
Nordic Journal of Computing 1(1994), 346–363.

THE FORK CALCULUS

KLAUS HAVELUND∗

Ecole Normale Supérieure, Laboratoire d’Informatique
45 rue d’Ulm, 75005 Paris, France

havelund@dmi.ens.fr

KIM GULDSTRAND LARSEN†

Aalborg University, Institute for Electronic Systems
Fr. Bajersvej 7, 9220 Aalborg, Denmark

kgl@iesd.auc.dk

Abstract. The Fork Calculus FC presents a theory of communicating systems in
family with CCS, but it differs in the way that processes are put in parallel. In CCS
there is a binary parallel operator |, and two processes p and q are put in parallel
by p|q. In FC there is a unary fork operator, and a process p is activated to “run
in parallel with the rest of the program” by fork(p). An operational semantics
is defined, and a congruence relation between processes is suggested. In addition,
a sound and complete axiomatisation of the congruence is provided. FC has been
developed during an investigation of the programming language CML, an extension
of ML with concurrency primitives, amongst them a fork operator.

Key words: process calculi, process creation, bisimulation, axiomatisation

CR Classification: D.3.1, D.3.3, F.3.1, F.3.2

1. Introduction

The Fork Calculus FC is motivated by problems encountered while origi-
nally investigating semantic properties of the programming language CML
(Concurrent ML) [8, 9, 1]. In particular, we address the definition and ax-
iomatisation of suitable equivalences between CML expressions. CML is an
extension of ML with CCS-like concurrency primitives. The model behind
CML is that of concurrently executing expressions that communicate by
synchronous message passing on typed channels. The concurrent aspects
of CML, however, differ from CCS in an essential way: In CCS there is a
binary parallel operator |, and two processes p and q are put in parallel by
p |q. In CML the binary parallel operator has been replaced by a unary fork

operator, and a process p is activated to “run in parallel with the rest of the

∗ On Leave from DIKU, University of Copenhagen, Denmark. The work of this author
was in addition supported by the Danish ‘Forskerakademiet’.
† The work of this author was supported by the Danish Natural Science Research Council
project DART and partially by the ESPRIT Basic Research Action 7166, CONCUR2.

Received November 1993. Revised September 1994.

THE FORK CALCULUS 347

program” by fork(p). The concurrency primitives of CML are provided as
a set of “functions”, from which the following may be derived:

channel : unit -> ’a chan

fork : (unit -> ’a) -> unit

transmit : ’a chan * ’a -> unit

accept : ’a chan -> ’a

There are minor differences in the choice of CML primitives, their types
and names, in [8], [9] and [1]. In terms of the primitive features sync, send
and receive of [1], which we have chosen to follow, transmit and accept

may be defined as: transmit(x) = (sync(send(x));()) and accept(x)

= sync(receive(x)). The function channel yields a fresh channel each
time it is applied. The function transmit sends a value to a channel.
The function accept reads a value from a channel. Finally, the function
fork starts a separate evaluation of its argument function; that is: fork(f)
starts the evaluation of f(). As an example, consider an implementation
in CML of a function calc:real->real having the following specification:
calc(x)=cos(x)+sin(x). The implementation can be given as follows:

fun calc(x) =

let val r1 = channel()

val r2 = channel()

in

fork(fn () => transmit(r1,cos(x)));

fork(fn () => transmit(r2,sin(x)));

(accept(r1) + accept(r2))

end;

The function evaluates the expressions cos(x) and sin(x) in parallel.
First, two (local) channels r1 and r2 are allocated. Then, the two evalua-
tions are forked; The two forked evaluations return their respective results
on the channels r1 and r2.

One goal is to define an appropriate equivalence between CML expressions.
As an example, consider that we reverse the order of the two fork expres-
sions, thus forking the sinus calculation first. Then we would like the result-
ing function to be equivalent to the one above. The result in both cases is
two parallel evaluations of the expressions cos(x) and sin(x) and we really
do not care about how this result is obtained. In general, we will not want to
observe the particular forking strategy — only the collected behaviour of the
result. As an even more radical example, the implementation given above
should satisfy the original specification calc(x)=cos(x)+sin(x). Another
natural and important requirement of our equivalence is that it is a congru-

ence with respect to all CML constructs as this will allow compositional ver-
ification. In particular, equivalences between composite expressions should
be inferable from equivalences of subexpressions.

