
Collaboration
Main ways of collaboration are
• Expert networks: PM&RG has a

hangaround and special interest groups,
and participates in Tekes thematic groups.

• Students of Aalto and beyond: tutoring a
student group yearly, and involving B.Sc.,
M.Sc. and Ph.D. workers in the group
activities.

• Wider audience: arranging open events
on essential topics that give a wider view
on other areas of expertise.

Ultimate goal: Educating engineers who
have well-founded respect for and literacy
on other disciplines; contributing to the Aalto
handicraft connection; and contributing to
the engineering ethics.

Education
Main objective is learning how to apply
research methods in product development.
• Assignments and courses enforce setting

a well defined focus and making a
literature survey on methods, latests
results and new approaches of research.

• PM&RG guides students in preparing
justified and methodologically sound
experimentation plan including focused
hypothesis.

• Students can use software, gadgets and
network facilities for realizing their
experimentation settings and innovation
prototypes.

INNOVATION PROTOTYPING
Innovation prototyping methodology of PM&RG allows
designing and experimentation with service ideas of the
future. The key elements of the methodology are
illustrated in figure 1.
Balanced brokering allows multidisciplinary collaboration
of experts such as software, sociology, psychology,
usability, business etc. Active work is needed to help the
experts understand each other.
Experimentation gives the concrete justification and
proof for the crucial features of the innovation.
Experimentations in pre-product development are
focused, systematic and require solid methodology

APPLICATION AREA
The application are of Innovation prototyping
methodology is pre-product development of mobile and
ubiquitous computing services. Pre-product
development is an ongoing process that aims to find
well-defined problems for the product development
process to solve. Since it is a non-convergent process, it
requires concepts and methods that are not applicable
in product development.
Ubiquitous computing (ubicomp, jokapaikallinen
tietotekniikka) was introduced by Mark Weiser in early
1990’s. From his definition and examples, PM&RG has
derived three central features of ubicomp. The ubicomp
services must be provided in some form even though in
ubicomp environment everything changes dynamically
all the time when the service is being used

RESEARCH GROUP ACTIVITIES

Research
Main areas are
• Innovation prototyping methodology:

design data modeling, solid
experimentation methods and combining
complementary expertises.

• Mobile and ubicomp applications: system
architectures, challenges of
heterogeneous networks and gadgets,
designing for real world conditions and
users, as well as instrumentation of
experimentation settings.

Key enablers for research are coordination,
integration and application development in
projects such as GO, VHO, MERCoNe and
WISEciti.

Scenario

Service Use

case

Realization

Design data modeling enforces the design to be
analytical and systematic to take advantage of the
unexpected and the unintended.
Innovations are nothing miraculous, or created by
bouncing unsubstantiated ideas. Instead, innovations
are results of systematic and analytical designing.

1. Availability and utilization: Ubicomp services can be
used everywhere utilizing the facilities available in the
environment and in accordance with the situation.
2. Invisible computing: In ubicomp environment the
devices and computers disappear and the interaction is
done with everyday objects.
3. Concentrating on the task: People will be able to
concentrate on the task at hand instead of concentrating
on how to operate the computers.

Product Modeling & Realization
Group (PM&RG)

Contact information

Leader:

Mervi Ranta

Coordinator:

Henrik J. Asplund

Email:

pmrg@tkk.fi

WWW:

http://www.cs.hut.fi/~pmrg

Telephone:

+358 9 470 4807

Figure 1: Balanced brokering, experimentation cycle and SSUR modeling.

Mainframes PCs

Internet

and distributed

computing

Ubicomp

Figure 2: The history of ubiquitous computing

Modeling and realization
Foundation of research, education and collaboration is on design data modeling and its lifecycle. The ultimate goal is to allow the
designers to consider involved expertises concurrently. For this goal, ubicomp paradigm is the best real world application area with the
visions reaching far into the future. Design data modeling allows the designers to take advantage of the enablers produced by other
expertises and combine the enablers in novel ways to produce innovations. Realizing enablers and systems for experimentations makes it
possible to justify and prove the key elements of ubicomp services of the future.

Experimentation cycle and SSUR models in

Innovation prototyping methodology

Mervi Ranta and Henrik J. Asplund
Keywords: experimentation cycle, SSUR modelling

Product Modelling & Realisation Group

(PM&RG)
Email: pmrg@tkk.fi

WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta

Coordinator: Henrik J. Asplund

Knowledge
acquisition

Processing and
selection

Experimentation
planning

Realization of
the setting

Experimentation

Analysis and
organizing the

data

Experimentation cycle

Innovation prototyping methodology utilizes experimentation cycle
that contains six stages to research ubiquitous computing (ubicomp).

1. ! Knowledge acquisition means finding from literature existing
research, including methods appropriate for the field. Also,

results from earlier experimentations are considered.

2. ! Processing and selection prepares the gathered material for
use in experimentation planning. Also, potential hypotheses,

methods and approaches are chosen to set the focus for the
experimentation.

3. ! Experimentation planning stage starts with explicating the

main hypothesis. The methods for data analysis and gathering
are selected to allow proving or disproving the hypothesis. Also,

the methods set the requirements for experimentation setting
and instrumentation, and therefore allow defining what needs to

be implemented.

