
I/O-Efficient Algorithms and Data Structures

Lars Arge

University of Aarhus

May 28-29, 2007

Lars Arge

I/O-efficient algorithms and data structures

2

Massive Data
• Pervasive use of computers and sensors
• Increased ability to acquire, store and process data
→ Massive data collected everywhere

Examples (2002):
• Phone: AT&T 20TB phone call

database, wireless tracking
• Consumer: WalMart 70TB

database, buying patterns
• WEB/Network: Google index

8*109 pages, internet routers
• Geography: NASA satellites

generate TB each day

Lars Arge

I/O-efficient algorithms and data structures

3

Random Access Machine Model

• Standard theoretical model of computation:
– Infinite memory
– Uniform access cost

• Simple model crucial for success of computer industry

R
A
M

Lars Arge

I/O-efficient algorithms and data structures

4

Hierarchical Memory

• Modern machines have complicated memory hierarchy
– Levels get larger and slower further away from CPU
– Data moved between levels using large blocks

• Bottleneck often transfers between largest memory levels in use

L
1

L
2

R
A
M

Lars Arge

I/O-efficient algorithms and data structures

5

Slow I/O

– Disk systems try to amortize large access time transferring large
contiguous blocks of data (8-16Kbytes)

• Important to store/access data to take advantage of blocks (locality)

• Disk access is 106 times slower than main memory access

track

magnetic surface

read/write arm
read/write head

“The difference in speed
between modern CPU and

disk technologies is
analogous to the difference

in speed in sharpening a
pencil using a sharpener on

one’s desk or by taking an
airplane to the other side of

the world and using a
sharpener on someone else’s

desk.” (D. Comer)

Lars Arge

I/O-efficient algorithms and data structures

6

Scalability Problems
• Most programs developed in RAM-model

– Run on large datasets because
OS moves blocks as needed

• Moderns OS utilizes sophisticated paging and prefetching strategies
– But if program makes scattered accesses even good OS cannot

take advantage of block access

⇓

Scalability problems!

data size

ru
nn

in
g

tim
e

Lars Arge

I/O-efficient algorithms and data structures

7

N = # of items in the problem instance
B = # of items per disk block
M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that M >B2

D

P

M

Block I/O

External Memory Model

Lars Arge

I/O-efficient algorithms and data structures

8

Fundamental Bounds
Internal External

• Scanning: N
• Sorting: N log N
• Permuting
• Searching:

• Note:
– Linear I/O: O(N/B)
– Permuting not linear
– Permuting and sorting bounds are equal in all practical cases
– B factor VERY important:
– Cannot sort optimally with search tree

NBlog

B
N

B
N

B
Mlog

B
N

NB
N

B
N

B
N

B
M <<< log

}log,min{ B
N

B
N

B
MNN

N2log

Lars Arge

I/O-efficient algorithms and data structures

9

Scalability Problems: Block Access Matters
• Example: Traversing linked list (List ranking)

– Array size N = 10 elements
– Disk block size B = 2 elements
– Main memory size M = 4 elements (2 blocks)

• Difference between N and N/B large since block size is large
– Example: N = 256 x 106, B = 8000 , 1ms disk access time
⇒ N I/Os take 256 x 103 sec = 4266 min = 71 hr
⇒ N/B I/Os take 256/8 sec = 32 sec

Algorithm 2: N/B=5 I/OsAlgorithm 1: N=10 I/Os

1 5 2 6 73 4 108 9 1 2 10 9 85 4 76 3

Lars Arge

I/O-efficient algorithms and data structures

10

Outline

1. Introduction
2. Fundamental algorithms

a) Sorting
b) searching

3. Buffered data structures
4. Range searching
5. List ranking

Note: Find references in handouts

D

P

M

Lars Arge

I/O-efficient algorithms and data structures

11

Queues and Stacks
• Queue:

– Maintain push and pop blocks in main memory

⇓
O(1/B) Push/Pop operations

• Stack:
– Maintain push/pop blocks in main memory

⇓
O(1/B) Push/Pop operations

Push Pop

Lars Arge

I/O-efficient algorithms and data structures

12

Merging
• <M/B sorted lists (queues) can be merged in O(N/B) I/Os

M/B blocks in main memory

• Unsorted list (queue) can be distributed using <M/B split elements
in O(N/B) I/Os

