An introduction to forest-regular languages

Mika Raento

Basic Research Unit, Helsinki Institute for Information Technology
Department of Computer Science, University of Helsinki
Mika.Raento@cs.Helsinki.FI

1 DMotivation

Structured documents have been used since the 80’s (SGML), but interest in
them has really exploded with the introduction of XML in mid-90’s. To enable
the use of structured documents we need several techniques:

— Validation

— Querying
— Transformations

These have been originally supported in SGML and XML with somewhat ad-
hoc means, with e.g. DTDs. Forest-regular languages give a solid theoretical
framework for defining these techniques.

— Forest-regular languages are probably the simplest formalisation of forest-
languages that is suitable for document processing

— The same way string-regular languages have a natural correspondance with

finite-automata, forest-regular languages have a correposdance with forest-

automata (we’ll see two examples)

Forest-regular grammars have about the same difficulty of implementation

as DTDs, but are more powerful

The theoretic framework allows ’easily constructed’ correctness proofs, com-

plexity analysis, communication, equivalence solutions etc.

Forest-regular languages are closed under set union, intersection and differ-

ence (as e.g. DTDs or context-free languages are not)

As with string-regular languages, the same formalism and implementation

(automata) can be used for recognizing the language (validation), finding

patterns (querying) and transformations (with some extra work)

Forest-regular grammars, languages and the correspondant automata are not
really complex or difficult, but as with most formalisms getting used to the nota-
tion and the formalism. This introduction is meant to give you a good intuition
to go with the formal notation.

Concretely, with a good understanding of forest-regular languages you can
do the following:

— Implement an XML validator and/or query engine, if you need one for a
platform where none are available (e.g. Symbian)

— Have an intuitive grasp of the power and applications of Relax NG

— Be able to follow currently active research regarding structured documents

2 Mika Raento

2 Basics

2.1 Trees and Forests

Based on [1, section 4.2].
With the alphabet X' (ordered) trees ¢ and forests f are defined:

t:=a(f),a€X f:=t;.tp,n>0

Here the brackets () signify nesting in the tree and are not meant as the only
possible syntactic representation.

Much of the pre-regular-forests work was done with ranked trees, where each
symbol a of the alphabet has an associated arity, the number of children. There
is a mapping of general trees to ranked trees, which is used to transfer results
concerning ranked trees to non-ranked trees, so they are equal in a real sense.
Ranked trees model really well e.g. nested functions (or logical statements), but
are cumbersome for documents, which are naturally unranked.

2.2 Note on terminology

In this introduction we talk about forest languages and forest-regular languages.
Although the term ’tree-regular’ could be applied to XML and SGML documents
(since they only have a single root), we’d need two levels of definitions for our
language, since the children of a tree always form a forest. An alternative name
that has been used in some literature is hedge-languages, since the forests are
ordered. We feel that there is no danger of mistake in using the word forest in
this text.

(Suomenkieliset termit: puhumme hieman epétismaéllisesti keskendéin sama-
narvoisesti puu- ja metsékielistd, koska vakintunutta termist6a ei suomeksi ole.
"Hedge’-sanaa vastaavaa sanaa ei oikein suomeksi ole (siis suoraa kasvavista
puista/pensaista muodostuvaa aitaa). 'Pensasaita-kielet’ on jo termiksi turhan
hankala.

2.3 Forest-regular languages

A forest-regular grammar G is a four-tuple
G= (Xa E7TOaR)

where X is the set of variables (or non-terminals), > the alphabet of terminals,
R a (finite) set of rules (productions) of the form x — a (r) where r is a regular
expression over X (and x € X,a € X), and ry is a regular expression over X,
the start-expression.

Now the language Lg generated by G can be defined (e.g.) inductively, via
the generator [G]:

— The forest f = t...t, € [G]r iff there is a word x;...z,, that belongs to the
language generated by the regular expression r such that for each 1 < ¢ < n,
t; € [[G]}xl

— The tree t = a (t1...tn) € [G]z iff there is a rule z — a (r) € R and t;...t, €
[G]r.

— The forest f =ty...t, € Lg iff t1...t, € [G]ro

An introduction to forest-regular languages 3

(Note that in XML all documents must have a single root. This means that
in considering XML, we restrict the start-expression so that it only allows one
tree: lw| =1V w generated by r¢.)

