
582670 Algorithms for Bioinformatics

Lecture 6: Combinatorial Pattern Matching

8.10.2015

1 / 36

Background: Whole Genome Sequencing

I Sequencing the complete genome of an individual is now relatively
cheap

I Next generation sequencing methods produce a large number of short
reads

I The reads are aligned against a reference genome

I This identifies differences between the individual and the reference

I Many applications, for example, finding potential disease causing
mutations

2 / 36

Aligning reads

I Aligning the reads against the reference genome could be done using
the aligning methods in Lecture 4

I The running time is O(|Genome| · |Reads|)
I |Genome| = length of reference genome
I |Reads| = sum of the lengths of the reads

I For example
I |Genome| ≈ 3 · 109 (Human genome)
I |Reads| ≈ 109 × 100 (one billion reads of length one hundred)
I |Genome| · |Reads| ≈ 3 · 1021

I Far too slow

3 / 36

Multiple Pattern Matching Problem

I Goal: Find all occurrences of a collection of patterns in a text

I Input: A string Text and a collection Patterns containing (shorter)
strings

I Output: All positions in Text where a string from Patterns appears as
a substring

I Models read aligning
I For the moment we ignore sequencing errors and mutations

4 / 36

Single pattern matching

I Many algorithms for searching a single pattern Pattern in a text
I String Processing Algorithms course, period II

I Brute force algorithm runs in O(|Text| · |Pattern|) time
in the worst case

I Best average case runtime: O(|Text| · log(|Pattern|) / |Pattern|)
I Still too slow, about 1018 steps for the read aligning example

I Instead of searching for each pattern separately, can we search for all
of them simultaneously?

5 / 36

Rooted Tree

I Directed graph

I A single node with indegree 0,
called the root

I Other nodes have an indegree 1
I Every node is reachable from

the root
I For each node there must be

a unique path from the root
to the node

I A node with outdegree 0 is
called a leaf

root

6 / 36

Trie

I Rooted tree

I Each edge is labeled with a
letter

I Edges leading out of a given
node have distinct labels

I Each node represents the string
obtained by concatenating the
letters on the path from the
root to the node

I For example, the red node
represents the string bab

root

a

a

n

n

a

a

b n

a

b

b

a

n

7 / 36

Trie for a set of strings

Trie(Patterns)

I Every leaf represents some
string in Patterns

I Every string in Patterns is
represented by some node

I We assume that each node
representing a pattern string
is a leaf

I Example:
Trie(ana, anna, baba, ban, nab)

I Can be constructed in
O(|Patterns|) time by inserting
strings one at a time (exercise)

root

a

a

n

n

a

a

b n

a

b

b

a

n

8 / 36

Prefix Trie Matching

I Goal: Find if a prefix of String matches a pattern in a trie

I Basic idea: Starting from the root walk along the path
labeled by the letters of String

PrefixTrieMatching(String ,Trie(Patterns))

1: symbol ← first letter of String
2: v ← root of Trie(Patterns)
3: while forever do
4: if there is an edge (v ,w) labeled by symbol then
5: v ← w
6: symbol ← next letter of String
7: else if v is a leaf then
8: return pattern represented by v
9: else

10: return empty string (signifying no match)

9 / 36

Example: Successful prefix trie matching

PrefixTrieMatching(banana,Trie(ana, anna, baba, ban, nab))

root

a

a

n

n

a

a

b n

a

b

b

a

n

10 / 36

Example: Unsuccessfull prefix trie matching

PrefixTrieMatching(nana,Trie(ana, anna, baba, ban, nab))

root

a

a

n

n

a

a

b n

a

b

b

a

n

11 / 36

Trie Matching

I Goal: Find all occurrences of patterns in Text

I Basic idea: Perform prefix trie matching for all suffixes of Text

TrieMatching(Text,Trie(Patterns))

1: for each Suffix of Text do
2: Pattern← PrefixTrieMatching(Suffix ,Trie(Patterns)
3: if Pattern is not empty then
4: output Pattern occurs in Text at the starting position of Suffix

12 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

13 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

14 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

15 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

16 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

17 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

18 / 36

Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

19 / 36

Trie Matching: Analysis

I Trie construction: O(|Patterns|) time

I Trie matching: O(|Text| · |LongestPattern|) time
I Trie matching time can be improved to O(|Text|)

I Aho–Corasick algorithm which uses an augmented trie

I Fast enough
I The problem is the memory needed for the trie

I O(|Patterns|) nodes and edges
I The trie for the reads may need terabytes of memory

20 / 36

Suffix Trie

I We are comparing one set of strings (Patterns) to
another set of strings (suffixes of Text)

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

I What if we swap the roles: use a trie of the suffixes
I In read aligning, |Text| < |Patterns|
I The reference genome changes only rarely.

No need to rebuild the trie every time.