4. ! Realization of the setting stage produces the concrete
experimentation setting, i.e. networks, prototypes, software and

other instruments that are needed to carry out the
experimentation.

5. ! Experimentation stage means carrying out the experimentation

plan. In this stage, the experimentation data is gathered.
Experimentation requires careful application of the methods and

execution of the plan, in order maintain validity.
6. ! Organizing and analysis of the data means first structuring

the data from the experimentation stage, and then applying the

chosen analysis methods to produce results that validate or
invalidate the hypothesis.

Experimentations in real world environments allow discovering and

analysis of complex relationships, implications and interoperability

issues. Innovation prototyping methodology is experimentation-
driven, due to focusing on common denominators and analyzing the

problem, instead of producing product prototypes.

To maintain consistency and coherency through whole

experimentation cycle, and to ensure transparency, explication and
persistence of information, all the generated information is stored in

SSUR models. Figure 1 – Experimentation cycle

Scenario

Service

Realization

Use case

SSUR models

SSUR consists of four distinct models, i.e., scenario, service, use case and

realization. Each model has a different purpose, and they are targeted at

analysis and brokering of different aspects needed in Innovation
prototyping.

1. ! Scenario explicates the real life manifestations of the service. Scenarios

contain information on situations in which the users utilize the service.

Scenarios are written in colloquial language and in narrative form.
2. ! Service describes the profit model, stakeholders and contracts needed to

provide a ubicomp service to consumers.
3. ! Use case describes the interfaces between the constituents of the

service, which can be humans, companies, systems etc. Ubicomp services

are typically not monolithic entities, but rather systems of systems. Use
cases explicate what information is transferred between the

constituents, instead of describing a protocol or the transmission process.
Use cases ultimately explicate the semantics of the transferred

information. Use cases act as handles to the enablers that allow a

ubicomp service to be created.
4. ! Realization model explicates the experimentation setting, selected data

gathering, organization and analysis methods and the hypothesis.

Ubicomp requires advanced technology, but the point is in how the user

perceives the ubicomp service. Ubicomp does not itself define any specific
set of technologies that can be utilized in the creation of the service.

In Innovation prototyping methodology, a service is designed just to prove

common denominators of the ubicomp services and properties of the

enablers. Designing and carrying out valid experimentations is the goal of
the whole methodology. Instead of creating just one product, Innovation

prototyping produces knowledge that can be used to create completely new
types of services and understanding all the consequences of ubicomp.

Figure 2 – SSUR models

Ubiquitous computing according to Mark

Weiser

Eetu Pilli-Sihvola

Keywords: ubiquitous computing, ubicomp, calm technology,

prototypes

Central concepts

Ubiquitous computing makes hundreds of computers available in our everyday environment while

keeping them effectively invisible to the user. It turns computers from being the focus of our attention

to being a tool that assists us. [1][2]

Virtual reality makes the computer invisible by taking over human senses and providing a reality

removed from the everyday physical world. [2]

Calm technology refers to technology that engages and moves between the center of our attention

and the periphery. It helps react to aberrations around us and tune out things that don’t require

immediate attention. [3]

The periphery describes the things that we are aware of without paying specific attention to them.

Things in the periphery can move quickly to the center of our attention and back again. [3]

Surveyed articles

[1] Weiser, M. ”The Computer for the 21st Century”. ACM SIGMOBILE Mobile

Computing and Communications Review, 1999. Vol. 3:3. p. 3-11. ISSN 1559-1662.

[2] Weiser, M. “Some computer science issues in ubiquitous computing”.

Communications of the ACM, 1993. Vol. 36:7. p. 75-84. ISSN 0001-0782.

[3] Weiser, M. & Seely Brown, J. ”The Coming Age of Calm Technology”. Xerox PARC,

1996. [Cited 21.10.2008]. Available from:

http://nano.xerox.com/hypertext/weiser/acmfuture2endnote.htm.

Ubicomp classification Description

Mobile/Hotspot

The surveyed articles describe mobile users in the workplace and in home environment and the services these environments

can offer. Challenges include user identification, power consumption and wireless communication. At home the outside
surface of the refrigerator door, for example, can serve as an electronic bulletin board and provide information and reminders

of various things. At work different kinds of electronic pads, tabs and boards can be used similarly to store and exchange
information.

Object/Environment

The surveyed articles describe computing that is both embedded into objects and distributed to elements of an environment.

Computing is embedded into objects that can store and display information (electronic notepads, smaller electronic tabs that
correspond to Post-It notes, electronic boards that are the equivalent of office whiteboards), that can be used in identifying

people (active badges) or locating people and objects (any object that knows its location). Environment is enhanced to support
these applications (location information, identification, etc.).

Context
The surveyed articles describe the use of identity information as a means to implement access control in the workplace, i.e.

employees are only allowed access to areas and resources they need in their work.

User/Industry
The surveyed articles describe equipment and applications for both end-users and business purposes. End-users could

benefit from electronic bulletin boards at home whereas identity information (active badges) could be beneficial for various
kinds of businesses.

