
Speeding up IPv6 Transition: Discovering NAT64
and Learning Prefix for IPv6 Address Synthesis

Yi Ding
University of Helsinki
yi.ding@cs.helsinki.fi

Teemu Savolainen
Nokia Research Center

teemu.savolainen@nokia.com

Jouni Korhonen
Nokia Siemens Networks
jouni.korhonen@nsn.com

Markku Kojo
University of Helsinki

markku.kojo@cs.helsinki.fi

Abstract—During the transition from IPv4 to IPv6 hosts in
IPv6-only networks need to communicate with IPv4 hosts as
most of the Internet services are not yet supporting IPv6. Hosts
with IPv6 access would benefit from discovering the presence of
NAT64 and learning a prefix needed for IPv6 address synthesis.
We propose two mechanisms and systematically evaluate the
existing solutions in this area. Based on our comparison of the
existing solutions and practical implementation experience, we
recommend the heuristic discovery method which is now adopted
in the IETF1 transition toolbox for the IPv6 Internet.

I. INTRODUCTION

IPv6 transition is entering a critical phase by facing the pres-
sure of IPv4 address space depletion as IANA2 has assigned
its last available IPv4 address pool in February 2011 [1]. The
demand for IPv6 is growing strong especially in Europe and
Asia where the proliferations of smartphones, IP connected
sensor devices and new broadband subscribers are pleading
for a larger address space that IPv4 simply cannot offer. For
the merits of IPv6 besides sufficient address space the global
IPv6 adoption rate is increasing steadily. However, most of
the Internet services are still not ready for IPv6. For instance,
only a few of the top 1,000 websites provide IPv6 addresses
(AAAA records) in the Domain Name System (DNS) and
merely 4% of service sites are accessible via an IPv6 native
connection [2], [3]. Moreover, until February 27 of 2012 the
percentage of registered domains with AAAA records is no
more than 2.1% of all domains in the listed top level domains
(3,247,614 out of 154,840,089) [4]. As pointed out in [5], [6],
the key to speed up IPv6 transition is interoperability so that
both IPv4 and IPv6 nodes are able to coexist and communicate
with each other.

To achieve interoperability for the smooth adoption, IETF
has developed a number of transition mechanisms and stan-
dardized recommended solutions. The once criticized Network
Address Translation (NAT) mechanism is now gaining a
positive role in the IPv6 transition to bridge the gap between
the two ’uncollaborative’ IP versions. IETF has developed
NAT64 [7] for IPv6 to IPv4 protocol translation and DNS64
[8] to make IPv4-only nodes to appear as reachable over IPv6.
DNS64 achieves this by returning a synthetic IPv6 address
as a response to a query for an IPv4-only address. NAT64

1Internet Engineering Task Force, http://www.ietf.org
2Internet Assigned Numbers Authority, http://www.iana.org

together with DNS64 allows nodes in IPv6-only networks to
communicate with nodes in IPv4-only networks. As a grow-
ing percentage of access network infrastructure is migrating
to IPv6, NAT64 enables connectivity to a large number of
existing IPv4 services from IPv6 networks. More users are
therefore encouraged to adopt IPv6 as the first choice.

At the same time, owing to the inherited NAT limitations,
NAT64 causes problems to various applications such as indi-
vidual end user targeted web advertising. Hopefully NAT64
will indirectly push service and content providers to upgrade
from IPv4 to IPv6 for better service via native IPv6.

When a NAT64 entity is deployed on the edge of an access
network, an end host can benefit from learning the information
of IPv6 synthesis for two major reasons. First, by discovering
the presence of NAT64 the host can choose to avoid network
translation by redirecting traffic to other channels. Second,
by deriving the NAT64 prefix from a synthetic IPv6 address,
the host can synthesize IPv6 addresses without the support of
the DNS64 entity and also perform DNSSEC [9] validation
successfully.

Several mechanisms for discovering the presence of NAT64
and learning the prefix used for address synthesis are hence
proposed in the recent development. The "Framework for
IPv4/IPv6 Translation" [10] describes an extensive set of
scenarios for IPv4/IPv6 translation. Among these scenarios
learning the NAT64 prefix is useful, when communication is
initiated from an IPv6 network to the IPv4 Internet or to an
IPv4 network [11]. 3GPP3 has specified IPv6 as the stan-
dard addressing scheme. Therefore, the protocol translation
scenario is of particular commercial interest in 3GPP based
cellular networks (3GPP migration guidelines, scenario 3 [12])
as an alternative to dual-stack deployments. As of writing this
paper first commercial IPv6-only cellular networks are already
being launched.

