
Chapter 10

Probabilistic Inductive Querying Using ProbLog

Luc De Raedt, Angelika Kimmig, Bernd Gutmann, Kristian Kersting, Vı́tor Santos
Costa, and Hannu Toivonen

Abstract We study how probabilistic reasoning and inductive querying can be com-
bined within ProbLog, a recent probabilistic extension of Prolog. ProbLog can be re-
garded as a database system that supports both probabilistic and inductive reasoning
through a variety of querying mechanisms. After a short introduction to ProbLog,
we provide a survey of the different types of inductive queries that ProbLog sup-
ports, and show how it can be applied to the mining of large biological networks.

10.1 Introduction

In recent years, both probabilistic and inductive databases have received consider-
able attention in the literature. Probabilistic databases [1] allow one to represent and
reason about uncertain data, while inductive databases [2] aim at tight integration of
data mining primitives in database query languages. Despite the current interest in
these types of databases, there have, to the best of the authors’ knowledge, been no
attempts to integrate these two trends of research. This chapter wants to contribute to
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a better understanding of the issues involved by providing a survey of the develop-
ments around ProbLog [3]1, an extension of Prolog, which supports both inductive
and probabilistic querying. ProbLog has been motivated by the need to develop in-
telligent tools for supporting life scientists analyzing large biological networks. The
analysis of such networks typically involves uncertain data, requiring probabilistic
representations and inference, as well as the need to find patterns in data, and hence,
supporting data mining. ProbLog can be conveniently regarded as a probabilistic
database supporting several types of inductive and probabilistic queries. This paper
provides an overview of the different types of queries that ProbLog supports.

A ProbLog program defines a probability distribution over logic programs (or
databases) by specifying for each fact (or tuple) the probability that it belongs to
a randomly sampled program (or database), where probabilities are mutually inde-
pendent. The semantics of ProbLog is then defined by the success probability of a
query, which corresponds to the probability that the query succeeds in a randomly
sampled program (or database). ProbLog is closely related to other probabilistic log-
ics and probabilistic databases that have been developed over the past two decades
to face the general need of combining deductive abilities with reasoning about un-
certainty, see e.g. [4, 5, 6, 7, 8]. The semantics of ProbLog is studied in Section 10.2.
In Section 10.10, we discuss related work in statistical relational learning.

We now give a first overview of the types of queries ProbLog supports. Through-
out the chapter, we use the graph in Figure 1(a) for illustration, inspired on the ap-
plication in biological networks discussed in Section 10.9. It contains several nodes
(representing entities) as well as edges (representing relationships). Furthermore,
the edges are probabilistic, that is, they are present only with the probability indi-
cated.

Probabilistic Inference What is the probability that a query succeeds?
Given a ProbLog program and a query, the inference task is to compute the suc-
cess probability of the query, that is, the probability that the query succeeds in
a randomly sampled non-probabilistic subprogram of the ProbLog program. As
one example query, consider computing the probability that there exists a proof
of path(c,d) in Figure 1(a), that is, the probability that there is a path from c
to d in the graph, which will have to take into account the probabilities of both
possible paths. Computing and approximating the success probability of queries
will be discussed in Section 10.3.

Most Likely Explanation What is the most likely explanation for a query?
There can be many possible explanations (or reasons) why a certain query may
succeed. For instance, in the path(c,d) example, there are two explanations, cor-
responding to the two different paths from c to d. Often, one is interested in the
most likely such explanations, as this provides insight into the problem at hand
(here, the direct path from c to d). Computing the most likely explanation real-
izes a form of probabilistic abduction, cf. [9], as it returns the most likely cause
for the query to succeed. This task will be discussed in Section 10.3.1.

1 http://dtai.cs.kuleuven.be/problog/



10 Probabilistic Inductive Querying Using ProbLog 231

a b
0.7

c

0.8 0.6

d

0.9

e

0.8

0.5

(a)

cd

ce

1

ed

0

(b)

Fig. 10.1 (a) Example of a probabilistic graph: edge labels indicate the probability that the edge is
part of the graph. (b) Binary Decision Diagram (cf. Sec. 10.4.3) encoding the DNF formula cd ∨
(ce∧ed), corresponding to the two proofs of query path(c,d) in the graph. An internal node labeled
xy represents the Boolean variable for the edge between x and y, solid/dashed edges correspond to
values true/false.

The above two types of queries are probabilistic, that is, they use standard prob-
abilistic inference methods adapted to the context of the ProbLog framework. The
types of queries presented next are inductive, which means that they start from one
or more examples (typically, ground facts such as path(c,d)) describing particular
relationships, and perform inferences about other examples or about patterns hold-
ing in the database.

Analogy and Similarity Based Reasoning via Generalized Explanations
Which examples are most similar to a given example?
In explanation based learning the goal is to find a generalized explanation for
a particular example in the light of a background theory. Within ProbLog, the
traditional approach on explanation based learning is put into a new probabilis-
tic perspective, as in a probabilistic background theory, choosing the most likely
explanation provides a fundamental solution to the problem of multiple expla-
nations, and furthermore, the found explanation can be used to retrieve and rank
similar examples, that is, to reason by analogy. The most likely explanation thus
acts as a kind of local pattern that is specific to the given example(s), thereby al-
lowing the user to get insight into particular relationships. In our example graph,
given the definition of path in the background theory and an example such as
path(c,d), probabilistic explanation based learning finds that a direct connection
is the most likely explanation, which can then be used to retrieve and rank other
directly connected examples. This type of query is discussed in Section 10.5.

Local Pattern Mining Which queries are likely to succeed for a given set of exam-
ples?
In local pattern mining the goal is to find those patterns that are likely to succeed
on a set of examples, that is, instances of a specific relation key. This setting is
a natural variant of the explanation based learning setting, but without the need
for a background theory. The result is a kind of probabilistic relational associa-
tion rule miner. On our example network, the local pattern miner could start, for
instance, from the examples key(c,d) and key(a,c) and infer that there is a direct
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connection that is likely to exist for these examples. Again, resulting patterns
can be used to retrieve similar examples and to provide insights into the likely
commonalities amongst the examples. Local pattern mining will be covered in
Section 10.6.

Theory Compression Which small theory best explains a set of examples?
Theory compression aims at finding a small subset of a ProbLog theory (or net-
work) that maximizes the likelihood of a given set of positive and negative ex-
amples. This problem is again motivated by the biological application, where
scientists try to analyze enormous networks of links in order to obtain an un-
derstanding of the relationships amongst a typically small number of nodes. The
idea now is to compress these networks as much as possible using a set of posi-
tive and negative examples. The examples take the form of relationships that are
either interesting or uninteresting to the scientist. The result should ideally be a
small network that contains the essential links and assigns high probabilities to
the positive and low probabilities to the negative examples. This task is analo-
gous to a form of theory revision [10, 11] where the only operation allowed is
the deletion of rules or facts. Within the ProbLog theory compression framework,
examples are true and false ground facts, and the task is to find a subset of a given
ProbLog program that maximizes the likelihood of the examples. In the example,
assume that path(a,d) is of interest and that path(a,e) is not. We can then try to
find a small graph (containing k or fewer edges) that best matches these observa-
tions. Using a greedy approach, we would first remove the edges connecting e to
the rest of the graph, as they strongly contribute to proving the negative example,
while the positive example still has likely proofs in the resulting graph. Theory
compression will be discussed in Section 10.7.

Parameter Estimation Which parameters best fit the data?
The goal is to learn the probabilities of facts from a given set of training ex-
amples. Each example consists of a query and target probability. This setting
is challenging because the explanations for the queries, namely the proofs, are
unknown. Using a modified version of the probabilistic inference algorithm, a
standard gradient search can be used to find suitable parameters efficiently. We
will discuss this type of query in Section 10.8.

To demonstrate the usefulness of ProbLog for inductive and probabilistic query-
ing, we have evaluated the different types of queries in the context of mining a
large biological network containing about 1 million entities and about 7 million
edges [12]. We will discuss this in more detail in Section 10.9.

This paper is organized as follows. In Section 10.2, we introduce the semantics of
ProbLog and define the probabilistic queries; Section 10.3 discusses computational
aspects and presents several algorithms (including approximation and Monte Carlo
algorithms) for computing probabilities of queries, while the integration of ProbLog
in the well-known implementation of YAP-Prolog is discussed in Section 11.3.1.
The following sections in turn consider each of the inductive queries listed above.
Finally, Section 10.9 provides a perspective on applying ProbLog on biological net-
work mining, Section 10.10 positions ProbLog in the field of statistical relational
learning, and Section 10.11 concludes.
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10.2 ProbLog: Probabilistic Prolog

In this section, we present ProbLog and its semantics and then introduce two types
of probabilistic queries: probabilistic inference, that is, computing the success prob-
ability of a query, and finding the most likely explanation, based on the explanation
probability.

A ProbLog program consists of a set of labeled facts pi :: ci together with a
set of definite clauses. Each ground instance (that is, each instance not containing
variables) of such a fact ci is true with probability pi, where all probabilities are
assumed mutually independent. To ensure a natural interpretation of these random
variables, no two different facts ci, c j are allowed to unify, as otherwise, proba-
bilities of ground facts would be higher than the individual probability given by
different non-ground facts. The definite clauses allow the user to add arbitrary back-
ground knowledge (BK).2 For ease of exposition, in the following we will assume
all probabilistic facts to be ground.

