I/O-Efficient Algorithms and Data Structures

Lars Arge

University of Aarhus

May 28-29, 2007

Massive Data

- Pervasive use of computers and sensors
- Increased ability to acquire, store and process data
- \rightarrow Massive data collected everywhere

Examples (2002):

- Phone: AT&T 20TB phone call database, wireless tracking
- Consumer: WalMart 70TB database, buying patterns
- WEB/Network: Google index 8*10⁹ pages, internet routers
- Geography: NASA satellites generate TB each day

Random Access Machine Model

- Standard theoretical model of computation:
 - Infinite memory
 - Uniform access cost
- Simple model crucial for success of computer industry

- Modern machines have complicated memory hierarchy
 - Levels get larger and slower further away from CPU
 - Data moved between levels using large blocks
- Bottleneck often transfers between largest memory levels in use

• Disk access is 10⁶ times slower than main memory access

Scalability Problems

- Most programs developed in RAM-model
 - Run on large datasets because OS moves blocks as needed
- Moderns OS utilizes sophisticated paging and prefetching strategies
 - But if program makes scattered accesses even good OS cannot take advantage of block access

Scalability problems!

External Memory Model

N = # of items in the problem instance

- B = # of items per disk block
- M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that $M > B^2$

I/O-efficient algorithms and data structures

Fundamental Bounds

	Internal	External
• Scanning:	N	$\frac{N}{B}$
• Sorting:	$N \log N$	$\frac{N}{B}\log_{M_{B}}\frac{N}{B}$
• Permuting	N	$\min\{N, \frac{N}{B}\log$
• Searching:	$\log_2 N$	$\log_{B} N$

$$\frac{\frac{N}{B}}{\frac{N}{B}\log_{M_{B}}\frac{N}{B}}$$
$$\min\{N, \frac{N}{B}\log_{M_{B}}\frac{N}{B}\}$$
$$\log_{B} N$$

- Note:
 - Linear I/O: O(N/B)
 - Permuting not linear
 - Permuting and sorting bounds are equal in all practical cases
 - B factor VERY important: $\frac{N}{B} < \frac{N}{B} \log_{M_{B}} \frac{N}{B} << N$
 - Cannot sort optimally with search tree

Scalability Problems: Block Access Matters

- Example: Traversing linked list (List ranking)
 - Array size N = 10 elements
 - Disk block size B = 2 elements
 - Main memory size M = 4 elements (2 blocks)

Algorithm 1: N=10 I/Os

Algorithm 2: N/B=5 I/Os

- Difference between *N* and *N/B* large since block size is large
 - Example: $N = 256 \times 10^6$, B = 8000, 1ms disk access time
 - \Rightarrow N I/Os take 256 x 10³ sec = 4266 min = 71 hr
 - \Rightarrow *N/B* I/Os take 256/8 sec = 32 sec

- 1. Introduction
- 2. Fundamental algorithms
 - a) Sorting
 - b) searching
- 3. Buffered data structures
- 4. Range searching
- 5. List ranking

Note: Find references in handouts

Queues and Stacks

• Queue:

- Maintain push and pop blocks in main memory

- Stack:
 - Maintain push/pop blocks in main memory

• <M/B sorted lists (queues) can be merged in O(N/B) I/Os

M/B blocks in main memory

Unsorted list (queue) can be distributed using <*M/B* split elements in *O*(*N/B*) I/Os

Sorting

- Merge sort:
 - Create *N/M* memory sized sorted lists
 - Repeatedly merge lists together $\Theta(M/B)$ at a time

Sorting

- Distribution sort (multiway quicksort):
 - Compute *M/B* splitting elements
 - Distribute unsorted list into M/B unsorted lists of equal size
 - Recursively split lists until fit in memory
- We cannot compute M/B splitting elements in O(N/B) I/O
 - But we can compute $\Theta(\sqrt{M/B})$ elements

• Storing binary trees arbitrarily on disk $\Rightarrow O(\log N+T)$ query/update

- blocking *B* nodes together $\Rightarrow O(\log_B N + T/B)$
- B-tree
 - All leaves consisting of $\Theta(B)$ input elements on same level
 - Internal nodes degree $\Theta(B)$
 - $\Rightarrow O(N)$ space, $O(\log_B N + T/B)$ range query

