I/O-Efficient Algorithms and Data Structures

Lars Arge

University of Aarhus

May 28-29, 2007
Massive Data

- Pervasive use of computers and sensors
- Increased ability to acquire, store and process data
 → Massive data collected everywhere

Examples (2002):
- **Phone**: AT&T 20TB phone call database, wireless tracking
- **Consumer**: WalMart 70TB database, buying patterns
- **WEB/Network**: Google index 8*10^9 pages, internet routers
- **Geography**: NASA satellites generate TB each day
Random Access Machine Model

- Standard theoretical model of computation:
 - Infinite memory
 - Uniform access cost
- Simple model crucial for success of computer industry
Modern machines have complicated memory hierarchy
- Levels get larger and slower further away from CPU
- Data moved between levels using large blocks

Bottleneck often transfers between largest memory levels in use
Slow I/O

- Disk access is 10^6 times slower than main memory access

- Disk systems try to amortize large access time transferring large contiguous blocks of data (8-16Kbytes)

- Important to store/access data to take advantage of blocks (locality)

“The difference in speed between modern CPU and disk technologies is analogous to the difference in speed in sharpening a pencil using a sharpener on one’s desk or by taking an airplane to the other side of the world and using a sharpener on someone else’s desk.” (D. Comer)
Scalability Problems

- Most programs developed in RAM-model
 - Run on large datasets because OS moves blocks as needed

- Moderns OS utilizes sophisticated paging and prefetching strategies
 - But if program makes scattered accesses even good OS cannot take advantage of block access

Scalability problems!
External Memory Model

- \(N \) = # of items in the problem instance
- \(B \) = # of items per disk block
- \(M \) = # of items that fit in main memory
- \(T \) = # of items in output
- \(\text{I/O}: \) Move block between memory and disk

We assume (for convenience) that \(M > B^2 \)
Fundamental Bounds

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning:</td>
<td>(\frac{N}{B})</td>
</tr>
<tr>
<td>(N)</td>
<td>(\frac{N}{B} \log\frac{M}{B} \frac{N}{B})</td>
</tr>
<tr>
<td>Sorting:</td>
<td>(\frac{N}{B} \log\frac{M}{B} \frac{N}{B})</td>
</tr>
<tr>
<td>(N \log N)</td>
<td>(\min{N, \frac{N}{B} \log\frac{M}{B} \frac{N}{B}})</td>
</tr>
<tr>
<td>Permuting</td>
<td>(\log_B N)</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
</tr>
<tr>
<td>Searching:</td>
<td></td>
</tr>
<tr>
<td>(\log_2 N)</td>
<td></td>
</tr>
</tbody>
</table>

- **Note:**
 - Linear I/O: \(O(N/B)\)
 - Permuting not linear
 - Permuting and sorting bounds are equal in all practical cases
 - \(B\) factor VERY important: \(\frac{N}{B} < \frac{N}{B} \log\frac{M}{B} \frac{N}{B} \ll N\)
 - Cannot sort optimally with search tree
Scalability Problems: Block Access Matters

- **Example**: Traversing linked list (List ranking)
 - Array size $N = 10$ elements
 - Disk block size $B = 2$ elements
 - Main memory size $M = 4$ elements (2 blocks)

- Difference between N and N/B large since block size is large
 - **Example**: $N = 256 \times 10^6$, $B = 8000$, $1ms$ disk access time
 - N I/Os take 256×10^3 sec $= 4266$ min $= 71$ hr
 - N/B I/Os take $256/8$ sec $= 32$ sec
Outline

1. Introduction
2. Fundamental algorithms
 a) Sorting
 b) searching
3. Buffered data structures
4. Range searching
5. List ranking

Note: Find references in handouts
Queues and Stacks

- **Queue:**
 - Maintain push and pop blocks in main memory

 \[
 \text{Push} \quad \rightarrow \quad \text{Pop}
 \]

 \[\downarrow\]