Figure 1(a) shows a small probabilistic graph that we use as running example in
the text. It can be encoded in ProbLog as follows:

0.8 :: edge(a,c). 0.7 :: edge(a,b). 0.8 :: edge(c,e).
0.6 :: edge(b,c). 0.9 :: edge(c,d). 0.5 :: edge(e,d).

Such a probabilistic graph can be used to sample subgraphs by tossing a coin for
each edge. A ProbLog program T = {p1 :: c1, · · · , pn :: cn}∪BK defines a probability
distribution over subprograms L⊆ LT = {c1, · · · ,cn}:

P(L|T ) = ∏ci∈L pi ∏ci∈LT \L(1− pi).

We extend our example with the following background knowledge:

path(X,Y) :− edge(X,Y).
path(X,Y) :− edge(X,Z),path(Z,Y).

We can then ask for the probability that there exists a path between two nodes,
say c and d, in our probabilistic graph, that is, we query for the probability that a
randomly sampled subgraph contains the edge from c to d, or the path from c to d
via e (or both of these). Formally, the success probability Ps(q|T ) of a query q in a
ProbLog program T is defined as

Ps(q|T ) = ∑L⊆LT ,∃θ :L∪BK|=qθ P(L|T ) . (10.1)

2 While in early work on ProbLog [3] probabilities were attached to arbitrary definite clauses and
all groundings of such a clause were treated as a single random event, we later on switched to a
clear separation of logical and probabilistic part and random events corresponding to ground facts.
This is often more natural and convenient, but can still be used to model the original type of clauses
(by adding a corresponding probabilistic fact to the clause body) if desired.
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In other words, the success probability of query q is the probability that the query q
is provable in a randomly sampled logic program.

In our example, 40 of the 64 possible subprograms allow one to prove path(c,d),
namely all those that contain at least edge(c,d) (cd for short) or both edge(c,e)
and edge(e,d), so the success probability of that query is the sum of the prob-
abilities of these programs: Ps(path(c,d)|T ) = P({ab,ac,bc,cd,ce,ed}|T )+ . . .+
P({cd}|T ) = 0.94.

As a consequence, the probability of a specific proof, also called explanation,
corresponds to that of sampling a logic program L that contains all the facts needed
in that explanation or proof. The explanation probability Px(q|T ) is defined as the
probability of the most likely explanation or proof of the query q

Px(q|T ) = maxe∈E(q) P(e|T ) = maxe∈E(q) ∏
ci∈e

pi, (10.2)

where E(q) is the set of all explanations for query q [13].
In our example, the set of all explanations for path(c,d) contains the edge from

c to d (with probability 0.9) as well as the path consisting of the edges from c to e
and from e to d (with probability 0.8 ·0.5 = 0.4). Thus, Px(path(c,d)|T ) = 0.9.

The ProbLog semantics is an instance of the distribution semantics [14], where
the basic distribution over ground facts is defined by treating each such fact as an
independent random variable. Sato has rigorously shown that this class of programs
defines a joint probability distribution over the set of possible least Herbrand mod-
els of the program, where each possible least Herbrand model corresponds to the
least Herbrand model of the background knowledge BK together with a subprogram
L ⊆ LT ; for further details we refer to [14]. Similar instances of the distribution
semantics have been used widely in the literature, e.g. [4, 5, 6, 7, 8]; see also Sec-
tion 10.10.

10.3 Probabilistic Inference

In this section, we present various algorithms and techniques for performing prob-
abilistic inference in ProbLog, that is computing the success probabilities and most
likely explanations of queries. We will discuss the implementation of these methods
in Section 11.3.1.

10.3.1 Exact Inference

As computing the success probability of a query using Equation (10.1) directly is
infeasible for all but the tiniest programs, ProbLog uses a method involving two
steps [3]. The first step computes the proofs of the query q in the logical part of the
theory T , that is, in LT ∪BK. The result will be a DNF formula. The second step
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?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

cd

:- path(d,d).

cd ce

:- edge(d,d). :- edge(d,B),path(B,d).

:- path(e,d).

:- edge(e,d).

ed

:- edge(e,C),path(C,d).

:- path(d,d).

:- edge(d,d). :- edge(d,D),path(D,d).

ed

Fig. 10.2 SLD-tree for query path(c,d).

employs Binary Decision Diagrams [15] to compute the probability of this formula.
Comparable first steps are performed in pD [6], PRISM [8] and ICL [16], however,
as we will see below, these systems differ in the method used to tackle the second
step. Let us now explain ProbLog’s two steps in more detail.

The first step employs SLD-resolution [17], as in Prolog, to obtain all dif-
ferent proofs. As an example, the SLD-tree for the query ?- path(c,d). is de-
picted in Figure 10.2. Each successful proof in the SLD-tree uses a set of facts
{p1 :: d1, · · · , pk :: dk} ⊆ T . These facts are necessary for the proof, and the proof is
independent of other probabilistic facts in T .

Let us now introduce a Boolean random variable bi for each fact pi :: ci ∈ T ,
indicating whether ci is in logic program, that is, bi has probability pi of being true.
The probability of a particular proof involving facts {pi1 :: di1 , · · · , pik :: dik} ⊆ T is
then the probability of the conjunctive formula bi1 ∧ ·· ·∧bik . Since a goal can have
multiple proofs, the success probability of query q equals the probability that the
disjunction of these conjunctions is true. This yields

Ps(q|T ) = P

⎛
⎝ ∨

e∈E(q)

∧
bi∈cl(e)

bi

⎞
⎠ (10.3)

where E(q) denotes the set of proofs or explanations of the goal q and cl(e) denotes
the set of Boolean variables representing ground facts used in the explanation e.
Thus, the problem of computing the success probability of a ProbLog query can
be reduced to that of computing the probability of a DNF formula. The formula
corresponding to our example query path(c,d) is cd∨ (ce∧ed), where we use xy as
Boolean variable representing edge(x,y).

Computing the probability of DNF formulae is an #P-hard problem [18], as the
different conjunctions need not be independent. Indeed, even under the assump-
tion of independent variables used in ProbLog, the different conjunctions are not
mutually exclusive and may overlap. Various algorithms have been developed to
tackle this problem, which is known as the disjoint-sum-problem. The pD-engine
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HySpirit [6] uses the inclusion-exclusion principle, which is reported to scale to
about ten proofs. PRISM [8] and PHA [7] avoid the disjoint-sum-problem by re-
quiring proofs to be mutually exclusive, while ICL uses a symbolic disjoining tech-
nique with limited scalability [16]. As the type of application considered here often
requires dealing with hundreds or thousands of proofs, the second step of our imple-
mentation employs Binary Decision Diagrams (BDDs) [15], an efficient graphical
representation of a Boolean function over a set of variables which scales to tens
of thousands of proofs; we will discuss the details in Section 10.4.3. Nevertheless,
calculating the probability of a DNF formula remains a hard problem and can thus
become fairly expensive, and finally infeasible. For instance, when searching for
paths in graphs or networks, even in small networks with a few dozen edges there
are easily O(106) possible paths between two nodes. ProbLog therefore includes
several approximation methods for the success probability. We will come back to
these methods from Section 10.3.2 onwards.

Compared to probabilistic inference, computing the most likely explanation is
much easier. Indeed, calculating the explanation probability Px corresponds to com-
puting the probability of a conjunctive formula only, so that the disjoint-sum-
problem does not arise. While one could imagine to use Viterbi-like dynamic pro-
gramming techniques on the DNF to calculate the explanation probability, our ap-
proach avoids constructing the DNF – which requires examining a potentially high
number of low-probability proofs – by using a best-first search, guided by the proba-
bility of the current partial proof. In terms of logic programming [17], the algorithm
does not completely traverse the entire SLD-tree to find all proofs, but instead uses
iterative deepening with a probability threshold α to find the most likely one. Algo-
rithm in Table 10.1 provides the details of this procedure, where stop is a minimum
threshold to avoid exploring infinite SLD-trees without solution and resolutionStep
performs the next possible resolution step on the goal and updates the probability p
of the current derivation and its explanation expl accordingly; backtracking reverts
these steps to explore alternative steps while at the same time keeping the current
best solution (max,best) and the current threshold α .

10.3.2 Bounded Approximation

The first approximation algorithm for obtaining success probabilities, similar to the
one proposed in [3], uses DNF formulae to obtain both an upper and a lower bound
on the probability of a query. It is related to work by [9] in the context of PHA, but
adapted towards ProbLog. The algorithm uses an incomplete SLD-tree, i.e. an SLD-
tree where branches are only extended up to a given probability threshold3, to obtain
DNF formulae for the two bounds. The lower bound formula d1 represents all proofs
with a probability above the current threshold. The upper bound formula d2 addi-
tionally includes all derivations that have been stopped due to reaching the threshold,

3 Using a probability threshold instead of the depth bound of [3] has been found to speed up
convergence, as upper bounds are tighter on initial levels.
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Table 10.1 Calculating the most likely explanation by iterative deepening search in the SLD-tree.

function BESTPROBABILITY(query q)

α := 0.5; max =−1; best := f alse; expl := /0; p = 1; goal = q;
while α > stop do

repeat

(goal, p,expl) := resolutionStep(goal, p,expl)
if p < α then

backtrack resolution
end if

if goal = /0 then

max := p; best := expl; α := p; backtrack resolution
end if

until no further backtracking possible
if max >−1 then

return (max,best)
else

α := 0.5 ·α
end if

end while

as these still may succeed. The algorithm proceeds in an iterative-deepening manner,
starting with a high probability threshold and successively multiplying this thresh-
old with a fixed shrinking factor until the difference between the current bounds
becomes sufficiently small. As d1 |= d |= d2, where d is the Boolean DNF formula
corresponding to the full SLD-tree of the query, the success probability is guaran-
teed to lie in the interval [P(d1),P(d2)].

