
Probabilistic Explanation Based Learning

Angelika Kimmig1, Luc De Raedt1, and Hannu Toivonen2

1 Department of Computer Science, Katholieke Universiteit Leuven
2 Department of Computer Science, University of Helsinki

Abstract. Explanation based learning produces generalized explana-
tions from examples. These explanations are typically built in a deduc-
tive manner and they aim to capture the essential characteristics of the
examples.
Probabilistic explanation based learning extends this idea to probabilis-
tic logic representations, which have recently become popular within the
field of statistical relational learning. The task is now to find the most
likely explanation why one (or more) example(s) satisfy a given concept.
These probabilistic and generalized explanations can then be used to dis-
cover similar examples and to reason by analogy. So, whereas traditional
explanation based learning is typically used for speed-up learning, proba-
bilistic explanation based learning is used for discovering new knowledge.
Probabilistic explanation based learning has been implemented in a re-
cently proposed probabilistic logic called ProbLog, and it has been ap-
plied to a challenging application in discovering relationships of interest
in large biological networks.

1 Introduction

During the 80s, explanation based learning (EBL) was a popular research theme
within the field of machine learning. It aimed at finding plausible and gener-
alized explanations for particular examples using a logical domain theory, cf.
[2] for an overview and introduction. These generalized explanations were then
typically turned into rules that would be added to the theory, often with the
aim of speeding up further inference or extending an imperfect domain theory.
Traditional explanation based learning was largely studied within first order
logic representations and explanations were built using deduction [8, 16], though
there was sometimes also an abductive component [1]. In the past few years, the
machine learning and artificial intelligence communities have become interested
in statistical relational learning [7] and probabilistic logic learning [4]; these are
techniques that lie at the intersection of machine learning, logical representa-
tions and probabilistic modelling. These fields have contributed many different
probabilistic logics, and have used them for various applications.

A natural question that arises in this context is whether explanation based
learning can be applied to these probabilistic logics. A first step in this direction
is done in [3], where logical and empirical evidence are combined in explana-
tion based learning to get explanations with a certain confidence. The question

is investigated and positively answered within this paper. More specifically, we
introduce probabilistic explanation based learning within a recently introduced
simple extension of Prolog, called ProbLog [5], and demonstrate its use on a
challenging application within biological link mining. Probabilistic explanation
based learning computes the most likely generalized explanation from one or
more positive examples and then uses these generalized explanations to identify
other examples that possess this explanation (with high probability). In this way,
probabilistic explanation based learning realizes a kind of probabilistic similar-
ity or analogical reasoning. This type of reasoning is required within scientific
link mining tasks in large biological networks. These are networks that consist
of a large set of entities (such as proteins, tissues, diseases, genes, ...) as well
as the relationships that hold amongst them. The task faced by the biologist
is to investigate these networks in order to understand particular phenomenae
and to discover new knowledge and relationships, cf. [15, 11]. Using probabilistic
explanation based learning with ProbLog allows the life scientist, for instance,
to discover probable explanations for specific phenomenae (such as a gene being
related to a particular disease – say Alzheimer disease), and then to apply the
discovered generalized explanation to identify other genes that are related to this
disease with a similar explanation. Furthermore, it allows to rank these genes
according to the likelihood of the explanation.

Probabilistic explanation based learning as introduced here is also related to
probabilistic abduction, as studied by Poole [12], and to abductive explanation
based learning. The difference with Poole’s work however is that we compute gen-
eralized explanations and also apply them for analogical reasoning. In contrast to
abductive explanation based learning, probabilistic reasoning is employed here.

This paper is organized as follows: we briefly review ProbLog in Section 2
and explanation based learning in Section 3. Section 4 introduces probabilistic
EBL, which is evaluated using experiments in biological link mining in Section 5.
Finally, Section 6 concludes and touches upon related work.