 \(O(1/B)\) Push/Pop operations

- **Stack:**
 - Maintain push/pop blocks in main memory

 \[
 \quad \leftrightarrow
 \]

 \[\downarrow\]

 \(O(1/B)\) Push/Pop operations
Merging

- \(<M/B\) sorted lists (queues) can be **merged** in \(O(N/B)\) I/Os

- Unsorted list (queue) can be **distributed** using \(<M/B\) split elements in \(O(N/B)\) I/Os
Sorting

• Merge sort:
 – Create N/M memory sized sorted lists
 – Repeatedly merge lists together $\Theta(M/B)$ at a time

\[\Rightarrow O(\log_{M/B} \frac{N}{M}) \text{ phases using } O(\frac{N}{B}) \text{ I/Os each } \Rightarrow O(\frac{N}{B} \log_{M/B} \frac{N}{B}) \text{ I/Os} \]
Sorting

- **Distribution sort** (multiway quicksort):
 - Compute M/B splitting elements
 - Distribute unsorted list into M/B unsorted lists of equal size
 - Recursively split lists until fit in memory

- We cannot compute M/B splitting elements in $O(N/B)$ I/O
 - But we can compute $\Theta(\sqrt{M/B})$ elements

\[O(\log_{\sqrt{M/B}} \frac{N}{M}) = O(\log_{M/B} \frac{N}{M}) \text{ phases using } O(\frac{N}{B}) \text{ I/Os each} \]
Searching

• Storing binary trees arbitrarily on disk $\Rightarrow O(\log N+T)$ query/update

– blocking B nodes together $\Rightarrow O(\log_B N+T/B)$

• B-tree
 – All leaves – consisting of $\Theta(B)$ input elements – on same level
 – Internal nodes degree $\Theta(B)$

$\Rightarrow O(N)$ space, $O(\log_B N+T/B)$ range query
Searching: B-tree update

- Blocking hard to maintain using e.g. rotations
- Rebalancing using split/fuse (and share):

⇒ $O(\log_B N)$ update bound
Summary: Fundamental Algorithms

- \(M/B \)-way merge/distribution in \(O(N/B) \) I/Os ⇒
- External merge or distribution sort takes \(O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right) \) I/Os

- Fanout \(\Theta(B) \) search tree ⇒ B-tree
 - \(O(\log_B N) \) I/O search/update
 - \(O(\log_B N + T/B) \) I/O query

I/O-efficient algorithms and data structures

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
 a) Buffer-tree
 b) Buffered priority queue
4. Range searching
5. List ranking
Buffered Data Structures

• Use of the (on-line) efficient B-tree in external memory algorithms does not lead to efficient algorithms

• Example: Sorting using search tree
 – Insert all elements in search tree one-by-one (construct tree)
 – Output in sorted order using in-order traversal
 \[\Rightarrow\] Optimal \(O(N \log N)\) time in internal memory
 \[\Rightarrow\] non-optimal \(O(N \log_B N)\) I/Os in external memory

• Need \(O\left(\frac{1}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)\) operations to obtain efficient algorithms
 \[\Rightarrow\] \(O(N) \cdot \left(\frac{1}{B} \log_{\frac{M}{B}} \frac{N}{B}\right) = O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)\)
Main idea: Logically group nodes together and add buffers
- Insertions done in a “lazy” way – elements inserted in buffers.
- When a buffer runs full elements are pushed one level down.
- Buffer-emptying in $O(M/B)$ I/Os
 ⇒ every block touched constant number of times on each level
 ⇒ inserting N elements (N/B blocks) costs $O\left(\frac{N}{B} \log \frac{M}{B} \frac{N}{B}\right)$ I/Os.
Buffer-tree

- **Insert (and deletes)** on buffer-tree takes $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B} \right)$ I/Os amortized
 - Buffer tree can be used in $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B} \right)$ sorting algorithm

