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Abstract. Public biological databases contain vast amounts of rich data
that can also be used to create and evaluate new biological hypothesis.
We propose a method for link discovery in biological databases, i.e., for
prediction and evaluation of implicit or previously unknown connections
between biological entities and concepts. In our framework, information
extracted from available databases is represented as a graph, where ver-
tices correspond to entities and concepts, and edges represent known,
annotated relationships between vertices. A link, an (implicit and pos-
sibly unknown) relation between two entities is manifested as a path or
a subgraph connecting the corresponding vertices. We propose measures
for link goodness that are based on three factors: edge reliability, rel-
evance, and rarity. We handle these factors with a proper probabilistic
interpretation. We give practical methods for finding and evaluating links
in large graphs and report experimental results with Alzheimer genes and
protein interactions.

1 Introduction

The amount of publically available biological data is growing at a tremendous
pace, as new information about genomes, proteomes, interactomes etc. is pub-
lished daily. Despite the large amount of that information, it is clear that it only
represents a tiny fraction of the biological knowledge that potentially will be
discovered. For instance, consider the functions of genes: in the Gene Ontology
database1, 29.5% of those gene products that have an annotation for a molecular
function, the annotation at the time of writing is “unknown”. This example only
represents some of the facts we know that we do not know yet.

We present novel computational methods for predicting some of the missing
information, with the primary aim of producing and ranking new biological
hypothesis for life scientists working on their own specific problems. We assume
� Work done while visiting the University of Freiburg.
1 http://www.godatabase.org
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a fairly simple and generic form for the input data: a graph where biological
entities and concepts constitute the set of vertices, and the edges correspond to
known and annotated relationships between the vertices. In this framework, a yet
undiscovered link between two entities or concepts may be manifested as a path
or a subgraph connecting the corresponding vertices. Qualitative hypotheses for
the biological mechanisms are generated by discovering such paths or subgraphs.
In this paper, we use the term link to refer to any connections between two
vertices in the graph, potentially output as a hypothesis for a biological relation.

Not all paths represent a biologically meaningful links. Two edges incident
on a vertex may constitute a spurious path, or edges may not be completely
reliable. To be able to address more interesting questions, such as evaluation
of the statistical significance of a link, or ranking a set of vertices in order of
strength of linkage to a given vertex, we need a way of quantifying the strength
of a link. This will be a central topic of this paper.

In our scenario for the analysis, a life scientist poses queries to a graph
database system. In a simple form, such a query can ask if a path exists be-
tween two given concepts, and how strong the link is. In a more complex setting,
the user may submit sets of vertices and ask the system to find, evaluate and
rank subgraphs connecting any pair of given vertices.

As a motivating example, consider gene mapping for a particular phenotype.
The mapping may have resulted in a large set of candidate genes. When further
expensive analyses are planned for the wet lab, the investigators first compare the
candidates in the light of what is known about them in the public databases and
literature, hoping to be able to concentrate the efforts and resources on the most
promising candidates. Due to the lack of automated methods, the work is mostly
done by manually browsing the databases. This is a slow and laborious process,
and necessarily limits the extent and coverage of the search. Our methods aim
at partial automation of such tasks. As for the specific example, methods for
automated discovery and analysis of connections between a candidate gene and
a phenotype have only recently started to emerge [1,2].

In this paper, we propose a method for measuring the strength of a link based
on the two-terminal network reliability [3] between the end vertices. The main
contributions of the paper are a novel application of the network reliability mea-
sure, as well as a unique way of assigning probabilities to the edges based on
three aspects: reliability, relevance, and rarity. Reliability reflects the confidence
to the data source, relevance is a subjective measure of importance, and rarity
rewards (informative) edges between nodes with low degrees. We give methods
for finding good paths and subgraphs and for evaluating their quality. The ap-
plicability of the methods is not restricted to gene–phenotype links; they can be
used for analyzing the link between any pair of concepts, and potentially even
in completely different application areas.