As an illustration, consider a probability bound of 0.9 for the SLD-tree in Fig-
ure 10.2. In this case, d1 encodes the left success path while d2 additionally encodes
the path up to path(e,d), i.e. d1 = cd and d2 = cd∨ ce, whereas the formula for the
full SLD-tree is d = cd∨ (ce∧ ed).

10.3.3 K-Best

Using a fixed number of proofs to approximate the success probability allows for
better control of the overall complexity, which is crucial if large numbers of queries
have to be evaluated e.g. in the context of parameter learning, cf. Section 10.8.
[19] therefore introduce the k-probability Pk(q|T ), which approximates the success
probability by using the k best (that is, most likely) explanations instead of all proofs
when building the DNF formula used in Equation (10.3):

Pk(q|T ) = P

⎛
⎝ ∨

e∈Ek(q)

∧
bi∈cl(e)

bi

⎞
⎠ (10.4)
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where Ek(q) = {e ∈ E(q)|Px(e) ≥ Px(ek)} with ek the kth element of E(q) sorted
by non-increasing probability. Setting k = ∞ and k = 1 leads to the success and
the explanation probability respectively. Finding the k best proofs can be realized
using a simple branch-and-bound approach extending the algorithm presented in
Table10.1; cf. also [7].

To illustrate k-probability, we consider again our example graph, but this time
with query path(a,d). This query has four proofs, represented by the conjunctions
ac∧cd, ab∧bc∧cd, ac∧ce∧ed and ab∧bc∧ce∧ed, with probabilities 0.72, 0.378,
0.32 and 0.168 respectively. As P1 corresponds to the explanation probability Px, we
obtain P1(path(a,d)) = 0.72. For k = 2, overlap between the best two proofs has
to be taken into account: the second proof only adds information if the first one is
absent. As they share edge cd, this means that edge ac has to be missing, leading
to P2(path(a,d)) = P((ac∧cd)∨ (¬ac∧ab∧bc∧cd)) = 0.72+(1−0.8) ·0.378 =
0.7956. Similarly, we obtain P3(path(a,d)) = 0.8276 and Pk(path(a,d)) = 0.83096
for k ≥ 4.

10.3.4 Monte Carlo

As an alternative approximation technique without BDDs, [20] propose a Monte
Carlo method. The algorithm repeatedly samples a logic program from the ProbLog
program and checks for the existence of some proof of the query of interest. The
fraction of samples where the query is provable is taken as an estimate of the query
probability, and after each m samples the 95% confidence interval is calculated.
Although confidence intervals do not directly correspond to the exact bounds used in
bounded approximation, the same stopping criterion is employed, that is, the Monte
Carlo simulation is run until the width of the confidence interval is at most δ . Such
an algorithm (without the use of confidence intervals) was suggested already by
Dantsin [4], although he does not report on an implementation. It was also used in
the context of networks (not Prolog programs) by [12].

10.4 Implementation

This section discusses the main building blocks used to implement ProbLog on top
of the YAP-Prolog system [21] as introduced in [20]. An overview is shown in Fig-
ure 10.3, with a typical ProbLog program, including ProbLog facts and background
knowledge (BK), at the top.

The implementation requires ProbLog programs to use the problog module.
Each program consists of a set of labeled facts and of unlabeled background knowl-
edge, a generic Prolog program. Labeled facts are preprocessed as described below.
Notice that the implementation requires all queries to non-ground probabilistic facts
to be ground on calling.
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Fig. 10.3 ProbLog Im-
plementation: A ProbLog
program (top) requires the
ProbLog library which in turn
relies on functionality from
the tries and array libraries.
ProbLog queries (bottom-left)
are sent to the YAP engine,
and may require calling the
BDD library CUDD via Sim-
pleCUDD.

Yap Prolog

ProbLog Program

BackgroundFacts

Queries

ProbLog Library

Array LibraryTrie Library

SimpleCUDD

Trie2BDD Script

In contrast to standard Prolog queries, where one is interested in answer substi-
tutions, in ProbLog one is primarily interested in a probability. As discussed before,
two common ProbLog queries ask for the most likely explanation and its probabil-
ity, and the probability of whether a query would have an answer substitution. In
Section 10.3, we have discussed two very different approaches to the problem:

• In exact inference (Section 10.3.1), k-best (Section 10.3.3) and bounded ap-
proximation (Section 10.3.2), the engine explicitly reasons about probabilities
of proofs. The challenge is how to compute the probability of each individual
proof, store a large number of proofs, and compute the probability of sets of
proofs.

• In Monte Carlo (Section 10.3.4), the probabilities of facts are used to sample
from ProbLog programs. The challenge is how to compute a sample quickly, in
a way that inference can be as efficient as possible.

ProbLog programs execute from a top-level query and are driven through a ProbLog
query. The inference algorithms discussed in Section 10.3 can be abstracted as fol-
lows:

• Initialize the inference algorithm;
• While probabilistic inference did not converge:

– initialize a new query;
– execute the query, instrumenting every ProbLog call in the current proof. In-

strumentation is required for recording the ProbLog facts required by a proof,
but may also be used by the inference algorithm to stop proofs (e.g., if the
current probability is lower than a bound);

– process success or exit substitution;

• Proceed to the next step of the algorithm: this may be trivial or may require
calling an external solver, such as a BDD tool, to compute a probability.

Notice that the current ProbLog implementation relies on the Prolog engine to effi-
ciently execute goals. On the other hand, and in contrast to most other probabilistic
language implementations, in ProbLog there is no clear separation between logical
and probabilistic inference: in a fashion similar to constraint logic programming,
probabilistic inference can drive logical inference.
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From a Prolog implementation perspective, ProbLog poses a number of interest-
ing challenges. First, labeled facts have to be efficiently compiled to allow mutual
calls between the Prolog program and the ProbLog engine. Second, for exact infer-
ence, k-best and bounded approximation, sets of proofs have to be manipulated and
transformed into BDDs. Finally, Monte Carlo simulation requires representing and
manipulating samples. We discuss these issues next.

10.4.1 Source-to-source transformation

We use the term expansion mechanism to allow Prolog calls to labeled facts,
and for labeled facts to call the ProbLog engine. As an example, the program:

0.715 :: edge(′PubMed 2196878′,′ MIM 609065′).
0.659 :: edge(′PubMed 8764571′,′ HGNC 5014′). (10.5)

would be compiled as:

edge(A,B) :− problog edge(ID,A,B,LogProb),
grounding id(edge(A,B),ID,GroundID),
add to proof(GroundID,LogProb).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0.3348).
problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0.4166).

(10.6)

Thus, the internal representation of each fact contains an identifier, the original ar-
guments, and the logarithm of the probability4. The grounding id procedure
will create and store a grounding specific identifier for each new grounding of
a non-ground probabilistic fact encountered during proving, and retrieve it on re-
peated use. For ground probabilistic facts, it simply returns the identifier itself. The
add to proof procedure updates the data structure representing the current path
through the search space, i.e., a queue of identifiers ordered by first use, together
with its probability.

10.4.2 Tries

Manipulating proofs is critical in ProbLog. We represent each proof as a queue con-
taining the identifier of each different ground probabilistic fact used in the proof,
ordered by first use. The implementation requires calls to non-ground probabilis-
tic facts to be ground, and during proving maintains a table of groundings used

4 We use the logarithm to avoid numerical problems when calculating the probability of a deriva-
tion, which is used to drive inference.
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within the current query together with their identifiers. In our implementation, the
queue is stored in a backtrackable global variable, which is updated by calling
add to proof with an identifier for the current ProbLog fact. We thus exploit
Prolog’s backtracking mechanism to avoid recomputation of shared proof prefixes
when exploring the space of proofs. Storing a proof is simply a question of adding
the value of the variable to a store.

Storing and manipulating proofs is critical in ProbLog. When manipulating
proofs, the key operation is often insertion: we would like to add a proof to an
existing set of proofs. Some algorithms, such as exact inference or Monte Carlo,
only manipulate complete proofs. Others, such as bounded approximation, require
adding partial derivations too. The nature of the SLD-tree means that proofs tend to
share both a prefix and a suffix. Partial proofs tend to share prefixes only. This sug-
gests using tries [22] to maintain the set of proofs. We use the YAP implementation
of tries for this task, based itself on XSB Prolog’s work on tries of terms [23].

10.4.3 Binary Decision Diagrams

To efficiently compute the probability of a DNF formula representing a set of
proofs, our implementation represents this formula as a Binary Decision Diagram
(BDD) [15]. Given a fixed variable ordering, a Boolean function f can be repre-
sented as a full Boolean decision tree, where each node on the ith level is labeled
with the ith variable and has two children called low and high. Leaves are labeled by
the outcome of f for the variable assignment corresponding to the path to the leaf,
where in each node labeled x, the branch to the low (high) child is taken if variable x
is assigned 0 (1). Starting from such a tree, one obtains a BDD by merging isomor-
phic subgraphs and deleting redundant nodes until no further reduction is possible.
A node is redundant if the subgraphs rooted at its children are isomorphic.