2 ProbLog: Probabilistic Prolog

ProbLog is a simple probabilistic extension of Prolog introduced in [5]. A ProbLog
program consists – as Prolog – of a set of definite clauses. However, in ProbLog
every clause ci is labeled with the probability pi that it is true, and those prob-
abilities are assumed to be mutually independent.

Example 1. Within bibliographic data analysis, the similarity structure among
items can improve information retrieval results. Consider a collection of papers
{a,b, c,d} and some pairwise similarities similar(a, c), e.g., based on key word
analysis. Two items X and Y are related(X, Y) if they are similar (such as a
and c) or if X is similar to some item Z which is related to Y. Uncertainty can

?- r(d,b).

:- s(d,b).

2
s4

r1
:- s(d,A),r(A,b).

:- r(c,b)

:- s(c,b).

2
s2

r1
:- s(c,B),r(B,b).

:- r(b,b)

:- s(b,b).
r1

:- s(b,C),r(C,b).
r2

s2

r2

s3
:- r(b,b)

:- s(b,b).
r1

:- s(b,D),r(D,b).
r2

s4

r2

Fig. 1. SLD tree for related(d,b)

elegantly be represented by the attached probabilities:

1.0 : related(X, Y) : − similar(X, Y).
0.8 : related(X, Y) : − similar(X, Z), related(Z, Y).
0.8 : similar(a, c). 0.7 : similar(c, b).
0.6 : similar(d, c). 0.9 : similar(d, b).
0.7 : similar(e, c). 0.5 : similar(f, a).

A ProbLog program T = {p1 : c1, · · · , pn : cn} defines a probability distribution
over logic programs L ⊆ LT = {c1, · · · , cn} in the following way:

P (L|T) =
∏

ci∈L
pi

∏
ci∈LT \L

(1− pi). (1)

Unlike in Prolog, where one is typically interested in determining whether a
query succeeds or fails, ProbLog specifies the probability that a query succeeds.
The success probability P (q|T) of a query q in a ProbLog program T is defined by

P (q|T) =
∑

L⊆LT

P (q, L|T) =
∑

L⊆LT

P (q|L) · P (L|T), (2)

where P (q|L) = 1 if there exists a θ such that L |= qθ, and P (q|L) = 0 otherwise.
In other words, the success probability of query q corresponds to the probability
that the query q has a proof in a logic program randomly sampled from T .

The evaluation of the success probability of ProbLog queries is computa-
tionally hard. In [5], this problem is tackled by employing a reduction to the
computation of the probability of a monotone DNF formula, an NP-complete
problem.

Example 2. Figure 1 shows the SLD-tree for proving related(d,b) in our ex-
ample program (see Section 3 for details). This tree contains two successful
proofs, and therefore the success probability of related(d,b) corresponds to
P ((r1 ∧ s4) ∨ (r2 ∧ s3 ∧ r1 ∧ s2)). This probability cannot be computed as
P ((r1∧s4))+P ((r2∧s3∧r1∧s2)) because the two expressions are not mutually
disjoint.

The key contribution of our previous work on ProbLog was the implementation
of an efficient approximative inference procedure for computing the success prob-
abilities in large ProbLog programs for the biological network mining domain
(cf. also Section 5). The inference procedure employs Binary Decision Diagrams
in combination with an approximation algorithm based on iterative deepening,
cf. [5] for more details.

However, in probabilistic explanation based learning as introduced here, cf.
Section 4, the probability of interest will not be the total probability of a query
but rather the probability of a single derivation d for a given example. This
probability corresponds to

P (d|T) =
∏

ci∈d
pi (3)

and can thus be computed exactly in an efficient way. Intuitively, it corresponds
to the probability that a randomly sampled subprogram of T contains all clauses
employed in the derivation d.

Example 3. There are two proofs for related(d,b). The first one uses the base
case of related/2 and the fact similar(d,b) and thus has a probability of
1.0 · 0.9 = 0.9, the second one uses the recursive case and two facts, thus getting
a probability of 0.8 · 0.6 · 1.0 · 0.7 = 0.336.