Related work. Our work can be characterised as link discovery (link mining,
see, e.g., [4] for a review)—or, more specifically, as link prediction; we aim at
predicting links between pairs of vertices, where none exist in the form of di-
rect edges. We work on the abstract level of graphs. This gives our methods the
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flexibility to work, in principle, with arbitrary concepts and relations. In con-
trast, methods for specific prediction and annotation tasks have already been
heavily used in bioinformatics, for instance to predict genes from the DNA, to
predict protein structures and functions, to analyse metabolic pathways, and so
on. Our approach is complementary to these, and characteristically integrates
different sources of data on an abstract level. Swanson [5,6] successfully demon-
strated that novel, unexpected links can be found between entities that are not
directly connected. He was able to find an association between a set of articles on
Raynaud’s syndrome and another set on fish oil through associations via a third
set of articles. Many measures have been proposed for assessing the strength of
a link based on overlapping neighborhoods (see, e.g., [7] for a review), i.e., a sub-
graph consisting of parallel paths of length two. Lin and Chalupsky [8] consider
the rarity of path type, in terms of edge types, as a factor of path interesting-
ness. However, little has been published on analysis of connection subgraphs of
arbitrary topology. Faloutsos et al. [9] present the idea of using delivered current
in resistor networks as a measure for subgraph goodness in (social) networks
and give a method for finding a good connection subgraph between two vertices.
Asthana et al. [10] use two-terminal network reliability for predicting protein
complex memberships from a network of protein interactions. Ramakrishnan et
al. [11] assign weights to the edges based on various measures of informativeness,
and then extract connection subgraph maximizing a goodness function based on
the resistor network model of Faloutsos et al.

Paper organization. The paper is organized as follows. We first describe the
data in Section 2. In Section 3, we define measures for the strength of a link
for a single path and for a subgraph, and show how to estimate the statistical
significance of a link. In Section 4, we report experimental results using a set
of known Alzheimer genes and a set of known protein interactions. Finally, in
Section 5, we conclude with a discussion.

2 Description of Data

Our graph data model consists of various biological entities and annotated rela-
tions between them. Large, annotated biological data sets can be readily acquired
from several public databases and imported into our graph model in a straight-
forward manner. We now describe the databases we use, and then give a formal
definition of the data model.

2.1 Biological Databases

NCBI’s Entrez2 is an integrated, text-based search and retrieval system for
the major biological databases. We use publically available copies of Entrez
databases3 along with the Gene Ontology Consortium’s annotation database
2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
3 ftp://ftp.ncbi.nih.gov/entrez/links
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(GOA) in our own research. The Entrez databases contain several kinds of in-
terlinked entities (e.g. article abstracts, genes, gene clusters and proteins), as-
sembled by NCBI from various source databases such as UniProt and PubMed.
The GO annotation database contains information about the biological pro-
cesses, cellular components, and molecular functions of gene products, and it is
linked with Entrez databases. Although many of the Entrez’s source databases
are themselves available for download, handling Entrez’s link files (essentially
lists of edges between entities) is far easier than parsing numerous flat data files
in each source database’s native format. This is our main reason for using the
Entrez databases instead of the original databases.

We represent these entities and relationships as vertices and edges in our
graph model. As a result, we get a total of 1,968,951 vertices and 7,008,607 edges.
The vertex types in our graph database and some statistics are summarized in
Table 1. This particular collection of data sets is not meant to be complete, but
it certainly is sufficiently large and versatile for real link discovery.

Table 1. Vertex types

Vertex type Source database Number of vertices Mean degree

Article PubMed 330970 6.92
Biological process GOA 10744 6.76
Cellular component GOA 1807 16.21
Conserved domain Entrez Domains 15727 99.82
Gene Entrez Gene 395611 6.09
Gene cluster UniGene 362155 2.36
Homology group HomoloGene 35478 14.68
Molecular function GOA 7922 7.28
OMIM entry∗ OMIM 15253 34.35
Protein Entrez Protein 741856 5.36
Structural property Entrez Structure 26425 3.33
∗OMIM entries correspond to phenotype descriptions and gene loci.