System/Enabler
The surveyed articles focus mainly on enablers, such as location information, identification and shared drawing. They also

describe a system of electronic devices that can store and display information and work seamlessly together using wireless
communication .

Conclusions

Contents

T-106.5800 Seminar on Software Techniques

autumn 2008: Ubiquitous computing approaches

Arranged by PM&RG research group

Email: pmrg@tkk.fi

WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta

Coordinator: Henrik J. Asplund

Mark Weiser is in many instances referred to as ”the father of ubiquitous computing”. He first used the term in 1988 while working for the Xerox

Palo Alto Research Center.

•!The most influential technologies fade into the background.

•!Computers of the 1990s are the center of our focus rather than a tool that assists us.

•!To be effective computers must become a part of our normal life so that no special attention needs to be paid to them.

•!Ubicomp makes hundreds of computers available in our everyday environment while keeping them practically invisible to the user.

•!Virtual reality is practically the opposite of ubicomp as its premise is to fool the user by leaving the everyday physical world behind.

•!Calm technology engages and moves between the center of our attention and the periphery.

•!The periphery describes the things that we are aware of without paying specific attention to them.

•!Things in the periphery can move quickly to the center of our attention and back again (e.g. driving).

•!Helps pay attention to more things and react to things that don’t seem right.

Weiser designed and built three types of prototypes:

Tabs

!!Tiny computers (analogous to e.g. Post-it notes)

!!Active badges are certain types of tabs (location information)

!!Hundreds per each person in an office

Pads

!!Analogous to scrap paper

!!Tens per each person in an office

Boards

!!Wall-sized interactive surface (analogous to e.g. office whiteboard)

!!One or two per each person in an office

Introduction

When mobile and ubiquitois computing applications are
considered, it is important to take into account the
constraints that rise from the energy and networking
requirements, also in designing the software
architectures and the information consumption of a
system. Another important issue is the fact that all the
information sources or sinks are not available all the
time, but connectivity may be lost. Coping with these
issues in every application would be time consuming
and a source for innumerate amount of errors. Figure 1
shows the proposed architecture including three APIs
that will be needed at least in the future.

VHO API

The application has to be able to affect network
interfaces and functions of network layers. Also, the
application has to be able to receive information on
network parameters and state, no matter which specific
technologies and implementations are on the network
layers. The logic and ontologies of application
programming are very different from how the network
operates, and therefore it is necessary that there is an
API that translates the information and commands from
application to different network layers, and vice versa.

Resource API

Energy consumption is a tough issue in mobile and
ubiquitous computing. Therefore, a resource API is
needed so that unnecessary information transfers and
and processing can be avoided, or specific network
technologies can be selected based on the contents, to
avoid consuming too much battery. Resource API
handles caching and information lifecycle issues.
Resource API bridges the gap between application
logic, the information consumption of the application,
and the energy consumption of the device.

Decoupling application architecture
design and network layers
Conclusions on WISEciti project / PM&RG

!"#$%&'($")*+!)

,-.$/%0-)*+!)

123)*+!)

*0(4-)'55670'($")

8%'".5$%9)

2!+)

:-9;$%<)

='9')67"<)

+>?.70'6)!"
9-
%6
'?
-%
)0
$&

&
/"

70
'(

$"
)

@!)*+!)

@!) @!) @!)A)

B-&'"(0.)
9%'".#$%&'($")

C$".9%'7"9)
%-.$647"D) 39>-%)

"-9;$%<)
9?5-.)

EFGC)

H)
Ilma -4°!
Tie -3°! HI)

HI)

HI)

HI)

HI)

A)*0(4-)'55670'($")

Figure 1: Proposition for the future
architecture of mobile and ubicomp
applications

Information API

In order to be able to access information, the
application needs to be able to address it in a manner
that does not define specific networking technology or
protocol. Information API is targeted to allow for
addressing information based on its semantics, instead
of its location. In ubiquitous computing, location of the
information is volatile, and making naïve assumption
that information is always fetched from the network is
not an acceptable solution, due to the constraints
caused by available battery power and limited
connectivity.

PM&RG research group
Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

eMail: pmrg@cs.hut.fi
WWW: http://www.cs.hut.fi/~pmrg
Visiting address: Konemiehentie 2, Espoo, Finland

Profit model allows for analysis of
contracts of stakeholders:
• Exchanging content, profit, network

access etc.
• Which stakeholders provide the

needed constituents of the service?
Mobile and ubicomp services are
complex. Therefore the constituents of
service provision must be analyzed.St

ak
eh

ol
de

rs

Analyzing and modeling mobile and
ubiquitous community services
Conclusions on WISEciti project / PM&RG

PM&RG research group
Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

eMail: pmrg@cs.hut.fi
WWW: http://www.cs.hut.fi/~pmrg
Visiting address: Konemiehentie 2, Espoo, Finland

These models characterize where the
ubicomp service is targeted at. Some
systems are created for end-users, i.e.,
ordinary consumers. They naturally differ
clearly from the systems created for
industrial environment. User groups and
communities are analysed with (e.g.)
communication models, group and
community models, and mobility models.

