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Abstract. Networks are a common way of representing linked infor-
mation. The goal of network abstraction is to transform a large network
into a smaller one, so that the smaller is a useful summary of the original
graph.

In this paper we review different approaches and techniques proposed to
abstract a large network. We classify the approaches along two axes. The
first one consists of elementary simplification techniques used: pruning
of (irrelevant) nodes and edges, partitioning to several smaller networks,
and generalization by replacement of subnetworks by more general struc-
tures. The other axis is objective vs. subjective methods; the latter ones
aim to maintain more information about those parts of a network that
the user has indicated as interesting.

We conclude the review by a brief analysis of which intersections of the
two axes are least researched and could therefore have future potential.

1 Introduction

Networks (or graphs) are a common and powerful representation for linked data:
nodes represent objects and links represent connections between objects. Exam-
ple applications are practically infinite; prominent examples include biological
networks, social networks, communication networks, and World Wide Web.

Networks are often large. Consider networks of thousands of genes, millions
of people, or billions of web pages. While networks are a powerful formalism for
handling and analysing such data, they are too large to be viewed or explored by
users. One solution is to present to the user an abstract view of the information.
We call this network abstraction.

The goal of network abstraction is to extract, from a large graph, a graph that
is simpler and therefore more useful, even though some information is unevitably
lost in the abstraction process – often the explicit aim is to lose (irrelevant)
information. An absracted view can help users capture the structure of a huge
network, or understand connections between distant nodes, or even discover new
knowledge difficult see in a huge graph. This paper is a literature review of some
applicable approaches to network abstraction.



Taxonomy of network abstraction methods We classify network abstraction tech-
niques roughly along two orthogonal axes: (1) operations performed, and (2) goals.

Three main types of operations to produce abstractions of networks are
prune, partition, and generalize by replacing:

1. Prune peripheral or irrelevant nodes and edges. This reduces the size of the
network, with the aim of keeping only the most interesting or relevant nodes
and edges.

2. Partition the network into smaller ones. Each smaller subnetwork is now
easier to explore individually, while longer connections and larger structures
still require looking at several subnetworks.

3. Replace a part of the network by a more general structure. Generalization
may, for instance, replace a path with a single edge, parallel paths with a
single one, or a subgraph by a node, in order to simplify the network.

The goal of an abstraction technique can be viewed as either objective or
subjective. An objective technique disregards user-specific emphasis on any part
of the network, while a subjective method allows the user to indicate which parts
or the network should retain more of their details. For instance, a connection
subgraph query returns a network (of a limited size) that maximizes the connec-
tivity between given nodes, and thus is a subjective technique (using pruning).

Bias of the review Although we have aimed at covering representative approaches
for network abstraction in general, this review inevitably reflects our own inter-
ests. Our motivation is to abstract large information networks such as Biomine1.
The network model is simply a labeled and weighted graph G = (V,E). Ele-
ments of the vertex set V are biological entities, such as genes, proteins, articles,
or biological processes, and so on. Edges from the set E have types such as
“codes for”, “interacts with”, or “is homologous to”. The interpretation of an
edge weight is that it is the probability that the edge exists, i.e., the network is
a (Bernoulli) random graph. Biomine currently consists of about 1 million ver-
tices and 10 million edges, making it very hard for experts to analyze without
abstraction techniques.

Structure of the review We structure this review first by the objectivity (Sec-
tion 2) vs. subjectivity (Section 3), and then by the operations (in subsections).
We conlude with brief notes in Section 4.

2 Objective Methods

In this section, we discuss network abstraction methods where the user has no
control over how specific parts of the graph are handled (but there may be
numerous other parameters for the user to set).

1 http://biomine.cs.helsinki.fi/



2.1 Pruning Edges or Nodes

In a complex network, not all nodes or edges are equally important. Removing the
most irrelevant or least central nodes or edges can greatly simplify the network
structure. In addition to methods directly aimed at network abstraction, ranking
nodes from a global viewpoint has been investigated for a long time in the web
and social network domains. Such methods may also be used to identify least
relevant nodes for pruning. We include such methods in this review.