- One-dim. **rangesearch** operations can also be supported in $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B} + \frac{T}{B} \right)$ I/Os amortized
 - Search elements handle lazily like updates
 - All elements in relevant sub-trees reported during buffer-emptying
 - Buffer-emptying in $O(X/B + T'/B)$, where T' is reported elements
Buffered Priority Queue

- Buffer-tree can also be used in external priority queue
- To delete minimal element
 - Empty all buffers on leftmost path
 - Delete M elements in leftmost leaves and keep in memory
 (Insertions checked against minimal elements)

\[O\left(\frac{M}{B} \log_{M/B} \frac{N}{B}\right) \] I/Os every $O(M)$ delete \Rightarrow $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right)$ amortized

- Buffer technique can also be used on heap and tournament tree
Summary: Buffered Data Structures

- Lazy operations using buffers
 \[O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right) \] I/O amortized operations

- Can for example be used to obtain
 - \[O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right) \] I/O B-tree construction algorithm
 - Efficient (on line) priority queue

Refs: [A] sec 5
Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
5. List ranking
Exercises

1) Design an algorithm for removing duplicates from a multiset. The output from the algorithm should be the K distinct elements among the N input elements in sorted order. The algorithm should use $O(\max\{\frac{N}{B}, \frac{N}{B} \log_{M/B} \frac{N}{B} - \sum_{i=1}^{K} \frac{N_i}{B} \log_{M/B} \frac{N_i}{B}\})$ I/Os, where N_i is the number of copies of the i’th element.

 – *Hint:* Modify merge-sort to remove copies as soon as found

2) Design a I/O-efficient version of a heap that supports insert and deletemin operations in $O(\frac{1}{B} \log_{M/B} \frac{N}{B}^2)$ I/Os amortized.

 – *Hint/one idea:* Let the heap have fanout M/B (rather than 2) and store M minimal elements in each node (rather than one). Buffer M inserts in memory before performing them.
External Planar Range Searching

• B-tree solves one-dimensional range searching problem
 – Linear space, $O(\log_B N + T/B)$ query, $O(\log_B N)$ updates

• Cannot be obtained for orthogonal planar range searching:
 – $O(\log_B N + T/B)$ query requires $\Omega(N \frac{\log_B N}{\log_B \log_B N})$ space
 – $O(N)$ space requires $\Omega(\sqrt{\frac{N}{B}} + T/B)$ query
Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
 - External priority search tree
 * Weight-balanced B-tree
 * Persistent B-trees
 - External Range tree
 - External kd-tree
5. List ranking
Weight-balanced B-trees

- We will use multilevel structure
 - Attach $O(w(v))$ size structure to weight $w(v)$ node v in B-tree
 - Rebuild secondary structure using $O(w(v))$ I/Os when v split/fuse
- B-tree inefficient since heavy nodes can split/fuse often

• Weight-balanced B-tree:
 - B-tree but with weight rather than degree balancing constraint
 - Balanced with split/fuse as B-tree

Node v only split/fuse for every $\Omega(w(v))$ updates below it
Persistent B-trees

- We will use (partial) persistent B-tree
 - Update current version, query all previous versions

- Partial persistent B-tree (multi-version B-tree) can be obtained using standard techniques
 - $O(\log_B N)$ update, $O(\log_B N + T/B)$ query, $O(N)$ space
 - N is total number of operations performed
 - Batch of N updates in $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os using buffer technique

- Idea:
 - Elements and nodes augmented with existence intervals
 - Maintain that every node contains $\Theta(B)$ alive elements in its existence interval
Three-Sided Range Queries

• Report all points \((x, y)\) with \(q_1 \leq x \leq q_2\) and \(y \geq q_3\)

• Static solution:
 – Sweep top-down inserting
 \(x\) in persistent B-tree at \((x, y)\)
 – Answer query by performing
 range query with \([q_1, q_2]\) in
 B-tree at \(q_3\)

• Optimal:
 – \(O(N)\) space
 – \(O(\log_B N + T/B)\) query
 – \(O(\frac{N}{B} \log_{M/B} \frac{N}{B})\) construction