Lars Arge

I/O-efficient algorithms and data structures

13

Sorting
• Merge sort:

– Create N/M memory sized sorted lists
– Repeatedly merge lists together Θ(M/B) at a time

⇒ phases using I/Os each ⇒ I/Os)(B
NO)(log M

N
B

MO)log(B
N

B
N

B
MO

)(M
NΘ

)/(B
M

M
NΘ

))/((2
B
M

M
NΘ

1

Lars Arge

I/O-efficient algorithms and data structures

14

Sorting
• Distribution sort (multiway quicksort):

– Compute M/B splitting elements
– Distribute unsorted list into M/B unsorted lists of equal size
– Recursively split lists until fit in memory

• We cannot compute M/B splitting elements in O(N/B) I/O
– But we can compute elements

⇒ phases using I/Os each)(B
NO)(log)(log M

N
M
N

B
M

B
M OO =

)(B
MΘ

Lars Arge

I/O-efficient algorithms and data structures

15

Searching
• Storing binary trees arbitrarily on disk ⇒ O(log N+T) query/update

– blocking B nodes together ⇒ O(logB N+T/B)
• B-tree

– All leaves – consisting of Θ(B) input elements – on same level
– Internal nodes degree Θ(B)
⇒ O(N) space, O(logB N+T/B) range query

Lars Arge

I/O-efficient algorithms and data structures

16

Searching: B-tree update
• Blocking hard to maintain using e.g rotations
• Rebalancing using split/fuse (and share):

⇒ O(logB N) update bound

Insert Delete

Lars Arge

I/O-efficient algorithms and data structures

17

Summary: Fundamental Algorithms
• M/B-way merge/distribution in O(N/B) I/Os ⇒
• External merge or distribution sort takes I/Os

• Fanout Θ(B) search tree ⇒ B-tree
– O(logB N) I/O search/update
– O(logB N+T/B) I/O query

Refs: [A] sec. 1-2, [AV] sec. 1-3, 5

)log(B
N

B
N

B
MO

Lars Arge

I/O-efficient algorithms and data structures

18

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures

a) Buffer-tree
b) Buffered priority queue

4. Range searching
5. List ranking

D

P

M

Lars Arge

I/O-efficient algorithms and data structures

19

Buffered Data Structures
• Use of the (on-line) efficient B-tree in external memory algorithms

does not lead to efficient algorithms

• Example: Sorting using search tree
– Insert all elements in search tree one-by-one (construct tree)
– Output in sorted order using in-order traversal
⇒ Optimal O(N log N) time in internal memory
⇒ non-optimal I/Os in external memory

• Need operations to obtain efficient algorithms
–)log()log()(1

B
N

B
N

B
N

B B
M

B
M OONO =⋅
)log(1

B
N

B B
MO

)log(NNO B

Lars Arge

I/O-efficient algorithms and data structures

20

• Main idea: Logically group nodes together and add buffers
– Insertions done in a “lazy” way – elements inserted in buffers.
– When a buffer runs full elements are pushed one level down.
– Buffer-emptying in O(M/B) I/Os
⇒ every block touched constant number of times on each level
⇒ inserting N elements (N/B blocks) costs I/Os.)log(B

N
BMB

NO

Buffer-tree

B

B

M elements
fan-out M/B

)(log B
N

BMO

Lars Arge

I/O-efficient algorithms and data structures

21

Buffer-tree
• Insert (and deletes) on buffer-tree takes I/Os amortized
⇒ Buffer tree can be used in sorting algorithm

• One-dim. rangesearch operations can also be supported in
I/Os amortized

– Search elements handle lazily like updates
– All elements in relevant sub-trees

reported during buffer-emptying
– Buffer-emptying in O(X/B+T’/B),

where T’ is reported elements

)log(1
B
N

BMBO
)log(B

N
BMB

NO

m blocks

)log(1
B
T

B
N

BMBO +

Lars Arge

I/O-efficient algorithms and data structures

22

Buffered Priority Queue

• Buffer-tree can also be used in external priority queue
• To delete minimal element

– Empty all buffers on leftmost path
– Delete M elements in leftmost leaves

and keep in memory
(Insertions checked against minimal elements)