348 K. HAVELUND, K. G. LARSEN

Our work has been influenced by the work on Facile [7], a language that
integrates functional and concurrent programming in a way quite similar
to CML — there is for example a fork operator. In [7], Facile is given
an operational semantics and a notion of equivalence is developed. The
Facile equivalence is, however, not shown to be a congruence in the general
case; basically due to proof-technical difficulties. The Facile equivalence may
though turn out to be a congruence. We have concluded, that the issues
of equivalence and compositionality in the presense of forking can best be
studied in isolation from the other issues in CML, so we design a calculus,
FC (Fork Calculus), that is close to CCS, but which provides a one-argument
fork-operator instead of the two-argument parallel-operator found in CCS.
Also, the unary prefix–operator of CCS is replaced by a binary operator
for sequential composition. Although some of our techniques are related to
those in [7], this simplification gives us a congruence, and in addition we
approach its complete axiomatisation.

The outline of the remainder of this paper is as follows: in section 2 we
present the syntax and a structured operational semantics of our calculus
FC. In section 3 we present the obvious strong bisimulation equivalence
between processes based on the operational semantics of section 2. This
equivalence is, however, not a congruence with respect to the constructs
of FC; note that strong bisimulation equivalence is preserved by almost all
constructs introduced so far in process algebra (see e.g. [2]). In section 4, we
provide an explicit characterization of the congruence induced by the strong
bisimulation equivalence. In section 5, we offer a complete axiomatisation
of this congruence.

2. Syntax and Semantics

The syntax of the calculus is as follows, where N denotes the set of process
names.

L ::= nil | A | L1 + L2 | L1;L2 | fork(L) | N

A ::= τ | a? | a!

nil is the terminated process that can perform no actions. Amongst the
actions A that a process can perform are τ , the internal action, input ac-
tions of the form a?, and output actions of the form a!, where a is a channel
name. Two processes that run in parallel may synchronise on complemen-
tary actions, one being an input action and the other being an output action
containing the same name. The choice between two processes is written as
L1 + L2. Two processes can be sequentially composed by L1;L2. This has
the traditional interpretation that L1 is evaluated first until it terminates
(becomes nil) whereupon L2 continues. Note that FC here differs from
CCS which instead of sequential composition has action prefixing. Sequen-
tial composition has greater precedence than choice.

THE FORK CALCULUS 349

The other main difference from CCS is the fork expression: a process is
forked with fork(L). It means that a separate evaluation of L is begun
such that L is made to run in parallel with the rest of the program. The
fork expression itself terminates immediately after starting the separate
evaluation of L. N is the call of a process, that has been named in a

definition of the form N
def
= L. In the present theory we disallow recursion

in order to obtain a complete axiomatisation, and we only introduce process
naming to be able to write some more appealing (nonrecursive) examples.
Except for the complete axiomatisation, it is very easy to extend the results
of this paper to allow recursion.

So what are the consequences of this seemingly minor change compared
to CCS: having sequential composition and forking instead of action pre-
fixing and parallel composition? There are pragmatic as well as semantic
consequences. As we shall see, the semantic consequences are quite drastic.
Concerning the pragmatic consequences, let us study an example. Consider
the following informal requirement specification:

A ‘session’ at a computer terminal consists of an ‘initialisation’ followed

by a ‘run’. The initialisation consists of a ‘setup’ phase followed by a ‘dialog’

phase. After the ‘setup’ phase, a report is sent to a paper printer which will

‘print’ the report.

This requirement specification can be directly presented in FC as follows
(note that for convenience, we shall often leave out the ‘?’ when writing
input actions; actions are written with small letters by convention):

Session
def
= Initialise; run

Initialise
def
= setup; fork(print); dialog

The point to note is that we can locally in Initialise express the parallel
activation of the printer (print) after the setup phase. This local activation of
a process is not directly expressible in CCS, where we would write something
like:

Session
def
= setup.(print.nil | dialog.run.nil)

We see that it is not possible to give a name (Initialise) to the pair setup
and dialog: one looses abstraction. So characteristic of the fork operator is
that we can start a process locally where the need arises, and this gives a
possibility of naming a sequential composition that performs parallel activa-
tion as a “side effect”. Of course the above pragmatic difference between FC
and CCS is just a matter of taste, and we shall in the following concentrate
on the formal implications of having ‘fork’ and ‘;’.

First, we define an operational semantics for the language of the calculus.
That is, the approach taken is that of structured operational semantics as
introduced in [6] and later applied to CCS as described in [4]. The difference

350 K. HAVELUND, K. G. LARSEN

between the semantics here and the two existing semantics of CML [9, 1] is
(except for the different languages) that we let transitions be labelled with
actions. Both in [9] and in [1], transitions are not labelled with actions.
Action labels are important from the point of view of defining an appropriate
bisimulation equivalence, since bisimulation is defined as identical action
behaviour.