3 Explanation Based Learning

The central idea of explanation-based learning (EBL) as conveniently formalized
for Prolog [8, 16] is to compute a generalized explanation from a concrete proof
of an example. Explanations use only so-called operational predicates, i.e. pred-
icates that capture essential characteristics of the domain of interest and should
be easy to prove. Operational predicates are to be declared by the user as such.

Following the work by [8, 16], explanation based learning starts from a definite
clause theory T , that is a pure Prolog program, and an example in the form of
a ground atom p(t1, ..., tn). It then constructs a refutation proof of the example
using SLD-resolution. SLD-resolution takes a goal of the form ?− g, g1, ..., gn, a
clause h← b1, ..., bm such that g and h unify with most general unifier θ, and then
produces the resolvent ?− b1θ, ..., bmθ, g1θ,, gnθ. This process then continues
until the empty goal is reached. SLD-resolution is illustrated in Figure 1, where
each path from the root of the tree to the empty clause 2 corresponds to a
refutation proof of related(d,b). Given the resolution proof for the example
p(t1, ..., tn), explanation based learning will generalize the proof and produce a
generalized explanation. To realize this, it starts from the variabelized goal, i.e.
p(X1, ..., Xn) where the Xi are different variables, and then performs the same
SLD-resolution steps as in the proof for the example. The only difference is that
in the general proof constructed in explanation based learning atoms q(s1, ..., sr)
for operational predicates q in a goal ?−g1, ..., gi, q(s1, ..., sr), gi+1, ..., gn are not
resolved away. Also, the proof procedure stops when the goal contains only atoms
for operational predicates. The resulting goal provides a generalized explanation

?- r(a,b).

?- s(a,A),r(A,b).

?- r(c,b).

?- s(c,b).

2

(a)

?- r(X,Y).

?- | s(X,Z),r(Z,Y).

?- s(X,Z) | r(Z,Y).

?- s(X,Z) | s(Z,Y).

s(X,Z),s(Z,Y)

(b)

?- r(a,b).
?- r(d,b).
?- | r(X,Y).

?- s(a,b).
?- s(d,b).
?- | s(X,Y).

fail

?- s(a,A),r(A,b).
?- s(d,B),r(B,b).
?- | s(X,Z),r(Z,Y).

?- r(c,b).
?- r(c,b).
?- s(X,Z) | r(Z,Y).

?- s(c,b).
?- s(c,b).
?- s(X,Z) | s(Z,Y).

2

2

s(X,Z),s(Z,Y)

(c)

Fig. 2. (a) The successful branch of the SLD tree for related(a,b). (b) The corre-
sponding branch for general goal related(X,Y), where bold atoms are part of the
explanation and the bar marks the position to continue the proof. (c) A partial SLD
tree for Example 6, where each node contains the current status for the two training
examples as well as the general version.

for the example. In terms of the SLD-resolution proof tree, explanation based
learning cuts off branches below operational predicates. It is easy to implement
the explanation based proof procedure as a meta-interpreter for Prolog [16, 8].

Example 4. Reconsider the logic program of Example 1, ignoring the probabil-
ity labels for now. We define similar/2 to be the only operational predicate,
and use related(a,b) as training example. EBL proves this goal using two in-
stances of the operational predicate, namely similar(a,c) and similar(c,b),
and then produces the explanation similar(X,Z), similar(Z,Y) for the gen-
eralized example related(X,Y). The result can be represented as the clause
exp related(X,Y)← similar(X,Z), similar(Z,Y). We will call such clauses
explanation clauses. To be able to identify the examples covered by this clause, we
rename the predicate in the head of explanation clauses. The successful branches
of the SLD trees for related(a,b) and the generalized example related(X,Y)
are depicted in Figure 2.

4 Probabilistic Explanation Based Learning

Probabilistic explanation based learning (PEBL) extends EBL to probabilistic
logic representations. In this paper, we use ProbLog as the underlying language

for PEBL, but the general idea can easily be transferred to other probabilistic
logics, such as Poole’s ICL [12] or Sato’s PRISM [14].