⇓
I/Os every O(M) delete ⇒ amortized

• Buffer technique can also be used on heap and tournament tree

)(B
MΘ

B

)log(B
N

BMB
MO)log(1

B
N

BMBO

Lars Arge

I/O-efficient algorithms and data structures

23

Summary: Buffered Data Structures
• Lazy operations using buffers
⇒ I/O amortized operations

• Can for example be used to obtain
– I/O B-tree construction algorithm
– Efficient (on line) priority queue

Refs: [A] sec 5

)log(1
B
N

BMBO

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

24

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
5. List ranking

D

P

M

Lars Arge

I/O-efficient algorithms and data structures

25

Exercises
1) Design an algorithm for removing duplicates from a multiset.

The output from the algorithm should be the K distinct elements
among the N input elements in sorted order.
The algorithm should use
I/Os, where Ni is the number of copies of the i’th element
– Hint: Modify merge-sort to remove copies as soon as found

2) Design a I/O-efficient version of a heap that supports insert and
deletemin operations in I/Os amortized.
– Hint/one idea: Let the heap have fanout M/B (rather than 2) and

store M minimal elements in each node (rather than one). Buffer
M inserts in memory before performing them.

)}loglog,(max{
1∑=

−
K

i B
N

B
N

B
N

B
N

B
N i

B
M

i

B
MO

)log(1
B
N

BMBO

Lars Arge

I/O-efficient algorithms and data structures

26

External Planar Range Searching
• B-tree solves one-dimensional range searching problem

– Linear space, query, O(logB N) updates

• Cannot be obtained for orthogonal planar range searching:
– query requires space
– space requires query

q3

q2q1

q4

)(log B
T

B NO +

)(loglog
log

N
N
BB

BNΩ)(log B
T

B NO +
)(NO)(B

T
B

N +Ω

Lars Arge

I/O-efficient algorithms and data structures

27

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching

– External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

– External Range tree
– External kd-tree

5. List ranking

D

P

M

q3

q2q1

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

28

Weight-balanced B-trees
• We will use multilevel structure

– Attach O(w(v)) size structure to weight w(v) node v in B-tree
– Rebuild secondary structure using O(w(v)) I/Os when v split/fuse

• B-tree inefficient since heavy nodes can split/fuse often

• Weight-balanced B-tree:
– B-tree but with weight rather than degree balancing constraint
– Balanced with split/fuse as B-tree

⇓
Node ν only split/fuse for every Ω(w(ν)) updates below it

Lars Arge

I/O-efficient algorithms and data structures

29

Persistent B-trees
• We will use (partial) persistent B-tree

– Update current version, query all previous versions

• Partial persistent B-tree (multi-version B-tree)
can be obtained using standard techniques
– O(logB N) update, O(logB N+T/B) query, O(N) space
– N is total number of operations performed
– Batch of N updates in I/Os using buffer technique

• Idea:
– Elements and nodes augmented with existence intervals
– Maintain that every node contains Θ(B) alive elements in its

existence interval

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

30

Three-Sided Range Queries
• Report all points (x,y) with q1 ≤ x ≤ q2 and y ≥ q3
• Static solution:

– Sweep top-down inserting
x in persistent B-tree at (x,y)

– Answer query by performing
range query with [q1,q2] in
B-tree at q3

• Optimal:
– O(N) space
– O(logB N+T/B) query
– construction

• Dynamic? … in internal memory priority search tree
)log(B

N
BMB

NO

q

q
1 2

3

q

Lars Arge

I/O-efficient algorithms and data structures

31

• Base tree on x-coordinates with nodes augmented with points
• Heap on y-coordinates

– Decreasing y values on root-leaf path
– (x,y) on path from root to leaf holding x
– If v holds point then parent(v) holds point
⇒ Linear space and O(log N) update (traversal of root-leaf path)

Internal Priority Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Lars Arge

I/O-efficient algorithms and data structures

32

Internal Priority Search Tree

• Query with (q1, q2, q3) starting at root v:
– Report point in v if satisfying query
– Visit both children of v if point reported
– Always visit child(s) of v on path(s) to q1 and q2

⇒ O(log N+T) query

9
16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

4

194

Lars Arge

I/O-efficient algorithms and data structures

33

• Natural idea: Block tree
• Problem:

– I/Os to follow paths to to q1 and q2

– But O(T) I/Os may be used to visit other nodes (“overshooting”)
⇒ query

Externalizing Priority Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

)(log NO B

)(log TNO B +

Lars Arge

I/O-efficient algorithms and data structures

34

Externalizing Priority Search Tree

• Solution idea:
– Store B points in each node ⇒

* O(B2) points stored in each supernode
* B output points can pay for “overshooting”

– Bootstrapping:
* Store O(B2) points in each supernode in static structure

9
16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Lars Arge

I/O-efficient algorithms and data structures

35

External Priority Search Tree
• Base tree: Weight-balanced B-tree on x-coordinates
• Points in “heap order”:

– Root stores B top points for each of the child slabs
– Remaining points stored recursively

• Points in each node stored in “O(B2)-structure”
– Persistent B-tree structure for static problem

⇓
Linear space

)(BΘ

)(BΘ

Lars Arge

I/O-efficient algorithms and data structures

36

External Priority Search Tree
• Query with (q1, q2, q3) starting at root v:

– Query O(B2)-structure and report points satisfying query
– Visit child v if

* v on path to q1 or q2

* All points corresponding to v satisfy query

Lars Arge

I/O-efficient algorithms and data structures

37

External Priority Search Tree
• Analysis:

– I/Os used to visit node v
– nodes on path to q1 or q2

– For each node v not on path to q1 or q2 visited, B points reported
in parent(v)

⇓
query

)1()(log 2
B

T
B

T
B

vv OBO +=+
)(log NO B

)(log B
T

B NO +

Lars Arge

I/O-efficient algorithms and data structures

38

External Priority Search Tree
• Insert (x,y) (ignoring insert in base tree - rebalancing):

– Find relevant node v:
* Query O(B2)-structure to find

B points in root corresponding
to node u on path to x

* If y smaller than y-coordinates
of all B points then recursively
search in u

– Insert (x,y) in O(B2)-structure of v
– If O(B2)-structure contains >B points for child u, remove lowest

point and insert recursively in u
• Delete: Similarly

u

Lars Arge

I/O-efficient algorithms and data structures

39

• Analysis:
– Query visits nodes
– O(B2)-structure queried/updated in each node

* One query
* One insert and one delete

• O(B2)-structure analysis:
– Query:
– Update in O(1) I/Os using update

block and global rebuilding in
I/Os

⇓
I/Os

External Priority Search Tree

u

)(log NO B

)1()/(log 2 OBBBO B =+

)(log NO B

)()log(
22

/ BOO B
B

BMB
B =

Lars Arge

I/O-efficient algorithms and data structures

40

Dynamic Base Tree
• Deletion:

– Delete point as previously
– Delete x-coordinate from base

tree using global rebuilding
⇒ I/Os amortized

• Insertion:
– Insert x-coordinate in base tree

and rebalance (using splits)
– Insert point as previously

• Split: Boundary in v becomes boundary in parent(v)

)(log NO B

v

v’’v’

Lars Arge

I/O-efficient algorithms and data structures

41

Dynamic Base Tree
• Split: When v splits B new points needed in parent(v)

• One point obtained from v’ (v’’) using “bubble-up” operation:
– Find top point p in v’
– Insert p in O(B2)-structure
– Remove p from O(B2)-structure of v’
– Recursively bubble-up point to v’

• Bubble-up in I/Os
– Follow one path from v to leaf
– Uses O(1) I/O in each node

⇓
Split in I/Os

v’’v’

))((log vwO B

))(())(log(vwOvwBO B =

Lars Arge

I/O-efficient algorithms and data structures

42

Dynamic Base Tree
• O(1) amortized split cost:

– Cost: O(w(v))
– Weight balanced base tree: inserts

below v between splits
⇓
• External Priority Search Tree

– Space: O(N)
– Query:
– Updates: I/Os amortized

• Amortization can be removed from update bound in several ways
– Utilizing lazy rebuilding

))((vwΩ

)(log NO B

)(log B
T

B NO +

v’’v’

q3

q2q1

Lars Arge

I/O-efficient algorithms and data structures

43

Summary: External Priority Search Tree
• Problem in externalizing internal priority search tree

– Large fanout and “overshooting”

• Solution
– B2 points in each node
– Bootstrapping with persistent B-tree
– Dynamization using weight-balanced B-tree