In this paper, we study the area of discovering the NAT64
function in access networks and learning the NAT64 IPv6
prefix used for address synthesis. Our major contributions
include:

• An extensive survey of solutions. We summarize our
analysis in [11] and extend it further with learned de-
ployment considerations.

3The 3rd Generation Partnership Project, http://www.3gpp.org

• Based on our systematic comparison of solutions, we
recommend the heuristic discovery approach [13].

• We implement both of our proposals and share our expe-
rience in mobile networks to guide future development.

The rest of paper is organized as follows. Section II intro-
duces the architecture and major functions of NAT64/DNS64.
Section III provides an extensive survey of solutions. In
Section IV we analyze all proposals and provide our recom-
mendation. The implementation of our proposals is covered in
Section V. Finally, we conclude the paper and discuss future
work in Section VI.

II. NAT64 AND DNS64

NAT64 [7] and DNS64 [8] enable nodes in IPv6-only
networks to communicate with nodes in IPv4-only networks.
A typical 3GPP cellular network-based NAT64/DNS64 setup
is presented in Fig. 1. NAT64 performs stateful translation
very much like ordinary IPv4 NAT, except that in addition to
address translation it also translates packet headers between
IPv6 and IPv4. DNS64 is an essential part of the overall
protocol translation system, making IPv4-only reachable nodes
to look like being reachable over IPv6. DNS64 does this by
combining IPv4-only node’s real IPv4 address and the prefix
of the NAT64 entity together as a synthetic IPv6 address. The
synthetic IPv6 addresses are delivered to an IPv6-only node
inside synthetic AAAA records, hence making the node to
believe that the destination is IPv6-reachable, while in reality
it is not. Standardized address formats are used in the process
[14]. The NAT64 prefix can be a Network-Specific Prefix
(NSP) which is assigned to a provider and chosen by the
network administrator or a Well-Known Prefix (WKP) defined
by IETF as 64:ff9b::/96 to represent IPv4 addresses in IPv6
namespace (i.e. an IPv4-converted IPv6 address).

 IPv6

 internet

 IPv4

 internet
Gateway

IPv6-only

connection 3GPP core

network

IPv4-only

server

IPv6-only

server

Dual-stack

server

NAT64

DNS64

IPv6 traffic

IPv4 traffic

DNS traffic

Figure 1: NAT64 and DNS64 in cellular network

The NAT64/DNS64 system works very well when app-
lications on IPv6-only connected hosts use only DNS to
resolve domain names for IPv6 addresses in their communi-
cations and the hosts do not implement validating DNSSEC-
capable resolvers [9]. Applications that need to create connec-
tions using IPv4 address literals face obvious problems when
the node has IPv6-only connectivity. Furthermore, DNSSEC-
capable validating resolvers cannot successfully validate syn-
thetic IPv6 addresses received from DNS64 [8].

The solution for allowing a host to cope with IPv4 address
literals and perform DNSSEC validation in networks having
NAT64 services is obvious: the host needs to implement local
IPv6 address synthesis functionality. However, before a host
can perform local IPv6 address synthesis it has to learn the
NAT64 IPv6 prefix used in a current access network.

Once a host, with any tool, has learned the IPv6 prefix of
the NAT64 in the attached network, the host can synthesize
IPv6 addresses from IPv4 addresses as described in the DNS64
specification [8]. This means the host can synthesize IPv6 ad-
dresses out of (possible DNSSEC validated) A records or from
IPv4 address literals in URLs (e.g. http://192.0.2.1/index.html)
or from other sources.

In order to avoid man-in-the-middle attacks, it must be
possible to secure the NAT64 prefix learning procedure on
need basis. If an attacker is able to influence what NAT64
IPv6 prefix nodes configure, it will be possible to cause
at least denial-of-service and traffic redirection attacks for
flooding or eavesdropping purposes. In the worst case the node
performs an IPv6 address synthesis by combining a DNSSEC
[9] validated IPv4 address with the NAT64 IPv6 prefix and
thinks the resulting address is securely synthesized.

NAT64 works best with applications that do not embed
IP address literals in the application protocol payload. App-
lications that embed IP address literals in their payload are
likely to fail in the presence of NAT64 unless Application
Layer Gateways (ALGs) are implemented on NAT64s.

III. SURVEY ON SOLUTIONS

A. Motivation, Challenges, and Solution Categories

As dual-stack OSs and multiple interfaces have become
the main stream, discovering the presence of NAT64 in the
access network can assist such hosts to bypass NAT64 via a
native IPv4 connection or other interfaces. At the same time,
learning the NAT64 prefix can support hosts in constructing
valid IPv6 synthesis addresses and hence solving the problem
of embedded IPv4 address literals, which has become the
major cause of connection disruption for IPv6-only hosts
in accessing current Internet services [3]. Such information
also helps applications that do not utilize DNS but obtain
destination addresses via other means.