• Dynamic? … in internal memory priority search tree
- Base tree on x-coordinates with nodes augmented with points
- Heap on y-coordinates
 - Decreasing y values on root-leaf path
 - (x,y) on path from root to leaf holding x
 - If v holds point then $parent(v)$ holds point
⇒ Linear space and $O(\log N)$ update (traversal of root-leaf path)
• Query with \((q_1, q_2, q_3)\) starting at root \(v\):
 – Report point in \(v\) if satisfying query
 – Visit both children of \(v\) if point reported
 – Always visit child(s) of \(v\) on path(s) to \(q_1\) and \(q_2\)

\(\Rightarrow\) \(O(\log N + T)\) query
• Natural idea: Block tree
• Problem:
 – $O(\log_B N)$ I/Os to follow paths to to q_1 and q_2
 – But $O(T)$ I/Os may be used to visit other nodes ("overshooting")
 \[\Rightarrow O(\log_B N + T) \text{ query} \]
Externalizing Priority Search Tree

- Solution idea:
 - Store B points in each node \Rightarrow
 * $O(B^2)$ points stored in each supernode
 * B output points can pay for “overshooting”
 - Bootstrapping:
 * Store $O(B^2)$ points in each supernode in static structure
External Priority Search Tree

- **Base tree**: Weight-balanced B-tree on x-coordinates
- Points in “heap order”:
 - Root stores B top points for each of the $\Theta(B)$ child slabs
 - Remaining points stored recursively
- Points in each node stored in “$O(B^2)$-structure”
 - Persistent B-tree structure for static problem

Linear space
External Priority Search Tree

- Query with \((q_1, q_2, q_3)\) starting at root \(v\):
 - Query \(O(B^2)\)-structure and report points satisfying query
 - Visit child \(v\) if
 * \(v\) on path to \(q_1\) or \(q_2\)
 * All points corresponding to \(v\) satisfy query
External Priority Search Tree

- Analysis:
 - \(O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B}) \) I/Os used to visit node \(v \)
 - \(O(\log_B N) \) nodes on path to \(q_1 \) or \(q_2 \)
 - For each node \(v \) not on path to \(q_1 \) or \(q_2 \) visited, \(B \) points reported in \(\text{parent}(v) \)

\[O(\log_B N + \frac{T_v}{B}) \text{ query} \]
External Priority Search Tree

- **Insert** \((x, y)\) (ignoring insert in base tree - rebalancing):
 - Find relevant node \(v\):
 * Query \(O(B^2)\)-structure to find \(B\) points in root corresponding to node \(u\) on path to \(x\)
 * If \(y\) smaller than \(y\)-coordinates of all \(B\) points then recursively search in \(u\)
 - Insert \((x, y)\) in \(O(B^2)\)-structure of \(v\)
 - If \(O(B^2)\)-structure contains \(>B\) points for child \(u\), remove lowest point and insert recursively in \(u\)

- **Delete**: Similarly
External Priority Search Tree

- **Analysis:**
 - Query visits $O(\log_B N)$ nodes
 - $O(B^2)$-structure queried/updated in each node
 * One query
 * One insert and one delete
- **$O(B^2)$-structure analysis:**
 - Query: $O(\log_B B^2 + B / B) = O(1)$
 - Update in $O(1)$ I/Os using update block and global rebuilding in
 $$O\left(\frac{B^2}{B} \log \frac{M}{B} \frac{B^2}{B}\right) = O(B) \text{ I/Os}$$
 \[\downarrow \]
 $$O(\log_B N) \text{ I/Os}$$
Dynamic Base Tree

- **Deletion:**
 - Delete point as previously
 - Delete x-coordinate from base tree using **global rebuilding**
 \[O(\log_B N) \text{ I/Os amortized} \]

- **Insertion:**
 - Insert x-coordinate in base tree and rebalance (using **splits**)
 - Insert point as previously

