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Background: Whole Genome Sequencing

I Sequencing the complete genome of an individual is now relatively
cheap

I Next generation sequencing methods produce a large number of short
reads

I The reads are aligned against a reference genome

I This identifies differences between the individual and the reference

I Many applications, for example, finding potential disease causing
mutations
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Aligning reads

I Aligning the reads against the reference genome could be done using
the aligning methods in Lecture 4

I The running time is O(|Genome| · |Reads|)
I |Genome| = length of reference genome
I |Reads| = sum of the lengths of the reads

I For example
I |Genome| ≈ 3 · 109 (Human genome)
I |Reads| ≈ 109 × 100 (one billion reads of length one hundred)
I |Genome| · |Reads| ≈ 3 · 1021

I Far too slow
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Multiple Pattern Matching Problem

I Goal: Find all occurrences of a collection of patterns in a text

I Input: A string Text and a collection Patterns containing (shorter)
strings

I Output: All positions in Text where a string from Patterns appears as
a substring

I Models read aligning
I For the moment we ignore sequencing errors and mutations
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Single pattern matching

I Many algorithms for searching a single pattern Pattern in a text
I String Processing Algorithms course, period II

I Brute force algorithm runs in O(|Text| · |Pattern|) time
in the worst case

I Best average case runtime: O(|Text| · log(|Pattern|) / |Pattern|)
I Still too slow, about 1018 steps for the read aligning example

I Instead of searching for each pattern separately, can we search for all
of them simultaneously?
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Rooted Tree

I Directed graph

I A single node with indegree 0,
called the root

I Other nodes have an indegree 1
I Every node is reachable from

the root
I For each node there must be

a unique path from the root
to the node

I A node with outdegree 0 is
called a leaf

root
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Trie

I Rooted tree

I Each edge is labeled with a
letter

I Edges leading out of a given
node have distinct labels

I Each node represents the string
obtained by concatenating the
letters on the path from the
root to the node

I For example, the red node
represents the string bab
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Trie for a set of strings

Trie(Patterns)

I Every leaf represents some
string in Patterns

I Every string in Patterns is
represented by some node

I We assume that each node
representing a pattern string
is a leaf

I Example:
Trie(ana, anna, baba, ban, nab)

I Can be constructed in
O(|Patterns|) time by inserting
strings one at a time (exercise)
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Prefix Trie Matching

I Goal: Find if a prefix of String matches a pattern in a trie

I Basic idea: Starting from the root walk along the path
labeled by the letters of String

PrefixTrieMatching(String ,Trie(Patterns))

1: symbol ← first letter of String
2: v ← root of Trie(Patterns)
3: while forever do
4: if there is an edge (v ,w) labeled by symbol then
5: v ← w
6: symbol ← next letter of String
7: else if v is a leaf then
8: return pattern represented by v
9: else

10: return empty string (signifying no match)
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Example: Successful prefix trie matching

PrefixTrieMatching(banana,Trie(ana, anna, baba, ban, nab))
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Example: Unsuccessfull prefix trie matching

PrefixTrieMatching(nana,Trie(ana, anna, baba, ban, nab))
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Trie Matching

I Goal: Find all occurrences of patterns in Text

I Basic idea: Perform prefix trie matching for all suffixes of Text

TrieMatching(Text,Trie(Patterns))

1: for each Suffix of Text do
2: Pattern← PrefixTrieMatching(Suffix ,Trie(Patterns)
3: if Pattern is not empty then
4: output Pattern occurs in Text at the starting position of Suffix

12 / 36



Example: Trie Matching

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a
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Trie Matching: Analysis

I Trie construction: O(|Patterns|) time

I Trie matching: O(|Text| · |LongestPattern|) time
I Trie matching time can be improved to O(|Text|)

I Aho–Corasick algorithm which uses an augmented trie

I Fast enough
I The problem is the memory needed for the trie

I O(|Patterns|) nodes and edges
I The trie for the reads may need terabytes of memory
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Suffix Trie

I We are comparing one set of strings (Patterns) to
another set of strings (suffixes of Text)

Patterns Text = banana

ana banana

anna anana

baba nana

ban ana

nab na

a

I What if we swap the roles: use a trie of the suffixes
I In read aligning, |Text| < |Patterns|
I The reference genome changes only rarely.