Based on our investigation [11], we identify two major
challenges in this domain. First, how to minimize the imple-
mentation impact on hosts and network entities. This is the key
to deploy and integrate the proposed mechanism into existing
networks. Second, how to enable security. The solution should
provide means for ensuring that NAT64 prefix detection is not
compromised. To assist analysis, we divide existing solutions
into five categories:

• Solutions independent of existing deployed technologies.
• Application layer solutions.
• Network layer solutions.
• Link layer solutions relying on access technology assets.
• Out-of-band solutions relying on manual configuration.

2

B. Technology Independent Solutions

A solution using heuristic methods [13] was designed when
it became evident that it may be impossible to have all access
networks with NAT64 to explicitly provide prefix information
required for IPv6 address synthesis. The solution is simple: a
node shall make an AAAA record DNS query against a well-
known name (such as ipv4only.arpa or any other domain name
with required properties of top level domain high availability
and existence in foreseen future) that the node knows not to
have any IPv6 addresses. Hence, any IPv6 address received in
a DNS response reveals there is a DNS64 in the network.

The IPv6 prefix and the synthetic address format used by
the DNS64 and the NAT64 is discovered by searching for
an IPv4 address of the well-known name inside the received
IPv6 address. The location of IPv4 address determines the
used address format [14] and what is the prefix used by the
access network. The learned prefix and address format is then
used for local IPv6 address synthesis. As the learned prefix
and format are cached by the node, the time-to-live (TTL)
value of AAAA synthetic record determines how often a node
needs to repeat the heuristic discovery to update the cached
information.

C. Application Layer Solutions

At the application layer, a new EDNS0 option serving as
an implicit indication of NAT64/DNS64 presence has been
proposed [15]. Three bits are defined in the option to convey
the prefix length used for IPv6 synthesis. In this solution, both
hosts and DNS64 servers need to understand the new option.
Upon receiving valid requests from hosts, only DNS64 servers
are able to insert the EDNS0 option with the required bits into
the synthesized AAAA Resource Record.

In the version -00 of [15], a similar solution was proposed
to add three bits into the EDNS0 OPT header [16] to notify
the prefix length used for synthesis as an implicit indication
of NAT64/DNS64 presence. This solution also required hosts
and DNS64 servers to understand the new flag bits contained
in EDNS0 OPT header.

Based on DNS, a new Resource Record (RR), A64, is
proposed in [17] to store a synthetic IPv6 address. The
dedicated A64 record allows hosts to distinguish between real
IPv6 addresses and synthetic IPv6 addresses. To obtain A64
record, hosts need to send a query asking for the new record.
Positive response from DNS indicates that the resolved address
is synthesized rather than native IPv6 address.

Two DNS based mechanisms are proposed in [18] to
discover the presence of NAT64 and learn the NAT64 prefix.
The first mechanism utilizes a TXT based Resource Record
to convey a predefined string containing the NAT64 unicast
IPv6 address and its prefix length. The second mechanism
relies on a new U-NAPTR application to conduct U-NAPTR
query similar to reverse DNS query. The domain name used
in U-NAPTR query is derived from host’s IPv6 address in the
".ip6.arpa." tree and response to a successful query contains
the unicast IPv6 address and the prefix length of the NAT64.

Another application layer solution is to utilize application
layer signaling protocols such as Session Traversal Utilities for
NAT (STUN) [19]. With STUN, a host first needs to resolve
the synthetic IPv6 address of the target STUN server residing
in the IPv4 Internet. After learning the synthetic IPv6 address
of the STUN server, a STUN client on the host sends a request
to the STUN server with a new SENDING-TO attribute that
tells the server the IPv6 destination address the client sent
the request to. The server responds with another new attribute
RECEIVED-AS containing server’s IPv4 address the request
arrived at. By comparing the addresses in SENDING-TO
and RECEIVED-AS, the host can derive the NAT64 prefix
information.

D. Network Layer Solutions

At the network layer, two DHCP based mechanisms
are proposed to hook the discovery and learning pro-
cess into general IP configuration phase [18], [20]. The
OPTION_AFT_PREFIX_DHCP option proposed in [18] con-
tains necessary information to derive NAT64 prefix, including
the IPv6 unicast prefix, IPv6 any-source multicast prefix,
source-specific multicast prefix, and their lengths. Another
option described in [20] provides similar information for hosts
to allow them synthesize IPv6 addresses that can be routed
through NAT64.

A new router advertisement (RA) option defined as
OPTION_AFT_PREFIX_RA is proposed in [21] to convey
information similar to the DHCP based solution, including
IPv6 unicast prefix, IPv6 any-source multicast prefix, source-
specific multicast prefix, and the length of prefixes for NAT64.