Within ProbLog, as already discussed in Section 2, a probability is associated
to each proof of a query. Therefore, the adaptation of explanation based learning
to ProbLog is direct. The key difference now is that for each example, we compute
the most likely proof and then compute the generalized explanation as sketched
in the previous section.

The probability of a given single proof is calculated simply as the product∏
i pi of probability labels of all clauses ci used (at least once) in that proof,

as defined in Equation 3 and illustrated in Example 3. This corresponds to the
probability of randomly sampling a subprogram of the ProbLog program that
contains all clauses used in the proof and thus admits the proof. The set of
clauses C used in the proof of the example that is to be generalized can be
partitioned into two sets. Indeed, define G = {c|c ∈ C such that c is used in the
generalized proof}, and E = C −G, i.e. E contains the example-specific clauses
used to prove operational predicates. We then have that∏

ci∈C

pi =
∏

cj∈G

pj

∏
ck∈E

pk.

Thus, the probability of the orginal proof is equal to the product of the proba-
bility of the generalized proof and the probability of the operational predicates
for the example.

Example 5. In Example 4, C = {r2, s1, r1, s2}, G = {r1, r2} and E = {s1, s2}.
The probability

∏
cj∈G pj = 0.8·1.0 also denotes the probability that the explana-

tion clause related(X,Y)← similar(X,Z), similar(Z,Y) is logically entailed
by the original ProbLog program.

Computing the most likely proof for a given goal in ProbLog is straightforward:
instead of traversing the SLD-tree in a left-to-right depth-first manner as in Pro-
log, nodes are expanded in order of the probability of the derivation leading to
that node. This realizes a best-first search with the probability of the current
proof as an evaluation function. In the application sketched in Section 5, we need
to deal however with goals having very many candidate proofs (each correspond-
ing to a particular path in a large biological network). Implementing best-first
search in a naive manner rapidly results in memory problems. We therefore em-
ploy the traditional solution of iterative deepening [13] to avoid these problems in
our implementation. Using iterative deepening depth first search, we cut off the
search at proofs with probability below a threshold. We start with a minimum
probability of 0.5. If at least one explanation was found in the last completed
iteration, the algorithm outputs the most probable one and stops, otherwise the
next iteration uses half the probability threshold of the last one. The algorithm
can also be used to return the k most probable structurally distinct explanations.

Probabilistic explanation based learning as incorporated in ProbLog offers
natural solutions to two issues traditionally discussed in the context of expla-
nation based learning [10, 9]. The first one is the multiple explanation problem,

which is concerned with choosing the explanation to be generalized for examples
having multiple proofs. This problem arises in many applications such as the
one sketched in Section 5 on mining biological networks, where there are various
possible explanations as to why a particular query succeeds, for instance, a gene
being linked to a particular disease. The use of a sound probabilistic framework
naturally deals with this issue by selecting the most likely proof. The second prob-
lem is that of generalizing from multiple examples, another issue that received
quite some attention in traditional explanation based learning. To realize this in
our setting, we modify the best-first search algorithm so that it searches for the
most likely generalized explanation shared by the n examples e1, ..., en. Starting
from the variabelized atom e, we compute n + 1 SLD-resolution derivations in
parallel. A resolution step resolving an atom for a non-operational predicate in
the generalized proof for e is allowed only when the same resolution step can
also be applied to each of the n parallel derivations. Atoms corresponding to
operational predicates are – as sketched above – not resolved in the generalized
proof, but it is nevertheless required that for each occurrence of these atoms in
the n parallel derivations, there exists a resolution derivation.