⇓
query, update

Refs: [A] sec. 3-4, 7

q3

q2q1

)(log NO B)(log B
T

B NO +

Lars Arge

I/O-efficient algorithms and data structures

44

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching

– External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

– External Range tree
– External kd-tree

5. List ranking

D

P

M

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

45

• Structure:
– Binary base tree on x-coordinates (blocked as B-tree)
– Two priority search trees for 3-sided queries

in each node v on points below v
⇓

space

• Query:
– Search for top node v with q1 and q2 below different children
– Answer 3-sided queries in children of v
⇓

query

External Range Tree

)(log B
T

B NO +

)log(NNO

x

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

46

• Increased fanout to
⇒ Space improved to

• Extra external priority search tree in each node
– to find bottom relevant point in

slabs spanned by query
⇒ Query answered in I/Os

• Dynamic with update bound using weight-balanced tree

Refs: [A] sec. 8.1

External Range Tree

)()log(loglog
log

log N
N

N BB

B
B

NONNO =
)(log NBΘ

)(log B
T

B NO +
)(log NO B

)(loglog
log2

N
N
BB

BO

)(log NBΘ

Lars Arge

I/O-efficient algorithms and data structures

47

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching

– External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

– External Range tree
– External kd-tree

5. List ranking

D

P

M

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

48

External kd-tree

• kd-tree:
– Recursive subdivision of point-set into two half using

vertical/horizontal line
– Horizontal line on even levels, vertical on uneven levels
– One point in each leaf

⇓
Linear space and logarithmic height

Lars Arge

I/O-efficient algorithms and data structures

49

External kd-Tree

• kd-tree Query
– Recursively visit nodes corresponding to regions intersecting query
– Report point in trees/nodes completely contained in query

• kd-tree Query analysis
– Horizontal line intersect Q(N) = 2+2Q(N/4) = regions
– Query covers T regions
⇒ I/Os worst-case

)(NO

)(TNO +

Lars Arge

I/O-efficient algorithms and data structures

50

External kd-tree

• External kd-tree:
– Blocking of kd-tree but with B point in each leaf

• Query as before
– Analysis as before except that each region now contains B points
⇒ I/O query

• Dynamic:
– Deletes relatively easily in I/Os using global rebuilding
– Insertions also in I/Os using logarithmic method

)(B
T

B
NO +

)(log2 NO B
)(log2 NO B

Lars Arge

I/O-efficient algorithms and data structures

51

Summary: External kd-tree
• Basically kd-tree with B points in each leaf

– Updates using logarithmic method
⇓
O(N) space, query, update

• Update bound can be improved to O(logB N) using O-trees
• Easily extended to d-dimensions with query bound

Refs: [A] sec. 8.2

)(B
T

B
NO +)(log2 NO B

q3

q2q1

q4

))((
11

B
T

B
N dO +−

Lars Arge

I/O-efficient algorithms and data structures

52

Summary: 3 and 4-sided Range Search
• 3-sided 2d range searching: External priority search tree

– query, space, update

• General (4-sided) 2d range searching:
– External range tree: query, space,

update
– O-tree: query, space, update

q3

q2q1

q3

q2q1

q4

)(loglog
log

N
N
BB

BNO)(log B
T

B NO +

)(NO)(B
T

B
NO +

)(log NO B)(log B
T

B NO +

)(log NO B

)(loglog
log2

N
N
BB

BO

)(NO

Lars Arge

I/O-efficient algorithms and data structures

53

Range Searching Tools and Techniques
• Tools:

– B-trees
– Persistent B-trees
– Buffer trees
– Weight-balanced B-trees
– Global rebuilding

• Techniques:
– Bootstrapping
– Filtering

q3

q2q1

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

54

Other Data Structure Results
• Many other results for e.g.