Relative Neighborhood Graph The Relative Neighborhood Graph (RNG) [1,
2] only contains edges whose two endpoints are relatively close: by definition,
nodes a and b are connected by an edge if and only if there is no third node c
which is closer to both endpoints a and b than a and b are to eachother. RNG has
originally been defined for points, but it can also be used to prune edges between
nodes a and b that do have a shared close neighbor c. The relative neighborhood
graph then is a superset of the Minimum Spanning Tree (MST) and a subset
of Delaunay Triangulation (DT). According to Toussaint [1], RNG can in most
cases capture a perceptually more significant subgraph than MST and DT.

Node Centrality The field of social network analysis has produced several
methods to measure the importance or centrality of nodes [3–6]. Typical defini-
tions of node importance are the following.
1. Degree centrality simply means that nodes with more edges are more central.
2. Betweenness centrality [7–9] measures how influential a node is in connecting

pairs of nodes. A node’s betweenness is the number of times the node appears
on the paths between all other nodes. It can be computed for shortest paths
or for all paths [10]. Computation of a node’s betweenness involves all paths
between all pairs of nodes of a graph. This leads to high computational costs
for large networks.

3. Closeness centrality [11] is defined as the sum of graph-theoretic distances
from a given node to all others in the network. The distance can be defined as
mean geodesic distance, or as the reciprocal of the sum of geodesic distances.
Computation of a node’s closeness also involves all paths between all pairs
of nodes, leading to a high complexity.

4. Feedback centrality of a vertex is defined recursively by the centrality of its
adjacent vertices.

5. Eigenvector centrality has also been proposed [12].

Node centrality measures focus on selecting important nodes, not on select-
ing a subgraph (of a very small number of separate components). Obviously,
centrality measures can be used to identify least important nodes to be pruned.
For large input networks and small output networks, however, the result of such
straightforward pruning would often consist of individual, unconneted nodes,
not an abstract network in the intended sense.

Methods in the following subsections (2.1 and 2.1) are similar in this sense:
they help to rank nodes individually based on their importance, but do not as
such produce (connected) subgraphs.



PageRank and HITS In Web graph analysis, PageRank algorithm [13, 14]
is proposed to find the most important web pages according to the web’s link
structure. It can be understood as the probability of a random walk on a directed
graph; the quality of each page depends on the number and quality of all pages
that link to it. It emphasizes highly linked pages and their links. A closely related
link analysis method is HITS (Hyperlink-Induced Topic Search) [15, 16]. It also
aims to discover web pages of importance. Unlike PageRank, it has two values
for each page, and is processed on a small subset of pages, not the whole web.
Haveliwala [17] discusses the relative benefits of PageRank and HITS.

In their basic forms, both PageRank and HITS value a node just according to
the graph topology. It is relatively easy to add edge weights to them. However,
if one already has a (Bernoulli) probabilistic interpretation of edge weights, the
extension is less trivial.

Birnbaum’s Component Importance Birnbaum importance [18] is directly
defined on (Bernoulli) random graphs where edge weights are probabilities of the
existence of the edge. The Birnbaum importance of an edge depends directly on
the overall effect of the existence of the edge. An edge whose removal has a large
effect on the probability of other nodes to be connected, has a high importance.
The importance of a node can be defined in terms of the total importance of its
edges. This concept has been extended for two edges by Hong and Lei [19].

2.2 Partitioning a Graph

Inside a network, there often are clusters of nodes (called communities in so-
cial networks) within which connections are stronger, while connections between
clusters are weaker and less frequent. In such a situation, a useful abstraction is
to split the network into clusters and present each one of them separately to the
user.

Often, the division is a partition of the original network. In this subsection,
we discuss two popular approaches, namely graph partitioning and hierarchical
clustering, and a method based on edge betweenness. We also touch on the issue
of determining the number of components.

Graph Partitioning A prevalent class of approaches to dividing a network to
small parts is based on graph partitioning [20, 21]. The basic goal is to divide
the nodes into subsets of roughly equal size and minimize the sum of weights of
edges crossing different subsets. This problem is NP-complete. However, many
algorithms have been proposed to find a reasonably good partition.

Popular graph partitioning techniques include spectral bisection methods [22,
23] and geometric methods [24, 25]. While they are quite elegant, they have some
downsides. Spectral bisection in its standard form is computationally expensive
for very large networks. The geometric methods in turn require coordinates of
vertices of the graph.



The multilevel method [26, 27] first collapses sets of nodes and edges to obtain
a smaller graph and partitions the small graph. It then refines the partitioning
while projecting the smaller graph back to the original graph. The multilevel
method combines a global view with local optimization to reduce cut sizes.