E. Link Layer Solutions

Many access technologies allow configuration information
to be delivered during link layer establishment phase, such as
3GPP Non-Access-Stratum (NAS) signaling protocol [22]. It
is possible to utilize such signaling to deliver and negotiate
parameters including all NSPs with their respective prefix
length via generic protocol configuration options. The lack
of such options would be treated as implicit indication that no
NAT64 is deployed in the access network.

F. Out-of-Band Solutions

For the final category of possible solutions the information
needed for the IPv6 address synthesis is delivered via some
other means than over the node’s Internet connection. This
may include, for example, manual configuration of nodes,
usage of some provisioning tools such as the Access Network
Discovery and Selection Function (ANDSF) [23], or any other
protocol designed for network administration purposes.

IV. SYSTEMATIC EVALUATION AND DISCUSSIONS

A. Evaluation Metrics and Solution Classification

In order to compare and evaluate existing solutions, we
identify and define eight evaluation metrics.

1) Active detection - hosts purposely try to detect NAT64.

3

Table I: Comparison Table for NAT64 Prefix Learning Solutions

Active Explicit via Adaptation Multiple NSP Without DNS Transparent Host system Secure
Solution detection configuration to changes support protocol to network changes learning
Heuristic discovery Yes No Moderate Yes No No if DNSSEC No With DNSSEC
EDNS0 option/OPT flags Yes No Fast Yes No No Yes No
DNS A64 RR Yes No Fast Yes No No Yes No
STUN Yes No Moderate No Possible No No No
DNS TXT/U-NAPTR RR Yes No Fast Yes No No No No
DHCPv6 No Yes Moderate Yes Yes No Yes No
RA No Yes Fast Yes Yes No Yes No
L2 No Yes Undefined Yes Yes No Yes With secure L2
Out-of-Band No Yes Undefined Yes Yes Possible No Possible

2) Explicit via configuration - hosts learn prefix passively
as part of the host configuration procedure.

3) Capability to adapt to dynamic changes of NSP.
4) Support for multiple NSPs.
5) Independent of DNS protocol support on hosts.
6) Transparent to existing services and network entities.
7) Requiring changes to operating system services/kernel.
8) Secure learning of NAT64 prefix.

As our focus is on deployability, we selected the metrics
that cover the essential aspects of this domain, including
functionality, transparency, and deployment impact. Table I
summarizes the existing solutions against our evaluation met-
rics.

The active detection is enabled in heuristic discovery and
all application layer solutions since hosts are able to ini-
tiate the NAT64 detection on demand by calling necessary
function or application. Meanwhile, network layer solutions,
link layer solutions, and out-of-band solutions rely on the
network-generated information passively obtained from the
access network during host configuration. Such solutions are
identified as explicit via configuration.

Regarding to dynamic adaptation to the change of NSP,
the analyzed solutions differ on how fast they can adapt to
possible changes in the NAT64 prefix. In the cases where
the NAT64 prefix detection is based on reception of IPv6
prefix information from DNS, a solution must repeat the
detection at latest when the received DNS record’s time to
live (TTL) expires. If the solution repeats the detection only
when the TTL is about to expire, we call the rate of adaptation
moderate. The heuristic discovery, STUN, DHCPv6-based
solution are included in the moderate category, as the received
information can be associated with a lifetime. Some of the
solutions are able to adapt to possible changes in the NAT64
prefix faster than the timeout triggered moderate solutions. We
categorize these as fast. The fast solutions include RA-based
approach where the network can trigger the NAT64 prefix
detection simply by sending a new RA. We also consider the
EDNS0 and DNS-based solutions fast, as in those cases the
host will discover new NAT64 prefix at the moment it receives
synthetic DNS reply to any IPv6 DNS query. For link layer
and out-of-band solutions, as currently they are speculative
approaches without clear defined proposals, we identify them
as undefined.

Due to the restriction of relying on STUN functionality, only
the STUN approach is not able to support multiple NSPs in the
access network, while other solutions provide such support.

For DNS protocol independence, all DNS related solutions
are inherently excluded. Meanwhile, DHCP, RA, link layer,
and out-of-band solutions are able to function without DNS
protocol support. For STUN, it is possible that a host can
learn the IPv6 presentation for the STUN server’s IPv4 address
without using DNS, e.g. by using DHCPv6. It is hence
identified as possible.

Concerning transparency to network entities, all solutions
introduce modifications to existing entities in the network,
except the heuristic discovery and out-of-band solution. The
heuristic discovery is a transparent procedure for the access
network, except when it is protected via DNSSEC. To enable
DNSSEC protection for the heuristic discovery, administrator
of a NAT64 entity needs to allocate a fully qualified domain
name for the NAT64 and also maintain a set of related PTR
and DNSSEC signed AAAA records. A host then uses these
DNS records to protect the heuristic discovery procedures,
but becomes dependent on network support. The out-of-band
mechanisms may be transparent to the network from the
Internet Protocol suite point of view, but obviously do require
deployment and management of the out-of-band mechanisms
themselves.