Searching: B-tree update

- Blocking hard to maintain using e.g rotations
- Rebalancing using split/fuse (and share):

Summary: Fundamental Algorithms

- *M/B*-way merge/distribution in O(N/B) I/Os \Rightarrow
- External merge or distribution sort takes $O(\frac{N}{B}\log_{M_{/_{R}}}\frac{N}{B})$ I/Os

- Fanout $\Theta(B)$ search tree \Rightarrow B-tree
 - $-O(\log_B N)$ I/O search/update
 - $-O(\log_B N+T/B)$ I/O query

Refs: [A] sec. 1-2, [AV] sec. 1-3, 5

Outline

- 1. Introduction
- 2. Fundamental algorithms
- 3. Buffered data structures
 - a) Buffer-tree
 - b) Buffered priority queue
- 4. Range searching
- 5. List ranking

Buffered Data Structures

- Use of the (on-line) efficient B-tree in external memory algorithms does not lead to efficient algorithms
- Example: Sorting using search tree
 - Insert all elements in search tree one-by-one (construct tree)
 - Output in sorted order using in-order traversal
 - \Rightarrow Optimal $O(N \log N)$ time in internal memory
 - \Rightarrow non-optimal $O(N \log_B N)$ I/Os in external memory

• Need
$$O(\frac{1}{B}\log_{M_B}\frac{N}{B})$$
 operations to obtain efficient algorithms
 $-O(N) \cdot O(\frac{1}{B}\log_{M_B}\frac{N}{B}) = O(\frac{N}{B}\log_{M_B}\frac{N}{B})$

I/O-efficient algorithms and data structures

- Main idea: Logically group nodes together and add buffers
 - Insertions done in a "lazy" way elements inserted in buffers.
 - When a buffer runs full elements are pushed one level down.
 - Buffer-emptying in O(M/B) I/Os

 \Rightarrow every *block* touched constant number of times on each level

 \Rightarrow inserting N elements (N/B blocks) costs $O(\frac{N}{B} \log_{M/B} \frac{N}{B})$ I/Os.

Buffer-tree

• Insert (and deletes) on buffer-tree takes $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/Os amortized \Rightarrow Buffer tree can be used in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ sorting algorithm

- One-dim. rangesearch operations can also be supported in $O(\frac{1}{B}\log_{M/B}\frac{N}{B} + \frac{T}{B})$ I/Os amortized
 - Search elements handle lazily like updates
 - All elements in relevant sub-trees reported during buffer-emptying
 - Buffer-emptying in O(X/B+T'/B), where *T*' is reported elements

Buffered Priority Queue

- Buffer-tree can also be used in external priority queue
- To delete minimal element
 - Empty all buffers on leftmost path
 - Delete *M* elements in leftmost leaves

and keep in memory

(Insertions checked against minimal elements)

 $O(\frac{M}{B}\log_{M/B}\frac{N}{B})$ I/Os every O(M) delete $\Rightarrow O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ amortized

• Buffer technique can also be used on heap and tournament tree

 \downarrow

 $\Theta(\frac{M}{R})$

Summary: Buffered Data Structures

- Lazy operations using buffers $\Rightarrow O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/O amortized operations
- Can for example be used to obtain
 - $-O(\frac{N}{R}\log_{M/B}\frac{N}{R})$ I/O B-tree construction algorithm

– Efficient (on line) priority queue

Outline

- 1. Introduction
- 2. Fundamental algorithms
- 3. Buffered data structures
- 4. Range searching
- 5. List ranking

Exercises

- 1) Design an algorithm for removing duplicates from a multiset. The output from the algorithm should be the *K* distinct elements among the *N* input elements in sorted order. The algorithm should use $O(\max\{\frac{N}{B}, \frac{N}{B}\log_{M_B}\frac{N}{B} - \sum_{i=1}^{K}\frac{N_i}{B}\log_{M_B'}\frac{N_i}{B}\})$ I/Os, where N_i is the number of copies of the *i*'th element - *Hint*: Modify merge-sort to remove copies as soon as found
- 2) Design a I/O-efficient version of a heap that supports insert and deletemin operations in $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/Os amortized.
 - *Hint/one idea:* Let the heap have fanout *M/B* (rather than 2) and store *M* minimal elements in each node (rather than one). Buffer *M* inserts in memory before performing them.