– Higher dimensional range searching
– Range counting, range/stabbing max, and stabbing queries
– Halfspace (and other special cases) of range searching
– Queries on moving objects
– Proximity queries (closest pair, nearest neighbor, point location)
– Structures for objects other than points (bounding rectangles)

• Many heuristic structures in database community
• Implementation efforts:

– LEDA-SM (MPI)
– STXXL (Karlsruhe)
– TPIE (Duke/Aarhus)

Lars Arge

I/O-efficient algorithms and data structures

55

Point Enclosure Queries
• Dual of 2d range searching problem

– Report all rectangles containing query point (x,y)

• Internal memory:
– Can be solved in O(N) space and O(log N + T) time

x

y

Lars Arge

I/O-efficient algorithms and data structures

56

Point Enclosure Queries
• Similarity between internal and external results (space, query)

– in general tradeoff between space and query I/O

Internal External

1d range search (N, log N + T) (N, logB N + T/B)

3-sided 2d range search (N, log N + T) (N, logB N + T/B)

2d range search

2d point enclosure (N, log N + T)

()TNN N
N +log,loglog

log ()B
T

BN
N NN
BB

B +log,loglog
log

()TNN +, ()B
T

B
NN +,

(N, log N + T/B)?
2B

(N, log N+T/B)
(NBε, logB N+T/B)

Lars Arge

I/O-efficient algorithms and data structures

57

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
5. List ranking

D

P

M

Lars Arge

I/O-efficient algorithms and data structures

58

List Ranking
• Problem:

– Given N-vertex linked list stored in array
– Compute rank (number in list) of each vertex

• One of the simplest graph problem one can think of

• Straightforward O(N) internal algorithm
– Also use O(N) I/Os in external memory

• Much harder to get external algorithm

3 4 5 9 68 27 101 5 2 6 73 4 108 9

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

59

List Ranking
• We will solve more general problem:

– Given N-vertex linked list with edge-weights stored in array
– Compute sum of weights (rank) from start for each vertex

• List ranking: All edge weights one

• Note: Weight stored in array entry together with edge (next vertex)

1 5 2 6 73 4 108 9

1 1 11 1
11 1

1 1

Lars Arge

I/O-efficient algorithms and data structures

60

List Ranking

• Algorithm:
1. Find and mark independent set of vertices
2. “Bridge-out” independent set: Add new edges
3. Recursively rank resulting list
4. “Bridge-in” independent set: Compute rank of independent set

• Step 1, 2 and 4 in I/Os
• Independent set of size αN for 0 < α ≤ 1

⇒ I/Os

11 111 1 1 11 1
2 2 2

1 3 4 6 8 9 102 5 7

)log(B
N

BMB
NO

)log()log())1(()(B
N

BMB
N

B
N

BMB
N OONTNT =+−= α

Lars Arge

I/O-efficient algorithms and data structures

61

List Ranking: Bridge-out/in

• Obtain information (edge or rang) of successor
– Make copy of original list
– Sort original list by successor id
– Scan original and copy together to obtain successor information
– Sort modified original list by id

⇒ I/Os

11

2 3 4 5 9 68 27 102 3 4 95 86 7 103 4 5 9 68 27 103 4 8 9 627 10

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

62

List Ranking: Independent Set
• Easy to design randomized algorithm:

– Scan list and flip a coin for each vertex
– Independent set is vertices with head and successor with tails

⇒ Independent set of expected size N/4

• Deterministic algorithm:
– 3-color vertices (no vertex same color as predecessor/successor)
– Independent set is vertices with most popular color

⇒ Independent set of size at least N/3

• 3-coloring ⇒ I/O algorithm)log(B
N

BMB
NO)log(B

N
BMB

NO

)log(B
N

BMB
NO

3 4 5 9 68 27 10

Lars Arge

I/O-efficient algorithms and data structures

63

List Ranking: 3-coloring
• Algorithm:

– Consider forward and backward lists (heads/tails in two lists)
– Color forward lists (except tail) alternately red and blue
– Color backward lists (except tail) alternately green and blue

⇓
3-coloring

3 4 5 9 68 27 10

Lars Arge

I/O-efficient algorithms and data structures

64

List Ranking: Forward List Coloring
• Identify heads and tails
• For each head, insert red element in priority-queue (priority=position)
• Repeatedly:

– Extract minimal element from queue
– Access and color corresponding element in list
– Insert opposite color element corresponding to successor in queue

• Scan of list
• O(N) priority-queue operations
⇒ I/Os

`3 4 5 9 68 27 10

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

65

Summary: List Ranking
• Simplest graph problem: Traverse linked list

• Very easy O(N) algorithm in internal memory
• Much more difficult external memory