Changes to a host system are inevitable for EDNS0 and
DNS A64 because the resolver functionality on the host need
to be modified to support the new proposals. DHCPv6, RA,
and link layer solutions also introduce modifications on the
hosts to enable NAT64 discovery and prefix learning. Since
heuristic discovery, STUN, and DNS TXT solutions can utilize
the existing services on hosts to acquire necessary information
with the support from network side, they do not require host
modifications. The out-of-band mechanisms are likely to be
implemented at the application layer and hence would not
necessitate host system changes.

The secure discovery of a NAT64 prefix is challenging for
all solutions. The heuristic discovery includes an algorithm
that could ensure secure prefix discovery but requires use of
DNSSEC on a host and signed FQDNs for NAT64 entities
[13]. Furthermore, the algorithm is still subject to changes.
The link layer solutions are likely to be able to provide truly
secure discovery assuming the link layer itself is secured. For
out-of-band solutions secure discovery is also an option.

4

B. Evaluation of Solutions

Concerning each solution category, the heuristic discovery
can be deployed without explicit support by a host or network.
Hosts interested in learning IPv6 synthesis can proactively
do the "discovery" at any time. Although the solution is
dependent on DNS protocol, it offers moderate adaptation to
NSP changes and supports multiple NSPs. With the advantage
of secure discovery, this solution can be used also as a fall-
back mechanism when explicit methods such as EDNS0 and
DNS A64 are not supported in the access network.

Among the application layer solutions, all DNS based
proposals (EDNS0 OPT flags, EDNS0 option, A64 RR, and
TXT/U-NAPT RR) are light weight in general but suffer
from limitations. For instance, A64 Resource Record lacks
the capability to learn NAT64 prefix for synthesis. The main
concern against such solutions are two fold. First, there are
already deployed DNS64 implementations without support
for such solutions, which will cause backward compatibility
issues. Second, changes are required on the host side DNS
resolvers. While this is not the case in all situations, the need
for possible resolver library or API modifications is strong
enough reason to favor other solutions over the DNS based
methods. Furthermore, having all DNS64 servers to support
explicit WKP/NSP discovery (ENDS0, A64, and DNS based
approaches) is difficult to arrange. The STUN solution also
involves changes and management of network entities that are
not part of NAT64/DNS64 deployment.

For network layer solutions, both DHCPv6 and RA are
efficient in that they are hooked to general IP configuration
phase without involving DNS. Both solutions allow easy
updates when configuration information changes. However,
both solutions introduce changes to both host IP stack and net-
work components, which is generally unfavored. The DHCPv6
approach requires that the NAT64, DHCPv6, and possibly
even DNS64 servers are all synchronized. While DHCPv6
utilizes centralized management model, RA based solution is
expensive in operation as configuration need to be placed and
maintained on all access routers. Furthermore, both DHCPv6
and RA involve entities that do not necessarily need to be
aware of NAT64 operations. Changes to DHCP and Neighbor
Discovery protocols demand extra standardization efforts.

What becomes to link layer solutions, in theory it would be
possible to define access technology specific methods to pass
on information required for local IPv6 address synthesis. This
approach, however, would come with several disadvantages,
such as standards changes required for all access technologies,
upgrades needed to entities involved in the link layer estab-
lishment procedures, configuration of information required for
IPv6 address synthesis to all access routers and gateways,
and also host changes for passing information from the link
layer to a higher layer. Due to these complex dependencies
and required changes, the link layer based approaches are
considered to be out of question.

The out-of-band solutions, which currently are undefined ac-
cording to authors’ knowledge, could in theory work very well

in specific deployment scenarios, but not in the general case.
For example, manual configuration does not scale, ANDSF
is essentially used only for 3GPP deployment scenarios and
hence would not be enough for general purpose nodes, and
special protocols used for network administration would help
applications only when applications are actually executed in
nodes that support such special protocols and that are under
the network administration services.

