
582670 Algorithms for Bioinformatics

Lecture 5: Combinatorial Algorithms and Genomic Rearrangements

1.10.2015

Adapted from slides by Alexandru Tomescu,
Leena Salmela, Veli Mäkinen, Esa Pitkänen

Background

I We now have genomes of several species available

I It is possible to compare genomes of two or more different species
=⇒ Comparative genomics

I See Lecture 4

I Basic observation:
I Closely related species (such as human and mouse) can be almost

identical in terms of genomic content...
I ... but the order of genomic segments can be very different between

species

2 / 40

Example: Human vs. Mouse

I Human chromosome 6 contains
elements from six different
mouse chromosomes

I In chromosome X the
rearrangements are mostly
within the same chromosome

Image from: Gregory et al.: A physical map of
the mouse genome. Nature 418, 743-750 (15
August 2002).

3 / 40

4 / 40

Genomic Rearrangements

I The differences result from genomic rearrangement events
I Rare evolutionary events

I The number of such events can be used for estimating the
evolutionary distance between species

I Problem: What is the minimum number of events needed to
rearrange one genome into the other?

I A kind of edit distance

5 / 40

Synteny Blocks

I Synteny block = similar region in two different genomes
I Contain homologous sequences and usually genes with similar function
I Different locations, possibly even different chromosomes
I Possibly different orientations (i.e., different strands)

+1 +2 +3 +4 +5 +6

+1 +2+3−4 −5+6

synteny blocks

6 / 40

Signed Permutations

I Assign numbers 1, 2, . . . , n to the synteny blocks

I Assign signs (+ or −) to denote orientation
I A genome is then represented by a sequence of n signed numbers

called a signed permutation
I Permutation because each (unsigned) number appears exactly once

+1 +2 +3 +4 +5 +6

+1 +2+3−4 −5+6

synteny blocks

7 / 40

Sorting permutations

I The problem is then to convert one signed permutation to the other
I Using what operations/events? (next slide)

I By convention, the numbering and signs are chosen so that one of the
genomes is represented by the identity permutation (+1 + 2 · · ·+ n)

I Then we want to convert the other signed permutation into the
identity permutation

I This is called sorting the permutation

8 / 40

Reversals

I The most common genomic rearrangement event is reversal

I A contiguous section of a chromosome is reversed

I The orientation (sign) of all synteny blocks within the section changes

−4 +3 +6 −5 +1 +2
−4 +5 −6 −3 +1 +2

9 / 40

Sorting by Reversals problem

I Goal: Find the shortest series of reversals that tranforms a given
signed permutation to the identity permutation

I Input: Signed permutation P of the numbers 1, . . . , n

I Output: A series of reversals that transforms P into (+1 +2 · · · +n).

I Objective: Minimize the number of reversals

I The smallest possible number of reversals is called the reversal
distance and is denoted by drev(P).

10 / 40

Sorting by Reversals: Example

−4 +3 +6 −5 +1 +2
−4 +3 −2 −1 +5 −6
+1 +2 −3 +4 +5 −6
+1 +2 +3 +4 +5 −6
+1 +2 +3 +4 +5 +6

I This shows that drev(−4 +3 +6 −5 +1 +2) ≤ 4

I Is four the smallest number of reversals?

11 / 40

Greedy reversal sort

I Greedy reversal sort algorithm
I Move 1 to correct location and orientation
I Move 2 to correct location and orientation without moving 1 again
I Move 3 to correct location and orientation without moving 1 or 2
I etc.

I Resembles selection sort

12 / 40

Greedy reversal sort: Example

−4 +3 +6 −5 +1 +2
−1 +5 −6 −3 +4 −6
+1 +5 −6 −3 +4 +2
+1 −2 −4 +3 +6 −5
+1 +2 −4 +3 +6 −5
+1 +2 −3 +4 +6 −5
+1 +2 +3 +4 +6 −5
+1 +2 +3 +4 +5 −6
+1 +2 +3 +4 +5 +6

13 / 40

How good is greedy reversal sort?

I Not so good

I In our example, greedy reversal sort needed 8 reversals but we know
that drev ≤ 4

I Even worse case is P = (−6 +1 +2 +3 +4 +5)
I Greedy reversal sort needs 10 reversals but drev(P) = 2

−6 +1 +2 +3 +4 +5
−5 −4 −3 −2 −1 +6
+1 +2 +3 +4 +5 +6

I For any n, there is a permutation P of length n for which greedy
reversal sort requires at least (n − 1) · drev(P) reversals

14 / 40

Approximation algorithms and approximation ratios

I Greedy reversal sort is an approximation algorithm. It only produces
an approximate solution.