An issue with many of these partitioning methods is that they only bisect
networks [28]. Good results are not guaranteed by repeating bisections when
more than two subgroups are needed. For example, if the graph essentially has
three subgroups, there is no guarantee that these three subgroups can be dis-
covered by finding the best division into two and then dividing one of them
again.

Kernighan-Lin (K-L) algorithm [29] is a classical representative for methods
that take a rough partitioning as input. It iteratively looks for a subset of vertices,
from each part of the given graph, so that swapping them will lead to a partition
with smaller edge-cut. It does not create partitions but rather improves them.
The first (very!) rough partitioning can be obtained by randomly partitioning
the set of nodes. Obviously, a weakness of the The K-L method is that it only
has a local view of the problem.

Various modifications of K-L algorithm have been proposed [30, 31], one of
them dealing with an arbitrary number of parts [30].

Hierarchical Clustering Another popular technique to divide networks is
hierarchical clustering [32]. It computes similarities (or distances) between nodes,
for which typical choices include Euclidean distance and Pearson correlation
(of neighborhood vectors), as well as the count of edge-independent or vertex-
independent paths between nodes.

Hierarchical clustering is well-known for its incremental approach. Algo-
rithms for hierarchical clustering fall into agglomerative or divisive class. In an
agglomerative process, each vertex is initially taken as an individual group, then
the closest pair of groups is iteratively merged until a single group is constructed
or some qualification is met. Newman [33] indicates that agglomerative processes
frequently fail to detect correct subgroups, and it has tendency to find only the
cores of clusters. The divisive process iteratively removes edges between the least
similar vertices, thus it is totally the opposite of an agglomerative method.

Obviously, other clustering methods can be applied on nodes (or edges) as
well to partition a graph.

Edge Betweenness One approach to find a partitioning is through removing
edges. This is similar to the divisive hierarchical clustering, and is based on the
principle that the edges which connect communities usually have high between-
ness [34]. Girvan and Newman define edge betweenness as the number of paths
that run along that given edge [33]. It can be calculated using shortest-path
betweenness, random-walk betweenness and current-flow betweenness. The au-
thors first use edge centrality indices to find community boundaries. They then
remove high betweenness edges in a divisive process, which eventually leads to
a division of the original network into separate parts. This method has a high



computational cost: in order to compute each edge’s betweenness, one should
consider all paths in which it appears. Many authors have already proposed
different approaches to speed up that algorithm [35, 36].

Number of Subgroups When partitioning a large network into subgroups,
how many subgroups should there be? Some methods depend on user’s input,
some others compute an objective measurement called modularity Q [28, 33, 37]:
it is the difference between the actual and the expected fractions of edges within
the clusters. A large positive modularity indicates that there are more edges
within clusters than we would expect on the basis of chance. Another measure of
the quality of graph fragmentation [38] considers both size and shape of clusters.

2.3 Replacing Subgraphs

The third operation in our taxonomy is replacement of a subgraph by a more
general one, e.g., of a set of closely related nodes by a single representative. This
operation allows to focus on the larger structures and connections in a graph.

Clustering In section 2.2, we already discussed techniques used to discover
clusters (communities) in a network. Clustering methods, especially those that
identify dense subgraphs, can also be used in an opposite way: we can replace a
dense cluster by a single node, so the overall structure of the network becomes
clearer.

Frequent Subgraphs A frequent subgraph may be considered a general pat-
tern whose instances can be replaced by a label of that pattern (i.e., single a node
or an edge representing the pattern). Motivation for this is two-fold. Technically,
this operation can simply be seen as compression; on the other hand, frequent
patterns possibly reflect some semantic structures of the domain and therefore
are useful candidates for replacement. As a simple example, connections of the
type “gene A codes for protein B” are frequent, and they reflect the known re-
lationship between genes and proteins. Depending on the use, it could be useful
to abstract a biological graph by collapsing all gene-protein pairs into a single
node.

In this subsection, we briefly review frequent subgraph mining, where the
goal is to identify subgraphs that appear with a frequency higher than a given
minimum frequency (also called support).