– Finding independent set via 3-coloring
– Bridging vertices in/out

• Permuting bound best possible
– Also true for other graph problems

Refs: [Z] sec. 2, 4.2

)log(B
N

BMB
NO

})log,(min{ B
N

B
N

B
MNO

3 4 5 9 68 27 101 5 2 6 73 4 108 9

Lars Arge

I/O-efficient algorithms and data structures

66

Summary: List Ranking
• External list ranking algorithm similar to PRAM algorithm

– Sometimes external algorithms by “PRAM algorithm simulation”

• Forward list coloring algorithm example of “time forward processing”
– Use external priority-queue to send information “forward in time”

to vertices to be processed later

3 4 5 9 68 27 10

Lars Arge

I/O-efficient algorithms and data structures

67

Other Graph Algorithm Results
• Most tree problems solved in I/Os
• Most planar graph problems solved in I/Os

• Most other problems on general graphs not satisfactory solved
– Directed DFS/BFS: or
– Undirected BFS: or
– MSF: or
– SSSP:

• No other than permutation lower bound known

)log(B
N

BMB
NO

)log(B
N

BMB
NO

)(M
V

B
EVO +)log)(2 VVO B

E+
)log(B

E
B
E

B
MVO +)log(B

E
B
E

B
VE

B
MO +

)loglog(log 22 B
E

B
E

E
VB

B
MO ⋅)log(B

E
B
E

B
MVO +

)log(2 B
E

B
EVO +

})log,(min{ B
E

B
E

B
MEO

Lars Arge

I/O-efficient algorithms and data structures

68

Exercise
Given a grid terrain model (an height grid)

design an I/O algorithm for computing flow
accumulation grid:

– Initially one unit of water in each grid cell
– Water (initial and received) distributed from each cell to lowest

lower neighbor cell (if existing)
– Flow accumulation of cell is total flow through it

)log(B
N

BMB
NO

NN ×

Lars Arge

I/O-efficient algorithms and data structures

69

Flow Accumulation
• Problem can easily be solved in O(N log N) time:

• Process (sweep) points by decreasing height. At each cell:
– Read flow from flow grid and neighbor heights from height grid
– Update flow (flow grid) for downslope neighbors
⇓
One sweep ⇒ O(N log N) time algorithm

Lars Arge

I/O-efficient algorithms and data structures

70

Geometric I/O-bottleneck Example
• Computed for Appalachian Mountains (800km x 800km) by Duke

University environmental researchers
– 100m resolution ⇒ ~ 64M cells
⇒ ~128MB raw data (~500MB processing)
⇒ 14 days (on 512MB machine)

• Dataset could me much larger:
– ~ 1.2GB at 30m resolution

(80% of earth covered by NASA SRTM mission)
– ~ 12GB at 10m resolution (much of US available)
– ~ 1.2TB at 1m resolution

• Problem: Scattered access to grid cells ⇒ Ω(N) I/Os)log(B
N

BMB
NO• Use of implementation of algorithm

⇒ Appalachian Mountains in 3 hours!

Lars Arge

I/O-efficient algorithms and data structures

71

Exercise
Given a grid terrain model (an height grid)

design an I/O algorithm for computing flow
accumulation grid:
Hints:

1. Store all neighbor heights with each cell
2. Distribute water to neighbors using time forward processing

)log(B
N

BMB
NO

NN ×

Lars Arge

I/O-efficient algorithms and data structures

72

Cache-Oblivious Algorithms

• Block access important on all levels of memory hierarchy
– But complicated to model whole hierarchy

• I/O-model can be used on all levels
– But dominating level can change during computation
– Characteristics of hierarchy may not be known

Lars Arge

I/O-efficient algorithms and data structures

73

Cache-Oblivious Algorithms
• N, B, and M as in I/O-model

• M and B not used in algorithm description
• Block transfers (I/O) by optimal paging strategy

Analyze in two-level model
↓
Efficient on one level, efficient of all levels!

• Surprisingly many cache-oblivious algorithms developed recently
− Much more fundamental work to be done!