21 / 36

Suffix Trie

SuffixTrie(Text)

I Trie of suffixes of Text
I Append special symbol $

to Text
I Ensures that all suffixes

are represented by leafs

I Leafs are labeled by the
starting positions of the
suffixes

I Example:
SuffixTrie(banana$)

root

6

$

5

$

3

$

1

$

a

n

a

n

a

0

$

n

a

a

n

a

b

4

$

2

$

a

n

a

n

22 / 36

Suffix Trie Matching

I Goal: Find all occurrences of Pattern in Text using SuffixTrie(Text)

I Basic idea: Starting from the root walk along the path
labeled by the letters of Pattern

SuffixTrieMatching(Pattern, SuffixTrie(Text))

1: symbol ← first letter of Pattern
2: v ← root of SuffixTrie(Text)
3: while forever do
4: if there is an edge (v ,w) labeled by symbol then
5: v ← w
6: if there are Pattern symbols left then
7: symbol ← next letter of Pattern
8: else
9: return all positions stored in the leafs below v

10: else
11: return empty set of occurrences

23 / 36

Example: Suffix Trie Matching

SuffixTrieMatching(ana,SuffixTrie(banana$)) = {1, 3}

root

6

$

5

$

3

$

1

$

a

n

a

n

a

0

$

n

a

a

n

a

b

4

$

2

$

a

n

a

n

24 / 36

Suffix Trie is too big

I The total length of all suffixes is O(|Text|2)

I This is also the size of SuffixTrie(Text)

I This is far too much

I Fortunately, there is a much smaller alternative: suffix tree

25 / 36

Suffix Tree

SuffixTree(Text)

I SuffixTrie(Text) where
each non-branching path
segments has been
concatenated into a
single edge

I The edge labels are
substrings of Text and
are represented by
pointers to Text

I Memory: O(|Text|)
I Can be used the same

way as SuffixTrie(Text)

root

6

5

3

1

0

4

2

$ a

$ na

$
na$

banana$

na

$
na$

26 / 36

Suffix Tree Construction

I A brute force constrution would require O(|Text|2) time

I There are more sophisticated algorithms that can construct the suffix
tree in linear time

27 / 36

Multiple Pattern Matching with Suffix Tree

Algorithm

I Construct SuffixTree(Text)
I For each pattern, find the occurrences using SuffixTreeMatching

I SuffixTreeMatching is a version of SuffixTrieMatching adapted to
use suffix tree instead of suffix trie

Runtime analysis

I Suffix tree construction: O(|Text|)
I Matching: O(|Patterns|+ |Occurrences|)

I |Occurrences| = total number of occurrences
I We can assume |Occurrences| ≤ |Text| (Why?)

I Total: O(|Text|+ |Patterns|)

28 / 36

Is suffix tree too big?

I The size of suffix tree is O(|Text|) which is asymptotically optimal
but this ignores constant factors

I Even a careful implementation of a suffix tree needs about 20 times
the size of the text

I For large genomes, this is a lot

I There are more compact alternatives: the suffix array and text indexes
based on the Burrows–Wheeler transform

29 / 36

Suffix Array

SuffixArray(Text)
I Array of all suffixes of Text in

lexicographical order
I Suffixes are represented by

their starting positions

I Sophisticated algorithms for
linear time construction

I Pattern matching by binary
searching

I Memory: ∼ 4 · |Text|

SuffixArray(banana$)
6 $

5 a$

3 ana$

1 anana$

0 banana$

4 na$

2 nana$

30 / 36

Burrows–Wheeler Transform

BWT(Text)

I Sort the set of all rotations of
Text lexicographically

I BWT(Text) is the string formed
by the last letters of the
rotations

I Example:
BWT(banana$) = annb$aa

Sorted rotations
$ b a n a n a

a $ b a n a n

a n a $ b a n

a n a n a $ b

b a n a n a $

n a $ b a n a

n a n a $ b a

I Pattern matching using an algorithm called backward search
I Requires additional data structures

I Memory: less than 2 · |Text|
I Sometimes even less than |Text| (compression)

31 / 36

Full-Text Indexes

I Data structures such as suffix trees, suffix arrays and BWT-based
data structures supporting fast pattern matching are often called
full-text indexes

I They have numerous other applications
I Example: Find the longest repeat in a text (exercise)

I Full-text indexes (as well as single and multiple pattern matching
without an index) are covered in more detail on the course
String Processing Algorithms (period II)

I When trying to solve a problem using one of these data structures, it
is probably easiest to first design an algorithm for the suffix trie and
then translate the solution to the more compact alternatives

32 / 36

Pattern Matching with Mismatches

I We want to align reads against the reference genome even if the
match is not perfect

I In fact, we are most interested in the differences
I Reads may also contain sequencing errors

I How can we use the suffix trie (or its compact alternatives) to find
occurrences with some mismatches?

33 / 36

Pattern Matching with Mismatches on Suffix Trie

I Follow all paths from
root as long as the
number of mismatches is
not too large

I Example: Searching for
pattern man in text
banana$ with at most
one mismatch finds two
occurrences at positions
0 and 2.

root

6

$

5

$

3

$

1

$

a

n

a

n

a

0

$

n

a

a

n

a

b

4

$

2

$

a

n

a

n

34 / 36

Pattern Partitioning

I Another approach is to reduce approximate matching to exact
matching

I When allowing at most k mismatches, split the pattern into k + 1
pieces, called seeds

I Find the exact occurrences of all the seeds

I For each seed occurrence, try expanding it to an approximate
occurrence of the whole pattern

I Example: At least one of four seeds matches exactly if there are no
more than three mismatching characters

X X X X X X|X X X X X X|X X X X X X|X X X X X X

... X X Y X X X X X X X X Y X X X X X X X Y X X X X ...

35 / 36

END OF COURSE

Your feedback on improving the course is greatly appreciated.
Please use the anonymous feedback form at

https://ilmo.cs.helsinki.fi/kurssit/servlet/Valinta?kieli=en

36 / 36

https://ilmo.cs.helsinki.fi/kurssit/servlet/Valinta?kieli=en

	Biological background

