
Hypothesis

The hypothesis is, that it is possible to determine the required
cache size for the playing application from the cache size
recordings done during the vertical handover.

Experimentation setting

The required cache size is specified as the minimum amount
of cache as seconds of uncompressed audio that will not cause
a depletion in the hardware or operating system audio buffer.
The cache size is considered insufficent if the handover causes
depletion in the OSS/hardware buffer, the size of which the
software does not explicitly state.
The experimentation setting consists of a stream player and a
stream sender, connected through a router. Both the stream
player and stream sender use HIP, and the stream sender is
connected to the router via both LAN and WLAN and uses
LAN by default.

Experimentation procedure

The experimentation consists of the following procedure
repeated 20 times for each cache size setting from 8192 bytes
to 81920 bytes and for two distinct media bitrates of 192 and
320kbps. Constant bitrate MP3 audio is used for streaming,
since every packet of audio data uncompresses to the same
amount of audio.
1.! Stream sender opens a connection to the stream player

and starts playing an audio stream.
2.! Playback continues for 15 seconds, after which the LAN

cable is disconnected, forcing a switch to WLAN.
3.! Playback continues in WLAN for 15 seconds.
4.! Recordings are saved to the disk on program exit.

Experimentation: Determining audio buffer size

from LAN-WLAN vertical handover delay

Tatu Kilappa, PM&RG

Keywords: vertical handover, application-level, cache measurement,
network audio playback

Determining audio buffer size from LAN-WLAN

vertical handover delay

Tatu Kilappa, PM&RG

Email: pmrg@tkk.fi
WWW pages: http://www.cs.hut.fi/~pmrg

Telephone: +358 9 451 4807

Head of the research group: Mervi Ranta
Coordinator: Henrik J. Asplund

Phase Methods Result

Data
collection

Recording of
cache sizes,
traffic

Packet cache size
Ring buffer size
OSS audio buffer size
ESP packet capture
LINK_DOWN timestamps
HANDOVER timestamps

Data
processing

Determining
delays from
recordings

Delay in ESP packets (ms)
Delay in audio packets (ms)
LINK_DOWN reaction time (ms)
HANDOVER reaction time (ms)

Data
analysis

Determining
maximum
handover time
and typical
delays

Maximum handover delay
Audio packet delay distribution
Reaction time distribution

Table 1: Summary of methods

Introduction

The experimentation investigates the delay experienced by the application streaming audio over TCP/IP when an uninformed
LAN to WLAN vertical handover occurs.

Measurements in the experimentation focus on recording the distinct cache sizes in the application receiving the media stream,
and their behavior in the event of the handover. Additionally, the mobility management events and the network traffic during
the handover are recorded.

The experimentation platform consists of Ericsson’s hip4bsd for FreeBSD 6.1 and the PM&RG Ämppäri mobile music player,
both versions developed in the MERCoNe project.

Figure 3: Audio processing path

Recording file details

The audio processing path follows the conventions of typical
audio players, there are three distinct audio buffers, the
compressed audio packet cache, uncompressed ring buffer to
which the audio packets are uncompressed and the OSS/
hardware audio buffer to which the uncompressed audio data
is fed.
All data, incording the ESP packet indexes and the mobility
management events are transformed into value-timestamp
pairs, that are analyzed in MATLAB.

Packet buffer (received from network stream, compressed)

Decoder thread

Feeder thread

Ring buffer (uncompressed)

OSS / hardware buffer (uncompressed)

Read from

Write to

Read from

Write to

Application

VHO API client library
(libvhoapi)

VHO API daemon
(vhod)

Tringgering Engine
(TriggeringFE)

HIP daemon
(hipd)

Routing socket daemon
(rtsockd)

FreeBSD kernel

backend:
Triggering Engine

backend:
libSiMA The dotted lines represent an

alternative configuration of

VHO API daemon.

Figure 1: Mobility management architecture

Stream sender
acer-new (laptop)

mobility management

Amppari player daemon

Router
hakku (desktop)

FreeBSD 6.3

PF

Stream player
avokado (desktop)

mobility management

Amppari control client

Records:

Audio cache sizes

Received traffic

Records:

Mobility management
event times

Sent traffic

LAN
WLAN LAN

Figure 2: Test network configuration