Example 6. Consider again our running example, and assume that we now want
to construct a common explanation for related(a,b) and related(d,b). We
thus have to simultaneously prove both examples and the variabelized goal
related(X,Y). This is illustrated in Figure 2(c). After resolving all three goals
with the first clause for related/2, we reach the first instance of the oper-
ational predicate similar/2 and thus have to prove both similar(a,b) and
similar(d,b). As proving similar(a,b) fails, the last resolution step is re-
jected and the second clause for related/2 used instead. As both similar(a,A)
and similar(d,B) can be proven, similar(X,Z) is added to the explanation,
and the procedure continues with the goals related(c,b), related(c,b) and
related(Z,Y). This succeeds using the base case and adds similar(Z,Y) to the
explanation, which thus is similar(X,Z),similar(Z,Y).

Because PEBL generates a generalized explanation, which can be turned into an
explanation clause, the technique can be employed to identify similar instances
and to reason by analogy. Indeed, by asserting such an explanation clause and
posing queries to the resulting predicate one obtains similar examples. Further-
more, the success probabilities of the examples can be used to rank them ac-
cording to likelihood, and hence, similarity.

Example 7. Using the explanation clause exp related(X,Y)← similar(X,Z),
similar(Z,Y) to query for covered instances would return the following an-
swer: exp related(a,b) (0.8 · 0.7 = 0.56), exp related(e,b) (0.7 · 0.7 = 0.49),
exp related(d,b) (0.6 · 0.7 = 0.42), exp related(f,c) (0.5 · 0.8 = 0.40).

5 Experiments

Research on ProbLog and PEBL is meant to support the life scientist analysing
large biological networks that can be automatically constructed from the enor-
mous amounts of molecular biological data that are available from public sources,

e path(A,B) ← node(A,gene), edge(A,C,belongs to), node(C,homologgroup),

edge(B,C,refers to), node(B,phenotype), nodes distinct([B,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,codes for), node(C,protein),

edge(D,C,subsumes), node(D,protein), edge(D,E,interacts with),

node(E,protein), edge(B,E,refers to), node(B,phenotype),

nodes distinct([B,E,D,C,A])

e path(A,B) ← node(A,gene), edge(A,C,participates in), node(C,pathway),

edge(D,C,participates in), node(D,gene), edge(D,E,codes for),

node(E,protein), edge(B,E,refers to), node(B,phenotype),

nodes distinct([B,E,D,C,A])

e path(A,B) ← node(A,gene), edge(A,C,is found in),

node(C,cellularcomponent), edge(D,C,is found in), node(D,protein),

edge(B,D,refers to), node(B,phenotype), nodes distinct([B,D,C,A])

Fig. 3. Some explanation clauses for path(A,B), connecting gene A to phenotype B.

such as Ensembl3, NCBI Entrez4, OMIM5, and many others. They contain
knowledge about various types of objects, such as genes, proteins, tissues, or-
ganisms, biological processes, and molecular functions. Information about their
known or predicted relationships is also available, e.g., that gene A of organism
B codes for protein C, which is expressed in tissue D, or that genes E and F
are likely to be related since they co-occur often in scientific articles. Analysing
such networks and data has been identified as an important and challenging task
(see, e.g., [11]) and only few tools exist that support life scientists in this task.

Such a collection of interlinked heterogeneous biological data can be seen as
a weighted network, where nodes are entities and the weight of an edge corre-
sponds to the probability that the corresponding nodes are related [15]. It can
thus be represented as a ProbLog database, which in the most simple case con-
sists of probabilistic edge/2 facts. Probabilities of the edges can be obtained
from methods that predict their existence based on, e.g., co-occurrence frequen-
cies or sequence similarities [15]. Within ProbLog, it is straightforward to add
more information such as the type of relation encoded by an edge or explicit
information on nodes, see Figure 3 for some examples.

Using ProbLog, one can pose queries that ask for the probability that a
particular relationship holds. Typically, this will involve background knowledge
of biological concepts as well as types of relations that form strong chains between
two given nodes. In ProbLog this can be modeled by using a path predicate that
computes the probability of a path as the product of the probabilities of the
used edges, thus assuming that they are mutually independent [15, 5].