Figure 10.1b shows the BDD corresponding to cd∨ (ce∧ ed), the formula of the
example query path(c,d). Given a BDD, it is easy to compute the probability of
the corresponding Boolean function by traversing the BDD from the root node to a
leaf. At each inner node, probabilities from both children are calculated recursively
and combined afterwards as shown in algorithm in Table 10.2. In practice, memo-
rization of intermediate results is used to avoid the recomputation at nodes that are
shared between multiple paths, resulting in a time and space complexity linear in
the number of nodes in the BDD.

We use SimpleCUDD [24]5 as a wrapper tool for the BDD package CUDD6 to
construct and evaluate BDDs. More precisely, the trie representation of the DNF is
translated to a BDD generation script, which is processed by SimpleCUDD to build
the BDD using CUDD primitives. It is executed via Prolog’s shell utility, and results
are reported via shared files.

5 http://people.cs.kuleuven.be/˜theofrastos.mantadelis/tools/
simplecudd.html
6 http://vlsi.colorado.edu/˜fabio/CUDD
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Table 10.2 Calculating success probability by traversing BDD.

function PROBABILITY(BDD node n)

If n is the 1-terminal return 1
If n is the 0-terminal return 0
let h and l be the high and low children of n
prob(h) :=PROBABILITY(h)
prob(l) :=PROBABILITY(l)
return pn · prob(h)+(1− pn) · prob(l)

During the generation of the code, it is crucial to exploit the structure sharing
(prefixes and suffixes) already in the trie representation of a DNF formula, otherwise
CUDD computation time becomes extremely long or memory overflows quickly.
Since CUDD builds BDDs by joining smaller BDDs using logical operations, the
trie is traversed bottom-up to successively generate code for all its subtrees. Two
types of operations are used to combine nodes. The first creates conjunctions of leaf
nodes and their parent if the leaf is a single child, the second creates disjunctions of
all child nodes of a node if these child nodes are all leaves. In both cases, a subtree
that occurs multiple times in the trie is translated only once, and the resulting BDD
is used for all occurrences of that subtree. Because of the optimizations in CUDD,
the resulting BDD can have a very different structure than the trie.

10.4.4 Monte Carlo

Monte Carlo execution is quite different from the approaches discussed before, as
the two main steps are (a) generating a sample program and (b) performing standard
refutation on the sample. Thus, instead of combining large numbers of proofs, we
need to manipulate large numbers of different programs or samples.

One naive approach would be to generate a complete sample, and to check for
a proof within the sample. Unfortunately, the approach does not scale to large
databases, even if we try to reuse previous proofs: just generating a sample can
be fairly expensive, as one would need to visit every ProbLog fact at every sample.
In fact, in our experience, just representing and generating the whole sample can
be a challenge for large databases. To address this first problem, we rely on YAP’s
efficient implementation of arrays as the most compact way of representing large
numbers of nodes. Moreover, we take advantage of the observation that often proofs
are local, i.e. we only need to verify whether facts from a small fragment of the
database are in the sample, to generate the sample lazily. In other words, we verify
if a fact is in the sample only when we need it for a proof. Samples are thus repre-
sented as a three-valued array, originally initialized to 0, that means sampling was
not asked yet; 1 means that the fact is in the sampled program, and 2 means not in
sample. Note that as fact identifiers are used to access the array, the approach cannot
directly be used for non-ground facts, whose identifiers are generated on demand.
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The current implementation of Monte Carlo therefore uses the internal database to
store the result of sampling different groundings of such facts.

The tight integration of ProbLog’s probabilistic inference algorithms in the state-
of-the-art YAP-Prolog system discussed here includes several improvements over
the initial implementation used in [3], thereby enabling the use of ProbLog to ef-
fectively query Sevon’s Biomine network [12] containing about 1,000,000 nodes
and 6,000,000 edges. For experimental results obtained using the various methods
in the context of this network as well as for further implementation details, we refer
to [25].

10.5 Probabilistic Explanation Based Learning

In this section, we address the question of finding examples that are similar or anal-
ogous to a given example. To this end, we combine two types of queries, namely
finding the most likely (generalized) explanation for an example and reasoning by
analogy, which is the process of finding (and possibly ranking) examples with a
similar explanation. ProbLog’s probabilistic explanation based learning technique
(PEBL) [13] employs a background theory that allows to compute a most likely
explanation for the example and to generalize that explanation. It thus extends the
concept of explanation based learning (EBL) to a probabilistic framework. Proba-
bilistic explanation based learning as introduced here is also related to probabilistic
abduction, as studied by Poole [7]. The difference with Poole’s work however is that
we follow the deductive view of EBL to compute generalized explanations and also
apply them for analogical reasoning.

The central idea of explanation based learning [26, 27] is to compute a gen-
eralized explanation from a concrete proof of an example. Explanations use only
so-called operational predicates, i.e. predicates that capture essential characteristics
of the domain of interest and should be easy to prove. Operational predicates are
to be declared by the user as such. The problem of probabilistic explanation based
learning can be sketched as follows.

Given a positive example e (a ground fact), a ProbLog theory T , and declarations
that specify which predicates are operational,
Find a clause c such that T |= c (in the logical sense, so interpreting T as a Prolog
program), body(c) contains only operational predicates, there exists a substitu-
tion θ such that head(c)θ = e and body(c)θ is the most likely explanation for e
given T .

Following the work by [28, 29], explanation based learning starts from a defi-
nite clause theory T , that is a pure Prolog program, and an example in the form
of a ground atom p(t1, ..., tn). It then constructs a refutation proof of the exam-
ple using SLD-resolution. Explanation based learning will generalize this proof
to obtain a generalized explanation. This is realized performing the same SLD-
resolution steps as in the proof for the example, but starting from the variabelized
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goal, i.e. p(X1, ...,Xn) where the Xi are different variables. The only difference is
that in the general proof atoms q(s1, ...,sr) for operational predicates q in a goal
?− g1, ...,gi,q(s1, ...,sr),gi+1, ...,gn are not resolved away. Also, the proof proce-
dure stops when the goal contains only atoms for operational predicates. The re-
sulting goal provides a generalized explanation for the example. In terms of the
SLD-resolution proof tree, explanation based learning cuts off branches below op-
erational predicates. It is easy to implement the explanation based proof procedure
as a meta-interpreter for Prolog [28, 29].

Reconsider the example of Figure 10.1a, ignoring the probability labels for now.
We define edge/2 to be the only operational predicate, and use path(c,d) as
training example. EBL proves this goal using one instance of the operational pred-
icate, namely edge(c,d), leading to the explanation edge(X,Y) for the gen-
eralized example path(X,Y). To be able to identify the examples covered by
such an explanation, we represent it as so-called explanation clause, where the
generalized explanation forms the body and the predicate in the head is renamed
to distinguish the clause from those for the original predicate. In our example, we
thus get the explanation clause exp path(X,Y)← edge(X,Y). Using the sec-
ond possible proof of path(c,d) instead, we would obtain exp path(X,Y)←
edge(X,Z), edge(Z,Y).

PEBL extends EBL to probabilistic logic representations, computing the gener-
alized explanation from the most likely proof of an example as determined by the
explanation probability Px(q|T ) (10.2). It thus returns the first explanation clause in
our example.

As we have explained in Section 10.3.1, computing the most likely proof for
a given goal in ProbLog is straightforward: instead of traversing the SLD-tree in
a left-to-right depth-first manner as in Prolog, nodes are expanded in order of the
probability of the derivation leading to that node. This realizes a best-first search
with the probability of the current proof as an evaluation function. We use iterative
deepening in our implementation to avoid memory problems. The PEBL algorithm
thus modifies the algorithm in Table 10.1 to return the generalized explanation based
on the most likely proof, which, as in standard EBL, is generated using the same
sequence of resolution steps on the variabelized goal. As for the k-probability (Sec-
tion 10.3.3), a variant of the algorithm can be used to return the k most probable
structurally distinct explanations.

The probabilistic view on explanation based learning adopted in ProbLog offers
natural solutions to two issues traditionally discussed in the context of explanation
based learning [26, 30]. The first one is the multiple explanation problem, which
is concerned with choosing the explanation to be generalized for examples having
multiple proofs. The use of a sound probabilistic framework naturally deals with
this issue by selecting the most likely proof. The second problem is that of gener-
alizing from multiple examples, another issue that received considerable attention
in traditional explanation based learning. To realize this in our setting, we modify
the best-first search algorithm so that it searches for the most likely generalized ex-
planation shared by the n examples e1, ...,en. Including the variabelized atom e, we
compute n+1 SLD-resolution derivations in parallel. A resolution step resolving an
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atom for a non-operational predicate in the generalized proof for e is allowed only
when the same resolution step can also be applied to each of the n parallel deriva-
tions. Atoms corresponding to operational predicates are – as sketched above – not
resolved in the generalized proof, but it is nevertheless required that for each occur-
rence of these atoms in the n parallel derivations, there exists a resolution derivation.