U
se

r:

co
ns

um
er

 /
in

du
st

ry

6

Peter: need for
opera samples

Need to
advertise
music events

Need to entertain
queueing people

Queue number
machine

Booking office

 ♬♪♫
♪♫♫♬
♪♪

Figure 2: Communication, community and mobility model

D
iv

er
ge

nt

se
rv

ic
e

Designing future mobile and ubicomp
services is about planning a dynamic
service provision chain, that
assembles a suitable combination of
available devices, (active) applications
and access networks. Divergent
service as an approach turns this
challenge into an advantage by
exploiting the chance for variation.

Object/environment
• Is the computing embedded in objects

or distributed to the environment?
System/enabler
• Is the service a complete system, or an

enabler to another system?
Mobile/hotspot
• Are the facilities or the user moving, or

is the service available in one place?

!
Ilma -4°
Tie -3°

!"

!"

!"

!"

!"

User

Ämppäri
Provider

Content
Provider

TeliaSonera
Network

Content Anonymous
cash (token)

Content

Access
networkIdentified cash

VR

Identified cashNetwork
connection

Teosto

Ämppäri
provider

User Booking
office

Opera

Network
provider of
the booking

office

The
performanc

e group

token

content

token, ticket

money

payment for
network

network
money

right to
play

token
money money

(for service
of selling the
tickets)

money
(ticket
sales)

opera
experience

ticket

Figure 3: Two profit models on mobile music player provision chain

SS
U

R
 m

od
el

s SSUR (Scenario, Service, Use case and
Realization models) are used in
innovation prototyping methodology.
A service model explicates the system
that appears implicitly in the scenarios
and the use cases. It puts the system in
the context and shows how the system
can be an enabler for a system of
systems.

Data transfer

Network

Figure 1: User includes device, application and the human user

Information API

Network

SERVICE

Devices Applications

Hypothesis

The hypothesis is, that it is possible to determine the required
cache size for the playing application from the cache size
recordings done during the vertical handover.

Experimentation setting

The required cache size is specified as the minimum amount
of cache as seconds of uncompressed audio that will not cause
a depletion in the hardware or operating system audio buffer.
The cache size is considered insufficent if the handover causes
depletion in the OSS/hardware buffer, the size of which the
software does not explicitly state.
The experimentation setting consists of a stream player and a
stream sender, connected through a router. Both the stream
player and stream sender use HIP, and the stream sender is
connected to the router via both LAN and WLAN and uses
LAN by default.

Experimentation procedure

The experimentation consists of the following procedure
repeated 20 times for each cache size setting from 8192 bytes
to 81920 bytes and for two distinct media bitrates of 192 and
320kbps. Constant bitrate MP3 audio is used for streaming,
since every packet of audio data uncompresses to the same
amount of audio.
1.! Stream sender opens a connection to the stream player

and starts playing an audio stream.
2.! Playback continues for 15 seconds, after which the LAN

cable is disconnected, forcing a switch to WLAN.
3.! Playback continues in WLAN for 15 seconds.
4.! Recordings are saved to the disk on program exit.

Experimentation: Determining audio buffer size

from LAN-WLAN vertical handover delay

Tatu Kilappa, PM&RG

Keywords: vertical handover, application-level, cache measurement,
network audio playback

Determining audio buffer size from LAN-WLAN

vertical handover delay

Tatu Kilappa, PM&RG

Email: pmrg@tkk.fi
WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

Phase Methods Result

Data
collection

Recording of
cache sizes,
traffic

Packet cache size
Ring buffer size
OSS audio buffer size
ESP packet capture
LINK_DOWN timestamps
HANDOVER timestamps

Data
processing

Determining
delays from
recordings

Delay in ESP packets (ms)
Delay in audio packets (ms)
LINK_DOWN reaction time (ms)
HANDOVER reaction time (ms)

Data
analysis

Determining
maximum
handover time
and typical
delays

Maximum handover delay
Audio packet delay distribution
Reaction time distribution

Table 1: Summary of methods

Introduction

The experimentation investigates the delay experienced by the application streaming audio over TCP/IP when an uninformed
LAN to WLAN vertical handover occurs.

Measurements in the experimentation focus on recording the distinct cache sizes in the application receiving the media stream,
and their behavior in the event of the handover. Additionally, the mobility management events and the network traffic during
the handover are recorded.

The experimentation platform consists of Ericsson’s hip4bsd for FreeBSD 6.1 and the PM&RG Ämppäri mobile music player,
both versions developed in the MERCoNe project.

Figure 3: Audio processing path

Recording file details

The audio processing path follows the conventions of typical
audio players, there are three distinct audio buffers, the
compressed audio packet cache, uncompressed ring buffer to
which the audio packets are uncompressed and the OSS/
hardware audio buffer to which the uncompressed audio data
is fed.
All data, incording the ESP packet indexes and the mobility
management events are transformed into value-timestamp
pairs, that are analyzed in MATLAB.

Packet buffer (received from network stream, compressed)

Decoder thread

Feeder thread

Ring buffer (uncompressed)

OSS / hardware buffer (uncompressed)

Read from

Write to

Read from

Write to

Application

VHO API client library
(libvhoapi)

VHO API daemon
(vhod)

Tringgering Engine
(TriggeringFE)

HIP daemon
(hipd)

Routing socket daemon
(rtsockd)

FreeBSD kernel

backend:
Triggering Engine

backend:
libSiMA The dotted lines represent an

alternative configuration of

VHO API daemon.