I A(P): approximate solution returned by algorithm A
I OPT (P): optimal solution

I The approximation ratio of (minimization) algorithm A is the
maximum approximation ratio over all inputs of size n:

max
|P|=n

A(P)

OPT (P)

I The approximation ratio for greedy reversal sort is thus at least (n−1)

15 / 40

Breakpoints and Adjacencies

I Consider a permutation P = (p1 p2 · · · pn)

I Add p0 = 0 to the beginning and pn+1 = +(n + 1) to the end
I Each consecutive pair (pi pi+1) is

I Adjacency if pi+1 − pi = 1
I Breakpoint otherwise

I Example P = (+3 +4 +5 −1 −2 −7 −6 +8)

0 +3 +4 +5 −1 −2 −7 −6 +8 +9

Adjacencies: (+3 +4), (+4 +5), (−7 −6), (+8 +9)
Breakpoints: (0 +3), (+5 −1), (−1 −2), (−2 −7), (−6 +8)

I In the identity permutation (+1 · · ·+n), all pairs are adjacencies

16 / 40

Reversals and breakpoints

How a reversal affects a pair (pi pi+1)

I No change if (pi pi+1) is outside the reversal region
I Reversal and inversion of signs if (pi pi+1) is inside the region

I (pi pi+1)⇒ (−pi+1 −pi)
I But no change to breakpoint status since pi+1 − pi = (−pi)− (−pi+1)

I The pair is separated if it is on the reversal region boundary

I Thus a reversal changes the breakpoint status of at most two pairs

17 / 40

Breakpoint Theorem

I Breakpoints(P) = the number of breakpoints in P

I Theorem: For any signed permutation P,

drev(P) ≥ Breakpoints(P)/2

I Proof
I Breakpoints(I) = 0 for identity permutation I
I A reversal eliminates at most two breakpoints
I At least Breakpoints(P)/2 reversals are needed to reduce

Breakpoints(P) to zero

18 / 40

Breakpoint Theorem: Example

I Earlier we saw that drev(P) ≤ 4 for P = (−4 +3 +6 −5 +1 +2)

I Since Breakpoints(P) = 6, the breakpoint theorem shows that
drev(P) ≥ 3

I If drev(P) = 3, there would have to be a series of three reversals each
of which eliminates exactly two breakpoints

I Is there one?

I Otherwise drev(P) = 4

19 / 40

How good is Breakpoint Theorem?

I Consider a permutation P = (+n +(n − 1) · · · +1)

I Requires n + 1 reversals to sort: drev(P) = n + 1

I Breakpoints(P) = n + 1

I Breakpoint Theorem: drev(P) ≥ (n + 1)/2
I Factor of two too small lower bound

I Is this good?

20 / 40

Breakpoint Reversal Sort

1: while Breakpoints(P) > 0 do
2: if There is a reversal r2 that reduces Breakpoints(P) by two then
3: Perform r2
4: else if There is a reversal r1 that reduces Breakpoints(P) by one

then
5: Perform r1
6: else
7: Perform a reversal that does not increase Breakpoints(P)

21 / 40

Breakpoint Reversal Sort: Analysis

I If Breakpoints(P) > 0, there is always a reversal that does not
increase Breakpoints(P)

I Reversal boundaries at breakpoints

I If P contains negative signs, there is always a reversal that decreases
Breakpoints(P)

I Proof as exercise

I Thus two consecutive reversals by the algorithm always decreases
Breakpoints(P) by at least one

I The number of reversals is at most 2 · Breakpoints(P)
I Since drev(P) ≥ Breakpoints(P)/2, the approximation ratio is at

most 4
I Is this good?

22 / 40

Computing reversal distance

I The breakpoint analysis gives lower and upper bounds for reversal
distance that are no more than a factor of four apart

I Often much closer bounds

I There exists a linear time algorithm for computing the reversal
distance but it is much more complicated (Bader, Moret & Yan, 2001)

I However, allowing operations other than reversals makes the problem
easier!

23 / 40

Other genomic rearrangements

I Fission: Split a chromosome into two

I Fusion: Concatenate two chromosomes into one

I Translocation: Split two chromosomes and join them together
differently

(+1 +2 +3 +4 +5) (+6 +7 +8 +9)

⇓

(+1 +2 +8 +9) (+6 +7 +3 +4 +5)

I More common than fusion or fission

24 / 40

Synteny Block Graph

I By convention, the synteny blocks are now labelled with letters rather
than numbers

I + and − signs are still used

I For each synteny block, the graph has two nodes connected by a
directed edge indicating the orientation of the block

I For each chromosome, the directed edges are connected by undirected
edges in the order they appear in the chromosome