2.2 Data Model

Our data model is a directed, labeled and weighted graph G = (V, E). The
elements of the vertex set V are biological entities such as genes, proteins and
biological processes, as well as more general objects like article abstracts. They
are labeled by a type from a set Tv, such as “gene” or “protein”. Edge labels
(edge types) from set Te describe the relations between vertices, for example
“codes” (e.g., gene codes protein) or “refers to” (e.g., article refers to gene).

For notational convenience, we define the edge set to consist of triplets (u, τ, v),
where u and v are vertices from V and τ ∈ Te is the type of the edge between
them. Each type τ has a natural inverse, such as “coded by” and “is referred by”,
which we denote by τ−1 ∈ Te; in a similar fashion, for each edge e = (u, τ, v) ∈ E
we define its inverse edge e−1 = (v, τ−1, u) ∈ E and assume one always exists.
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Effectively, the graph could be seen as undirected but with directed labels. We
call a directed path p from s to t an s–t path. Finally, we denote the set of edges
incident to any vertex v ∈ V by E(v) and the set of neighbouring vertices of v
by Γ(v) = {u ∈ V | (v, τ, u) ∈ E for some τ ∈ Te}.

Edges sometimes have natural weights in the source databases. For example,
a homology between two proteins could have values denoting the degree of se-
quence similarity. However, we will use other factors, too, to define the weights
of edges. They will be discussed next.

3 Link Goodness and Significance

Our goal is to discover and evaluate links between vertices specified by the
user. In order to be able to rank paths, or assess the significance of a connection
between two vertices, we need a measure for path goodness. We start by defining
edge weights (or probabilities), based on which we define a measure for the
quality of a given path, and then outline methods for finding the best paths
between a pair of vertices. After that we will address the evaluation of the link
as a function of the whole graph, not just the single best path. Finally, we will
show how to estimate the statistical significance of links, whether based on the
best path, or the graph as a whole.

3.1 Edge Weights

We define edge probabilities (weights) as a function of three aspects:

1. Reliability: how confident are we in the edge? How reliable is the data source,
how reliable is the method used to produce or predict the edge, and how
strong or probable is the connection estimated to be in the data source?

2. Relevance: how relevant is the edge (type) with respect to the query? We
assume that the investigator can give query-specific weights for edge types
according to his or her subjective opinions of the importance of each edge
type for the query at hand.

3. Rarity: how rare and informative is the edge? As an extreme example, an
article that refers to all human genes—and such articles do exist—is not
likely to be relevant for a specific gene, whereas an article that only refers
to few genes is much more likely to be informative. In our definition, edge
rarity will be directly related to the degrees of incident vertices.

We assume that edge relevance is defined by the user, and that edge reliability
is defined by the data source and potentially also by the user. We define rarity
below, and then combine all aspects to one probability.

Reliability. We envision that the reliabilities of edges are defined using a set of
simple rules, such as: if the edge is derived from Swiss-Prot, then its reliability
is 0.9, whereas if the edge is derived from the computer-annotated TrEMBL
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database, then its reliability is 0.5. The interpretation of edge reliability is the
degree of belief the investigator has for the edge being correctly annotated.

If there is a value associated with an edge that reflects similarity or confidence,
such as a homology score, the value can be transformed into a [0, 1]-similarity
value. With the interpretation that the similarity of vertices u and v is the
probability that any relationship between u and a third vertex t is also true for
v and t, the similarity can be multiplied into the reliability of the edge.

Relevance. The relevance of an edge type is the degree of the investigator’s
belief that edges of that type represents a relevant connection with respect to
the query. In a practical system, the investigator has a basic configuration—a set
of default relevance values for edge types—and only few adjustments are needed
for a typical query.

The relevance values may sometimes be easier to give in terms of vertex types
instead of edge types. Then, relevance q(τ) for a vertex type τ can be decomposed
into coefficients for edge types by multiplying all edge types with one end-vertex
of type τ by

√
q(τ), and edge types with both end-vertices of type τ by q(τ).