- **Split:** Boundary in v becomes boundary in $parent(v)$
Dynamic Base Tree

• **Split**: When \(v \) splits \(B \) new points needed in \(\text{parent}(v) \)

• One point obtained from \(v' \) (\(v'' \)) using “bubble-up” operation:
 – Find top point \(p \) in \(v' \)
 – Insert \(p \) in \(O(B^2) \)-structure
 – Remove \(p \) from \(O(B^2) \)-structure of \(v' \)
 – Recursively bubble-up point to \(v' \)

• **Bubble-up** in \(O(\log_B w(v)) \) I/Os
 – Follow one path from \(v \) to leaf
 – Uses \(O(1) \) I/O in each node

\[\Downarrow \]

Split in \(O(B \log_B w(v)) = O(w(v)) \) I/Os
Dynamic Base Tree

- $O(1)$ amortized split cost:
 - Cost: $O(w(v))$
 - Weight balanced base tree: $\Omega(w(v))$ inserts below v between splits

- **External Priority Search Tree**
 - Space: $O(N)$
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os amortized

- Amortization can be removed from update bound in several ways
 - Utilizing lazy rebuilding
Summary: External Priority Search Tree

• Problem in externalizing internal priority search tree
 – Large fanout and “overshooting”

• Solution
 – B^2 points in each node
 – Bootstrapping with persistent B-tree
 – Dynamization using weight-balanced B-tree

\[O(\log_B N + \frac{T}{b}) \] query, \(O(\log_B N) \) update

Refs: [A] sec. 3-4, 7
Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
 - External priority search tree
 * Weight-balanced B-tree
 * Persistent B-trees
 - External Range tree
 - External kd-tree
5. List ranking
External Range Tree

Structure:
- Binary base tree on x-coordinates (blocked as B-tree)
- Two priority search trees for 3-sided queries in each node v on points below v

\[O(N \log N) \] space

Query:
- Search for top node v with q_1 and q_2 below different children
- Answer 3-sided queries in children of v

\[O(\log_B N + \frac{T}{B}) \] query
External Range Tree

• Increased fanout to $\Theta(\log_B N)$
 \Rightarrow Space improved to $O(N \log_{\log_B N} N) = O(N \frac{\log_B N}{\log_B \log_B N})$

• Extra external priority search tree in each node
 – to find bottom relevant point in $O(\log_B N)$ slabs spanned by query
 \Rightarrow Query answered in $O(\log_B N + \frac{T_B}{B})$ I/Os

• Dynamic with $O(\frac{\log^2 N}{\log_B \log_B N})$ update bound using weight-balanced tree

Refs: [A] sec. 8.1
Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
 - External priority search tree
 * Weight-balanced B-tree
 * Persistent B-trees
 - External Range tree
 - External kd-tree
5. List ranking
External \textit{kd-tree}

- \textit{kd-tree}:
 - Recursive subdivision of point-set into two half using vertical/horizontal line
 - Horizontal line on even levels, vertical on uneven levels
 - One point in each leaf

\downarrow

Linear space and logarithmic height
External kd-Tree

- **kd-tree Query**
 - Recursively visit nodes corresponding to regions intersecting query
 - Report point in trees/nodes completely contained in query
- **kd-tree Query analysis**
 - Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
 - Query covers T regions
 $\Rightarrow O(\sqrt{N} + T)$ I/Os worst-case
• **External kd-tree:**
 – Blocking of kd-tree but with B point in each leaf

• **Query** as before
 – Analysis as before except that each region now contains B points
 \[\Rightarrow O(\sqrt{\frac{N}{B}} + \frac{T}{B}) \] I/O query

• **Dynamic:**
 – Deletes relatively easily in $O(\log_B^2 N)$ I/Os using global rebuilding
 – Insertions also in $O(\log_B^2 N)$ I/Os using logarithmic method
Summary: External kd-tree