Figure 1: Mobility management architecture

Stream sender
acer-new (laptop)

mobility management

Amppari player daemon

Router
hakku (desktop)

FreeBSD 6.3

PF

Stream player
avokado (desktop)

mobility management

Amppari control client

Records:

Audio cache sizes

Received traffic

Records:

Mobility management
event times

Sent traffic

LAN
WLAN LAN

Figure 2: Test network configuration

Delay distributions

Traffic delay from the handover is roughly divided between 0.5 and 2.5 seconds, but this measure does not give the full

application-experienced delay in the media stream. As visible from the worst-case detail above, an individual packet is received
in the middle of the gap, but the delay extends beyond it. The actual stream delay can be described as a combination of the two

longest delays. 95% of the delays are in the range of 1.05 to 3.24 seconds.

The distributions on the left are acquired with playback status messages sent individually. If they are sent coupled with new

stream packet requests, the distributions are sparser, but 95% of the delays are in the same general range of 0.74 to 3.4 seconds.

Experimentation: Determining audio buffer size

from LAN-WLAN vertical handover delay

Determining audio buffer size from LAN-WLAN

vertical handover delay

Tatu Kilappa, PM&RG

Email: pmrg@tkk.fi

WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta

Coordinator: Henrik J. Asplund

Cache behavior examples

The following presents cache behavior in two example cases, the left being an ideal handover situation with a closeup, and the

right one being a worst-case situation, where a buffer underrun occurs. Horizontal lines represent the packet cache sizes in
bytes. The lowest line (blue) is the packet cache, the middle line (green) is the decoded buffer, and the top line (red) is the OSS /

hardware buffer. The diagonal lines represent the sequence numbers of received (cyan) and sent (magenta) packets respectively,

they index numbers are scaled to fit in the same image area.

 Ideal case Ideal case closeup Worst-case with underrun

 Traffic delay with approximating normpdfs Packet cache delay (2 segments) Traffic delay w/o status packets Cache delay w/o status packets

Underrun probability

The delay described above gives a certain probability of a buffer

underrun happening during the streaming. Underrun
probability in the graphs below is presented for 192kbps and

320kbps streams both. Note that the underrun probability

flattens to near zero after the 3 second mark, as expected from

the delay distributions. Without status packets, the underrun

probability curve is similar, but flattens to zero faster.

Reaction time

Reaction time in this context is defined as the time it takes from the last successfully recieved packet for the distinct phases to

happen in the handover. The LINK_DOWN and HANOVER events are received from the mobility management, the handover
event coming almost diligently 350 milliseconds after the link down event. Other graphs represent the combination of the events

to the next successfully received packet and the media packet delay (2 segments). The combined reaction time graph in the very

right is the result from embedding the status packets to the packet requests, which reduces the number of received packets.

 Link down reaction time Handover event reaction time Reaction times, traffic (green), packet (black) for status packets and w/o

Ämppäri user interface
Nadezhda Kasinskaja

From the user point of view, Ämppäri is a music and video player which, in addition to
normal music player features, can use external speakers and screens wirelessly for
playback. User’s own or publically available speakers and screens can be used.
The music is stored and accessed online, which means that the available music selection
is essentially unlimited. No break in music playback occurs if the user moves between
different network coverage areas.

Ämppäri user interface prototype
Ämppäri user interface prototype was developed for testing the ideas behind Ämppäri
implementation on potential end users. The testing areas are

• selecting speakers and screens for playback,
• changing the selection during the playback,
• online music storage and access, and
• adjusting music quality when switching between networks with different capasity.

The objectives of designing the user interface are as follows:

1. Since Ämppäri is an experimentation tool that is made to allow researching the
alternative designs and solutions, the user interface must be implemented to
anticipate future additions and changes to the interface, and even to the
functionality of the application.

2. The research characteristics of Ämppäri set the requirement that the user interface
implementation must be limited only to the features that are necessary for the
planned experimentation usage. A simple reason for this requirement is to avoid
wasting effort on the unnecessary implementation. However, the really crucial
reason is to ensure reliable experimentation with proper focus, limiting the
elements that could affect the experimentation result to the minimum.

Implementation details
Ämppäri is connected to one or more player
daemons (located in screens or speakers) via
the network. The player daemon retrieves the
music for playback from media servers using
its own network connection and handles the
low-level playback functionality according to
the commands received from Ämppäri.
Ämppäri is implemented on an iPAQ h5500
PDA with WLAN connection using

User interface for a mobile music player - design
and automated event logging (M.Sc. Thesis)

Nadezhda Kasinskaja
Keywords: Automated event logging, user interface event log analysis, design datas, mobile application

T-106.6200 Special course in Software
Techniques: Research and product development
methods
Arranged by PM&RG research group

Email: pmrg@tkk.fi
WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

Research questions

Automated user interface event logging was embedded into the
Ämppäri user interface to collect information about user
actions during usability tests. In addition, an automated log
analyzing system will be developed. The system effectiveness in
finding and classifying erroneous events will be evaluated. The
research questions related to the logging system are:
1.  Can a correct event sequence representing an ideal, error-

free way to complete a task can be found in the event log,
2.  Is it possible to classify the events that are not in this

correct event sequence based on some pre-defined rules and
3.  What is the event data that should be logged in order to get

positive results on the two previous questions?