We implemented PEBL in Yap-5.1.2 and performed experiments in the con-
text of the weighted biological database of [15]. As an example problem to be
studied, we looked at connections between disease genes and the correspond-

3 www.ensembl.org
4 www.ncbi.nlm.nih.gov/Entrez/
5 www.ncbi.nlm.nih.gov/Omim

ing phenotype for Alzheimer disease (resp. asthma). Since the key motivation
for employing probabilistic explanation based learning is to be able to reason
by analogy or to find similar examples, we set up experiments to answer the
following questions:

Q1 Does PEBL produce meaningful examples when reasoning by analogy?
Q2 Can we find common explanations?
Q3 Can PEBL’s explanations induced on one domain (say Alzheimer disease)

be transferred to another one (say Asthma)?

To answer those questions, we extracted graphs around both diseases from the
database. The genes were obtained by searching Entrez for human genes with
the relevant annotation (AD or asthma); phenotypes are from OMIM. Most of
the other information comes from EntrezGene, String, UniProt, HomoloGene,
Gene Ontology, and OMIM databases. We did not include articles since they
would dominate the graphs otherwise. Weights were assigned to edges as de-
scribed in [15]. In the experiments below, we used a fixed number of randomly
chosen (Alzheimer disease or asthma) genes for graph extraction. Subgraphs
were extracted by taking all acyclic paths of length at most 4 or 5, and of prob-
ability at least 0.01, between any given gene and the corresponding phenotype.
Some of the genes did not have any such paths to the phenotype and are thus
disconnected from the rest of the graph. Table 1 gives a summary of the prop-
erties of the resulting graphs, obtained using two diseases, a varying number of
annotated example genes, and a search depth of 4 or 5. (Remaining columns
are explained below). Graphs Alz1 and Alz2 were obtained using the same 17
Alzheimer disease genes, but three of them were not connected to the Alzheimer
disease phenotype with a path of length at most 4 (Alz1). Alz3 and Alz4 were
extracted starting with all 142 annotated Alzheimer disease genes, and Ast1 and
Ast2 with 17 asthma genes. As a basic representation, a modified path-predicate
was employed that takes into account the node and edge types. We defined pred-
icates related to node and edge types as operational. To answer question Q1,
we start by studying example explanations for path(A,B) obtained from the
graphs, where A is a gene and B a phenotype (Figure 3). These explanations are
all semantically meaningful. For instance, the first one indicates that gene A is
related to phenotype B if A belongs to a group of homologous (i.e., evolutionarily
related) genes that relate to B. The three other explanations are based on inter-
action of proteins: either an explicit one, by participation in the same pathway,
or by being found in the same cellular component. This last discovery suggests
that a clause to describe different kinds of possible interactions would be a useful
feature in the logical theory. It thus seems that PEBL can produce useful expla-
nations and can help the user discover and synthesize new information, which
answers Q1 positively.

To further study the questions more objectively, we consider a slightly ar-
tifical setting. We define a target predicate connect/3 as connect(X,Y,Z) :-
path(X,Z),path(Y,Z),path(X,Y). This predicate succeeds if three nodes are
connected to each other. We use examples where genes X and Y and phenotype
Z are connected, and construct explanations on graphs Alz1 and Ast1.

depth nodes edges ag ng pt pos neg

Alz1 4 122 259 14 15 3 182 2254
Alz2 5 658 3544 17 20 4 272 5056
Alz3 4 351 774 72 33 3 5112 27648
Alz4 5 3364 17666 130 55 6 16770 187470

Ast1 4 127 241 7 12 2 42 642
Ast2 5 381 787 11 12 2 110 902

Table 1. Graph characteristics: search depth used during graph extraction, numbers of
nodes and edges, number of genes annotated resp. not annotated with the correspond-
ing disease and number of phenotypes, number of positive and negative examples for
connecting two genes and a phenotype.