Two early methods use frequent probabilistic rules [39] and compression of
the database [40]. Some early approaches use greedy, incomplete schemes [41,
42]. Many of the frequent subgraph mining methods are based on the Apriori
algorithm [43], for instance AGM [44] and FSG [45, 46]. However, such meth-
ods usually suffer from complicated and costly candidate generation, and high
computation time of subgraph isomorphism [47]. To circumvent these problems,
gSpan [47] explores depth-first search in frequent subgraph mining. CloseG-
raph [48] in turn mines closed frequent graphs, which reduces the size of output



without losing any information. The Spin method [49] only looks for maximal
connected frequent subgraphs.

Most of the methods mentioned above consider a database of graphs as input,
not a single large graph. More recently, several methods have been proposed to
find frequent subgraphs also in a single input graph [50–53].

3 Subjective Methods

In this section, we discuss abstraction methods for which the user can explicitly
indicate which parts or aspects are more important, according to his interests.
Such network abstraction methods are useful when providing more flexible ways
to query a graph (database).

3.1 Pruning Edges or Nodes

Relevant Subgraph Extraction Given two or more nodes, the idea here
is to extract the most relevant subnetwork (of a limited size) with respect to
connecting the given nodes as strongly as possible. This subnetwork is then in
some sense maximally relevant to the given nodes. There are several alternatives
for defining the objective function, i.e., the quality of the extracted subnetwork.

An early approache by Grötschel et al [54] bases the definition on the count
of edge-disjoint or vertex-disjoint paths from the source to the sink. A similar
principle has later been applied to multi-relational graphs [55], where a pair of
entities could be linked by a myriad of relatively short chains of relationships.

The problem in its general form was later formulated as the connection sub-
graph problem by Faloutsos et al. [56]. The authors also proposed a method
based on electricity analogies, aiming at maximizing electrical currents in a net-
work of resistors. However, Tong and Faloutsos later point out the weaknesses of
using delivered current criterion as a goodness of connection [57]: it only deals
with pair of query nodes, and is sensible to the order of the query nodes. As an
improved method, they propose the center-piece subgraph problem to extract a
subgraph with strong connections to any arbitrary number of nodes.

For random graphs, work from reliability research suggests network reliabil-
ity as suitable measure [58]. This is defined as the probability that the given
original nodes are connected, given that edges fail randomly according to their
probabilities. This approach was then formulated more exactly and algorithms
were proposed by Hintsanen and Toivonen [59]. Hintsanen and Toivonen restrict
the set of terminals to a pair, and propose two incremental algorithms for the
problem.

A logical counterpart of this work, in the field of probabilistic logic learning, is
based on ProbLog [60]. In a ProbLog program, each Prolog clause is labeled with
a probability. The ProbLog program can then be used to compute the success
probabilities of queries. In the theory compression setting for ProbLog [61], the
goal is to extract a subprogram of limited size that maximizes the success prob-
ability of given queries. The authors use subgraph extraction as the application
example.



Detecting Interesting Nodes or Paths Some techniques aim to detect in-
teresting paths and nodes, with respect to given nodes. Lin and Chapulsky [62]
focus on determining novel, previously unknown paths and nodes from a labeled
graph. Based on computing frequencies of similar paths in the data, they use
rarity as a measure to find interesting paths or nodes with respect to the given
nodes.

An alternative would be to use node centrality to measure the relative im-
portance; White and Smyth [63] define and compute the importance of nodes in
a graph relative to one or more given root nodes. They have also pointed out
advantages and disadvantages of such measurement based on shortest paths,
k-short paths and k-short node-disjoint paths.

Personalized PageRank On the basis of PageRank, Personlized PageRank
(PPR) is proposed to personalize ranking of web pages. It assigns importances
according to the query or user preferences. Early work in this area includes Jeh
and Widon [64] and Haveliwala [17]. Later, Fogaras et al [65] have proposed
improved methods for the problem.

An issue for network abstraction with these approaches is that they can
idenfity relevant individual nodes, but not a relevant subgraph.

3.2 Partitioning a Graph

We are not aware of subjective partitioning or clustering methods for graphs.
Generic clustering methods that allow user input, such as constrained cluster-
ing [66] or supervised clustering [67], could be applicable on graphs as well.

3.3 Replacing User Input Subgraph

Some substructures may represent obvious or general knowledge, which may
moreover occur frequently. Complementary to the approach of Subsection 2.3
where such patterns are identified automatically, here we consider user-input
patterns or replacement rules. Depending on the nature and precision of that
input, techniques of substructure searching fall into two categories: exact search
and similarity search.