As path relevance will be defined as a product of edge relevances, this gives the
desired outcome: the relevance of any path visiting a node of type τ is multiplied
by q(τ).

Rarity. We want to give lower scores for paths that visit vertices with high
degrees: the higher the degree of vertex v, the less likely it is that any two
neighbors of v actually have an interesting connection through v. We define
rarity d(v) first for vertices: d(v) is the probability that any two edges incident
on v are related to each other and represent a meaningful path.

We propose the ad hoc formula d(v) = (|Γ(v)| + 1)−α ∈ [0, 1], with α > 0,
to determine the penalty for the degree |Γ(v)| of vertex v; smaller values mean
larger penalty. The parameter α determines how steeply the penalty increases
with the degree.

With α = 1, rarity d(v) = 1/(|Γ(v)|+1) has a natural probabilistic interpreta-
tion. Consider a random walker who, at any vertex, is equally likely to follow any
edge, or stop at the vertex. Then, given a path p through vertices v1, v2, . . . , vk,
rarity d(vi) is the probability that a random walker who has so far traversed
nodes v1, . . . , vi, will next stay on the path and visit node vi+1. Although lower
values of α do not give equally attractive interpretations as random walk proba-
bilities, they can be useful in practice to give relevant penalties for vertex degree
that reward parallel paths more than a standard random walker.

The maximum value of d(v) for an non-terminal vertex v of a path is 3−α.
Rarity values of the terminal edges are ignored; they would only add a constant
factor to all paths. In principle, the values of α could be set separately for each
vertex type, but in this paper we use a single value for all vertices.

As with relevance above, the rarity values are decomposed into edge-specific
coefficients by taking the square root of them. Ideally, in the context of analysis
of connection subgraphs, the relatedness of edges incident on a vertex should
be tested for each pair of edges separately and independently. With the rarity
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values of vertices decomposed on the incident edges, this is clearly not the case.
The approximation is used in order to avoid the quadratic computational cost
for each vertex. It has no effect on evaluation of the goodness of a single path.

Total edge weight. Now that we have defined all the components of edge
weight, we define edge weight w(e) simply as a product of those factors:
w(e) = r(e)q(e)d(e), where r(e) ∈ [0, 1], q(e) ∈ [0, 1], and d(e) ∈ [0, 1] are
the reliability, relevance, and rarity of edge e, respectively. Under the assump-
tion that they are probabilities for mutually independent necessary conditions
for the edge, the weight w(e) is the probability that edge e exists.

3.2 Discovery of Best Paths

Let us consider random graph model G(G, w) specified by graph G and edge
weights w described above. A realization of the random graph is obtained by
independently removing each edge e from G at probability 1 − w(e).

We propose the following definition for the goodness g(p, w) of path p =
e1e2 . . . ek:

g(p, w) =
k∏

i=1

w(ei) (1)

With the interpretation that w(e) is the probability that edge e exists, the good-
ness g(p, w) is the probability that the whole path exists in a realization of
G(G, w).

The path discovery problem. We now formulate the path discovery task: given
two sets S and T of vertices (S and T may overlap), find

1. the k best paths from S to T ,
2. all paths whose goodness is at least m, or
3. all paths that consist of at most � edges.

These paths could be shown to the user as most likely hypotheses involving
vertices from the given sets or, as will be discussed below, used for further
analysis of the link. In any case, before giving final results to the user, it is useful
to estimate the statistical significance of the results; this will also be discussed
below.

Algorithms. Standard algorithms for finding shortest paths [12,13] can be ap-
plied; the probabilities can be transformed into distances required by the stan-
dard methods by taking the negative logarithm of the goodness:

− log g(p, w) =
k∑

i=1

− log w(ei). (2)

Any combination of the abovementioned constraints for paths can be easily used.
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The number of vertices that can be reached from a single source typically
grows exponentially with path length, until it saturates. If the maximum num-
ber of edges (or minimum goodness) is set so that the saturation point is not
reached at halfway to the maximum number (or minimum goodness), then a
bi-directional search starting from both sets will be substantially faster than a
standard unidirectional search.