Lars Arge

I/O-efficient algorithms and data structures

74

Conclusions
• I/O often bottleneck when processing massive data
• Discussed

– Fundamental algorithms: Sorting and searching
– Buffered data structures
– Structures for planar orthogonal range searching
– List ranking

• Many exciting problems remain open in the area

Acknowledgments
• US Army Research Office
• Danish National Science Research Council
• Danish National Strategic Research Council
• MADALGO center – funded by

Lars Arge

I/O-efficient algorithms and data structures

75

• $10M center at University of Aarhus, initially funded for 5 years
• High level objectives:

– Advance knowledge in massive data algorithms
– Train researchers in world-leading environment
– Be catalyst for multidisciplinary collaboration

• Research focus areas:
– I/O-efficient, streaming, cache-oblivious
– Algorithm engineering

• Three institution collaboration
– AU: I/O, cache and algorithm engineering
– MPI: I/O (graph) and algorithm engineering
– MIT: Cache and streaming Demaine Indyk

Arge Brodal

Meyer Mehlhorn

Lars Arge

I/O-efficient algorithms and data structures

76

Activities
• Exchange of faculty, post docs, students between core institutions

• Short/long visits of faculty, post docs, students from other institutions

• Various workshops

• Symposium on Algorithms for Massive Datasets (yearly from 2008)

• Summer Schools:
– 2007: Streaming data algorithms
– 2008: Cache-oblivious algorithms
– …..

Lars Arge

I/O-efficient algorithms and data structures

77

Summer School

• Data Stream Algorithms: www.madalgo.au.dk/streamschool07
• August 20-23, 2007
• June 15 registration deadline; no registration fee
• Lectures:

– Sudipto Guha (U. Penn)
– Sariel Har-Peled (UIUC)
– Piotr Indyk (MIT)
– T.S. Jayram (IBM Almaden)
– Ravi Kumar (Yahoo!)
– D. Sivakumar (Google)

http://www.madalgo.au.dk/streamschool07

Lars Arge

I/O-efficient algorithms and data structures

78

Inauguration
• Inauguration event: www.madalgo.au.dk
• August 24, 2007
• Morning scientific speakers:

– Jeff Vitter (Purdue): I/O-efficient algorithms
– Charles Leiserson (MIT): Cache-oblivious algorithms
– Peter Sanders (Karlsruhe): Algorithm engineering

• Afternoon formal speakers:
– National Research Foundation chairman Klaus Bock
– Dean of Science Erik Meineche Schmidt
– Center Leader Lars Arge

….. and more
• Beer!

http://www.madalgo.au.dk/

	I/O-Efficient Algorithms and Data Structures
	Massive Data
	Random Access Machine Model
	Hierarchical Memory
	Slow I/O
	Scalability Problems
	External Memory Model
	Fundamental Bounds
	Scalability Problems: Block Access Matters
	Outline
	Queues and Stacks
	Merging
	Sorting
	Sorting
	Searching
	Searching: B-tree update
	Summary: Fundamental Algorithms
	Outline
	Buffered Data Structures
	Buffer-tree
	Buffer-tree
	Buffered Priority Queue
	Summary: Buffered Data Structures
	Outline
	Exercises
	External Planar Range Searching
	Outline
	Weight-balanced B-trees
	Persistent B-trees
	Three-Sided Range Queries
	Internal Priority Search Tree
	Internal Priority Search Tree
	Externalizing Priority Search Tree
	Externalizing Priority Search Tree
	External Priority Search Tree
	External Priority Search Tree
	External Priority Search Tree
	External Priority Search Tree
	External Priority Search Tree
	Dynamic Base Tree
	Dynamic Base Tree
	Dynamic Base Tree
	Summary: External Priority Search Tree
	Outline
	External Range Tree
	External Range Tree
	Outline
	External kd-tree
	External kd-Tree
	External kd-tree
	Summary: External kd-tree
	Summary: 3 and 4-sided Range Search
	Range Searching Tools and Techniques
	Other Data Structure Results
	Point Enclosure Queries
	Point Enclosure Queries
	Outline
	List Ranking
	List Ranking
	List Ranking
	List Ranking: Bridge-out/in
	List Ranking: Independent Set
	List Ranking: 3-coloring
	List Ranking: Forward List Coloring
	Summary: List Ranking
	Summary: List Ranking
	Other Graph Algorithm Results
	Exercise
	Flow Accumulation
	Geometric I/O-bottleneck Example
	Exercise
	Cache-Oblivious Algorithms
	Cache-Oblivious Algorithms
	Conclusions
	Activities
	Summer School
	Inauguration