External Planar Range Searching

- B-tree solves one-dimensional range searching problem
 - Linear space, $O(\log_B N + T/B)$ query, $O(\log_B N)$ updates

• Cannot be obtained for orthogonal planar range searching:

- $-O(\log_B N + T/B)$ query requires $\Omega(N \frac{\log_B N}{\log_B \log_B N})$ space
- -O(N) space requires $\Omega(\sqrt{N/B} + T/B)$ query

Outline

- 1. Introduction
- 2. Fundamental algorithms
- 3. Buffered data structures
- 4. Range searching
 - External priority search tree
 - * Weight-balanced B-tree
 - * Persistent B-trees
 - External Range tree
 - External kd-tree
- 5. List ranking

 q_2

 q_1

 q_{4}

 q_3

M

D

Weight-balanced B-trees

- We will use multilevel structure
 - Attach O(w(v)) size structure to weight w(v) node v in B-tree
 - Rebuild secondary structure using O(w(v)) I/Os when v split/fuse
- B-tree inefficient since heavy nodes can split/fuse often

- Weight-balanced B-tree:
 - B-tree but with weight rather than degree balancing constraint
 - Balanced with split/fuse as B-tree

Node v only split/fuse for every $\Omega(w(v))$ updates below it

 \downarrow

Persistent B-trees

- We will use (partial) persistent B-tree
 - Update current version, query all previous versions
- Partial persistent B-tree (multi-version B-tree) can be obtained using standard techniques
 - $O(\log_B N)$ update, $O(\log_B N+T/B)$ query, O(N) space
 - -N is total number of operations performed
 - Batch of N updates in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os using buffer technique
- Idea:
 - Elements and nodes augmented with existence intervals
 - Maintain that every node contains $\Theta(B)$ alive elements in its existence interval

Three-Sided Range Queries

- Report all points (*x*,*y*) with $q1 \le x \le q2$ and $y \ge q3$
- Static solution:
 - Sweep top-down inserting
 - x in persistent B-tree at (x,y)
 - Answer query by performing range query with [q₁,q₂] in
 B-tree at q₃
- Optimal:
 - -O(N) space
 - $O(\log_B N + T/B)$ query
 - $-O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ construction
- Dynamic? ... in internal memory priority search tree

I/O-efficient algorithms and data structures

- Base tree on *x*-coordinates with nodes augmented with points
- Heap on *y*-coordinates
 - Decreasing *y* values on root-leaf path
 - -(x,y) on path from root to leaf holding x
 - If v holds point then parent(v) holds point

 \Rightarrow Linear space and $O(\log N)$ update (traversal of root-leaf path)

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in *v* if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

 $\Rightarrow O(\log N+T)$ query

I/O-efficient algorithms and data structures

- Natural idea: Block tree
- Problem:
 - $-O(\log_B N)$ I/Os to follow paths to to q_1 and q_2
 - But O(T) I/Os may be used to visit other nodes ("overshooting")
 - $\Rightarrow O(\log_B N + T)$ query

I/O-efficient algorithms and data structures

- Solution idea:
 - Store *B* points in each node \Rightarrow
 - * $O(B^2)$ points stored in each supernode
 - * *B* output points can pay for "overshooting"
 - Bootstrapping:
 - * Store $O(B^2)$ points in each supernode in static structure

mapalgo -----

External Priority Search Tree

- Base tree: Weight-balanced B-tree on *x*-coordinates
- Points in "heap order":
 - Root stores B top points for each of the $\Theta(B)$ child slabs
 - Remaining points stored recursively
- Points in each node stored in " $O(B^2)$ -structure"
 - Persistent B-tree structure for static problem

 \downarrow

Linear space

External Priority Search Tree

- Query with (q_1, q_2, q_3) starting at root v:
 - Query $O(B^2)$ -structure and report points satisfying query
 - Visit child v if
 - * *v* on path to q_1 or q_2
 - * All points corresponding to *v* satisfy query

External Priority Search Tree

• Analysis:

-
$$O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$$
 I/Os used to visit node v

 $- O(\log_B N)$ nodes on path to q_1 or q_2

- For each node v not on path to q_1 or q_2 visited, B points reported in *parent*(v)

\downarrow

External Priority Search Tree

- Insert (*x*,*y*) (ignoring insert in base tree rebalancing):
 - Find relevant node *v*:
 - * Query O(B²)-structure to find
 B points in root corresponding
 to node u on path to x
 - * If *y* smaller than *y*-coordinates of all *B* points then recursively search in *u*

- Insert (*x*,*y*) in $O(B^2)$ -structure of *v*
- If $O(B^2)$ -structure contains >B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

External Priority Search Tree

- Analysis:
 - Query visits $O(\log_B N)$ nodes
 - $O(B^2)$ -structure queried/updated in each node
 - * One query
 - * One insert and one delete
- *O*(*B*²)-structure analysis:
 - Query: $O(\log_B B^2 + B/B) = O(1)$
 - Update in O(1) I/Os using update block and global rebuilding in $O(\frac{B^2}{B} \log_{M/B} \frac{B^2}{B}) = O(B)$ I/Os

Lars Arge

Dynamic Base Tree

• Deletion:

- Delete point as previously
- Delete *x*-coordinate from base tree using global rebuilding
- $\Rightarrow O(\log_B N)$ I/Os amortized
- Insertion:
 - Insert *x*-coordinate in base tree and rebalance (using splits)
 - Insert point as previously
- Split: Boundary in *v* becomes boundary in *parent*(*v*)

Dynamic Base Tree

- Split: When *v* splits *B* new points needed in *parent*(*v*)
- One point obtained from v'(v'') using "bubble-up" operation:
 - Find top point p in v'
 - Insert p in $O(B^2)$ -structure
 - Remove *p* from $O(B^2)$ -structure of *v*'
 - Recursively bubble-up point to v'
- Bubble-up in $O(\log_B w(v))$ I/Os
 - Follow one path from *v* to leaf
 - Uses O(1) I/O in each node

Split in
$$O(B \log_B w(v)) = O(w(v))$$
 I/Os

 \downarrow

Dynamic Base Tree

- *O*(*1*) amortized split cost:
 - Cost: O(w(v))
 - Weight balanced base tree: $\Omega(w(v))$ inserts below v between splits
- External Priority Search Tree
 - Space: O(N)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os amortized
- Amortization can be removed from update bound in several ways

 Utilizing lazy rebuilding

 q_1

 q_2

 \downarrow

Summary: External Priority Search Tree

- Problem in externalizing internal priority search tree
 - Large fanout and "overshooting"
- Solution
 - $-B^2$ points in each node
 - Bootstrapping with persistent B-tree
 - Dynamization using weight-balanced B-tree

 q_1

 q_2

Outline

- 1. Introduction
- 2. Fundamental algorithms
- 3. Buffered data structures
- 4. Range searching
 - External priority search tree
 - * Weight-balanced B-tree
 - * Persistent B-trees
 - External Range tree
 - External kd-tree
- 5. List ranking

External Range Tree

- Structure:
 - Binary base tree on *x*-coordinates (blocked as B-tree)
 - Two priority search trees for 3-sided queries in each node v on points below v

```
O(N \log N) space
```

- Query:
 - Search for top node v with q_1 and q_2 below different children
 - Answer 3-sided queries in children of v
 - \downarrow

9

 q_3

 q_1

 q_2

External Range Tree

• Increased fanout to $\Theta(\log_B N)$ \Rightarrow Space improved to $O(N \log_{\log_B N} N) = O(N \frac{\log_B N}{\log_B \log_B N})$

Extra external priority search tree in each node

 to find bottom relevant point in
 O(log_B N) slabs spanned by query
 ⇒ Query answered in O(log_B N + T/_B) I/Os

• Dynamic with $O(\frac{\log_B^2 N}{\log_B \log_B N})$ update bound using weight-balanced tree

Refs: [A] sec. 8.1

mapalgo -- -- ---

Outline

- 1. Introduction
- 2. Fundamental algorithms
- 3. Buffered data structures
- 4. Range searching
 - External priority search tree
 - * Weight-balanced B-tree
 - * Persistent B-trees
 - External Range tree
 - External kd-tree
- 5. List ranking