3.3 Evaluation of Graph Connections

The goodness of a single best s–t path is not necessarily a good measure of the
strength of the link between vertices s and t. A link consisting of several parallel
paths may be considered stronger than a single path, even if all the individual
paths are weaker. With a probabilistic interpretation, the quality of a single
path reflects the probability that that particular path exists, whereas a more
appropriate measure often would be the probability that at least one path exists
between s and t.

Graph connection goodness. Based on the probabilistic interpretation, we pro-
pose using the two-terminal network reliability [3] as a measure for link goodness
g(G, w, s, t) between vertices s and t in graph G. The measure is defined as the
probability of a path existing in a realization of the random graph:

g(G, w, s, t) = Pr(“there is an s–t path in a graph generated by G(G, w)”).
(3)

Algorithms. The two-terminal network problem has been shown to be NP-hard
by Valiant [14], but the probability can be estimated using a straightforward
Monte Carlo approach: generate a large number of realizations of the random
graph, and count the relative frequency of graphs where a path from s to t
exists. Monte Carlo estimates that are accurate to within ±ε at high proba-
bility can be obtained using O(ε−2) iterations. Since we are only interested in
cases where g(G, w, s, t) is not very close to zero, we need not worry about the
number of iterations required to control relative accuracy. (Reasonable abso-
lute accuracy can be achieved with 100,000–1,000,000 iterations; in practice, our
Python-implementation is able to perform 1,000,000 iterations on a graph with
1,000 edges in roughly 1.5 hours on a 3.0 GHz P4 PC.)

A lower bound for g(G, w, s, t) can be computed efficiently by first enumerat-
ing all m-good or k best paths from s to t, and then evaluating g(G′, w, s, t) in
the subgraph G′ induced by the set of paths. A graph G′ = (V ′, E′) is induced
by a set of paths, if V ′ and E′ are the sets of vertices and edges, respectively, oc-
curring in the paths. Since the induced graph is a subgraph of G, it clearly gives
a lower bound. Following the terminology of Faloutsos et al. [9], the induced
subgraph G′ is here called a connection subgraph.

An upper bound for g(G, w, s, t) can be obtained easily when the paths induc-
ing G′ are searched unidirectionally starting from, say, s: include all the pruned
partial paths in G′ and connect them with an edge of probability one to t. This
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provides the tightest possible upper bound based on G′. With bi-directional
search, the upper bound can be obtained in a similar way. Estimation of the
upper bound is easily incorporated to the Monte Carlo algorithm, but the pro-
cedure is slowed down due to the large number of additional edges from the
pruned paths. Our work so far relies on the lower bounds only.

Further efficiency improvements are possible by repeatedly replacing parallel
edges by only one edge and by removing vertices (except s or t) with exactly two
neighbors as long as there are any. This is a linear-time operation in the size of
the graph. For the class of series-parallel graphs, these operations reduce graphs
to a single edge and two-terminal network reliability can be computed exactly
in linear time.

3.4 Estimation of Link Significance

We eventually want to measure how strongly two given vertices, s and t, are
related in graph G. The path probability g(p, w) (Eq. 1) and the two-terminal
network reliability g(G, w, s, t) (Eq. 3) allow ranking of links, but their values
may be difficult to put into perspective. Is a probability of, say, 0.4 for the
existence of any s–t path high or low? This obviously depends on the data and
the specific instances.

Using maxp∈P(s,t) g(p, w), where P(s, t) is the set of all s–t paths (i.e., good-
ness of the best s–t path), or g(G, w, s, t) as a test statistic, we can estimate
the statistical significance of the link. This tells us how likely it is to obtain,
by chance, probability of 0.4 or better. There are a variety of meaningful null
hypotheses to be considered:

1. Vertices s and t of types τs and τt, respectively, are not more strongly con-
nected than randomly chosen vertices s′ and t′ of types τs and τt.

