the main operating region.

Therefore, we take half of the bandwidth-delay product (BDP)

of the link and select wq such that dropping is unlikely to occur

already with a slow-start burst that equals to the half of the

link BDP in size. At the same time we ensure thata significant

residual queue average remains after the idle period.

In order to really take advantage of the pro-active dropping

instead of falling back to tail drop when the physical buffer

becomes full, the router buffer is set to a large value such

that it effectively never overflows (except due to extremely

unresponsive traffic). thmax is also set such that it is never

reached due to slow start alone. Reaching thmax ever should

be highly discouraged because it tends to drain “the pipe”

due to consecutive dropping, a behavior worse than FIFO as

the queue average can reside above thmax even when the

instantaneous queue is nearly or totally empty. In addition,

the feedback latency must be taken into account as the slow

start continues until the loss signal reaches the sender and is

only then reflected as a lower sending rate towards the router.

In total, the feedback loop from router to receiver to sender

and back to router takes one RTT and a TCP sender in slow

start doubles the sending rate during this RTT.

The traditional wisdom in configuring RED seems to be

“being gentle” to avoid dropping much too early. The original

RED authors state that “there should never be a reason to

set maxp greater than 0.1” [1]. Also, there is even a RED

variant [18] carrying this kind of “desired” behavior in its

name. However, with slow start the “being gentle” approach

is exactly the wrong one. Instead, RED should treat any slow-

start probing near the link saturation “harshly” to prevent the

congestion from escalating into higher dimensions. The fact

is that slow-starting will not cease until drops are induced,

and it is better to do that sooner than later. In addition,

the dropping needs to be aggressive enough to successfully

counter common-mode slow-start of multiple flows. If only a

few drops are induced, only a few flows will end their slow

start which still leaves the others to continue in slow start

with the exponential increase. Dropping sooner means that

queue average is not even close to thmax just yet because it

naturally lags behind the instantaneous queue sizes. Therefore

in practice, the initial dropping probability will not reach a



TABLE I: RED and HRED Paramenters

EDGE HSPA
RED Harsh RED RED Harsh RED

thmax 9 40 20 50

thmin 3 3 5 3

wq 0.002 0.2 0.002 0.02

maxp 0.1 0.65 0.1 0.65

value close to maxp.

In order to make HRED to behave “harshly”, we need to

pay attention to when at latest the HRED is guaranteed to drop

as that defines the upper bounds for the queue growth (albeit

multiple flows make the actual analysis more complicated).

RED configuration guideline [1] only pays attention to the

opposite question, when at earliest, the dropping can occur.

Because the final dropping probability and thmax are inter-

locked, an increase in thmax will also delay the latest point

of guaranteed drop although not linearly. At the same time,

count is important in determining when the rapid increase in

final dropping probability is taking place. The growth of count
can be controlled by allowing the thmin to be crossed early,

i.e., to have a small thmin. This leaves us only maxp as a

free parameter which as a result should be made large.

During the feedback RTT the queue average keeps in-

creasing that leaves the HRED into even more aggressive

state for the RTT following the feedback RTT. Therefore,

HRED induces drops on the subsequent RTT more frequently

than it did during the initial reaction RTT. Such unnecessary

drops cause extra window reductions which can lead to under-

utilization. A smaller number of flows increases the likelihood

of under-utilization because the impact of a single window

reduction to the load is high. This over-reaction is an inherent

flaw in EWMA queue average. We took it into account by

selecting parameters that drop slightly later than would have

been necessary if only a single window reduction is expected.

The key HRED parameters are summarized in Table I.

V. SIMULATION EXPERIMENTS

In order to evaluate the performance of Harsh RED, we

conduct extensive simulations on a variety of workloads and

link access settings using the network simulator ns-2 [23].

A. Simulation Setup

We decide to keep the simulation topology simple and yet

representative roughly targeting at two cellular wireless ac-

cess environments, EDGE and HSPA, inherently with limited

aggregate traffic on the access link. We select a number of

workloads to represent the scenarios, where the main traffic is

Web transfers with multiple connections downstream from an

Internet content server to the mobile host. Figure 2 presents

our testing topology. The wireless access link between the

mobile host and the last-hop router is the bottleneck link

representing typical cellular access link characteristics. To

investigate the queuing behavior and avoid loss noise, all the

links are simulated as loss-free. While larger delays than 11

ms towards the content server can be easily encountered in the

Fig. 2: Simulation Topology

Internet, the delays of the selected wireless links are expected

to dominate RTT except in the case of inter-continent flows.