Introduction

The goals of this thesis are to present a case study on
designing and developing a user interface for a music player
prototype and to research the possible use of an automated
user interface event log collection system in evaluating a user
interface of a mobile application.
Since a mobile device is small, designed to be used by one
person at a time, and often used in different and changing
contexts of use,

Figure 1: Logging system

the recording and observation of usability tests performed on
those devices is challenging. Automated tools can be used to
facilitate usability evaluation and allow earlier and more
thorough testing. An automated event logging and analysis
tool was embedded in Ämppäri user interface to allow further
usability testing. A set of simple rules were developed to
analyze whether a user has completed the tasks given and
what types of errors she has possibly made when performing
the tasks.

<entry>
 <time>14</time>
 <event>
 <action>Click</action>
 <dialog>ÄmppäriUIDlg</dialog>
 <control>
 <name>Devices</name>
 <type>MenuItem</type>
 <repeatable>false</repeatable>
 </control>
 </event>
</entry>

Figure 2: Example log

User tasks in the experimentation

Three Ämppäri related tasks were selected to gather user
interface event logs used as sample data for evaluating
analysis system. A correct event sequence was defined for each
task. The logs were gathered when the user carried out the
tasks (example in figure 2). The correct expected sequences are
matched against the logs. The event sequence is found in the
log file, if all the events from the correct sequence are present,
and they are performed in the same order as in the sequence
file.

Error classification

The events that did not match the correct event sequence
are compared to the error classification rules in order to
match them to the pre-defined error types. The
classification rules are defined as follows:
1.  An event is repeated one or several times.
2.  A correct event sequence or part of it is repeated

one or several times.
3.  An event is close, yet not fully identical, to the

correct one.
4.  In the next event after the event in question, the dialog

is changed incorrectly.
5.  Several events with same control type occur in a

row.

If there are several correct sequences for doing a task,
the task is considered complete if at least one of the
correct sequences was found. All log events that do not
match the sequence file are considered possibly
erroneous and will be analyzed further.

Evaluation results

It was confirmed that with the currently defined correct
sequences the analyzer will not give false positive or false
negative match with the log.
For evaluation purposes, also erroneous user interface log
sequences were generated. When the analyzer was given an
erroneous log sequence as the input, all erroneous events were
recognized correctly using the error classification rules. The
errors matching the rules were classified correctly, and no
errors that should not match any of the rules were classified.
Classification of erroneous events worked correctly also for
event logs containing several error types.

Conclusions

The experiment results show that a correct user interface
event sequence can be found in the user interface event log,
when it is present in the log, and its absence shown, if it is not

present. Moreover, the results show that errors can be
classified based on predefined rules. The actual content of the
logs should be designed according to the purposes of the
analysis, and should be independent of the user interface and
how it is implemented to allow using the same analysis tool
even if the user interface is changed, and to allow testing
different alternative user interfaces.

The most important result was to see the additional benefits
of the design and development of the analysis tool for the
user interface design process itself. In fact, the work needed
to design the analysis tool brings an additional evaluation
phase to the user interface early in the development process.
The potential user errors must be considered when testing
the logging system. This forces the developer to pay special
attention to the possibility of a human error – which, again,
is a general design guideline and should be kept in mind all
the time, but in this case constructive work is required and
the possible errors cannot be bypassed.

Mobile host software
!  Software for the mobile host consists of a service that runs in the
background and provides the user with a simple graphical user interface for
starting and stopping the service and viewing the logged activities.
!  The service was implemented in Symbian S60 3rd Edition. Symbian
CryptoAPI was used for implementing the authentication functions.
!  The service first opens a listening socket on a free channel, and then starts
advertising itself on that channel by adding an entry into the service
discovery database.
!  When the mobile host is within Bluetooth range, the Windows host
connects to the service and is authenticated using a signed certificate, and
key exchange according to the Diffie-Hellman algorithm is performed.
Finally, the credentials are encrypted and sent to the Windows host.

Windows host software
!  The software contains a Dynamic-Link Library (DLL) that replaces the original
Windows XP GINA DLL file.
!  A setting in the Windows registry tells Windows which GINA DLL it should use
during the logon process. By changing this setting it is possible to replace the
original GINA with a customized version, as was done in this project. The
customized version can utilize the functionality of the original GINA to an extent
of its choosing or bypass it completely if necessary.
!  For the Bluetooth authentication mechanism, a private and public key pair is
created for the Windows host, and the private key along with the certificate
containing the public key signed by the Certificate Authority (CA) is placed in the
location specified in the configuration file.
!  The implementation of the GINA replacement DLL also contains a polling utility
that inquires at specified intervals whether any Bluetooth devices with approved
credentials are in the proximity. If such a Bluetooth device is found, the
credentials are supplied back to the customized GINA replacement that takes
care of authenticating the user to the Windows host.