2. Vertex s of type τ is not more strongly connected to vertex t than a randomly
chosen vertex s′ of type τ .

3. Vertices s and t are not more strongly connected in the given graph G than
random graph H and edge weights w′ generated by model H similar to the
(unknown) model which generated G and w.

The last null hypothesis clearly is the most complicated one, as it is not easy
to come up with model H that generates random graphs that are topologically
sufficiently similar to the observed graph. The choice from the first two null hy-
potheses depends on what we are testing. In a symmetrical case, e.g., testing for
significance of connection between two candidate genes, the first null hypothesis
is appropriate. If the roles of the vertices are asymmetric, as in testing for the
connection from a set of candidate genes to a single phenotype, the second null
should be used. In the experiments, we apply the first null hypothesis to ass-
esment of gene–gene link, and the second one to assesment of gene–phenotype
link.

Under the null hypotheses 1 and 2, p values can be estimated by sampling
vertices s′ (Null 1) or pairs (s′, t′) (Null 2), and computing the test statistic
(g(p, w) of the best s′–t′ path p or g(G, w, s′, t′)) for all (s′, t′) pairs in the
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sample. The p value for the connection between s and t is then the proportion
of (s′, t′) pairs giving a test statistic at least as high as the one observed for
(s, t). Because vertices of the same type may have wildly varying degrees, we
only sample vertices s′ and t′ that have degrees similar to s and t, respectively.

If a number of hypotheses are to be tested (e.g., several candidate genes), then
the resulting p values should be adjusted accordingly to account for multiple
testing.

4 Experiments

We demonstrate the use of link goodness by an example in the detection
Alzheimer disease genes. We selected a handful of known disease genes, and
estimated the significance of the gene–phenotype link for each. We did this this
separately for two test different statistics: the probability of the best path be-
tween vertices s and t, and the two-terminal reliability computed from the con-
nection subgraph induced by k best paths. In a second experiment, we evaluated
the significance of links between genes whose protein products are known to in-
teract. The experiments were performed using the Entrez dataset described in
Section 2.1.

Test design is not trivial: for any classified examples, i.e., known disease genes,
there are trivial links in the graph (e.g., the OMIM entry for the disease refers
directly to the candidate gene). The ideal solution would be to use only edges
that are annotated prior to publication of the gene–disease association, but it
is difficult to obtain the state of all databases at an earlier date. Instead, we
simply removed all trivial paths from the set of k best paths—e.g., paths whose
goodness is greater than a given threshold, or paths consisting of at most a given
number of edges.

In order to simplify the experimental setting and to avoid introducing a sub-
jective bias, we assume that all edges have the same product rq of reliability and
relevance. Consequently, the goodness of a path or subgraph depends only on
the topology of the graph and parameters α and rq.

We chose ten known human susceptibility and candidate genes for Alzheimer
disease—APP, PSEN1, AD5, AD6, AD9, AD7, COL25A1, APOE, PSEN2, and
AD6—obtained by querying the Entrez Gene database with term “Alzheimer”.
As the vertex representing the phenotype, we used the entry in the OMIM
database giving phenotype description of Alzheimer disease. This entry con-
tains trivial links to all known Alzheimer genes, as well as a large number of
references to literature on the disease.

For each gene, we sampled 100 genes from the set of all human genes that
have similar degree to the tested gene. The goodness values for links between
vertices corresponding to these genes and the phenotype constitute our empirical
null distribution.

For each gene (candidate or random), we first enumerated the best 100 acyclic
paths of at most 6 edges from the gene to the phenotype. For two of the genes,
COL25A1 and AD9, no paths to Alzheimer disease were found. Next, in order
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to eliminate the trivial links, we removed all paths shorter than three edges from
this set. Figure 1 shows an induced graph for AD6 (but for clarity only 20 best
paths). We used the goodness value of the best of the remaining paths, and the
two-terminal network reliability of the graph induced by the remaining paths
as test statistics. Two-terminal network reliability was estimated using Monte
Carlo algorithm with 100,000 iterations; standard deviation of the estimate is less
than 0.0064. Based on these two statistics, we then estimated two p values—one
for the best path and another for the connection subgraph—for each candidate
gene.