We compare the proposed HRED queue management

against that of FIFO and RED. To compare the impact of

different queue settings, we select RED and HRED with

the parameters given in Table I with byte-based dropping

probability calculation. Two different router buffer sizes are

tested: 2BDP that is two times the bandwidth-delay product

(BDP) of the link and Large buffer size. The Large buffer is

based on the wireless link parameters with the goal to make it

“large enough” for HRED queue to not overflow it. As one of

the goals with HRED is to have such large buffer, the smaller

2BDP-sized buffer is not tested with it. HRED is also tested

with Explicit Congestion Notification (ECN) [24].

TCP performance is tested with two workloads: 1) one

background bulk TCP flow with a burst of later starting TCP

flows and 2) a burst of n TCP flows with a burst of n later

starting TCP flows. The background bulk TCP flow and the

first n TCP flows are started at zero seconds. The background

bulk TCP flow is left to settle into congestion avoidance mode

of operation before the later TCP burst is started. Each burst

consist 1, 2, 6, or 18 TCP flows that start simultaneously. The

total size of the TCP burst is 360 kB divided equally between

the flows in the given burst. To measure delay effects, we

include constant bit-rate (CBR) traffic with payload rate of

16 kbps for EDGE and 64 kbps for HSPA to compete with

the TCP traffic. The CBR start time is distributed to occur 0-

200 ms earlier than the later starting TCP burst and it lasts for

15 seconds with EDGE and 1.5 seconds with HSPA. The CBR

flow is not ECN-capable. Each test case is repeated 100 times

using random distribution for start time of the later TCP burst.

Due to the limited space, the delay effects are only presented

for the cases with 2 or 6 flows in the TCP burst.

Performance metrics for our measurements include the TCP

burst elapsed time, oneway delay, and loss-pair distance. The

TCP burst elapsed time for a TCP burst is defined as the

time between sending the first TCP SYN and receiving the

last ACK packet for the last to complete flow within the

burst. The loss-pair distance indicates the distance in packets

between two losses which is important for CBR audio traffic

as codecs tend to be able to conceal only gaps with limited

duration. Compared to network-centric metrics such as link

utilization, the selected metrics represent better the factors

affecting the end user experience. The burst elapsed time is

presented using figures that show median and quartiles (25th
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and 75th percentiles) using solid errorbars, and the minimum

and maximum using dotted errorbars.

B. TCP Performance Results

First we look at the case with a background Bulk TCP

flow (1 Bulk TCP) and a burst of TCP flows. The elapsed

time of the TCP burst over the EDGE link is presented in

Figure 3. With RED+2BDP when the burst starts, the queue

average is already on the RED operating region because of

the background bulk TCP. Therefore, the queuing times are

short with RED+2BDP and the TCP burst is able to complete

faster than with FIFO, except with 18 flows. With 18 flows,

RED+2BDP with too late pro-active drops causes exponential

RTO backoffs more likely than with FIFO. However, as the

BDP of the link is less than 7 packets, 18 concurrent flows

is not sustainable even with TCP congestion windows of

one segment and TCP retransmission timeouts (RTOs) are

triggered with FIFO+2BDP too. With 1 or 2 flows in the

TCP burst, RED+Large has shorter burst elapsed time than

FIFO+2BDP similarly to RED+2BDP. However, when the

number of flows is either 6 or 18, the elapsed time increases

because a thmax cutter phenomenon prevents all transmission

for multiple seconds. The thmax cutter occurs when the

queue average increases above thmax as a result of long

instantaneous queue. New packets cause further increase in the

queue average. When the queue average is above thmax, RED

considers the router overloaded and drops everything until the

average returns below thmax.

HRED is better than FIFO for similar reasons as

RED+2BDP but also manages 18 flows better because drops

are better distributed among the flows causing less exponential

RTO backoffs to occur and the completion time of the flow

to finish last is improved significantly. HRED provides shorter

burst elapsed times than RED+2BDP when there is more than

one flow because it favors less the first flow in a burst, allowing

the later flow in the same burst to complete sooner. The

improvement in the median elapsed time is 5.3-26.4%. With

one flow the significant part of the transfer happens in TCP

congestion avoidance mode and the link becomes occasionally

under-utilized which makes the HRED median elapsed time

4.3% longer than that of RED+2BDP.