A labelled transition system is a triple (St, Lab,→), where St is the set of
states (for example processes), Lab is the set of labels (actions performed by
the processes) and →⊆ St×Lab×St is the transition relation: (st1, l, st2) ∈
→ may be interpreted as “the state st1 is able to perform the action l and

by doing so becomes the state st2”. Typically we use the notation st1
l
→ st2

for (st1, l, st2) ∈→. The transition relation thus defines the dynamic change
of states as they perform actions.

The semantics of CCS is normally given in terms of a single labelled tran-
sition system where St is the set of CCS processes. In contrast to the CCS
semantics, the FC semantics is divided into two layers, corresponding to
two labelled transition systems. In the first layer we give semantics to pro-
cesses seen in isolation (St is the set of processes). In the next layer, we
give semantics to collections of processes running in parallel (St is the set of
such process collections). When “running” a process, for example fork(p); q
we start out with a collection consisting of that process. After the forking,
we have a collection containing two processes, p and q, running in parallel.
We refer to a collection of processes as a program (thus St is the set of
programs).

2.1 Processes

In this section we give semantics to processes seen in isolation. We shall do
this by defining a labelled transition system (L,Lab, ↪→) where L is the set
of processes introduced in section 2. Concerning the definition of the labels
Lab, assume an infinite set of (channel) names Chan. Then Lab (the labels
on process transitions) is gradually defined as follows:

Com = {a? | a ∈ Chan} ∪ {a! | a ∈ Chan}
Act = Com ∪ {τ}
Lab = Act ∪ {φ(p) | p ∈ L}

The set Com, ranged over by c, is the set of input-output communications
that processes can perform. The set Act, ranged over by α, β, γ, . . ., includes
in addition the τ action, and it is the set of actions that we will be able to
observe in the end, when executing programs. The set Lab, ranged over by l,
includes further labels of the form φ(p) (p ∈ L) which arise from evaluation
of processes of the form fork(p). These labels will not be observable at the
program layer, since at that level they will be converted into τ actions.

We now define the transition relation ↪→⊆ L× Lab × L. Before defining
this transition relation we define the predicate Stop ⊆ L. We shall use the

THE FORK CALCULUS 351

notation Stop(p) instead of p ∈ Stop. Now Stop is defined as the least subset
of L satisfying the following:

Stop(nil),
If Stop(p1) and Stop(p2) then Stop(p1 + p2) and Stop(p1; p2),

If Stop(p) and N
def
= p then Stop(N)

The operational semantics of FC processes is then as follows.

Definition 1. (The transition relation ↪→) Let ↪→ be the smallest
subset of L× Lab ×L closed under the following rules:

(Act)
α

α
↪→ nil

(Sum1)
p1

l
↪→ p′1

p1 + p2
l

↪→ p′1

(Sum2)
p2

l
↪→ p′2

p1 + p2
l

↪→ p′2

(Seq1)
p1

l
↪→ p′1

p1; p2
l

↪→ p′1; p2

(Seq2)
p2

l
↪→ p′2

p1; p2
l

↪→ p′2

Stop(p1)

(Fork)
fork(p)

φ(p)
↪→ nil

(Const)
P

l
↪→ P ′

A
l

↪→ P ′
A

def
= P

The rules should be fairly simple to read. The Act-rule says that a process
of the form α can perform the action α and become nil. The Sum1-rule
says that if p1 can perform l and become p′1, then the sum p1 + p2 can also,
and symmetrically by the Sum2-rule. The sequencing rules explain how
sequencing proceeds with the leftmost process until it has stopped (Seq1),
whereupon the rightmost process continues (Seq2). The Fork-rule shows
how the higher order labels φ(p) are created. When we come to the program
semantics their use will be explained. Finally, the Const-rule explains how
the name of a process behaves as the defining body. Let us look at an
example. The process α; fork(β); γ can evaluate as follows:

α; fork(β); γ
α
↪→ nil; fork(β); γ

φ(β)
↪→ nil; γ

γ
↪→ nil

Note that the forked process β just becomes part of the label, and that it
is not further used. When executing programs, we will make sure that the
forked process is put in parallel with the “rest of the program”.