Implementation: Secure Bluetooth authetication
Ossi Rautiainen, Eetu Pilli-Sihvola, Juha Loukkola

Keywords: Bluetooth, authentication, GINA, secure logon

Conclusions

T-106.5700 Project in Software Technology
Arranged by PM&RG research group

Email: pmrg@tkk.fi
WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

Encountered issues

!  The Symbian documentation seemed lacking at times, and many issues were
resolved by consulting developer forums instead of the official documentation.
!  One major issue was the co-operation of the Crypto++ library and the Symbian
CryptoAPI. There were a lot of problems getting them to work together in the
authentication process. It turned out that when verifying SHA-1 hash codes
generated and signed by the Windows host, it is necessary to append the prefix
\x30\x21\x30\x09\x06\x05\x2B\x0E\x03\x02\x1A\x05\x00\x04\x14 to the
beginning of each SHA-1 hash code generated on the mobile host before
verifying the hash code against the signed one.

Figure 1. Replacing the GINA DLL using a customized version to enable
logging on using Bluetooth.

Future development possibilities
!  Improved inquiry process. As it stands, the discovery of devices is
pretty slow for practical purposes, and it is even more so when multiple
Bluetooth-enabled devices are within range of the Windows host.
!  Click-and-authenticate feature. The current implementation
automatically logs the user in to the Windows host when his Bluetooth
device is discovered, and so situations could arise where information
inconvenient to the user is displayed unwittingly. An improvement to
this would be a feature that logs the user in only after he clicks a
button or a link on the screen and if he is authorized to use the host in
question.
!  Adjustable detection range. The implementation could be configured
to detect Bluetooth devices only within a user-defined range. This
would improve usability as unwanted logons could be avoided.
!  Password and token. By requiring the use of both a password and a
token in order to log on additional security can be provided.
!  Mobile phone as a key. This is a larger avenue of development that
could prove fruitful. The user should be able to use his Bluetooth-
enabled mobile phone as key to enter places in the workplace, for
example.

Introduction

"  In the project, a Bluetooth authentication solution was implemented that aimed to improve on the security of two existing commercial
Bluetooth authentication solutions that were proven vulnerable to the Bluetooth device address spoofing attack.
"  The scenario that the implementation focused on is that of a user in possession of a Bluetooth-enabled mobile phone who wants to
be able to log on to a Windows computer without having to type in his username and password.
"  The motivation behind the implementation was to make the log-on process more secure and faster than was the case with the
existing solutions.
"  For the mobile host (a Bluetooth-enabled mobile phone), a Symbian service was developed to handle the connection on the mobile
end.
"  Correspondingly, a replacement for the Graphical Identification and Authentication dynamic-link library (GINA DLL) used in the
Windows logon process was implemented for the Windows host.

#  The implementation consists of a Symbian service running on a mobile host, and a replacement dynamic-link library for the
GINA, used in the Windows logon process, for the Windows host.
#  The project implementation is resistant to the Bluetooth device address spoofing attack as the address is not used to
authenticate the devices.
#  An authentication scheme using a USB flash drive instead of a Bluetooth-enabled mobile host was also developed.
#  The question of feasibility of the implemented solution on a larger scale is dependent upon the speed of the authentication
process. If logging on to a computer takes more than a couple of seconds, a user would much rather just enter his credentials
than wait for the automatic authentication.

Hypothesis

Using a few simple measurements on the network, it is

possible to determine what kind of media can be transferred
over the current link.

Description of methods

The expriment uses three distinct network probes to gather

data. All of the probes require a network tester program
running on both connection endpoints.

1. Data collection. The network tester software intiates several

connections to the data recipient to gather data about the end-

to-end link. They are described below in sections 1.1, to 1.3.

1.1. Collection of data transmission records using unreliable
connection, active replies. The tester opens an UDP connection

to the end host and sends a stream of maximum MTU size

packets containing an index. The data contained in the packets

is random – this will prevent any effective lossless compression

from taking place in lower network layers. The entropy in real
media formats is typically also very high, so this reflects a real

situation well. The end host replies with an acknowledgement

packet for every received packet. The initiator stores the

timestamp and index of each sent packet and each

acknowledgement. The test is repeated for several commonly
used transmission speeds (64kbps, 256kbps, 1Mbps, 10Mbps,

100Mbps) and ran for 10 seconds.

1.2. Collection of data transmission records using unreliable

connection, no replies. As in 1.1, but instead of replying, the

server stores the timestamp of each received packet and when
they stop arriving, opens a reliable connection to the initiating

host and sends a full record.

Experimentation: Measuring QoS parameters to

determine media transport capabilities

Tatu Kilappa, Jaakko Salo

Keywords: streaming, QoS, network probing

Experimentation setting

T-106.6200 Special course in Software

Techniques: Research and product development

methods

Arranged by PM&RG research group

Email: pmrg@tkk.fi

WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta

Coordinator: Henrik J. Asplund

Phase Methods Result

Data

collection

1. Test connections

to data recipient

Traffic records of packet

index vs. timestamp or sent

data vs. timestamp.