Alz1 Ast1
pos(1) pos(3) pos(5) pos n pos a prec pos(1) pos(3) pos(5) pos n pos a prec

Alz1 0.95 2.53 3.95 6.91 16.82 0.46 1.00 3.00 4.86 6.86 10.57 0.23
Alz2 0.84 2.24 3.60 7.37 18.65 0.42 0.86 2.86 4.71 6.86 14.56 0.22
Alz3 0.99 2.64 4.09 23.20 126.09 0.48 1.00 2.71 4.14 6.86 28.00 0.24
Alz4 0.84 2.23 3.58 7.37 18.80 0.42 0.86 2.29 3.43 5.14 28.00 0.15

Ast1 0.09 0.26 0.44 2.07 2.07 0.02 1.00 3.00 4.86 17.14 17.14 0.34
Ast2 0.08 0.23 0.38 2.00 2.00 0.01 0.86 2.57 4.29 16.57 16.57 0.20

Table 2. Averaged results over all examples learned on Alz1 (left column) resp. Ast1
(right column) and evaluated on 6 different graphs (lines Alz1–4, Ast1–2): number
of positives among the first k answers (pos(k)), number of positives returned before
the first negative (pos n), absolute number of positives among examples with non-zero
probability (pos a), and precision w.r.t. all examples with non-zero probability (prec).

We consider ordered triplets (G1,G2,P) of nodes, where G1 and G2 are dif-
ferent genes and P is a phenotype. We call such a triplet positive with respect
to the given network if both genes are annotated with the graph’s disease and
P is the corresponding phenotype, and negative otherwise. Thus for Alz1, there
are 14 · 13 · 1 = 182 positive and 29 · 28 · 3− 182 = 2254 negative triplets. Those
numbers are also given in Table 1.

We use connect(G1,G2,P) for positive triplets as training examples. As
connect is symmetric in the first two arguments, we only consider one ordering
per pair of genes, which yields in total 14 · 13/2 = 91 training examples for Alz1
(resp. 21 for Ast1). The aim is to construct explanations for connections be-
tween the nodes of positive triplets, and use those to obtain for each test graph
a ranked list of triplets covered by the explanation. To do so, we first compute
the most likely explanation for each individual training example e, and then
rank all instances covered by the resulting explanation clause according to their
maximal probability. Table 2 summarizes classification accuracies obtained us-
ing those rankings and the classification criterion on triplets as described above.
Values are averaged over all training examples. On graphs describing the same
disease as the training graph, the top k instances for k = 1, 3, 5 are mostly
positive, which again gives a positive answer to Q1. We obtained 26 different

g hg
belongs

ghg
belongs

pt
refers refers

Fig. 4. One explanation for connect(G1,G2,P), where double circles mark answer vari-
ables, and node types used are gene (g), phenotype (pt) and homologgroup (hg).

explanations from Alz1 and 3 different explanations from Ast1. Most explana-
tions have been learned on at least two examples, and the biggest set of examples
which shared most likely explanation contains 12 examples. Figure 4 shows an
example explanation found both on Alz1 and on Ast1. This indicates a positive
answer to question Q2, discovery of common explanations. The answer to Q3,
if explanations can be transferred, is less conclusive: while transfer from Asthma
to Alzheimer disease achieves good results, the other direction is a lot worse.
However, one has to take into account that 23 of the 26 explanations learned on
Alzheimer disease do not return any example at all on Asthma graphs, one only
returns negative instances and the remaining 2 carry over very well, returning
30 resp 16 positive instances before returning negative ones. At the same time,
two of the three explanations learned on Asthma were also learned on Alzheimer
disease, which might explain their good performance there.

6 Conclusions and Related Work

We have introduced probabilistic explanation based learning, which applies prin-
ciples of explanation based learning to probabilistic logic representations. Within
this paper this was realized using a simple probablistic extension of Prolog, called
ProbLog [5], even though the technique can easily be adapted towards other log-
ics such as ICL [12] or PRISM [14]. Whereas the original version of ProbLog was
intended as an inference engine for answering queries to a kind of probabilistic
database efficiently, the present work is meant to support reasoning by analogy,
similarity, or cases. The idea is that the most likely explanation for a particu-
lar example is employed to compute similar instances. Experiments on mining
biological networks have shown promising results.