With HRED+ECN the burst elapsed time tends to be shorter

than with HRED. However, in the two flows case the median

elapsed time is slightly longer while both quartiles show an

improvement. In addition, with 18 flows HRED is better than

HRED+ECN because HRED+ECN marks instead of dropping

which allows the queue to grow until thmax cutter occurs. The

situation resolves more quickly than with RED+Large because

of the smaller gap between instantaneous queue length and

thmax and the traffic is not fully stopped. In addition, some

spurious RTOs [25] occur with HRED+ECN due to the rapid

arrival of TCP initial window data for several flows and also

some retransmission are dropped due to inability of using ECN

with TCP retransmissions. Furthermore, the bulk TCP flow

alone is able to trigger the thmax cutter during its slow start.

In the worst case, it is effective for 15.9 seconds, leading to a

long period of zero utilization of the link. This is followed by

a lengthy period (even up to 100 seconds) with little progress

as several retransmissions are dropped, leading to RTOs and

multiple RTO backoffs (due to later start time for the burst,

the bulk TCP is past these problems when the burst starts).

The elapsed time of the burst over the HSPA link is shown

in Figure 4. RED is more effective than with the EDGE when

the number of flows is small. HRED outperforms all FIFO and

RED variants by a clear margin. Compared to RED+2BDP the

median elapsed time is 5.5%-44.5% shorter with HRED. With

RED+Large, the thmax cutter is effective for 2.0 seconds at

worst. HRED+ECN is not decisively better nor worse than

HRED, but it suffers from two problems. First, with small

number of flows the ECN-marked packets remaining in the

queue make the HRED queue average to grow higher during

the slow-start phase. The high queue average results in more

ECN marks during the following round-trips. These marks

lead to multiple TCP window reductions that cause under-
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utilization making HRED+ECN elapsed times longer than

with HRED. Second, with 18 flows some ECN marks are

received when the congestion window of the flow is already

one, a situation in which the sending rate is reduced further by

sending the next new segment only when the retransmission

timer expires, delaying the completion of the longest flow

occasionally.

The elapsed times for the two bursts with equal number

of flows over the EDGE link are shown in Figure 5. 18+18

TCP flows is a total disaster as it simply introduces too high

overload for the EDGE link which has BDP less than 7 full-

sized packets. Therefore, it is ignored for the rest of the EDGE

link analysis. FIFO+2BDP, FIFO+Large and RED+2BDP un-

fairly favor the first starting burst because of the first comer

advantage typical to FIFO behavior, allowing the first TCP

burst to complete well in advance compared to the elapsed

time of the later TCP burst. As HRED reduces the first

comer advantage by introducing timely probabilistic drops, it

provides fairness between the flows being superior to all other

cases. Median elapsed time for the later burst with HRED

is 2.2-25.5% shorter than with RED+2BDP, while HRED

has up to 2.8% longer burst elapsed time than FIFO+2BDP.

HRED+ECN has 0.2%-4.1% shorter median elapsed time

compared to HRED. RED+Large is subject to the thmax cutter

which almost doubles the elapsed times. An example case with

the cutter is presented in Figure 6. Slightly before 10 seconds

the queue average crosses thmax and all subsequent packets

are lost until the average falls below it near 20 seconds. The

drops include packets sent with RTO forcing the sender to

wait until the exponentially backed off timer expires again.

Once the average is within the operating region, the flows can

make some progress. However, the congestion windows are

small and “pro-active” drops trigger additional RTOs leading

to prolonged idle periods. HRED avoids thmax cutter and

maintains relatively small queue as can be seen in Figure 7.

Figure 8 shows the elapsed times of the TCP bursts over the
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HSPA link. All RED configurations result in longer elapsed

times than the FIFO cases because of under-utilization. HRED

is the best among the RED alternatives. With RED+2BDP,

first the tail-drop fallback occurs as the slow start ends with

an slow-start overshoot, as can be seen from the drops in

Figure 9. Then during the recovery pro-active drops cause loss

of retransmissions which force TCP flows to wait for RTOs.