Fig. 1. The graph induced by 20 best paths from gene AD6 to Alzheimer disease.
The terminal vertices are rectangular. The edges are labelled with their probabilities
(α = 0.25, rq = 0.8). Gene AD6 (Entrez Gene entry 64851) is linked to the locus
description (OMIM entry 605526) by a direct edge and via three articles. The locus
description is in turn linked to another locus description, insulin-degrading enzyme
(OMIM entry 146680), via two articles, and, finally, to Alzheimer disease (OMIM entry
104300) via two proteins and two UniGene clusters.

We experimented with the test statistics using parameter val-
ues (α, rq) ∈ {0.125, 0.25, 0.5, 1.0} × {0.2, 0.4, 0.6, 0.8, 1.0}. For α = 0.25
and rq = 0.8, the p values and values of the test statistics for each gene are
shown in Table 2. The probabilities of best paths and connection subgraphs
expectedly vary markedly across genes, and are not alone sufficient indicators
of the strength of a link. The estimated p values are more useful here. In
this test, they are consistently small; in fact, in many cases none of the
100 randomized data sets produced equally high goodness values. Based on
the results, it is difficult to claim that the analysis of connection subgraphs
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is more powerful than analysis of the best path, but we would expect that to be
the case in general.

The goodness values also vary with the values of the two parameters of our
test. However, comparable p values were obtained for all combinations of param-
eter values (except for α = 1); mean p values for all combinations are shown in
Table 3. This can be seen as an indication of the stability of the measures with
respect to the parameters, but it also shows that the links are very strong and
rather obvious (as seen in Figure 1), even though all short paths were removed.

Table 2. Results: Alzheimer disease (α = 0.25, rq = 0.8)

Best path Connection subgraph
Gene p value goodness p value goodness

AD7 < 0.01 0.024 0.01 0.153
APOE < 0.01 0.184 0.01 0.876
APP 0.02 0.123 0.01 0.719
AD8 < 0.01 0.119 < 0.01 0.262
PSEN1 0.04 0.103 0.01 0.963
PSEN2 < 0.01 0.153 < 0.01 0.993
AD6 < 0.01 0.033 < 0.01 0.336
AD5 0.01 0.040 0.01 0.238

Table 3. Mean p values for all combinations of parameter values (best path/connection
subgraph)

rq \ α 0.125 0.250 0.500 1.000

0.2 0.0100/0.0075 0.0175/0.0063 0.0200/0.1325 0.0438/0.3813
0.4 0.0088/0.0075 0.0150/0.0075 0.0163/0.0075 0.0300/0.3813
0.6 0.0088/0.0063 0.0088/0.0075 0.0263/0.0100 0.0063/0.1338
0.8 0.0088/0.0063 0.0088/0.0063 0.0075/0.0075 0.0138/0.0075
1.0 0.0088/0.0200 0.0088/0.0063 0.0088/0.0075 0.0238/0.0088

In a second, more challenging experiment, we evaluated the strength of link
between APP and five genes whose protein products interact with the APP
protein: HADH2, APBA1, CHRNA7, APOA1, and SHC1. The interactions
were obtained from the IntAct-database4. The experiments were carried out the
same way as with Alzheimer disease, except that we used the first, symmetric
null hypothesis (i.e., vertices at both ends were randomized). In the results,
two genes show significant linkage to APP (Table 4). The other three genes get
non-significant p values despite relatively high values of the test statistics (com-
pared to the Alzheimer experiment), suggesting that pairs of genes are generally

4 http://www.ebi.ac.uk/intact
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strongly connected. A possible remedy is to give higher relevance coefficients for
interaction-related edge types. However, it is also possible that simple weighting
of edges is not sufficient to distinguish the potential interaction-related paths
between the pairs of genes in these cases.