Probabilistic explanation based learning builds upon the existing work in
both explanation based learning and probabilistic logics. From an explanation
based learning point of view it is a simple extension of the formalisations within
Prolog due to [8, 16] with probabilistic inference. From a probabilistic logic point
of view, it extends the work of Poole [12] in that it finds generalized explanations.
We have argued that using probabilities in the explanations provides a natural
solution to the multiple explanation problem whereas the use of a resolution
based proof procedure allows one to naturally deal with multiple examples and
identify common explanations. Finally, the work is related to that on analogi-
cal, similarity and case based reasoning. In this regard, it provides a notion of
similarity that is based on background knowledge (as in the definition of the
connect predicate) as well as likelihood.

ProbLog and PEBL have been motivated by and applied to challenging and
realistic biological network mining tasks [15]. Within the framework of ProbLog
we have also studied the problem of compressing a large network from positive
as well as negative examples [6]. Our future work will be aimed at making this
set of tools available to the life scientist and to evaluate their utility there.

Acknowledgements This research has been partially supported by IQ (European
Union Project IST-FET FP6-516169), Research Foundation-Flanders (FWO-
Vlaanderen), Tekes and Humboldt foundation.

References

1. Cohen. W. (1992). Abductive Explanation-Based Learning: A Solution to the
Multiple Inconsistent Explanation Problem. In Machine Learning, Vol. 8(2).

2. DeJong, G. (2004). Explanation-based learning. In A. Tucker, editor, Computer
Science Handbook. CRC 2nd edition.

3. DeJong, G. (2006). Toward Robust Real-World Inference: A New Perspective on
Explanation-Based Learning. In Proc. ECML/PKDD. Vol. 4212 of LNCS.

4. De Raedt, L., & Kersting, K. (2003). Probabilistic Logic Learning. In SIGKDD
Explorations, Vol. 5 (2).

5. De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog
and its application in link discovery. In Proceedings of 20th International Joint
Conference on Artificial Intelligence, pp. 2468 – 2473.

6. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., & Toivonen, H. (2007).
Compressing Probabilistic Prolog Programs. Machine Learning Journal, to appear.

7. Getoor, L., & Taskar, B. (2007). Editors. Statistical Relational Learning. MIT
Press. to appear.

8. Hirsh, H. (1987). Explanation-based Generalization in a Logic-Programming En-
vironment. In Proceedings of 15th International Joint Conference on Artificial
Intelligence, pp 221 – 227.

9. Langley, P. (1989). Unifying themes in empirical and explanation-based learning.
In Proceedings of the sixth international workshop on Machine learning, pp. 2-4.

10. Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based
generalization: A unifying view. Machine Learning, 1(1):47-80.

11. Perez-Iratxeta, C., Bork, P., & Andrade, M.A. (2002). Association of genes to
genetically inherited diseases using data mining. Nature Genetics, 31, 316–319.

12. Poole, D. (2003) Probabilistic Horn abduction and Bayesian networks. In Artificial
Intelligence. Vol. 64 (1).

13. Russel, S., & Norvig, P. (2002). Artificial Intelligence: A Modern Approach. 2nd
edition. Prentice Hall.

14. Sato, T. & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-
statistical modeling. Journal of AI Research, 15, 391–454.

15. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., & Toivonen, H. (2006). Link
discovery in graphs derived from biological databases. In U. Leser, F. Naumann,
and B. Eckman (Eds.), Data Integration in the Life Sciences 2006. Vol. 4075 of
LNBI. Springer.

16. Van Harmelen, F., & Bundy, A. (1988). Explanation-Based Generalisation = Par-
tial Evaluation. Artificial Intelligence 36(3), pp. 401-412.