HRED avoids tail-drop and therefore does not encounter slow-

start overshoot. Thus the amount of losses during slow start is

less than with RED+2BDP. However, lost retransmissions due

to pro-active dropping are still common phenomenon causing

RTOs also with HRED. When enough RTOs on different

TCP flows occur near each other, the link becomes under-

utilized and the elapsed times become longer than those

with FIFO that only drops when the queue is full. With

HRED+ECN a number of RTOs occur when the number of

flows is high, i.e., a few RTOs with 6+6 flows and with

18+18 flows the majority of flows encounter RTOs, but their
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Fig. 9: Queue behavior for 2+2 TCP flows over an HSPA link

with RED+2BDP

effect is insignificant for the burst elapsed time. Instead, the

burst elapsed time increases because of under-utilization that

is caused by ECN markings during consecutive round-trips

leading to multiple TCP window reductions. This over-reaction

with both HRED and HRED+ECN highlights the EWMA

queue average shortcoming; following the initial reaction to

slow start HRED marks with a higher probability without

giving the flows a chance to react first.

C. Impact on Realtime Traffic

We next focus on the delay effect using workloads that

include a CBR flow to measure the delay effect. Figure 10

shows the cumulative distribution function (CDF) for oneway

delay that CBR flow experiences when competing with a Bulk

TCP+6 flows over an HSPA link. The drop rate is visible in the

vertical tail going to infinity. The ”knee” right at the bottom

of the vertical drop-rate line indicates the maximum delay

experienced by a successfully delivered packet. All queue
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Fig. 10: Oneway delay for a CBR flow competing with a

workload of Bulk TCP+6 TCP flows over an HSPA link

disciplines achieve less than 1% drop rate. The FIFO cases

produce a “flat-line” indicating that the queue remains close

to the maximum value. RED+2BDP encounters the buffer limit

of 2BDP and reaches roughly the same level as FIFO+2BDP

at 366 ms for 15% of the packets. RED+Large diverges to

slightly higher delays due to its larger buffer space with the

maximum of 494ms. RED+2BDP and RED+Large have only

slightly less than 40% of the oneway delays below 200ms.

With HRED the worst-case oneway delay is 218ms and the

loss rate is 0.8%. Delays above 200ms (or drops) affect 2.8%

of the CBR packets with it. HRED+ECN has slightly higher

oneway delay and drop rate than HRED because more TCP

packets reside in the queue as HRED+ECN marks packets

instead of dropping.

With Bulk TCP and 2 flows, all delays are very simi-

lar to those with bulk TCP and 6 flows but shift slightly

downwards. RED+Large joins RED+2BDP line because the

needed buffering is clearly below the available 2BDP-sized

buffer. RED+2BDP provides oneway delays that are superior

to FIFO+2BDP. However, the oneway delay still remains

above 200ms for 25% of the CBR packets and the maximum

is 329ms. With RED+2BDP drop rate is 0.1%. HRED has

drop rate of 0.6% but keeps the oneway delay below 200 ms

with the maximum of 194ms.

Figure 11 shows the CDF for oneway delay with the

workload of 2+2 TCP flows over an EDGE link. Again, both

FIFO cases have nearly full queue for the highest end of the

traffic. RED+2BDP does not provide much lower delays than

FIFO+2BDP. However, the drop rate increases from 0.05%

to 0.3%. RED+Large is subject to thmax cutter causing 34%

of the CBR packets to be dropped. With HRED, the drop

rate is 0.8% and the delays stay at a lower level than in the

RED+2BDP case, except for the 4.9% for the packets at the

highest end. With HRED+ECN, the drop rate and oneway

delay are again higher than with HRED alone.

Figure 12 illustrates the benefits of HRED from a different
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distance 1 is 25193)

perspective. This CBR packet-pair loss distance indicates that

all other cases have tendency to drop consecutive CBR packets

more often than HRED does, whereas with HRED the majority

of the drops are distributed well as it is supposed to happen

with a properly functioning RED [1].

With 6+6 competing TCP flows over an EDGE link the

drop rates again increase; RED+2BDP becomes close to

FIFO+2BDP and RED+Large has unacceptable 46% loss rate.

With HRED the oneway delays also are longer than with

RED+2BDP for 22% of the packets. This is a clear example

of overloading the link; there are 12 flows on a link with only

7 packets BDP, i.e., more than one packet per flow will not be

bearable in the long term and just adds to the queue length.

The CDF for oneway delays with 6+6 competing TCP flows

over an HSPA link are shown in Figure 13. The oneway

delays in the highest end follow the patterns explained with the

other cases. FIFO+2BDP and RED+2BDP are roughly equal
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TABLE II: Percentage of CBR packets with oneway delay

below 200ms over an HSPA link

Bulk TCP+n TCP Flows n + n TCP Flows

n 1 2 6 18 1 2 6 18

FIFO+2BDP 0% 0% 0% 0% 82% 62% 30% 26%
RED+2BDP 92% 75% 38% 28% 82% 62% 31% 28%
HRED 99.6% 99.4% 97% 82% 94% 90% 83% 78%
HRED+ECN 99.3% 97% 91% 51% 84% 73% 55% 45%

due to the tail-drop fallback. FIFO+Large and RED+Large

have long oneway delays and the thmax cutter is causing a

significant number of drops for the RED+Large case. HRED

has superior oneway delay compared to the all other cases.