C. Recommendation and Discussions

Guided by the principle of minimizing impact on both host
and network sides, we recommend the heuristic discovery
solution for its ease of deployment. For IETF standardization,
the main argument to favor it over other solutions, especially
the EDNS0 option, is that people will implement and deploy
similar solution in any case. Therefore, having a common
standardized solution is for common benefit. At the same time,
we are aware of that standardizing a well-known domain name
has a particular operational concern. For instance, who is going
to operate the infrastructure for the well-known domain name?
A domain name server hosting the well-known domain name
has practically similar availability requirements as root or
top level domain name servers. Furthermore, the well-known
domain name has to be operational for unforeseen number
of years to come. These are not trivial issues especially for
a non-profit service. Basically the only viable solution is to
host the well-known domain name under the IANA managed
name space, which is used for other Internet wide basic
infrastructure operations, i.e., under the .arpa domain. In
addition, all proactive NAT64 prefix determination proposals
including our EDNS0 solution can benefit from such well-
known domain name.

Multi-homing is a general problem when multiple
NAT64/DNS64 boxes are deployed on different access net-
works. As stated in [24] the synthesized AAAA record is
guaranteed to be valid only on the network from which the
knowledge is learned. Nodes with multiple interfaces should
distinguish the learned information from different networks to
avoid potential conflict and connection failure.

V. HEURISTIC DISCOVERY AND EDNS0

A. Protocol Implementations

We implemented both EDNS0 [15] and heuristic [13] based
NAT64 discovery and NAT64 prefix determination methods.
For the implementation we took two approaches. First one is a
standalone solution (a ping64 network diagnostic tool) that
implements both EDNS0 and heuristic discovery within the
application but leaves the DNS resolver untouched. Second
one is a modification to glibc and its getaddrinfo()
DNS resolver function. For the EDNS0 solution to work,
we also modified Ecdysis’ open-source implementation of
a BIND9 based DNS64 [25] on Linux to understand our
ENDS0 additions. The client side of standalone solution is
implemented on Mac OS X 10.6 Snow Leopard and the
integrated solution is implemented on Ubuntu 10.04 with
Linux kernel 2.6.32 and glibc-2.13 for resolver function.

5

The EDNS0 approach required a definition of a new EDNS0
option to inform the end host that IPv6 address synthesis took
place and convey the NAT64 prefix length information. The
option is shown in Fig. 2.

 SY Reserved

OPTION-CODE (tbd)
OPTION-LENGTH (2)

+0 (MSB) +1 (LSB)

SY = 000 reserved
SY = 001 prefix length /32
SY = 010 prefix length /40
SY = 011 prefix length /48
SY = 100 prefix length /56
SY = 101 prefix length /64
SY = 110 prefix length /96
SY = 111 address is not synthesized

0 8 15

Figure 2: EDNS0 option for NAT64 prefix determination

The host indicates support for the feature by including the
EDNS0 option into the DNS query. The absence of the EDNS0
option in the reply means that either no synthesis takes place
or the DNS64 entity does not support the feature. Either way,
when the EDNS0 option is missing, the host cannot conclude
for certain whether the AAAA response is synthetic or not.

Our patched DNS64 server includes the EDNS0 option with
prefix length information in the DNS response when address
synthesis takes place and the host indicates support for the
EDNS0 feature. With the prefix length information the host
can easily extract the NAT64 prefix out of the synthetic IPv6
address.

For the heuristic discovery, we configured a fully qualified
domain name (FQDN) with an A record only into a DNS
server under our management. Step A in Fig. 3 illustrates
how NAT64 prefix is learned out of a received synthetic IPv6
address. The step B shows how the learned information is
used to construct a synthetic IPv6 address. Before receiving
the synthetic IPv6 address from DNS64, the node has learned
with DNS A record query or by static configuration the
well-known name’s IPv4 address (e.g., 127.127.127.127). The
node learns the network is performing IPv6 address synthesis
when the node receives an IPv6 address, in this example
2001:db8::7f:7f7f:7fab:cdef, to AAAA record DNS query for
the well-known IPv4-only name. The node searches for the
IPv4 address inside the received synthetic IPv6 address, and
in this example the IPv4 address can be found encoded into
bits 72-103. The location of the IPv4 address indicates that the
NAT64 prefix is 64-bits. Therefore, the node extracts the first
64 bits of the IPv6 address to be used as the NAT64 prefix.
As per [14] the ’u’ and ’suffix’ fields should have been set to
zero by DNS64, and hence by the current standards the node
cannot do anything but initialize these to zero during local
IPv6 address synthesis. In the future when some meaning for
’u’ and ’suffix’ fields is possibly defined the node doing the
local synthesis will need to be adjusted as well. Fig. 3 step
B shows the result of local synthesis of an IPv6 address that
maps to the IPv4 address of 192.0.2.1 and how the ’u’ and

’suffix’ fields are set to zero as per standard.