Consider again our running example, and assume that we now want to construct
a common explanation for path(c,d) and path(b,e). We thus have to simul-
taneously prove both examples and the variabelized goal path(X,Y). After re-
solving all three goals with the first clause for path/2, we reach the first instance
of the operational predicate edge/2 and thus have to prove both edge(c,d) and
edge(b,e). As proving edge(b,e) fails, the last resolution step is rejected and
the second clause for path/2 used instead. Continuing this process finally leads to
the explanation clause exp path(X,Y)← edge(X,Z),edge(Z,Y).

At the beginning of this section, we posed the question of finding examples that
are similar or analogous to a given example. The explanation clause constructed by
PEBL provides a concrete measure for analogy or similarity based reasoning: ex-
amples are considered similar if they can be explained using the general pattern that
best explains the given example, that is, if they can be proven using the explana-
tion clause. In our example, using the clause exp path(X,Y)← edge(X,Y)
obtained from path(c,d), five additional instances of exp path(X,Y) can be
proven, corresponding to the other edges of the graph. Furthermore, such similar
examples can naturally be ranked according to their probability, that is, in our ex-
ample, exp path(a,c) and exp path(c,e)would be considered most similar
to path(c,d), as they have the highest probability.

We refer to [13] for more details as well as experiments in the context of biolog-
ical networks.

10.6 Local Pattern Mining

In this section, we address the question of finding queries that are likely to succeed
on a given set of examples. We show how local pattern mining can be adapted to-
wards probabilistic databases such as ProbLog. Even though local pattern mining is
related to probabilistic explanation based learning, there are some important differ-
ences. Indeed, probabilistic explanation based learning typically employs a single
positive example and a background theory to compute a generalized explanation of
the example. Local pattern mining, on the other hand, does not rely on a background
theory or declarations of operational predicates, uses a set of examples – possibly
including negative ones – rather than a single one, and computes a set of patterns (or
clauses) satisfying certain conditions. As in probabilistic explanation based learn-
ing, the discovered patterns can be used to retrieve and rank further examples, again
realizing a kind of similarity based reasoning or reasoning by analogy.

Our approach to probabilistic local pattern mining [31] builds upon multi-
relational query mining techniques [32], extending them towards probabilistic
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databases. We use ProbLog to represent databases and queries, abbreviating vec-
tors of variables as X. We assume a designated relation key containing the set of
tuples to be characterized using queries, and restrict the language L of patterns to
the set of conjunctive queries r(X) defined as

r(X) :−key(X), l1, ..., ln (10.7)

where the li are positive atoms. Additional syntactic or semantic restrictions, called
bias, can be imposed on the form of queries by explicitly specifying the language L ,
cf. [33, 34, 32]. Query Mining aims at finding all queries satisfying a selection pred-
icate φ . It can be formulated as follows, cf. [32, 34]:

Given a language L containing queries of the form (10.7), a database D includ-
ing the designated relation key, and a selection predicate φ

Find all queries q ∈L such that φ(q,D) = true.

The most prominent selection predicate is minimum frequency, an anti-monotonic
predicate, requiring a minimum number of tuples covered. Anti-monotonicity is
based on a generality relation between patterns. We employ OI-subsumption [35], as
the corresponding notion of subgraph isomorphism is favorable within the intended
application in network mining.

Correlated Pattern Mining [36] uses both positive and negative examples, given
as two designated relations key+ and key− of the same arity, to find the top k patterns,
that is, the k patterns scoring best w.r.t. a function ψ . The function ψ employed is
convex, e.g. measuring a statistical significance criterion such as χ2, cf. [36], and
measures the degree to which the pattern is statistically significant or unexpected.
Thus correlated pattern mining corresponds to the setting

φ(q,D) = q ∈ argk max
q∈L

ψ(q,D) . (10.8)

Consider the database corresponding to the graph in Figure 1(a) (ignoring probabil-
ity labels) with key+ = {a,c} and key− = {d,e}. A simple correlation function is
ψ(q,D) = COUNT(q+(∗))−COUNT(q−(∗)), where COUNT(q(∗)) is the num-
ber of different provable ground instances of q and qx denotes query q restricted to
keyx. We obtain ψ(Q1,D) = 2−0 = 2 and ψ(Q2,D) = 1−1 = 0 for queries

(Q1) q(X) :−key(X),edge(X ,Y ),edge(Y,Z).

(Q2) q(X) :−key(X),edge(X ,d).

Multi-relational query miners such as [32, 34] often follow a level-wise approach
for frequent query mining [37], where at each level new candidate queries are gen-
erated from the frequent queries found on the previous level. In contrast to Apriori,
instead of a “joining” operation, they employ a refinement operator ρ to compute
more specific queries, and also manage a set of infrequent queries to take into ac-
count the specific language requirements imposed by L . To search for all solutions,
it is essential that the refinement operator is optimal w.r.t. L , i.e. ensures that there
is exactly one path from the most general query to every query in the search space.



10 Probabilistic Inductive Querying Using ProbLog 247

Table 10.3 Counts on key+ and key− and ψ-values obtained during the first level of mining in the
graph of Figure 1(a). The current minimal score for best queries is 1, i.e. only queries with ψ ≥ 1
or c+ ≥ 1 will be refined on the next level.

query c+ c− ψ
1 key(X),edge(X,Y) 2 1 1

2 key(X),edge(X,a) 0 0 0
3 key(X),edge(X,b) 1 0 1

4 key(X),edge(X,c) 1 0 1

5 key(X),edge(X,d) 1 1 0
6 key(X),edge(X,e) 1 0 1

7 key(X),edge(Y,X) 1 2 - 1
8 key(X),edge(a,X) 1 0 1

9 key(X),edge(b,X) 1 0 1

10 key(X),edge(c,X) 0 2 -2
11 key(X),edge(d,X) 0 0 0
12 key(X),edge(e,X) 0 1 -1

This can be achieved by restricting the refinement operator to generate queries in a
canonical form, cf. [34].

Morishita and Sese [36] adapt Apriori for finding the top k patterns w.r.t. a bound-
able function ψ , i.e. for the case where there exists a function u (different from a
global maximum) such that ∀g,s ∈L : g � s→ ψ(s) ≤ u(g). Again, at each level
candidate queries are obtained from those queries generated at the previous level
that qualify for refinement, which now means they either belong to the current k best
queries, or are still promising as their upper-bound is higher than the value of the
current k-th best query. The function ψ(q,D) =COUNT(q+(∗))−COUNT(q−(∗))
used in the example above is upper-boundable using u(q,D)=COUNT(q+(∗)). For
any g� s, ψ(s)≤ COUNT(s+(∗))≤ COUNT(g+(∗)), as COUNT(s−(∗))≥ 0 and
COUNT is anti-monotonic. To illustrate this, assume we mine for the 3 best corre-
lated queries in our graph database. Table 10.3 shows counts on key+ and key− and
ψ-values obtained during the first level of mining. The highest score achieved is 1.
Queries 1, 3, 4, 6, 8, 9 are the current best queries and will thus be refined on the
next level. Queries 5 and 7 have lower scores, but upper bound c+ = 1, implying that
their refinements may still belong to the best queries and have to be considered on
the next level as well. The remaining queries are pruned, as they all have an upper
bound c+ = 0 < 1, i.e. all their refinements are already known to score lower than
the current best queries.

The framework for query mining as outlined above can directly be adapted to-
wards probabilistic databases. The key changes involved are 1) that the database D
is probabilistic, and 2) that the selection predicate φ or the correlation measure ψ
is based on the probabilities of queries. In other words, we employ a probabilistic
membership function. In non-probabilistic frequent query mining, every tuple in the
relation key either satisfies the query or not. So, for a conjunctive query q and a
0-1 membership function M(t|q,D), we can explicitly write the counting function
underlying frequency as a sum:
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f req(q,D) = ∑
t∈key

M(t|q,D)

On a more general level, this type of function can be seen as aggregate of the mem-
bership function M(t|q,D).

To apply the algorithms sketched above with a probabilistic database D , it suf-
fices to replace the deterministic membership function M(t|q,D) with a probabilis-
tic variant. Possible choices for such a probabilistic membership function P(t|q,D)
include the success probability Ps(q(t)|D) or the explanation probability Px(q(t)|D)
as introduced for ProbLog in Equations (10.1) and (10.2). Note that using such
query probabilities as probabilistic membership function is anti-monotonic, that is,
if q1 � q2 then P(t|q1,D) ≥ P(t|q2,D). Again, a natural choice of selection predi-
cate φ is the combination of a minimum threshold with an aggregated probabilistic
membership function:

agg(q,D) = AGGt∈key P(t|q,D). (10.9)

Here, AGG denotes an aggregate function such as ∑, min, max or ∏, which is
to be taken over all tuples t in the relation key. Choosing ∑ with a determinis-
tic membership relation corresponds to the traditional frequency function, whereas
∏ computes a kind of likelihood of the data. Note that whenever the membership
function P is anti-monotone, selection predicates of the form agg(q,D) > c (with
agg ∈ {∑,min,max,∏}) are anti-monotonic with regard to OI-subsumption, which
is crucial to enable pruning.