- kd-tree:
 - Recursive subdivision of point-set into two half using vertical/horizontal line
 - Horizontal line on even levels, vertical on uneven levels
 - One point in each leaf

```
Ų
```

Linear space and logarithmic height

- kd-tree Query
 - Recursively visit nodes corresponding to regions intersecting query
 - Report point in trees/nodes completely contained in query
- kd-tree Query analysis
 - Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
 - Query covers T regions
 - $\Rightarrow O(\sqrt{N} + T)$ I/Os worst-case

External kd-tree

- External kd-tree:
 - Blocking of kd-tree but with *B* point in each leaf
- Query as before
 - Analysis as before except that each region now contains *B* points $\Rightarrow O(\sqrt{N/B} + T/B)$ I/O query
- Dynamic:
 - Deletes relatively easily in $O(\log_B^2 N)$ I/Os using global rebuilding
 - Insertions also in $O(\log_B^2 N)$ I/Os using logarithmic method

Summary: External kd-tree

Basically kd-tree with *B* points in each leaf
 Updates using logarithmic method

O(N) space, $O(\sqrt{N/B} + T/B)$ query, $O(\log_B^2 N)$ update

- Update bound can be improved to $O(\log_B N)$ using O-trees
- Easily extended to *d*-dimensions with $O((\frac{N}{B})^{1-\frac{1}{d}} + \frac{T}{B})$ query bound

Refs: [A] sec. 8.2

Summary: 3 and 4-sided Range Search

- 3-sided 2d range searching: External priority search tree
 - $-O(\log_B N + T/B)$ query, O(N) space, $O(\log_B N)$ update

- General (4-sided) 2d range searching:
 - External range tree: $O(\log_B N + T/B)$ query, $O(N \frac{\log_B N}{\log_B \log_B N})$ space, $O(\frac{\log_B^2 N}{\log_B \log_B N})$ update - O-tree: $O(\sqrt{N/B} + T/B)$ query, O(N) space, $O(\log_B N)$ update

Range Searching Tools and Techniques

- Tools:
 - B-trees
 - Persistent B-trees
 - Buffer trees
 - Weight-balanced B-trees
 - Global rebuilding
- Techniques:
 - Bootstrapping
 - Filtering

Other Data Structure Results

- Many other results for e.g.
 - Higher dimensional range searching
 - Range counting, range/stabbing max, and stabbing queries
 - Halfspace (and other special cases) of range searching
 - Queries on moving objects
 - Proximity queries (closest pair, nearest neighbor, point location)
 - Structures for objects other than points (bounding rectangles)
- Many heuristic structures in database community
- Implementation efforts:
 - LEDA-SM (MPI)
 - STXXL (Karlsruhe)
 - TPIE (Duke/Aarhus)

Point Enclosure Queries

- Dual of 2d range searching problem
 - Report all rectangles containing query point (x,y)

• Internal memory:

- Can be solved in O(N) space and $O(\log N + T)$ time

Point Enclosure Queries

• Similarity between internal and external results (*space, query*)

	Internal	External
1d range search	$(N, \log N + T)$	$(N, \log_B N + T/B)$
3-sided 2d range search	$(N, \log N + T)$	$(N, \log_B N + T/B)$
2d range search	$\left(N, \sqrt{N} + T\right)$ $\left(N \frac{\log N}{\log \log N}, \log N + T\right)$	$\left(N, \sqrt{N/B} + T/B\right)$ $\left(N \frac{\log_B N}{\log_B \log_B N}, \log_B N + T/B\right)$
2d point enclosure	$(N, \log N + T)$	$(N, \log N+T/B)$ $(N, \log_B N+T/B)?$ $(NB^{\varepsilon}, \log_B N+T/B)$

– in general tradeoff between space and query I/O

Outline

- 1. Introduction
- 2. Fundamental algorithms
- 3. Buffered data structures
- 4. Range searching
- 5. List ranking

List Ranking

- Problem:
 - Given N-vertex linked list stored in array
 - Compute rank (number in list) of each vertex

- One of the simplest graph problem one can think of
- Straightforward *O*(*N*) internal algorithm