Table 4. Results: interactions with APP (α = 0.25, rq = 0.8)

Best path Connection subgraph
Gene p value goodness p value goodness

HADH7 < 0.01 0.159 0.01 0.917
APBA1 < 0.01 0.137 < 0.01 0.998
CHRNA7 0.17 0.058 0.52 0.359
APOA1 0.56 0.041 0.51 0.530
SHC1 0.15 0.118 0.07 0.937

5 Discussion and Conclusions

In this paper, we have proposed measures and methods for assessing the strength
of a link between a pair of vertices in a graph consisting of biological concepts.
Such graphs can be easily constructed from many biological databases; due to
the simplicity of the data model, integration of data is usually simple and the
essential requirement is a referential integrity between the data sources.

We introduced the ideas of assigning probabilities to the edges derived from
three factors—reliability, relevance, and rarity. The proposed measures for link
strength are based on probabilities of paths that are derived from edge proba-
bilies in a straightforward manner: One is the highest probability of path among
all paths connecting the pair of vertices; the other is based on two-terminal net-
work reliability, and approximates (bounds) the probability that at least one
path exists between the vertices. We believe that the probabilistic interpreta-
tions for link strength are more natural and intuitive for investigators than, e.g.,
conductance in resistor networks or capacity and maximum network flow.

We demonstrated the link goodness measures for evaluating the strength of
gene–phenotype-link using a set of known Alzheimer genes. Both measures gave
the known genes low p values, indicating that they would have been success-
fully identified among the most likely candidates for Alzheimer disease among a
random set of genes, except for two genes for which no link was found.

In a second experiment we evaluated the strength of the link between APP
and five other genes whose protein products are known to interact with the APP
protein. The results suggest that—although two of the genes showed significant
linkage to APP—the simplistic experimental setup using a single relevance value
for all edge types is not optimal, which was to be expected. We leave the evalu-
ation of expert-specified relevance coefficients as a topic for future research.
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Using the goodness of the best path as a test statistic should be less robust
than using the two-terminal network reliability. However, in the example case of
Alzheimer genes, both methods gave comparable p values. This may be due to
several reasons: the function used for rarity, i.e., for penalizing vertex degrees,
may be suboptimal, or the test method of removing short paths may still leave
some trivial paths that skew the results. Further work is needed to study these
issues in detail.

Two of the Alzheimer genes did not have any paths to the disease. This may
be due to the limited set of databases we currently use. Several important types
of data are missing: protein–protein interactions, tissue specificities, pathways,
and Medical Subject Heading annotations of articles, to name a few. Actually, we
believe that our probabilistic approach is particularly suitable for analysis of data
sets containing uncertain relationships, such as computer annotated interactions
or links derived by text mining, as the confidence in the prediction can be easily
plugged into the reliability measure.

The use abstract, labeled graphs as a data representation has a number of
trade-offs. On one side, it is a generic format, it is easy to convert data into it,
and there is a large body of known results and algorithms for graphs. The down-
side is that information may be lost in the transformation, the vertex or edge
types may be too different to be really used in the same graph, and—above all—
without built-in knowledge about particular biological concepts, mechanisms,
and phenomena, specific discoveries about them cannot be made. It seems ob-
vious to us that several different approaches on different levels of detail and
integration are needed, and that they complement rather than compete with
each other.

There are several topics for further research. The penalty for vertex degree
is now determined for all vertices in a uniform manner, but it might be better
to have different rules for different vertex types. The penalty could also be edge
type sensitive. For example, consider an article with edges to a large number
of genes, one biological process, and one phenotype; we do not want to penal-
ize a path from the biological process to the phenotype from the edges to the
genes.

The path queries are now fully specified by the source and target vertex, mini-
mum goodness, maximum length, and edge type relevances. To have more control
over the resulting paths, we need a query language that allows an investigator
to specify the path types of interest. Earlier suggestions for query languages for
paths include regular expressions [15] and context-free grammars [16]. Expres-
sive query languages open possibilities for specifying aspects such as the formulae
for degree penalties as background knowledge, or edge relevances, that could be
made context sensitive. Another important area for practical applications is vi-
sualization of the resulting graphs.
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