When working with both positive and negative examples, the main focus lies on
finding queries with a high aggregated score on the positives and a low aggregated
score on the negatives. Note that using unclassified instances key corresponds to
the special case where key+ = key and key− = /0. In the following, we will there-
fore consider instances of the selection function (10.9) for the case of classified
examples key+ and key− only. Choosing sum as aggregation function results in a
probabilistic frequency p f (10.10) also employed by [38] in the context of item-set
mining, whereas product defines a kind of likelihood LL (10.11). Notice that using
the product in combination with a non-zero threshold implies that all positive exam-
ples must be covered with non-zero probability. We therefore introduce a softened
version LLn (10.12) of the likelihood, where n < |key+| examples have to be cov-
ered with non-zero probability. This is achieved by restricting the set of tuples in
the product to the n highest scoring tuples in key+, thus integrating a deterministic
(anti-monotonic) selection predicate into the probabilistic one. More formally, the
three functions used are defined as follows:

p f (q,D)=∑
t∈key+

P(t|q,D)− ∑
t∈key−

P(t|q,D) (10.10)

LL(q,D)=∏
t∈key+

P(t|q,D) · ∏
t∈key−

(1−P(t|q,D)) (10.11)

LLn(q,D)=∏
t∈key+n

P(t|q,D) · ∏
t∈key−

(1−P(t|q,D)) (10.12)
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Here, key+n contains the n highest scoring tuples in key+. In correlated query mining,
we obtain an upper bound on each of these functions by omitting the scores of
negative examples, i.e. the aggregation over key−.

Consider again our graph database, now with probabilities. Using Px as prob-
abilistic membership function, the query q(X) : −key(X),edge(X ,Y ) gets proba-
bilistic frequency p f (q,D) = Px(a|q,D)+Px(c|q,D)−(Px(d|q,D)+Px(e|q,D)) =
0.8+0.9−(0+0.5)= 1.2 (with upper bound 0.8+0.9= 1.7), likelihood LL(q,D)=
0.8 ·0.9 · (1−0) · (1−0.5) = 0.36 (with upper bound 0.8 ·0.9 = 0.72), and softened
likelihood LL1(q,D) = 0.9 · (1−0) · (1−0.5) = 0.9 (with upper bound 0.9).

For further details and experiments in the context of the biological network of
Section 10.9, we refer to [31].

10.7 Theory Compression

In this section, we investigate how to obtain a small compressed probabilistic
database that contains the essential links w.r.t. a given set of positive and nega-
tive examples. This is useful for scientists trying to understand and analyze large
networks of uncertain relationships between biological entities as it allows them to
identify the most relevant components of the theory.

The technique on which we build is that of theory compression [39], where the
goal is to remove as many edges, i.e., probabilistic facts as possible from the theory
while still explaining the (positive) examples. The examples, as usual, take the form
of relationships that are either interesting or uninteresting to the scientist. The result-
ing theory should contain the essential facts, assign high probabilities to the positive
and low probabilities to the negative examples, and it should be a lot smaller and
hence easier to understand and to employ by the scientists than the original theory.

As an illustrative example, consider again the graph in Figure 1(a) together with
the definition of the path predicate given earlier. Assume now that we just confirmed
that path(a,d) is of interest and that path(a,e) is not. We can then try to find a small
graph (containing k or fewer edges) that best matches these observations. Using a
greedy approach, we would first remove the edges connecting e to the rest of the
graph, as they strongly contribute to proving the negative example, while the positive
example still has likely proofs in the resulting graph.

Before introducing the ProbLog theory compression problem, it is helpful to con-
sider the corresponding problem in a purely logical setting, i.e., ProbLog programs
where all facts are part of the background knowledge. In this case, the theory com-
pression task coincides with a form of theory revision [10, 11] where the only op-
eration allowed is the deletion of rules or facts: given a set of positive and negative
examples in the form of true and false facts, find a theory that best explains the
examples, i.e., one that scores best w.r.t. a function such as accuracy. At the same
time, the theory should be small, that is it should contain at most k facts. So, logical
theory compression aims at finding a small theory that best explains the examples.
As a result the compressed theory should be a better fit w.r.t. the data but should also
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be much easier to understand and to interpret. This holds in particular when starting
with large networks containing thousands of nodes and edges and then obtaining a
small compressed graph that consists of say 20 edges only. In biological databases
such as the ones considered in this chapter, scientists can easily analyze the inter-
actions in such small networks but have a very hard time with the large networks.
The ProbLog Theory Compression Problem is now an adaptation of the traditional
theory revision (or compression) problem towards probabilistic Prolog programs.
Intuitively, we are interested in finding a small number of facts (at most k many)
that maximizes the likelihood of the examples. More formally:

Given a ProbLog theory S, sets P and N of positive and negative examples in the
form of independent and identically-distributed (iid) ground facts, and a constant
k ∈ N,

Find a theory T ⊆ S of size at most k (|T | ≤ k) that has a maximum likelihood L
w.r.t. the examples E = P∪N, i.e., T = argmaxT⊆S∧|T |≤k L (E|T ), where

L (E|T ) = ∏
e∈P

P(e|T ) ·∏
e∈N

(1−P(e|T )) (10.13)

In other words, we use a ProbLog theory T to specify the conditional class distribu-
tion, i.e., the probability P(e|T ) that any given example e is positive7. Because the
examples are assumed to be iid the total likelihood is obtained as a simple product.

Despite its intuitive appeal, using the likelihood as defined in Eq. (10.13) has
some subtle downsides. For an optimal ProbLog theory T , the probability of the
positives is as close to 1 as possible, and for the negatives as close to 0 as possible.
In general, however, we want to allow for misclassifications (with a high cost in
order to avoid overfitting) to effectively handle noisy data and to obtain smaller
theories. Furthermore, the likelihood function can become 0, e.g., when a positive
example is not covered by the theory at all. To overcome these problems, we slightly
redefine P(e|T ) in Eq. (10.13) as

P̂(e|T ) = max
(

min[1− ε,P(e|T )],ε) (10.14)

for some constant ε > 0 specified by the user.
The compression approach can efficiently be implemented following a two-steps

strategy as shown in algorithm in Table 10.4. In a first step, we compute the BDDs
for all given examples. Then, we use these BDDs in a second step to greedily remove
facts. This compression approach is efficient since the (expensive) construction of
the BDDs is performed only once per example.

More precisely, the algorithm starts by calling the approximation algorithm
sketched in Section 10.3.2, which computes the DNFs and BDDs for lower and
upper bounds (for-loop). In the second step, only the lower bound DNFs and BDDs
are employed because they are simpler and, hence, more efficient to use. All facts
used in at least one proof occurring in the (lower bound) BDD of some example con-

7 Note that this is slightly different from specifying a distribution over (positive) examples.
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Table 10.4 ProbLog theory compression

functionCOMPRESS(S = {p1 :: c1, . . . , pn :: cn}, E, k, ε)

for e ∈ E do

Call APPROXIMATE(e,S,δ ) to get DNF(low,e) and BDD(e)
where DNF(low,e) is the lower bound DNF formula for e
and BDD(e) is the BDD corresponding to DNF(low,e)

end for

R := {pi :: ci | bi (indicator for fact i) occurs in a DNF(low,e)}
BDD(E) :=

⋃
e∈E{BDD(e)}

improves := true
while (|R|> k or improves) and R �= /0 do

ll := LIKELIHOOD(R,BDD(E),ε)
i := argmaxi∈R LIKELIHOOD(R−{i},BDD(E),ε)
improves := (ll ≤ LIKELIHOOD(R−{i},BDD(E),ε))
if improves or |R|> k then

R := R−{i}
end if

end while

Return R

stitute the set R of possible revision points. All other facts do not occur in any proof
contributing to probability computation and hence can immediately be removed.

After the set R of revision points has been determined and the other facts removed
the ProbLog theory compression algorithm performs a greedy search in the space of
subsets of R (while-loop). At each step, the algorithm finds that fact whose deletion
results in the best likelihood score, and then deletes it. As explained in more details
in [39], this can efficiently be done using the BDDs computed in the preprocessing
step: set the probability of the node corresponding to the fact to 0 and recompute
the probability of the BDD. This process is continued until both |R| ≤ k and deleting
further facts does not improve the likelihood.

Theory compression as introduced here bears some relationships to the PTR ap-
proach by [40], where weights or probabilities are used as a kind of bias during the
process of revising a logical theory. ProbLog compression is also somewhat related
to Zelle and Mooney’s work on Chill [41] in that it specializes an overly general the-
ory but differs again in the use of a probabilistic framework. In the context of prob-
abilistic logic languages, PFORTE [42] is a theory revision system using BLPs [43]
that follows a hill-climbing approach similar to the one used here, but with a wider
choice of revision operators.