Again HRED+ECN has higher loss rate and longer oneway

delay than HRED because of longer queue due to ECN marks

instead of drops. The drop rate for RED+2BDP and HRED

is 2.3% and 1.5%, respectively. With HRED the maximum

delay is 302 ms. The percentage of CBR packets that have

oneway delay below 200 ms is summarized in Table II for all

workloads over HSPA which confirms that HRED is clearly

better than RED+2BDP.

VI. DISCUSSION

During the testing we observed two ns2 RED implemen-

tation problems that we fixed before getting the final results.

First, setting an equal buffer size for RED and FIFO cause

a significant difference in queue size and behavior. With the

RED queue, the packet could be queued even if the tail of the

packet would not fit the limit as long as the queue was initially

below the limit. This bug also raises a question on validity of

previous ns2-based simulation studies that compare FIFO and

RED. For our workloads the bug caused RED to unfairly favor

full-sized TCP packets over small CBR packets. Second, the

thmax cutter was short-circuited by allowing a packet to be not

dropped when instantaneous queue was empty at the arrival

of the packet. Therefore, some traffic could pass-through even

if the queue average is above thmax. Such short-circuit does



not exist in original algorithm [1] nor are we aware of any

other work that would mention existence of such behavior.

We also confirmed that Linux kernel RED implementation

matches here with the implementation given in [1].

With HRED we experimented with nearby weights, but

only visible change was shifting of the oneway delays down

or up corresponding to a change in queue length. Besides

testing HRED with ECN, we also tested both RED+2BDP and

RED+Large cases with ECN. In RED+2BDP case the results

were nearly identical because pro-active dropping was not that

frequent phenomenon, i.e., the tail-drop fallback dominates

the behavior with both. With RED+ECN+Large even longer

queue was formed because instead of dropping, the packet

could be marked and put to the queue. The thmax cutter

phenomena took even longer time to settle the higher average

down causing higher drop rates.

For this study, we intentionally choose a small minimum

threshold to allow rapid detection of incipient link saturation

to minimize the queue length at the peak before TCP response

starts to lower it. A small minimum threshold prevents achiev-

ing full utilization if only a small number of flows in TCP

congestion avoidance share the bottleneck link. The utilization

problem could be mitigated by selecting a larger minimum

threshold, however, that would delay the response to the slow

start. As the detection of the slow start would be delayed, the

queue would be allowed to peak higher which would increase

delay. Higher queue peak might also require increasing the

maximum threshold and physical queue size. Alternatively,

queue average could be made faster by tuning EWMA weight

to enable more timely detection.

VII. CONCLUSIONS

In this paper we have presented Harsh RED that is intended

for links that are subject to limited aggregate traffic. As such it

is relevant to a very common case where the bottleneck link is

close to the end users. We show that RED with recommended

parameters does not work with limited aggregate traffic but

falls back to tail-drop or exhibits even worse phenomenon with

RED thmax cutter. Both of them make RED reactive instead of

the intended pro-activeness. We show that with Harsh RED the

pro-active behavior is successfully maintained in a number of

scenarios typical to end-user behavior. Keeping RED algorithm

in pro-active operating region allows shorter oneway delays

and better loss distribution. However, we also discovered

that RED algorithm has a shortcoming due to which its

pro-active correction tends to over-correct during the round-

trips following the initial reaction. Such over-reaction leads

occasionally to under utilization, especially when the number

of flows in the system is small as the window reduction for a

single flow has notable effect on the overall load.

The results and problems seem to indicate that making

RED more aggressive tends to err to side of caution, instead

of making queue average to respond too slowly. Too slow

response is subject to both falling back to tail drop and

can cause even more dramatic performance drop through the

thmax cutter phenomenon if the gap between thmax and the

physical queue size is wide enough. Making RED “too fast”

just brings it closer to FIFO behavior (ultimately this would

result in what DCTCP [20] does). As random dropping, pro-

active response and some burst allowance are still happening,

too fast RED does not nullify good features of RED.
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