- Also use O(N) I/Os in external memory

• Much harder to get $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ external algorithm

List Ranking

- We will solve more general problem:
 - Given N-vertex linked list with edge-weights stored in array
 - Compute sum of weights (rank) from start for each vertex
- List ranking: All edge weights one

• Note: Weight stored in array entry together with edge (next vertex)

- Algorithm:
 - 1. Find and mark independent set of vertices
 - 2. "Bridge-out" independent set: Add new edges
 - 3. Recursively rank resulting list
 - 4. "Bridge-in" independent set: Compute rank of independent set
- Step 1, 2 and 4 in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
 - Independent set of size αN for $0 < \alpha \le 1$ $\Rightarrow T(N) = T((1-\alpha)N) + O(\frac{N}{B}\log_{M/B}\frac{N}{B}) = O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os

- Obtain information (edge or rang) of successor
 - Make copy of original list
 - Sort original list by successor id
 - Scan original and copy together to obtain successor information
 - Sort modified original list by id
- $\Rightarrow O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os

List Ranking: Independent Set

- Easy to design $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ randomized algorithm:
 - Scan list and flip a coin for each vertex
 - Independent set is vertices with head and successor with tails
- \Rightarrow Independent set of expected size N/4
- Deterministic algorithm:

8

11012

- Independent set is vertices with most popular color
- \Rightarrow Independent set of size at least *N/3*
- $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ 3-coloring $\Rightarrow O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/O algorithm

List Ranking: 3-coloring

- Algorithm:
 - Consider forward and backward lists (heads/tails in two lists)
 - Color forward lists (except tail) alternately red and blue
 - Color backward lists (except tail) alternately green and blue
- \downarrow
- 3-coloring

List Ranking: Forward List Coloring

- Identify heads and tails
- For each head, insert red element in priority-queue (priority=position)
- Repeatedly:
 - Extract minimal element from queue
 - Access and color corresponding element in list
 - Insert opposite color element corresponding to successor in queue

- Scan of list
- O(N) priority-queue operations

$$\Rightarrow O(\frac{N}{B}\log_{M/B}\frac{N}{B})$$
 I/Os

Summary: List Ranking

• Simplest graph problem: Traverse linked list

- Very easy O(N) algorithm in internal memory
- Much more difficult $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ external memory
 - Finding independent set via 3-coloring
 - Bridging vertices in/out
- Permuting bound $O(\min\{N, \frac{N}{B}\log_{M/B} \frac{N}{B}\})$ best possible
 - Also true for other graph problems

Refs: [Z] sec. 2, 4.2

Summary: List Ranking

- External list ranking algorithm similar to PRAM algorithm
 - Sometimes external algorithms by "PRAM algorithm simulation"

- Forward list coloring algorithm example of "time forward processing"
 - Use external priority-queue to send information "forward in time" to vertices to be processed later

Other Graph Algorithm Results

- Most tree problems solved in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
- Most planar graph problems solved in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
- Most other problems on general graphs not satisfactory solved
 - Directed DFS/BFS: $O(V + \frac{E}{B}) \log_2 V)$ or $O(V + \frac{E}{B} \frac{V}{M})$
 - Undirected BFS: $O(V + \frac{E}{B} \log_{M_{/B}} \frac{E}{B})$ or $O(\sqrt{\frac{VE_{/B}}{B}} + \frac{E}{B} \log_{M_{/B}} \frac{E}{B})$
 - $-\operatorname{MSF}: O(V + \frac{E}{B}\log_{M_{B}}\frac{E}{B}) \text{ or } O(\log_{2}\log_{2}\frac{VB}{E} \cdot \frac{E}{B}\log_{M_{B}}\frac{E}{B})$ $-\operatorname{SSSP}: O(V + \frac{E}{B}\log_{2}\frac{E}{B})$
- No other than permutation lower bound $O(\min\{E, \frac{E}{B}\log_{M/B} \frac{E}{B}\})$ known

Exercise

Given a grid terrain model (an $\sqrt{N} \times \sqrt{N}$ height grid)

design an $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/O algorithm for computing flow accumulation grid:

- Initially one unit of water in each grid cell
- Water (initial and received) distributed from each cell to lowest lower neighbor cell (if existing)
- Flow accumulation of cell is total flow through it

Flow Accumulation

- Problem can easily be solved in $O(N \log N)$ time:
- Process (sweep) points by decreasing height. At each cell:
 - Read flow from flow grid and neighbor heights from height grid
 - Update flow (flow grid) for downslope neighbors

One sweep $\Rightarrow O(N \log N)$ time algorithm

Geometric I/O-bottleneck Example

- Computed for Appalachian Mountains (800km x 800km) by Duke University environmental researchers
 - -100m resolution $\Rightarrow \sim 64M$ cells
 - \Rightarrow ~128MB raw data (~500MB processing)
 - \Rightarrow 14 days (on 512MB machine)
- Dataset could me much larger:
 - ~ 1.2GB at 30m resolution
 (80% of earth covered by NASA SRTM mission)
 - ~ 12 GB at 10m resolution (much of US available)
 - ~ 1.2 TB at 1m resolution
- **Pisobofnimpleamentation costs** $(0, \frac{N}{B})$ diabcells $\frac{N}{M/B} \Rightarrow Appalachian Mountains in 3 hours!$

Exercise

Given a grid terrain model (an $\sqrt{N} \times \sqrt{N}$ height grid)

design an $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/O algorithm for computing flow accumulation grid:

Hints:

- 1. Store all neighbor heights with each cell
- 2. Distribute water to neighbors using time forward processing

- Block access important on all levels of memory hierarchy
 - But complicated to model whole hierarchy
- I/O-model can be used on all levels
 - But dominating level can change during computation
 - Characteristics of hierarchy may not be known

- N, B, and M as in I/O-model
- *M* and *B* not used in algorithm description
- Block transfers (I/O) by optimal paging strategy

Analyze in two-level model ↓

Efficient on one level, efficient of all levels!

• Surprisingly many cache-oblivious algorithms developed recently - Much more fundamental work to be done!

Conclusions

- I/O often bottleneck when processing massive data
- Discussed
 - Fundamental algorithms: Sorting and searching
 - Buffered data structures
 - Structures for planar orthogonal range searching
 - List ranking
- Many exciting problems remain open in the area

Acknowledgments

- US Army Research Office
- Danish National Science Research Council
- Danish National Strategic Research Council
- MADALGO center funded by

MADALGO -----

- \$10M center at University of Aarhus, initially funded for 5 years
- High level objectives:
 - Advance knowledge in massive data algorithms
 - Train researchers in world-leading environment
 - Be catalyst for multidisciplinary collaboration
- Research focus areas:
 - I/O-efficient, streaming, cache-oblivious
 - Algorithm engineering
- Three institution collaboration
 - AU: I/O, cache and algorithm engineering
 - MPI: I/O (graph) and algorithm engineering
 - MIT: Cache and streaming

Brodal

MADALGO ____ Activities

- Exchange of faculty, post docs, students between core institutions
- Short/long visits of faculty, post docs, students from other institutions
- Various workshops
- Symposium on Algorithms for Massive Datasets (yearly from 2008)
- Summer Schools:
 - 2007: Streaming data algorithms
 - 2008: Cache-oblivious algorithms

Madalgo ---- Summer School

- Data Stream Algorithms: www.madalgo.au.dk/streamschool07
- August 20-23, 2007
- June 15 registration deadline; no registration fee
- Lectures:
 - Sudipto Guha (U. Penn)
 - Sariel Har-Peled (UIUC)
 - Piotr Indyk (MIT)
 - T.S. Jayram (IBM Almaden)
 - Ravi Kumar (Yahoo!)
 - D. Sivakumar (Google)

Madalgo ---- Inauguration

- Inauguration event: <u>www.madalgo.au.dk</u>
- August 24, 2007
- Morning scientific speakers:
 - Jeff Vitter (Purdue): I/O-efficient algorithms
 - Charles Leiserson (MIT): Cache-oblivious algorithms
 - Peter Sanders (Karlsruhe): Algorithm engineering
- Afternoon formal speakers:
 - National Research Foundation chairman Klaus Bock
 - Dean of Science Erik Meineche Schmidt
 - Center Leader Lars Arge
- and more
- Beer!