No need to rebuild the trie every time.
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Suffix Trie

SuffixTrie(Text)

I Trie of suffixes of Text
I Append special symbol $

to Text
I Ensures that all suffixes

are represented by leafs

I Leafs are labeled by the
starting positions of the
suffixes

I Example:
SuffixTrie(banana$)
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Suffix Trie Matching

I Goal: Find all occurrences of Pattern in Text using SuffixTrie(Text)

I Basic idea: Starting from the root walk along the path
labeled by the letters of Pattern

SuffixTrieMatching(Pattern, SuffixTrie(Text))

1: symbol ← first letter of Pattern
2: v ← root of SuffixTrie(Text)
3: while forever do
4: if there is an edge (v ,w) labeled by symbol then
5: v ← w
6: if there are Pattern symbols left then
7: symbol ← next letter of Pattern
8: else
9: return all positions stored in the leafs below v

10: else
11: return empty set of occurrences
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Example: Suffix Trie Matching

SuffixTrieMatching(ana,SuffixTrie(banana$)) = {1, 3}
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Suffix Trie is too big

I The total length of all suffixes is O(|Text|2)

I This is also the size of SuffixTrie(Text)

I This is far too much

I Fortunately, there is a much smaller alternative: suffix tree
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Suffix Tree

SuffixTree(Text)

I SuffixTrie(Text) where
each non-branching path
segments has been
concatenated into a
single edge

I The edge labels are
substrings of Text and
are represented by
pointers to Text

I Memory: O(|Text|)
I Can be used the same

way as SuffixTrie(Text)
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Suffix Tree Construction

I A brute force constrution would require O(|Text|2) time

I There are more sophisticated algorithms that can construct the suffix
tree in linear time
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Multiple Pattern Matching with Suffix Tree

Algorithm

I Construct SuffixTree(Text)
I For each pattern, find the occurrences using SuffixTreeMatching

I SuffixTreeMatching is a version of SuffixTrieMatching adapted to
use suffix tree instead of suffix trie

Runtime analysis

I Suffix tree construction: O(|Text|)
I Matching: O(|Patterns|+ |Occurrences|)

I |Occurrences| = total number of occurrences
I We can assume |Occurrences| ≤ |Text| (Why?)

I Total: O(|Text|+ |Patterns|)

28 / 36



Is suffix tree too big?

I The size of suffix tree is O(|Text|) which is asymptotically optimal
but this ignores constant factors

I Even a careful implementation of a suffix tree needs about 20 times
the size of the text

I For large genomes, this is a lot

I There are more compact alternatives: the suffix array and text indexes
based on the Burrows–Wheeler transform
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Suffix Array

SuffixArray(Text)
I Array of all suffixes of Text in

lexicographical order
I Suffixes are represented by

their starting positions

I Sophisticated algorithms for
linear time construction

I Pattern matching by binary
searching

I Memory: ∼ 4 · |Text|

SuffixArray(banana$)
6 $

5 a$

3 ana$

1 anana$

0 banana$

4 na$

2 nana$
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Burrows–Wheeler Transform

BWT(Text)

I Sort the set of all rotations of
Text lexicographically

I BWT(Text) is the string formed
by the last letters of the
rotations

I Example:
BWT(banana$) = annb$aa

Sorted rotations
$ b a n a n a

a $ b a n a n

a n a $ b a n

a n a n a $ b

b a n a n a $

n a $ b a n a

n a n a $ b a

I Pattern matching using an algorithm called backward search
I Requires additional data structures

I Memory: less than 2 · |Text|
I Sometimes even less than |Text| (compression)
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Full-Text Indexes

I Data structures such as suffix trees, suffix arrays and BWT-based
data structures supporting fast pattern matching are often called
full-text indexes

I They have numerous other applications
I Example: Find the longest repeat in a text (exercise)

I Full-text indexes (as well as single and multiple pattern matching
without an index) are covered in more detail on the course
String Processing Algorithms (period II)

I When trying to solve a problem using one of these data structures, it
is probably easiest to first design an algorithm for the suffix trie and
then translate the solution to the more compact alternatives
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Pattern Matching with Mismatches

I We want to align reads against the reference genome even if the
match is not perfect

I In fact, we are most interested in the differences
I Reads may also contain sequencing errors

I How can we use the suffix trie (or its compact alternatives) to find
occurrences with some mismatches?
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Pattern Matching with Mismatches on Suffix Trie

I Follow all paths from
root as long as the
number of mismatches is
not too large

I Example: Searching for
pattern man in text
banana$ with at most
one mismatch finds two
occurrences at positions
0 and 2.
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Pattern Partitioning

I Another approach is to reduce approximate matching to exact
matching

I When allowing at most k mismatches, split the pattern into k + 1
pieces, called seeds

I Find the exact occurrences of all the seeds

I For each seed occurrence, try expanding it to an approximate
occurrence of the whole pattern

I Example: At least one of four seeds matches exactly if there are no
more than three mismatching characters

X X X X X X|X X X X X X|X X X X X X|X X X X X X

... X X Y X X X X X X X X Y X X X X X X X Y X X X X ...
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END OF COURSE

Your feedback on improving the course is greatly appreciated.
Please use the anonymous feedback form at

https://ilmo.cs.helsinki.fi/kurssit/servlet/Valinta?kieli=en
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