Data

processing

2. Extracting data

from the traffic

records.

Throughput, packet loss

rate and jitter for every

connection

Data

analysis

3. Matching of the

processing results

against the
predefined media

requirements

Information on fitness to

transfer certain media

types.

Table 1: Summary of methods

Methods (cont.)

1.3. Collection of data transmission records using reliable

connection. The tester opens a TCP connection to the end
host and sends a stream of data. The end host records

timestamps of every new read that can be done, along

with the total amount of data currently received.

2. Data processing. The transmission records are

Processed in Matlab to produce throughput (average
bytes of data transferred in regard to time), packet loss

(number of packets lost as a % of total transmitted

packets) and jitter (variance of the time to next packet or

next read segment).

3. Data analysis. Metrics produced by phase 4 are
compared against the predefined requirements set by the

media types presented earlier.

Focus

The distinct network types are not taken into account –
only the end-to-end –capabilities.

Introduction

It can be desirable to be able to make conclusions on the feasibility of transferring desired media types over an available

network link in realtime. However, the simple classification of the network interface rarely, if ever, offers sufficient information
to determine its real-world capabilities.!

Thus the objective of this experimentation is to determine whether or not a link is feasible for the transmission of certain

distinct types of media. The results are rough classification of media transport capability instead of numeric representations of

QoS values. All requirements are assumed realtime for use in e.g. medical or surveillance applications. The following media

types are used in the experiment:
- Video stream, H264, HD quality, ~25Mbps

- Raw numerical measurement data, ~1Mbps

- Numerical measurement data packed using lossy compression, ~256kBps

Figure 1: Experimentation setting

An essential part of the experimentation setting is the network

in which the experimentation is conducted, ie. through which

the traffic of the test software is passed. Four different
networks were considered: a public ADSL ISP, public 3G ISP,

laboratory Fast Ethernet switched network and laboratory

802.11g WLAN network. A small network testing software

needs to be implemented for conducting the experiment. The

network testing software and host configuration need to be
carefully crafted so that they do not produce unintended delays

affecting the test results, for example by bad program design

so that the network stack is not powerfully utilized. A part of

the software runs in two separate hosts in the selected

network. For each network selected, the test is run
individually, thus the results produced reflect the capabilities

of that individual network.

Data sender

-! Running network tester

-! Run test connections

-! Perform analysis

Data recipient

-! Running network tester

-! Responds to connections

-! Must receive media

without errors

Network

(varying

capabilities)

Data

-! Video

-! Measurements

Description of stages

1. In Sign definition stage the test set of signs is defined.

2. In Data recording phase training data is collected to adapt
speech recognition system for a new language.

3. In Sound modulation phase the information contained in
the input signal is embedded into sound waves.

4. In Speech recognition training phase the generated
audio is used to train a new acoustic model. That is, the speech
recognition system is adapted to a new virtual speaker
speaking some previously unknown language.

5. In Recognizing phase the new acoustic model can be used
to recognize signs defined in the language by modulating the
sound from the gestures on-the-fly.

Experimentation: Applying speech recognition
software to wearable accelerometer data

Mika Iivonen, Timo Helenius
Keywords: accelerometers, speech recognition, signal processing, sphinx

T-106.6200 Special course in Software
Techniques: Research and product development
methods
Arranged by PM&RG research group

Email: pmrg@tkk.fi
WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

Hypothesis

The experimentation will show that, when properly adapted, a
speech recognition program is capable of interpreting signals
other than an acoustic signal originating from human speech.

Introduction
The experiment aimed to research an innovation prototype of
a real-time system, which can read a continuous
accelerometer signal and interpret discrete symbols from it
via open-source speech recognition software, Sphinx.

While sign languages differ from oral languages, they both
serve the same purpose: to enable communication between
humans. Interesting in the experiment was researching the
possibility to utilize and adapt a set of speech recognition
tools and methods for interpretation of simple sign languages.

Experimentation setting

1.  Accelerometer(s), preferably three-dimensional.
2.  Data recorder software easing the task of saving a huge
amount of accelerometer data from the performed signs.
3.  Sound modulator software for converting input signals to
audio.
4.  Speech recognition software with support for training new
languages, e.g. open-source Sphinx.

Define signs

Record data

Figure 1: Stages of the experimentation

Key concepts

Acceleration sensor (Accelerometer) Device which detects
acceleration, or changes in speed
Acoustic model Defines sound patterns for recognition
Sign language Language utilizing visual information
instead of acoustic
Speech recognition A way to interpret spoken language
with computer by analysing continuous signal and
recognising symbols from it.

Conclusions

It was confirmed that suitably pre-processed accelerometer signals amplitude-modulated in base waves produces audio from
which the performed signs are easily distinguished by humans – i.e. the information is not completely lost in the process.

Much of the signal processing in a speech recognition system is tuned to enhance results especially with human voice. This
makes it hard to use speech recognition tool as a generic pattern recognition tool. The underlying technology in speech
recognition systems is probably suitable for recognizing signs, but for real applications for sign language recognition
modifications are needed to the software.

Sound
modulation

Speech
recognition

training

Recognizing

