
Tree Adjoining Grammars Miro Lehtonen

Tree-Adjoining Grammars

Miro Lehtonen

Department of Computer Science

University of Helsinki

Department of Computer Science, University of Helsinki Page 1



Tree Adjoining Grammars Miro Lehtonen

Outline

➠ Introduction: formalisms for linguistic purposes.

➠ Basics of TAGs: elementary structures and operations, derivation.

➠ Formal properties of grammars and TAGs

➠ TAG variants

➛ Multicomponent TAGs (MC-TAG)

➛ Synchronous TAGs (S-TAG)

➠ TAG parsing

Department of Computer Science, University of Helsinki Page 2



Tree Adjoining Grammars Miro Lehtonen

Formal systems for linguistic theories

➠ Basis of any formal system: elementary structures and combining operations.

➠ Context-free grammars (CFG): terminal and nonterminal symbols, and rewrite rules.

➠ CFG example – rules as elementary structures.

1. S � � NP VP

2. VP � � really VP

3. VP � � V NP

4. V � � likes

5. NP � � John

6. NP � � Lyn

Department of Computer Science, University of Helsinki Page 3



Tree Adjoining Grammars Miro Lehtonen

Derivation in CFGs

➠ The phrase structure tree S

� � �

���

NP

John

VP

� � �

���

really VP

� ���
V

likes

NP

Lyn

➠ For each nonterminal node, the daughters record which rule was used to rewrite it.

Department of Computer Science, University of Helsinki Page 4



Tree Adjoining Grammars Miro Lehtonen

Tree Substitution Grammars (TSG)

➠ Both elementary objects and derivations are trees.

➠ TSG example.

� � � � � � � �

S

� � �

���

NP � VP

� ���

V

likes

NP �

NP

John

NP

Lyn

� 	 S

� � �

���

NP

John

VP

� ���

V

likes

NP

Lyn

➠ Elementary structures are combined by substitution.

➠ Condition: The nonterminal node must have the same label as the root node of the substituted tree.

Department of Computer Science, University of Helsinki Page 5



Tree Adjoining Grammars Miro Lehtonen

Domain of locality

➠ CFGs and TSGs are weakly equivalent.

➛ They generate the same string languages, but

➛ the derived structures have a different Domain of locality.

➠ Local restrictions are valid in the domain of locality:

➛ a CFG rule or a tree grammar tree.

➠ Examples: NP – V agreement, subcategorisation.

➠ TSGs (and other tree grammars) have an Extended domain of locality.

Department of Computer Science, University of Helsinki Page 6



Tree Adjoining Grammars Miro Lehtonen

Lexicalisation

➠ A grammar is lexicalised, if

➛ every elementary structure is associated with exactly one lexical item, and

➛ every lexical item of the language is associated with a finite set of elementary structures in the

grammar.

➠ CFGs cannot be lexicalised in a linguistically meaningful manner, but let’s try.

➛ S � � NP likes NP

➛ No place for really ?

➛ Instead of merging two rules into one, we can combine them into a tree structure � TSG.

➛ Still no place for really.

➠ Solution: Adjunction operation.

➠ A formalism in which the elementary structures of a grammar are trees and in which the combining

operations are adjunction and substitution is called a Tree Adjoining Grammar (TAG).

➠ When lexicalised, we have a Lexicalised Tree Adjoining Grammar (LTAG).

Department of Computer Science, University of Helsinki Page 7



Tree Adjoining Grammars Miro Lehtonen

Elementary structures

➠ Elementary trees are maximal syntactic projections of lexical items.

X X

X

Initial tree: Auxiliary tree:

➠ Alpha trees.

➠ Recursion is not allowed in initial trees.

➠ Lexicalised trees have anchors on the

frontier of the tree.

➠ Beta trees.

➠ Recursion allowed.

➠ Root and foot node must have the same

label.

Department of Computer Science, University of Helsinki Page 8



Tree Adjoining Grammars Miro Lehtonen

Operations

➠ Substitution: only for initial trees or lexical items.

Y2

Y2

1Y

X

=>

X

➠ Adjunction: only for auxiliary trees.

Y3

Y
2

Y
1

Y2

Y3

X
X

=>

Department of Computer Science, University of Helsinki Page 9



Tree Adjoining Grammars Miro Lehtonen

Adjunction example

➠ Adjunction of really into initial tree:

� � � � � �

S

� � �

���

NP

John

VP

� ���

V

likes

NP

Lyn

VP

� ���

really VP*

S

� � �

���

NP

John

VP

� � �

���

really VP

� ���

V

likes

NP

Lyn

Department of Computer Science, University of Helsinki Page 10



Tree Adjoining Grammars Miro Lehtonen

Derived trees and derivation trees

➠ A string-rewriting formalism, e.g. a CFG, derives a set of strings.

➠ A tree-rewriting formalism, e.g. a TAG, derives a tree: derived tree.

➛ Linguistic TAGs derive phrase structure trees.

➠ A derivation tree records how the derived string (CFG) or derived tree (TAG) was assembled from

elementary rules (CFG) or elementary tree (TAG).

➠ Derivation tree for John really likes Lyn:

� � (like)

� � (John) � � (Lyn) � � (really)

Department of Computer Science, University of Helsinki Page 11



Tree Adjoining Grammars Miro Lehtonen

Derivation tree examples

➠ When derived treed are ambiguous, derivation trees might show the difference.