127.127.127.127

2001:0bd8:0000:0000:007f:7f7f:7fab:cdef

0 128

Prefix (64)

64

u(8) IPv4 address (32) Suffix (24)

72 104

Prefix: 2001:0db8:0000:0000 (network specific NAT64 prefix)
u: 0
IPv4 address: 127.127.127.127 (the well-known address)
Suffix: 0xabcdef

192.0.2.1

2001:0bd8:0000:0000:00c0:0002:0100:0000

2001:0db8:0000:0000 0x0 IPv4 address (32) 0x00

0 12864 72 104

Step A)

Step B)

Figure 3: NAT64 prefix determination and IPv6 address syn-
thesis. IP numbering is for exemple purposes only.

The ping64 program allows us to test NAT64 and prefix
determination. It also supports pinging IPv4 destinations from
IPv6-only networks using IPv4 literal destinations (such as
192.0.2.1). In this case the program first issues a DNS query
using the standard libresolv4 API for the known IPv4-
only FQDN. If the DNS reply includes an EDNS0 option
with the prefix length information, it is used for learning the
NAT64 prefix and for subsequent IPv6 address synthesis. If the
DNS64 server does not support EDNS0, ping64 employs the
heuristic algorithm and uses the known octet pattern to learn
the NAT64 prefix as illustrated in Fig. 3.

For sake of completeness, we also implemented
a backward compatible patch to the glibc and its
getaddrinfo() DNS resolver function. The application
calling the getaddrinfo() function for a name
resolution would eventually receive the SY bits in struct
addrinfo.ai_flags for each returned IPv6 address.
The patched glibc practically implemented equivalent
functionality as the ping64 but within the host wide
(dynamically linked) library, thus making it implicitly
available for all applications linking against glibc.
Naturally, an arbitrary application has to know how to make
use of the extended getaddrinfo() functionality.

In addition, we implemented an AI_POLICYTABLE hint
flag in the getaddrinfo() for application to express its
willingness to generally prefer native IPv4 connectivity over
IPv6 connectivity through NAT64. This is important when a
dual-stack host in a dual-stack access network would receive
both A and synthetic AAAA records for the queried FQDN. If
the application sets the AI_POLICYTABLE hint upon (any)
name resolution request, then the patched getaddrinfo()
would modify the default address selection policy table [26] so
that IPv4-mapped IPv6 addresses are preferred over synthetic
IPv6 addresses, thus making the host select IPv4 transport over
IPv6 through a NAT64.

4Standard libresolv originates from BIND distribution.

6

B. Implementation Experience

In our implementation the EDNS0 option on the host
resolver side (at the application level including DNS query and
reply processing) is around 130 lines of uncommented C-code
and on the DNS64 server side the patch is of much less code.
Implementation was straightforward. The glibc approach
with a policy table modifications required a considerable effort
and a number of code changes. This is mainly due to the
complexity of the glibc integration and additional communi-
cation into the kernel space for policy table modifications. On
the other hand, the heuristic-based solution is straightforward
to implement requiring less than 100 lines of uncommented
C-code.

Based on our feasibility tests in operator networks, the
immediate benefit of the heuristic-based solution over the
EDNS0-based solution is its independence of both resolver
and DNS64 modifications. The scalability and interoperabil-
ity are the main challenges for solutions with impact on
both hosts and network entities. For instance, the EDNS0
solution is tightly coupled with the existing deployment in
terms of selected DNS64/NAT64 software. Even though an
implementation should strictly follow the protocol standard,
a DNS resolver for one system setup may encounter troubles
in communicating with other DNS64 servers if they exhibit
vendor specific features, e.g., for optimization purposes. The
advantage of the heuristic discovery becomes dominant in this
respect due to its minimal impact on external components.

VI. CONCLUSIONS AND FUTURE WORK

Our work provides an empirical basis for evaluating in-
centives and coordination issues surrounding the existing and
upcoming NAT implementation strategies to speed up the tran-
sition from IPv4 to IPv6. According to our best knowledge, we
are the first to provide an extensive and systematic evaluation
of all known proposals in this domain. The impact of our work
is reflected in the adoption of heuristic discovery method by
IETF as the main track of development. Our implementation
also offers a first-hand experience in real networks, revealing
potential pitfalls and assisting in understanding of what should
be taken into account in protocol design in the transition phase.
In the future we intend to investigate the security aspects of
the recommended solution.

ACKNOWLEDGEMENT

This work has been carried out in the WiBrA project by
University of Helsinki, Nokia, Nokia Siemens Networks, and
TeliaSonera, funded in part by TEKES Finland. We also
would like to thank Aki Nyrhinen and Ilpo Järvinen for their
implementation support.

REFERENCES

[1] K. Claffy, “Tracking IPv6 evolution: Data We Have and Data We Need,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 3,
2011.

[2] A. Keränen and J. Arkko, “Some Measurements on World IPv6 Day
from End-User Perspective,” IETF, Internet Draft draft-keranen-ipv6day-
measurements-01, July 2011, work in progress.