For more details including experiments showing that ProbLog compression is not
only of theoretical interest but is also applicable to various realistic problems in a
biological link discovery domain we refer to [39].
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10.8 Parameter Estimation

In this section, we address the question of how to set the parameters of the ProbLog
facts in the light of a set of examples. These examples consist of ground queries
together with the desired probabilities, which implies that we are dealing with
weighted examples such as 0.6 : locatedIn(a,b) and 0.7 : interacting(a,c) as used
by Gupta and Sarawagi [44] and Chen et al. [45]. The parameter estimation tech-
nique should then determine the best values for the parameters. Our approach as im-
plemented in LeProbLog [19, 46] (Least Square Parameter Estimation for ProbLog)
performs a gradient-based search to minimize the error on the given training data.
The problem tackled can be formalized as regression task as follows:

Given a ProbLog database T with unknown parameters and a set of training ex-
amples {(qi, p̃i)}M

i=1, M > 0, where each qi ∈H is a query or proof and p̃i is the
k-probability of qi,

Find the parameters of the database T that minimize the mean squared error:

MSE(T ) =
1
M ∑1≤i≤M

(
Pk(qi|T )− p̃i

)2
. (10.15)

Gradient descent is a standard way of minimizing a given error function. The
tunable parameters are initialized randomly. Then, as long as the error did not con-
verge, the gradient of the error function is calculated, scaled by the learning rate
η , and subtracted from the current parameters. To get the gradient of the MSE, we
apply the sum and chain rule to Eq. (10.15). This yields the partial derivative

∂MSE(T )
∂ p j

=
2
M ∑

1≤i≤M

(
Pk(qi|T )− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ Pk(qi|T )
∂ p j︸ ︷︷ ︸
Part 2

. (10.16)

where part 1 can be calculated by a ProbLog inference call computing (10.4). It does
not depend on j and has to be calculated only once in every iteration of a gradient
descent algorithm. Part 2 can be calculated as following

∂Pk(qi|T )
∂ p j

= ∑
S⊆LT
S|=qi

δ jS ∏
cx∈S
x �= j

px ∏
cx∈LT \S

x �= j

(1− px) , (10.17)

where δ jS := 1 if c j ∈ S and δ jS :=−1 if c j ∈ LT \S. It is derived by first deriving the
gradient ∂P(S|T )/∂ p j for a fixed subset S ⊆ LT of facts, which is straightforward,
and then summing over all subsets S where qi can be proven.

To ensure that all p j stay probabilities during gradient descent, we reparameterize
the search space and express each p j ∈]0,1[ in terms of the sigmoid function p j =
σ(a j) := 1/(1+ exp(−a j)) applied to a j ∈ R. This technique has been used for
Bayesian networks and in particular for sigmoid belief networks [47]. We derive the
partial derivative ∂Pk(qi|T )/∂a j in the same way as (10.17) but we have to apply
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Table 10.5 Evaluating the gradient of a query efficiently by traversing the corresponding BDD,
calculating partial sums, and adding only relevant ones.

function GRADIENT(BDD b, fact to derive for n j)

(val,seen) = GRADIENTEVAL(root(b),n j)
If seen = 1 return val ·σ(a j) · (1−σ(a j))
Else return 0

function GRADIENTEVAL(node n, target node n j)

If n is the 1-terminal return (1,0)
If n is the 0-terminal return (0,0)
Let h and l be the high and low children of n
(val(h),seen(h)) = GRADIENTEVAL(h,n j)
(val(l),seen(l)) = GRADIENTEVAL(l,n j)
If n = n j return (val(h)− val(l),1)
ElseIf seen(h) = seen(l) return (σ(an) · val(h)+(1−σ(an)) · val(l),seen(h)))
ElseIf seen(h) = 1 return (σ(an) · val(h),1)
ElseIf seen(l) = 1 return ((1−σ(an)) · val(l),1)

the chain rule one more time due to the σ function

σ(a j) · (1−σ(a j)) · ∑
S⊆LT
L|=qi

δ jS ∏
cx∈S
x �= j

σ(ax) ∏
cx∈LT \S

x �= j

(1−σ(ax)).

We also have to replace every p j by σ(p j) when calculating the success probabil-
ity. We employ the BDD-based algorithm to compute probabilities as outlined in
algorithm in Table 10.2. In the following, we update this towards the gradient and
introduce LeProbLog, the gradient descent algorithm for ProbLog.

The following example illustrates the gradient calculation on a simple query.

Example 10.1 (Gradient of a query). Consider a simple coin toss game: One can
either win by getting heads or by cheating as described by the following theory:

?? :: heads. ?? :: cheat succesfully.
win :−cheat successfully.
win :−heads.

Suppose we want to estimate unknown fact probabilities (indicated by the symbol
??) from the training example P(win) = 0.3.

As a first step the fact probabilities get initialized with some random probabili-
ties:

0.6 :: heads. 0.2 :: cheat succesfully.
win :−cheat successfully.
win :−heads.

In order to calculate the gradient of the MSE (cf. Equation (10.16)), the algorithm
evaluates the partial derivative for every probabilistic fact and every training exam-
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Fig. 10.4 Intermediate results when calculating the gradient ∂P(win)/∂heads using the algorithm
in Table 10.5. The result is read off at the root node of the BDD.

ple. Figure 10.4 illustrates the calculation of the partial derivate ∂P(win)/∂heads
using the algorithm in Table 10.5.

As described in Section 10.3, BDDs can be used to efficiently calculate the suc-
cess probability of a query, solving the disjoint-sum problem arising at summing
over probabilities in an elegant way. The algorithm in Table 10.2 can be modified
straightforwardly such that it calculates the value of the gradient (10.17) of a suc-
cess probability. The algorithm in Table 10.5 shows the pseudocode. Both algo-
rithms have a time and space complexity of O(number of nodes in the BDD) when
intermediate results are cached.

To see why this algorithm calculates the correct output let us first consider a
full decision tree instead of a BDD. Each branch in the tree represents a product
n1 · n2 · . . . · ni, where the ni are the probabilities associated to the corresponding
variable assignment of nodes on the branch. The gradient of such a branch b with
respect to n j is gb = n1 ·n2 · . . .n j−1 ·n j+1 · . . . ·ni if n j is true, and−gb if n j is false in
b. As all branches in a full decision tree are mutually exclusive, the gradient w.r.t. n j
can be obtained by simply summing the gradients of all branches ending in a leaf
labeled 1. In BDDs however, isomorphic sub-parts are merged, and obsolete parts
are left out. This implies that some paths from the root to the 1-terminal may not
contain n j, therefore having a gradient of 0. So, when calculating the gradient on
the BDD, we have to keep track of whether n j appeared on a path or not. Given that
the variable order is the same on all paths, we can easily propagate this information
in our bottom-up algorithm. This is exactly what is described in the algorithm in
Table 10.5. Specifically, GRADIENTEVAL(n,n j) calculates the gradient w.r.t. n j in
the sub-BDD rooted at n. It returns two values: the gradient on the sub-BDD and a
Boolean indicating whether or not the target node n j appears in the sub-BDD. When
at some node n the indicator values for the two children differ, we know that n j does
not appear above the current node, and we can drop the partial result from the child
with indicator 0. The indicator variable is also used on the top level: GRADIENT
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returns the value calculated by the bottom-up algorithm if n j occurred in the BDD
and 0 otherwise.

LeProbLog combines the BDD-based gradient calculation with a standard gradi-
ent descent search. Starting from parameters a = a1, . . . ,an initialized randomly, the
gradient Δa = Δa1, . . . ,Δan is calculated, parameters are updated by subtracting the
gradient, and updating is repeated until convergence. When using the k-probability
with finite k, the set of k best proofs may change due to parameter updates. After
each update, we therefore recompute the set of proofs and the corresponding BDD.

One nice side effect of the use of ProbLog is that it naturally combines learning
from entailment and learning from proofs, two learning settings that so far have been
considered separately. So far, we have assumed that the examples were ground facts
together with their target probability. It turns out that the sketched technique also
works when the examples are proofs, which correspond to conjunctions of proba-
bilistic facts, and which can be seen as a conjunction of queries. Therefore, LeP-
robLog can use examples of both forms, (atomic) queries and proofs, at the same
time. For further details and experimental results in the context of the biological
network application, we refer to [19, 46].

10.9 Application

As an application of ProbLog, consider link mining in large networks of biological
entities, such as genes, proteins, tissues, organisms, biological processes, and molec-
ular functions. Life scientist utilize such data to identify and analyze relationships
between entities, for instance between a protein and a disease.

Molecular biological data is available from public sources, such as Ensembl8,
NCBI Entrez9, and many others. They contain information about various types
of objects, such as the ones mentioned above, and many more. Information about
known or predicted relationships between entities is also available, e.g., that gene A
of organism B codes for protein C, which is expressed in tissue D, or that genes E
and F are likely to be related since they co-occur often in scientific articles. Mining
such data has been identified as an important and challenging task (cf. [48]).

A collection of interlinked heterogeneous biological data can be conveniently
seen as a weighted graph or network of biological concepts, where the weight
of an edge corresponds to the probability that the corresponding nodes are re-
lated [12]. A ProbLog representation of such a graph can simply consist of prob-
abilistic edge/2 facts, though finer grained representations using relations such as
codes/2, expresses/2 are also possible.

We have used the Biomine dataset [12] in our applications. It is an integrated
index of a number of public biological databases, consisting of about 1 million ob-

8 http://www.ensembl.org
9 http://www.ncbi.nlm.nih.gov/Entrez/
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jects and about 7 million relations. In this dataset, weights are associated to edges,
indicating the probability that the corresponding nodes are related10.

We next outline different ways of using ProbLog to query the Biomine dataset.
We only assume probabilistic edge/3 facts, where the third term indicates the edge
type, and a simple background theory that contains the type of individual nodes as
node/2 facts and specifies an acyclic, indirected (symmetric) path/2 relation.

Probabilistic inference (Section 10.3) Assume a life scientist has hypothesized
that ROBO1 gene is related to Alzheimer disease (AD). The probability that they
are related is computed by ProbLog query ?- path(’ROBO1’, ’AD’). The results is
0.70, indicating that—under all the assumptions made by ProbLog, Biomine and
the source databases—they might be related. Assuming the life scientist has 100
candidate genes for Alzheimer disease, ProbLog can easily be used to rank the genes
by their likelihood of being relevant for AD.