- Basically kd-tree with \(B \) points in each leaf
 - Updates using logarithmic method

\[O(N) \] space, \(O(\sqrt{\frac{N}{B}} + \frac{T}{B}) \) query, \(O(\log_{B}^{2} N) \) update

- Update bound can be improved to \(O(\log_{B} N) \) using \(O \)-trees
- Easily extended to \(d \)-dimensions with \(O((\frac{N}{B})^{1-\frac{1}{d}} + \frac{T}{B}) \) query bound

Refs: [A] sec. 8.2
Summary: 3 and 4-sided Range Search

- 3-sided 2d range searching: External priority search tree
 - $O(\log_B N + T_B)$ query, $O(N)$ space, $O(\log_B N)$ update

- General (4-sided) 2d range searching:
 - External range tree: $O(\log_B N + T_B)$ query, $O(N \frac{\log_B N}{\log_B \log_B N})$ space, $O(\frac{\log_B^2 N}{\log_B \log_B N})$ update
 - O-tree: $O(\sqrt{N_B} + T_B)$ query, $O(N)$ space, $O(\log_B N)$ update
Range Searching Tools and Techniques

• Tools:
 – B-trees
 – Persistent B-trees
 – Buffer trees
 – Weight-balanced B-trees
 – Global rebuilding

• Techniques:
 – Bootstrapping
 – Filtering
Other Data Structure Results

• Many other results for e.g.
 – Higher dimensional range searching
 – Range counting, range/stabbing max, and stabbing queries
 – Halfspace (and other special cases) of range searching
 – Queries on moving objects
 – Proximity queries (closest pair, nearest neighbor, point location)
 – Structures for objects other than points (bounding rectangles)
• Many heuristic structures in database community
• Implementation efforts:
 – LEDA-SM (MPI)
 – STXXL (Karlsruhe)
 – TPIE (Duke/Aarhus)
Point Enclosure Queries

• Dual of 2d range searching problem
 – Report all rectangles containing query point \((x,y)\)

• Internal memory:
 – Can be solved in \(O(N)\) space and \(O(\log N + T)\) time
Point Enclosure Queries

- Similarity between internal and external results (*space, query*)

<table>
<thead>
<tr>
<th></th>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d range search</td>
<td>((N, \log N + T))</td>
<td>((N, \log_B N + T/B))</td>
</tr>
<tr>
<td>3-sided 2d range search</td>
<td>((N, \log N + T))</td>
<td>((N, \log_B N + T/B))</td>
</tr>
<tr>
<td>2d range search</td>
<td>(\left(N, \sqrt{N} + T\right))</td>
<td>(\left(N, \sqrt{N/B} + T/B\right))</td>
</tr>
<tr>
<td></td>
<td>(\left(N \frac{\log N}{\log \log N}, \log N + T\right))</td>
<td>(\left(N \frac{\log_B N}{\log_B \log_B N}, \log_B N + T/B\right))</td>
</tr>
<tr>
<td>2d point enclosure</td>
<td>((N, \log N + T))</td>
<td>((N, \log N + T/B)) (\text{(if possible)})</td>
</tr>
</tbody>
</table>

– in general tradeoff between space and query I/O
Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
5. List ranking
List Ranking

- **Problem:**
 - Given N-vertex linked list stored in array
 - Compute rank (number in list) of each vertex

- One of the simplest graph problem one can think of

- Straightforward $O(N)$ internal algorithm
 - Also use $O(N)$ I/Os in external memory
- Much harder to get $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ external algorithm
List Ranking

- We will solve more general problem:
 - Given N-vertex linked list with edge-weights stored in array
 - Compute sum of weights (rank) from start for each vertex

- List ranking: All edge weights one

- Note: Weight stored in array entry together with edge (next vertex)
List Ranking

- **Algorithm:**
 1. Find and mark independent set of vertices
 2. “Bridge-out” independent set: Add new edges
 3. Recursively rank resulting list
 4. “Bridge-in” independent set: Compute rank of independent set