Properties of forest-regular languages:

— Closed under union (easy to implement)

— Closed under intersection and difference (more expensive, probably worst-
case exponential-time)

— Can be used to both recognize and generate words (contrast with rule-based
grammars)

— Efficiently and relatively easily implementable

Example forest regular grammar:

— X = { BOOK, TITLE, PART, CHAPTER, P, LINK, FN, PFN }
— X = { book, title, part, chapter, p, link, footnote }

_ R=
BOOK -> book (TITLE, PART+)|(TITLE, CHAPTER+)
TITLE -> title
PART -> part CHAPTER+
CHAPTER -> chapter P+
P -> p (LINK|FN)*
LINK -> 1link
FN -> footnote PFN+
PFN -> p LINK=*
— To = BOOK

Figure 1 shows example trees corresponding to this grammar.

Fig. 1. Example trees corresponding to the grammar in section 2.3

4 Mika Raento

Note that forest-regular grammars can be used to solve the problems that
SGML uses inclusions and exclusions for (the P in a FOOTNOTE) with a much
cleaner approach, as well as removing the unambiguity constraint of both XML
and SGML. Even SGML’s &-groups can be done, but the implementation cannot
be efficiently done with automata.

2.4 The Berry-Sethi construction

We’ll need to be able construct the automaton corresponding to the string-
regular expression on the right-hand sides of the production rules of our gram-
mars. A good way to do this is the Berry-Sethi construction [1, sec. 4.1.1], which
produces a e-free non-deterministic finite automaton (NFA) from a regular ex-
pression.

3 Forest automata

In the same way string-regular languages can be recognized by finite automata,
forest-regular languages can be recognized by a class of tree-automata. The
earliest and simplest formulation is bottom-up forest automata [2], a slightly
later, more convenient formulation is pushdown forest automata [1]. (Note that
tree-languages always need some-kind of pushdown — otherwise they would be
string-regular. The pushdown automata just makes this more explicit and uses it
for more efficient processing.) We shall only describe pushdown automata here.
Again we use [1] for notations and definitions.

3.1 Pushdown forest automata

To implement the processing of a bottom-up automata, a pushdown is always
needed. A bottom-up automaton cannot take advantage of knowing the structure
above a forest, so it has to check the forest agains all right-hand sides of the
rules instead of being able to restrict itself to only those rules that can occur in
a certain place in the tree.

A (non-deterministic) left-to-right pushdown automata (LPA) is a six-tuple
A= (P,Q,I,F, Down, Up, Side):

P is the set of tree states (corresponding to the names of non-terminals in a
grammar, or the rules for them)

Q@ is the set of forest-states (corresponding to the states of the automaton rec-
ognizing the right-hand side of the productions)

I , the set of initial states (corresponding to the start-states of the automaton
recognizing ro)

Up transition relation C @ x X x P (in the deterministic case, this would be a
function Up(q,a) — P,q € Q,a € X)

Side transition relation C @ x P x @ (in the deterministic case, this would be
a function Side(q,p) — Q)

Down relation C @ x X' x @, which tells the possible automaton states to begin
a new child forest with (in the deterministic case this would be a function

Doun(q,a) — Q)

An introduction to forest-regular languages 5

The basic idea is that the Side relation recognizes the regular expressions on
the right-hand sides of the rules, Up labels nodes with rules (or non-terminals),
based on the result of the result of traversing the children with Side and Down
selects suitable regular expressions to check.

To construct a pushdown automaton A = (P, Q, I, F, Down, Up, Side) from
a forest-regular grammar G = (X, X, rg, R), we use the following method:

— Let R = (21 — a1 (r1))...xn — ay, (ry,)) be the set of rules

— Let (Qj, 90,5, Fj, ;) = BerrySethi(r;) (the non-deterministic finite automata

matching the regular expression ;. A reminder of the automata notation: @

are the states, qo ; initial state, F; final states and d; the transition relation)

P = X (the set of rules)

Q = Qo...Q, (the union of all finite automata states of the regular expres-

sions in the rules)

—I=qop

- F=F

— Up={(¢g,a,z) | ¢ € Fj and x — a(r;)} (the node a (f) is labeled with z if
f matches r;)

— Side = d¢...0,, (move to the side according to the finite automata matching
rs)

— Down = {(q1,a,¢2) | g2 = qo,; for some j : z; — a(r;) and (q1,x;,q9) €
Side for some ¢} (pick the initial state for the forest under a corresponding
to the possible labelings = of a considering that the forest state on the level
of ais q1)

For the grammar in section 2.3 we get from the Berry-Sethi constructions the
non-deterministic finite automata (NFA) in figure 2. Now these build the Side
relation. The top-most ("TOP’) automaton representes rg. Additionally:

— P ={BOOK, TITLE, PART, CHAPTER, P, LINK, FN, PFN }

@ includes all the states of the automata in figure 2

I = TOP20

F =TOP19

Down and Up are as described above, e.g. Down (P13, footnote) = {FN16}
and Up(BOOK2, book) = {BOOK}.