Exact Search Finding all exact instances of a graph structure reduces to the
subgraph isomorphism problem, which is NP-complete. Isomorphisms are map-
pings of node and edge labels that preserve the connections in the subgraph.

Ullmann [68] has proposed a well-known algorithm to number the isomor-
phisms with a refinement procedure that overcomes brute-force tree-search enu-
meration. Cordella et al. [69] include more selective feasibility rules to prune the
state search space of their VF algorithm.

A faster algorithm, GraphGrep [70], builds an index of a database of graphs,
then uses filtering and exact matching to find isomorphisms. The database is
indexed with paths, which are easier to manipulate than trees or graphs. As



an alternative, GIndex [71] relies on frequent substructures to index a graph
database.

Similarity Search A more flexible search is to find graphs that are similar
but not necessarily identical to the query. Two kinds of similarity search seem
interesting in the context of network abstraction. The first one is the K-Nearest-
Neighbors (K-NN) query that reports the K substructures which are the most
similar to the user’s input; the other is the range query which returns subgraphs
within a specific dissimilarity range to user’s input.

These definitions of the problem imply computation of a similarity measure
between two subgraphs. The edit distance between two graphs has been used
for that purpose [72]: it generally refers to the cost of transforming one object
into the other. For graphs, the transformations are the insertion and removal
of vertices and edges, and the changing of attributes on vertices and edges. As
graphs have mappings, the edit distance between graphs is the minimum distance
over all mappings.

Tian et al. [73] propose a distance model containing three components: one
measures the structural differences, a second component is the penalty associated
with matching two nodes with different labels, and the third component measures
the penalty for the gap nodes, nodes in the query that cannot be mapped to any
nodes in the target graph.

Another family of similarity measures is based on the maximum common
subgraph of two graphs [74]. Fernandez and Valiente [75] propose a graph dis-
tance metric based on both maximum common subgraph and minimum common
supergraph. The maximum percentage of edges in common has also been used
as a similarity measure [76].

Processing pairwise comparisons is very expensive in term of computational
time. Grafil [76] and PIS [77] are both based on GIndex [71], indexing the
database by frequent substructures.

The concept of graph closure [72] represents the union of graphs, by record-
ing the union of edge labels and vertex labels, given a mapping. The derived
algorithm, Closure-tree, organizes graphs in a hierarchy where each node sum-
marizes its descendants by a graph closure: efficiency of similarity query may
improve, and that may avoid some disadvantages of path-based and frequent
substructure methods.

The authors of SAGA (Substructure Index-based Approximate Graph Align-
ment) [73] propose the FragmentIndex technique, which indexes small and fre-
quent substructures. It is efficient for small graph queries, however, process-
ing large graph queries is much more expensive. TALE (Tool for Approximate
Subgraph Matching of Large Queries Efficiently) [78] is another approximate
subgraph matching system. The authors propose to use NH-Index (Neighbor-
hood Index) to index and capture the local graph structure of each node. An
alternative approach uses structured graph decomposition to index a graph
database [79].



4 Conclusion

There is a large literature on methods suitable for network abstraction. We
reviewed some of the most important approaches, classified by whether they
allow user focus or not, as well as by the graph modification operations used by
them. Even though we did not cover the literature exhaustively, we can try to
propose areas for further research based on the gaps and issues observed in the
review.

First, we noticed that different node ranking measures (Sections 2.1–2.1) are
useful for picking out important nodes, as evidenced by search engines, but the
result is just that – a set of nodes. How to better use those ideas to find a
connected, relevant subnetwork is an open question.

Second, while there are lots of methods for partitioning a graph (Section 2.2),
the computational complexity usually is prohibitive for large graphs such as
Biomine, with millions of nodes and edges. Obviously, partitioning would be a
valuable tool for network abstraction there.

Third, we observed that some more classical graph problems have been re-
searched much more intensively for graph databases consisting of a number of
graphs, rather than for a single large graph. This holds especially for frequent
subgraphs (Section 2.3) and subgraph search (Section 3.3).

Fourth, the most obvious gap is for partitioning methods that could be guided
by the user (Section 3.2). Constrained or supervised clustering might be provide
useful starting points here.

Finally, a practical exploration system needs an integrated approach to ab-
straction, using several of the techniques reviewed here to complement each other
in producing a simple and useful abstract network.
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