➠ Elementary tree for an idiomatic expression and two derivation trees for Mary pull John’s leg:

To pull NP’s leg Literal reading Idiomatic reading

S

� � � �

����

NP0 � VP

� � � �

����

V

pull

NP

� ���

D

� ���

NP1 � ’s

N

leg

pull-n0Vn1

� � �

���

Mary-NP leg-NP

’s-D

John-NP

pull-leg-n0Vdn1N

� � �

���

Mary-NP John-NP

Department of Computer Science, University of Helsinki Page 12



Tree Adjoining Grammars Miro Lehtonen

Adjunction constraints and features

➠ Elementary tree nodes can be annotated with adjunction constraints.

➛ Selective adjoining constraint (SA): list of accepted trees.

➛ Null adjoining constraint (NA): empty list.

➛ Obligatory adjunction constraint (OA): boolean value.

➠ Nonterminal and terminal nodes ?

➛ NA nodes are nonterminal nodes that are not rewritten.

➛ OA nodes are nonterminal nodes that must be rewritten.

➛ SA nodes are either terminal or nonterminal nodes for tree rewriting.

Department of Computer Science, University of Helsinki Page 13



Tree Adjoining Grammars Miro Lehtonen

Comparison of formal grammars

➠ Chomsky hierarchy for string rewriting systems

Grammar Languages Automaton Production rules

Type-0 Recursively enumerable Turing machine No restrictions

Type-1 Context-sensitive Linear-bounded non-deterministic � A � � � � �

Turing machine

Type-2 Context-free Nondeterministic A � �

pushdown automaton

Type-3 Regular Finite state automaton A � aB

A � a

➠ Tree Adjoining Grammars are sronger than CFGs, but weaker than Context-sensitive grammars.

Department of Computer Science, University of Helsinki Page 14



Tree Adjoining Grammars Miro Lehtonen

Formal properties of TAGs

➠ The set of languages generated by a TAG, � (TAG), includes the set of languages generated by a

context-free grammar, � (CFG).

➠ Inclusion is proper, e.g. COUNT-4= � a� �� �� � � � n � 0 �
	 � (TAG) � � (CFG)

➠ Moreover, � (TAG)	 � (CSG), e.g. COUNT-5	 � (CSG) � � (TAG)

➠ Automaton: Embedded Pushdown Automaton with a stack of stacks of stack symbols as the push-

down store.

➠ Tree-Adjoining Languages (TAL) are polynomially parsable, time complexity O(n � ).

Department of Computer Science, University of Helsinki Page 15



Tree Adjoining Grammars Miro Lehtonen

Extending the Power of TAG

➠ TAG cannot always provide a satisfactory analysis for linguistic constructions, e.g.

This building, John bought a picture of.

➠ This building is the complement of the noun picture and should be substituted into an NP node in the

same elementary tree as the head noun picture.

Illegal adjuntion: S� � � � ������

NP � � NP
� � � �

����

NP

�
�

�
�

Det � N

picture

PP
� ����

P

of

NP1

� �

S

� � �

���

NP0 � VP

� ���

V

buy

NP1*

Illegal auxiliary tree

Department of Computer Science, University of Helsinki Page 16



Tree Adjoining Grammars Miro Lehtonen

Multicomponent TAGs (MC-TAG)

➠ Elementary sets are sets of trees rather than single trees.

➛ In a tree-local multicomponent TAG, all members of an elementary set must adjoin simultane-

ously into a single elementary tree.

➛ In a set-local multicomponent TAG, all members of a derived set of trees must adjoin simulta-

neously into trees from a single elementary set.

S

� ���

NP � � S*

NP

� � � �

����

NP

�
�

�
�

Det � N

picture

PP

� � ��

P

of

NP1

� �
S

� � �

���
NP0 � VP

� ���

V

buy

NP1 �

Department of Computer Science, University of Helsinki Page 17



Tree Adjoining Grammars Miro Lehtonen

Synchronous TAGs (STAG)

➠ A Synchronous TAG relates the tree-adjoining grammars of two different languages.

➠ Definitions for node to node correspondence, lexical entries, feature transfer.

➛ Application areas include machine translation, language generation, semantic analysis, etc.

➠ A typical transfer algorithm for machine translation:

➛ Parse the source sentence according to the source grammar.

➛ Map each elementary tree in the source derivation tree with a tree in the target derivation tree

according to the transfer lexicon.

➛ Read the target sentence off the target derivation tree.

➠ Example.

Department of Computer Science, University of Helsinki Page 18



Tree Adjoining Grammars Miro Lehtonen

TAG recognition and parsing

➠ A bottom-up chart parser proceeds bottom-up in recognising the elementary trees used in a deriva-

tion and assembling the elementary trees into a derivation. Worst and best case time complexity

O(n � ).

➠ Earley-style algorithms combine bottom-up parsing with top-down prediction on derived trees. Worst

case time complexity O(n � ) – O(n � ), faster in an average case.

➠ Head-driven algorithms extends parses along the path from the anchor of an elementary tree to its

root by performing adjunctions. Worst case time complexity O(n � ).

➠ Algorithms based on kernel grammars (a CFG) parse the input twice. In the second step, TAG-

incompatible derivations are eliminated from the context-free parse forest. Worst case time complex-

ity O(n � ).

➠ Several other parsing algorithms exist.

Department of Computer Science, University of Helsinki Page 19



Tree Adjoining Grammars Miro Lehtonen

Today...

➠ Project work topics — introduction and selection.

➠ Presentation schedule.

➠ Delivery of exercises for next week.

Department of Computer Science, University of Helsinki Page 20