3.2 Running the LPA

We’ll describe the processing model here in a slightly less formal manner: showing
how the automaton A is used in a recursive travelsal of a tree.

sub process_whole_tree(A, t)
q=A.I
p = process_node(4A, g, t)
q = A.Side(q, p)
if (q intersects A.F) return matches
return does_not_match
end sub

sub process_node(A, q, t)
q = A.Down(q, t.a)

Mika Raento

TOP -> book

PART -> part
CHAPTER

)
CHAPTE

TITLE -> title

BOOK -> book
CHAPTER

Fig. 2. NFAs from grammar in 2.3

An introduction to forest-regular languages 7

foreach child in t.f
q = A.Side(q, process_node(A, q, child))

next
p = A.Up(q, t.a)
return p

end sub

Equivalently, we may think of two procedures begin_element and end_element
that are called when seeing the beginning and end of a node in the tree in a
streaming (SAX-like) fashion:

global p, q, pushdown, A
q=A.I

sub begin_element (a)
pushdown.push(q)
q = A.Down(qg, a)
end sub

sub end_element (a)
p = A.Up(q, a)
q = pushdown.pop()
q = A.Side(q, p)
end sub

And now we can check the global variable g after running the whole tree
through and see whether it is in a final state or not.

A more formal description of the transition model of the whole automaton is
given in [1, sec. 6.2].

Figure 3 shows a tree which we can label with the forest and tree states of
the automaton given in section 3.1.

4 Deterministic automata

The same way finite automata can be made deterministic by a subset construc-
tion (the states in the DFA corresponds to (sub)sets of states in the LFA), so
can tree-automata be made deterministic in exactly the same way. Of course
in the naive setting this means an exponential number of states, as P, are
replaced by 2,29 (and correspondingly a larger number of possible transition).
The theoretical solution is to remove those states that cannot be reached, and
the practical solution is to lazily construct the deterministic automaton based
on the non-deterministic one as input is being processed (which incidentally also
guarantees that non-reachable states are never constructed).

We shall not provide details of the determinization here. For the purposes of
understanding the basics, we can simulate the non-deterministic automaton.

5 Queries

The idea of tree-automata based queries is that we specify the nodes we want
to select on the basis of non-terminals in the regular expressions: the query is a
subset of these, or equivalently the query a subset of S C Q.

Mika Raento

book

title

chapter

chapter

footnote

Fig. 3. Fill the slots with a simulated run of the LPA in 3.1

An introduction to forest-regular languages 9

Example query, grammar rules where the queried non-terminals are marked.
This query should give as a result the first chapter of a book:

BOOK -> book FRONTMATTER,MAINMATTER,BACKMATTER
FRONTMATTER -> frontmatter

MAINMATTER -> mainmatter #CHAPTER,CHAPTER*
BACKMATTER -> backmatter

CHAPTER -> chapter XREF*

XREF -> xref

Now if during the run of the left-to-right automaton we arrive at state ¢ a
node a (f) with ¢ € S, this does not necessarily mean that the node actually
matches the query, as only its structure and the nodes above and to the left of
it have been seen, and the rest might not match the grammar, or might prove
that it did not match the set corresponding to q.

To actually match a query, we must go through the tree twice: once from
left-to-right and once from right-to-left. We label the tree nodes with the sets
of tree-states (non-terminal names) and possible forest-states during the left-to-
right run, run right-to-left and remove those labels that prove impossible. Now
if a node still has a label ¢ € S after the right-to-left run, it actually matches
our query.

For details, see [3].

References

1. Neumann, A.: Parsing and Querying XML Documents in SML. PhD thesis (2000)

2. Murata, M.: Forest-regular languages and tree-regular languages. Working paper
(1995) http://www.geocities.com/ResearchTriangle/Lab/6259 /prelim1.pdf.

3. Berlea, A., Seidl, H.: Binary queries for document trees. Nordic Journal of Com-
puting (NJC) 11:41-71 (2004)