- Step 1, 2 and 4 in $O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)$ I/Os
- Independent set of size αN for $0 < \alpha \leq 1$
 \[T(N) = T((1 - \alpha)N) + O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right) = O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)\text{ I/Os}\]
List Ranking: Bridge-out/in

• Obtain information (edge or rang) of successor
 – Make copy of original list
 – Sort original list by successor id
 – Scan original and copy together to obtain successor information
 – Sort modified original list by id

⇒ $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B} \right)$ I/Os
List Ranking: Independent Set

- Easy to design $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ randomized algorithm:
 - Scan list and flip a coin for each vertex
 - Independent set is vertices with head and successor with tails
 \Rightarrow Independent set of expected size $N/4$

- Deterministic algorithm:
 - 3-color vertices (no vertex same color as predecessor/successor)
 - Independent set is vertices with most popular color
 \Rightarrow Independent set of size at least $N/3$

- $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ 3-coloring $\Rightarrow O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/O algorithm
List Ranking: 3-coloring

- Algorithm:
 - Consider forward and backward lists (heads/tails in two lists)
 - Color forward lists (except tail) alternately red and blue
 - Color backward lists (except tail) alternately green and blue

3-coloring
List Ranking: Forward List Coloring

- Identify heads and tails
- For each head, insert red element in priority-queue (priority=position)
- Repeatedly:
 - Extract minimal element from queue
 - Access and color corresponding element in list
 - Insert opposite color element corresponding to successor in queue

- Scan of list
- O(N) priority-queue operations

⇒ $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os
Summary: List Ranking

- Simplest graph problem: Traverse linked list
- Very easy $O(N)$ algorithm in internal memory
- Much more difficult $O(N/B \log M/B \cdot N/B)$ external memory
 - Finding independent set via 3-coloring
 - Bridging vertices in/out
- Permuting bound $O(\min\{N, N/B \log M/B \cdot N/B\})$ best possible
 - Also true for other graph problems

Refs: [Z] sec. 2, 4.2
Summary: List Ranking

- External list ranking algorithm similar to PRAM algorithm
 - Sometimes external algorithms by “PRAM algorithm simulation”

- Forward list coloring algorithm example of “time forward processing”
 - Use external priority-queue to send information “forward in time” to vertices to be processed later
Other Graph Algorithm Results

• Most tree problems solved in $O(\frac{N}{B} \log \frac{M}{B} \frac{N}{B})$ I/Os

• Most planar graph problems solved in $O(\frac{N}{B} \log \frac{M}{B} \frac{N}{B})$ I/Os

• Most other problems on general graphs not satisfactory solved
 – Directed DFS/BFS: $O(V + \frac{E}{B} \log_2 V)$ or $O(V + \frac{E}{B} \frac{V}{M})$
 – Undirected BFS: $O(V + \frac{E}{B} \log \frac{M}{B} \frac{E}{B})$ or $O(\frac{\sqrt{VE}}{B} + \frac{E}{B} \log \frac{M}{B} \frac{E}{B})$
 – MSF: $O(V + \frac{E}{B} \log \frac{M}{B} \frac{E}{B})$ or $O(\log_2 \log_2 \frac{VB}{E} \cdot \frac{E}{B} \log \frac{M}{B} \frac{E}{B})$
 – SSSP: $O(V + \frac{E}{B} \log_2 \frac{E}{B})$

• No other than permutation lower bound $O(\min\{E, \frac{E}{B} \log \frac{M}{B} \frac{E}{B}\})$ known
Exercise

Given a grid terrain model (an $\sqrt{N} \times \sqrt{N}$ height grid)

design an $O(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$ I/O algorithm for computing flow accumulation grid:

- Initially one unit of water in each grid cell
- Water (initial and received) distributed from each cell to lowest lower neighbor cell (if existing)
- Flow accumulation of cell is total flow through it
Flow Accumulation

• Problem can easily be solved in $O(N \log N)$ time:

• Process (sweep) points by decreasing height. At each cell:
 – Read flow from flow grid and neighbor heights from height grid
 – Update flow (flow grid) for downslope neighbors

\[\Downarrow \]
One sweep $\Rightarrow O(N \log N)$ time algorithm
Geometric I/O-bottleneck Example

- Computed for Appalachian Mountains (800km x 800km) by Duke University environmental researchers
 - 100m resolution ⇒ ~64M cells
 - ⇒ ~128MB raw data (~500MB processing)
 - ⇒ 14 days (on 512MB machine)
- Dataset could be much larger:
 - ~1.2GB at 30m resolution
 (80% of earth covered by NASA SRTM mission)
 - ~12GB at 10m resolution (much of US available)
 - ~1.2TB at 1m resolution
- Problem: Scattered access to grid cells
 ⇒ Ω(N/B) I/Os
 ⇒ Appalachian Mountains in 3 hours!
Exercise

Given a grid terrain model (an $\sqrt{N} \times \sqrt{N}$ height grid)

design an $O(\frac{N}{B} \log \frac{N}{M/B})$ I/O algorithm for computing flow accumulation grid:

Hints:

1. Store all neighbor heights with each cell
2. Distribute water to neighbors using time forward processing
Cache-Oblivious Algorithms

- Block access important on all levels of memory hierarchy
 - But complicated to model whole hierarchy

- I/O-model can be used on all levels
 - But dominating level can change during computation
 - Characteristics of hierarchy may not be known
Cache-Oblivious Algorithms

- N, B, and M as in I/O-model
- M and B not used in algorithm description
- Block transfers (I/O) by optimal paging strategy

Analyze in two-level model

Efficient on one level, efficient of all levels!

- Surprisingly many cache-oblivious algorithms developed recently
 - Much more fundamental work to be done!
Conclusions

• I/O often bottleneck when processing massive data
• Discussed
 – Fundamental algorithms: Sorting and searching
 – Buffered data structures
 – Structures for planar orthogonal range searching
 – List ranking
• Many exciting problems remain open in the area

Acknowledgments

• US Army Research Office
• Danish National Science Research Council
• Danish National Strategic Research Council
• MADALGO center – funded by
$10M center at University of Aarhus, initially funded for 5 years

High level objectives:
- Advance knowledge in massive data algorithms
- Train researchers in world-leading environment
- Be catalyst for multidisciplinary collaboration

Research focus areas:
- I/O-efficient, streaming, cache-oblivious
- Algorithm engineering

Three institution collaboration
- AU: I/O, cache and algorithm engineering
- MPI: I/O (graph) and algorithm engineering
- MIT: Cache and streaming
Activities

• **Exchange** of faculty, post docs, students between core institutions

• Short/long **visits** of faculty, post docs, students from other institutions

• Various **workshops**

• **Symposium on Algorithms for Massive Datasets** (yearly from 2008)

• **Summer Schools:**
 – 2007: Streaming data algorithms
 – 2008: Cache-oblivious algorithms
 – ….
Summer School

• **Data Stream Algorithms**: www.madalgo.au.dk/streamschool07
• August 20-23, 2007
• June 15 registration deadline; no registration fee
• Lectures:
 – Sudipto Guha (U. Penn)
 – Sariel Har-Peled (UIUC)
 – Piotr Indyk (MIT)
 – T.S. Jayram (IBM Almaden)
 – Ravi Kumar (Yahoo!)
 – D. Sivakumar (Google)
• Inauguration event: www.madalgo.au.dk
• August 24, 2007
• Morning scientific speakers:
 – Jeff Vitter (Purdue): I/O-efficient algorithms
 – Charles Leiserson (MIT): Cache-oblivious algorithms
 – Peter Sanders (Karlsruhe): Algorithm engineering
• Afternoon formal speakers:
 – National Research Foundation chairman Klaus Bock
 – Dean of Science Erik Meineche Schmidt
 – Center Leader Lars Arge
….. and more
• Beer!