Most likely explanation (Section 10.3.1) Obviously, our life scientist would not
be happy with the answer 0.70 alone. Knowing the possible relation is much more
interesting, and could potentially lead to novel insight.

When including node type information in the definition of a path between
two nodes, the best (most likely) proof of path(’ROBO1’,’AD’) obtained by
ProbLog is

node(’ROBO1’, gene),
edge(’ROBO1’, ’SLIT1’, interacts-with),
node(’SLIT1’, gene),
edge(’SLIT1’, ’hsa10q23.3-q24’, is-located-in),
node(’hsa10q23.3-q24’, genomic-context),
edge(’hsa10q23.3-q24’, ’hsa10q24’, contains),
node(’hsa10q24’, genomic-context),
edge(’hsa10q24’, ’AD’, is-related-to),
node(’AD’, phenotype).

In other words, ROBO1 interacts with SLIT1, which is located in a genomic area
related to AD. This proof has probability 0.14.

Most likely generalized explanation (Section 10.5) Explanations obtained by
probabilistic explanation based learning within ProbLog are on a more general level,
that is, they replace constants occurring in a concrete proof by variables. By defining
predicates related to node and edge types as operational, the proof above is general-
ized to explanation exp path(A, B) ←

node(A, gene), edge(A, C, interacts-with),
node(C, gene), edge(C, D, is-located-in),
node(D, genomic-context), edge(D, E, contains),
node(E, genomic-context),
edge(E, B, is-related-to), node(B, phenotype).

10 [12] view this strength or probability as the product of three factors, indicating the reliability,
the relevance as well as the rarity (specificity) of the information.
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Table 10.6 Additional explanation clauses for path(A,B), connecting gene A to phenotype B,
obtained from different examples.

e path(A,B) ← node(A,gene), edge(A,C,belongs to),
node(C,homologgroup), edge(B,C,refers to), node(B,phenotype),
nodes distinct([B,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,codes for), node(C,protein),
edge(D,C,subsumes), node(D,protein), edge(D,E,interacts with),
node(E,protein), edge(B,E,refers to), node(B,phenotype),
nodes distinct([B,E,D,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,participates in),
node(C,pathway), edge(D,C,participates in), node(D,gene),
edge(D,E,codes for), node(E,protein), edge(B,E,refers to),
node(B,phenotype), nodes distinct([B,E,D,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,is found in),
node(C,cellularcomponent), edge(D,C,is found in),
node(D,protein), edge(B,D,refers to),
node(B,phenotype), nodes distinct([B,D,C,A]).

Table 10.6 shows four other explanations obtained for relationships between a
gene (such as ROBO1) and a phenotype (such as AD). These explanations are all
semantically meaningful. For instance, the first one indicates that gene A is related
to phenotype B if A belongs to a group of homologous (i.e., evolutionarily related)
genes that relate to B. The three other explanations are based on interaction of pro-
teins: either an explicit one, by participation in the same pathway, or by being found
in the same cellular component.

Such an explanation can then be used to query the database for a list of other
genes connected to AD by the same type of pattern, and to rank them according to
the probability of that connection, which may help the scientist to further examine
the information obtained.

While the linear explanation used for illustration here could also be obtained
using standard shortest-path algorithms, PEBL offers a more general framework for
finding explanations where the structure is defined by background knowledge in the
form of an arbitrary logic program.

Theory compression (Section 10.7) The most likely explanation for path(’ROBO1’,
’AD’) is just a single proof and does not capture alternative proofs, not to mention
the whole network of related and potentially relevant objects. Theory compression
can be used here to automatically extract a suitable subgraph for illustration. By defi-
nition, the extracted subgraph aims at maximizing the probability of path(’ROBO1’,
’AD’), i.e., it contains the most relevant nodes and edges.

Looking at a small graph of, say 12 nodes, helps to give an overview of the most
relevant connections between ROBO1 and AD. Such a look actually indicates that
the association of AD to genomic context hsa10q24 is possibly due to the PLAU
gene, which is suspected to be associated with late-onset Alzheimer disease. The
life scientist could now add path(’ROBO1’, ’hsa10q24’) as a negative example, in
order to remove connections using the genomic context from the extracted graph.
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Local pattern mining (Section 10.6) Given a number of genes he considers rele-
vant for the problem at hand, our life scientist could now be interested in relation-
ships these genes take part in with high probability. Local pattern mining offers a
way to query ProbLog for such patterns or subgraphs of relationships without rely-
ing on predefined specific connections such as path.

Parameter estimation (Section 10.8) Imagine our life scientist got information
on new entities and links between them, for example performing experiments or
using information extraction techniques on a collection of texts. However, he does
not know all the probabilities that should be attached to these new links, but only
the probabilities of some of the links, of some specific paths, and of some pairs of
entities being connected by some path. He could now use this knowledge as training
examples for LeProbLog to automatically adjust the parameters of the new network
to fit the available information.

10.10 Related Work in Statistical Relational Learning

In this section, we position ProbLog in the field of statistical relational learning [49]
and probabilistic inductive logic programming [50]. In this context, its distinguish-
ing features are that it is a probabilistic logic programming language based on Sato’s
distribution semantics [14], that it also can serve as a target language into which
many of the other statistical relational learning formalisms can be compiled [51]
and that several further approaches for learning ProbLog are being developed. Let
us now discuss each of these aspects in turn.

First, ProbLog is closely related to some alternative formalisms such as PHA
and ICL [7, 16], pD [6] and PRISM [8] as their semantics are all based on Sato’s
distribution semantics even though there exist also some subtle differences. How-
ever, ProbLog is – to the best of the authors’ knowledge – the first implementation
that tightly integrates Sato’s original distribution semantics [14] in a state-of-the-art
Prolog system without making additional restrictions (such as the exclusive expla-
nation assumption made in PHA and PRISM). As ProbLog, both PRISM and the
ICL implementation AILog2 use a two-step approach to inference, where proofs
are collected in the first phase, and probabilities are calculated once all proofs are
known. AILog2 is a meta-interpreter implemented in SWI-Prolog for didactical pur-
poses, where the disjoint-sum-problem is tackled using a symbolic disjoining tech-
nique [16]. PRISM, built on top of B-Prolog, requires programs to be written such
that alternative explanations for queries are mutually exclusive. PRISM uses a meta-
interpreter to collect proofs in a hierarchical datastructure called explanation graph.
As proofs are mutually exclusive, the explanation graph directly mirrors the sum-
of-products structure of probability calculation [8]. ProbLog is the first probabilistic
logic programming system using BDDs as a basic datastructure for probability cal-
culation, a principle that receives increased interest in the probabilistic logic learn-
ing community, cf. for instance [52, 53].
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Furthermore, as compared to SLPs [54], CLP(BN ) [55], and BLPs [43],
ProbLog is a much simpler and in a sense more primitive probabilistic program-
ming language. Therefore, the relationship between probabilistic logic program-
ming and ProbLog is, in a sense, analogous to that between logic programming and
Prolog. From this perspective, it is our hope and goal to further develop ProbLog
so that it can be used as a general purpose programming language with an efficient
implementation for use in statistical relational learning [49] and probabilistic pro-
gramming [50]. One important use of such a probabilistic programming language
is as a target language in which other formalisms can be efficiently compiled. For
instance, it has already been shown that CP-logic [56], a recent elegant probabilis-
tic knowledge representation language based on a probabilistic extension of clausal
logic, can be compiled into ProbLog [52] and it is well-known that SLPs [54] can be
compiled into Sato’s PRISM, which is closely related to ProbLog. Further evidence
is provided in [51].

Another, important use of ProbLog is as a vehicle for developing learning and
mining algorithms and tools [13, 39, 19, 31], an aspect that we have also discussed
in the present paper. In the context of probabilistic representations [49, 50], one
typically distinguishes two types of learning: parameter estimation and structure
learning. In parameter estimation in the context of ProbLog and PRISM, one starts
from a set of queries and the logical part of the program and the problem is to
find good estimates of the parameter values, that is, the probabilities of the prob-
abilistic facts in the program. In the present paper and [19], we have discussed a
gradient descent approach to parameter learning for ProbLog in which the exam-
ples are ground facts together with their target probability. In [57], an approach to
learning from interpretations based on an EM algorithm is introduced. There, each
example specifies a possible world, that is, a set of ground facts together with their
truth value. This setting closely corresponds to the standard setting for learning in
statistical relational learning systems such as Markov Logic [58] and probabilistic
relational models [59]. In structure learning, one also starts from queries but has to
find the logical part of the program as well. Structure learning is therefore closely
related to inductive logic programming. An initial approach to learning the structure,
that is, the rules of a ProbLog program has recently been introduced in [60].

10.11 Conclusions

In this chapter, we provided a survey of the developments around ProbLog, a simple
probabilistic extension of Prolog based on the distribution semantics. This combina-
tion of definite clause logic and probabilities leads to an expressive general frame-
work supporting both inductive and probabilistic querying. Indeed, probabilistic ex-
planation based learning, local pattern mining, theory compression and parameter
estimation as presented in this chapter all share a common core: they all use the
probabilistic inference techniques offered by ProbLog to score queries or examples.
ProbLog has been motivated by the need to develop intelligent tools for support-
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ing life scientists analyzing large biological networks involving uncertain data. All
techniques presented here have been evaluated in the context of such a biological
network; we refer to [3, 13, 31, 39, 19] for details.
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