I Example: P = (+a −b −c +d)

a b c d

I Nodes can be moved around without losing information

a b c d

25 / 40

Cyclic Synteny Block Graph

I Arrange block edges on a circle
I Add a connecting edge to complete the cycle

I As if the chromosome was circular

I Example: P = (+a −b −c +d)

a

b

c

d

26 / 40

Reversal in Synteny Block Graph

I Reversal operation replaces a pair of connecting edges with a different
pair of edges between the same nodes

I Example: Reversal transform of (+a −b −c +d) into
(+a −b −d +c)

a

b

c

d

a

b

c

d

Reversal

27 / 40

Fission and Fusion in Synteny Block Graph

I Fission and fusion too are similar edge replacements

I Example: Fission of (+a −b −c +d) into (+a −b) (−c +d)
and the inverse fusion

a

b

c

d

a

b

c

d

Fission

Fusion

28 / 40

2-Breaks

I The basic synteny block graph operation is 2-break:
I Remove two connecting (undirected) edges
I Add two edges connecting the same four nodes differently

I As we saw, a single 2-break can cause a reversal, a fission or a fusion

29 / 40

Translocation in Synteny Block Graph

I Translocation too can be implemented by a 2-break but on a graph
without the edges that connect chromosome endpoints

I Example: Translocation of (+a −b) (−c +d) into (+a +d) (−c −b)

a

b

c

d

a

b

c

d

Translocation

30 / 40

2-Break Distance

I For simplicity, we consider only fully cyclic graphs
I Corresponds to genomes with circular chromosomes

I We are interested in the minimal number of 2-breaks needed to
transform one graph into the other

I Corresponds to the minimal number of reversals, fissions and fusions to
transform one genome to the other

I This number is the 2-break distance

31 / 40

2-Break Distance Problem

I Goal: Compute the 2-break distance between genomes

I Input: Two genomes P and Q with circular chromosomes on the
same set of synteny blocks

I Output: The 2-break distance d(P,Q) between P and Q

32 / 40

Breakpoint Graph

I The breakpoint graph Breakpoint(P,Q) is a merging of the synteny
block graphs for P and Q

I Shared block edges (which can be omitted after construction)
I Separate connecting edges

I Example: Breakpoint(P,Q) for P = (+a −b −c +d) and
Q = (+a +c +b −d)

a

b

c

d

33 / 40

Cycles in Breakpoint Graph

I A breakpoint graph contains cycles with alternating red and blue
edges

I Let Cycles(P,Q) denote the number of such cycles in
Breakpoint(P,Q)

I Example: Cycles(P,Q) = 2 for P = (+a −b −c +d) and
Q = (+a +c +b −d)

34 / 40

Cycles and 2-Breaks

I A 2-break can increase the number of cycles by one, decrease the
number of cycles by one or not change the number of cycles

no change
increase

decrease

I Note that the alternating red–blue cycles are different from the cycles
representing chromosomes.

I Thus a 2-break splitting a red-blue cycle does not necessarily
represent a fission.

35 / 40

Cycle Theorem

I Theorem: For any genomes P and Q, any 2-break applied to P or to
Q can increase Cycles(P,Q) by at most one.

I Proof
I A 2-break removes two edges and adds two edges.
I The first removal of an edge breaks a cycle.

(The second removal might be in the same cycle.)
I Each addition of an edge can create at most one cycle.
I The total increase in the number of cycles is at most −1 + 2 = 1

36 / 40

Cycles in Identical Genomes

I Let Blocks(P,Q) be the number of synteny blocks
(shared by P and Q)

I Cycles(P,P) = Blocks(P,Q)

37 / 40

Splitting Cycles

I A cycle longer than two can always be split into two cycles by a
2-break.

I Remove any two edges on the cycle and replace them appropriately.

I If Cycles(P,Q) < Blocks(P,Q), there must be at least one cycle
longer than two, and thus there exists a 2-break that increases the
number of cycles.

38 / 40

Cycles and 2-Break Distance

I Theorem: For any genomes P and Q,
d(P,Q) = Blocks(P,Q)− Cycles(P,Q).

I Proof
I Consider a series of 2-breaks that change Q into P
I The series must have at least Cycles(P,P)− Cycles(P,Q) 2-breaks,

because each 2-break can add at most one cycle.
I On the other hand, there exists a series of no more than

Cycles(P,P)− Cycles(P,Q) 2-breaks, because we can always find a
2-break that increases the number of cycles.

I Thus d(P,Q) = Cycles(P,P)− Cycles(P,Q) =
Blocks(P,Q)− Cycles(P,Q).

39 / 40

2-Break Distance vs. Reversal Distance

I 2-break distance is simple to compute
I Reversal distance is complicated to compute

I Study groups

I Adding the extra operations, fission and fusion, helped make the
problem simpler

40 / 40

	Biological background
	Permutations and genomic rearrangements
	Sorting by reversals
	Greedy reversal sort
	Breakpoints