[3] J. Arkko and A. Keränen, “Experiences from an IPv6-Only Network,”
IETF, Internet Draft draft-arkko-ipv6-only-experience-04, October 2011,
work in progress.

[4] M. Leber, “Global IPv6 Deployment Progress Report,
http://bgp.he.net/ipv6-progress-report.cgi.” [Online]. Available: http:
//bgp.he.net/ipv6-progress-report.cgi

[5] D. Geer, “To Boost Adoption, IPv6 Proponents Back Once-Shunned
Technology,” in IEEE Technology News, 2008.

[6] M. Shin et al., “An Empirical Analysis of IPv6 Transition Mechanisms,”
in Proc. of ICACT 2006.

[7] M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful NAT64:
Network Address and Protocol Translation from IPv6 Clients to IPv4
Servers,” Internet RFCs, ISSN 2070-1721, RFC 6146, April 2011.

[8] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum, “DNS64:
DNS Extensions for Network Address Translation from IPv6 Clients to
IPv4 Servers,” Internet RFCs, ISSN 2070-1721, RFC 6147, April 2011.

[9] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS
Security Introduction and Requirements,” Internet RFCs, ISSN 2070-
1721, RFC 4033, March 2005.

[10] F. Baker, X. Li, C. Bao, and K. Yin, “Framework for IPv4/IPv6
Translation,” Internet RFCs, ISSN 2070-1721, RFC 6144, April 2011.

[11] J. Korhonen and T. Savolainen, “Analysis of solution proposals for hosts
to learn NAT64 prefix,” IETF, Internet Draft draft-ietf-behave-nat64-
learn-analysis-02, December 2011, work in progress.

[12] 3GPP, “TS23.975, IPv6 migration guidelines,
http://www.3gpp.org/ftp/Specs/html-info/23975.htm,” June 2011.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/23853.htm

[13] T. Savolainen, J. Korhonen, and D. Wing, “Discovery of a Network-
Specific NAT64 Prefix using a Well-Known Name,” IETF, Internet Draft
draft-ietf-behave-nat64-discovery-heuristic-05, January 2012, work in
progress.

[14] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and M. Li, “IPv6
Addressing of IPv4/IPv6 Translators,” Internet RFCs, ISSN 2070-1721,
RFC 6052, October 2010.

[15] J. Korhonen and T. Savolainen, “EDNS0 Option for Indicating AAAA
Record Synthesis and Format,” IETF, Internet Draft draft-korhonen-
edns0-synthesis-flag-02, February 2011, work in progress.

[16] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” Internet RFCs,
ISSN 2070-1721, RFC 2671, August 1999.

[17] M. Boucadair and E. Burgey, “A64: DNS Resource Record for IPv4-
Embedded IPv6 Address,” IETF, Internet Draft draft-boucadair-behave-
dns-a64-02, September 2011, work in progress.

[18] D. Wing, “Learning the IPv6 Prefix of a Network’s IPv6/IPv4 Trans-
lator,” IETF, Internet Draft draft-wing-behave-learn-prefix-04, October
2009, work in progress.

[19] J. Rosenberg et al., “Session Traversal Utilities for NAT (STUN),”
Internet RFCs, ISSN 2070-1721, RFC 5389, October 2008.

[20] M. Boucadair et al., “Dynamic Host Configuration Protocol (DHCPv6)
Options for Shared IP Addresses Solutions,” IETF, Internet Draft draft-
boucadair-dhcpv6-shared-address-option-01, December 2009, work in
progress.

[21] D. Wing, X. Wang, and X. Xu, “Learning the IPv6 Prefix of a Network’s
IPv6/IPv4 Translator,” IETF, Internet Draft draft-wing-behave-learn-
prefix-03, July 2009, work in progress.

[22] “Non-Access-Stratum (NAS) protocol for Evolved Packet System
(EPS),” 3GPP, TS 24.301 8.8.0, December 2008.

[23] “TS24.302, Access to the 3GPP Evolved Packet Core (EPC)
via non-3GPP access networks, http://www.3gpp.org/ftp/Specs/html-
info/24302.htm,” 3GPP, TS24.302.

[24] M. Blanchet and P. Seite, “Multiple Interfaces and Provisioning Do-
mains Problem Statement,” Internet RFCs, ISSN 2070-1721, RFC 6418,
November 2011.

[25] Viagenie, “Ecdysis: open-source implementation of NAT64 and DNS64,
http://ecdysis.viagenie.ca/.” [Online]. Available: http://ecdysis.viagenie.
ca/

[26] R. Draves, “Default Address Selection for Internet Protocol version 6
(IPv6),” Internet RFCs, ISSN 2070-1721, RFC 3484, February 2003.

7