352 K. HAVELUND, K. G. LARSEN

2.2 Programs

A program is a multiset of processes. A multiset can contain several copies
of the same element, (in contrast to normal sets), corresponding to the fact
that at a certain moment there may be several processes active with exactly
the same structure. Formally, the multisets of A elements can be viewed as
the elements in MS(A) = A → N. That is, a multiset of A elements is a
total function from A to the natural numbers. Each A element is mapped
to its number of occurrences. The union operator ∪ : (MS(A)×MS(A)) →
MS(A) is defined by the equation (S1 ∪ S2)(a) = S1(a) + S2(a). A “finite”
multiset S can be written {|p1, . . . , pn|} where the number of occurrences of a
process q indicates the value S(q). As an example, {|p|}(p) = 1 and {|p|}(q) =
0 whenever p 6= q. We let Lp denote the set of programs (Lp = MS(L)).
The semantics of programs is given in terms of the labelled transition system
(Lp,Act,−→), where Lp is defined here and Act was defined in the previous
section. Thus a program can perform the actions in the set Act; recall that
these were of the form a?, a! or τ . The fork actions φ(p) are thus not
amongst program actions.

We shall now define the transition relation: −→ ⊆ Lp × Act × Lp. We
need the auxiliary function rev : Com → Com, which for a given com-
munication returns the complementary communication with which it can
synchronise; i.e: rev(a?) = a! and rev(a!) = a?. The operational semantics
of FC programs is then as follows.

Definition 2. (The transition relation −→) Let −→ be the smallest
subset of Lp × Act ×Lp closed under the following rules:

(Act{||})
p

α
↪→ p′

{|p|}
α

−→ {|p′|}
(Fork{||})

p
φ(q)
↪→ p′

{|p|}
τ

−→ {|p′, q|}

(Par
{||}
1)

P1
α

−→ P ′
1

P1 ∪ P2
α

−→ P ′
1 ∪ P2

(Par
{||}
2)

P1
c

−→ P ′
1 , P2

rev(c)
−→ P ′

2

P1 ∪ P2
τ

−→ P ′
1 ∪ P ′

2

The Act{||}-rule just says that if a process can perform an action, then a
program containing that process can perform the action. Note that α ranges
over Act, which does not contain φ(p) actions. The Fork{||}-rule explains how
a φ(. . .) action generates a τ action at program level: the forking process and
the forked process will after the transition be in parallel. We have chosen
to let forking generate a τ action rather than just to do a “silent” fork. The
reason for this is our original goal to deal with the existing CML semantics,

where forking generates a τ action. Finally, the rule Par
{||}
1 explains how a

“subset” of a program may perform actions on its own. Note, that we need

only one such rule as ∪ is clearly commutative. The Par
{||}
2 –rule shows how

two distinct subsets of a program may communicate, generating a τ action.

THE FORK CALCULUS 353

3. Program and Process Equivalences

The purpose of this section is to define an equivalence relation ∼⊆ L × L
between FC processes. For this purpose we shall, however, first define an
equivalence relation ^ ⊆ Lp ×Lp between FC programs.

3.1 Program Equivalence

Our notion of equivalence is based on the concept of bisimulation [4], which
again is based on the idea that we only want to distinguish between two
programs, if the distinction can be observed by an “observer” examining
the actions that the two programs can perform. Note that in the following
we shall regard the τ action just as observable as the other actions (a? and
a!) in Act. We shall for example distinguish {|α; τ ;β|} and {|α;β|}. This will
yield a rather strict congruence (fewer programs are congruent). We have
chosen to make τ observable in our first attempt, since it is the classical
choice: first a strong notion of equivalence is defined (where τ is observable),
and then one abstracts from τ . The formal definition of ^ proceeds in the
standard way [4] as follows. First, we define the notion of a bisimulation.

Definition 3. (Bisimulation) A binary relation S ⊆ Lp×Lp is a bisim-
ulation iff (P,Q) ∈ S implies, for all α ∈ Act,

(1) Whenever P
α

−→ P ′ for some P ′ then Q
α

−→ Q′ for some Q′ and
(P ′, Q′) ∈ S

(2) Whenever Q
α

−→ Q′ for some Q′ then P
α

−→ P ′ for some P ′ and
(P ′, Q′) ∈ S

We write P ^ Q where (P,Q) ∈ S for some bisimulation S.

As usual it may be shown that ^ is itself the largest bisimulation. More-
over, ^ is easily shown to be a congruence with respect to ∪.

3.2 Process Equivalence

In the previous section we introduced an equivalence on programs, and we
stated it to be a congruence with respect to the basic operator on programs:
∪. What we are really interested in is, however, not programs, but rather
processes. Processes are the terms of our language, and programs are “just”
semantic objects used for giving semantics to processes. So our definite goal
is to define an equivalence on processes. This equivalence must additionally
be a congruence with respect to the operators on processes (+; fork). In this
section we shall come up with a process equivalence ∼, which seems rather
natural and correct, but which, however, turns out not to be satisfactory
due to lack of the congruence property. In the section to follow we will define
an equivalence ≡ that is also a congruence, in fact the congruence induced
by ∼; but the present exercise can hopefully motivate the final solution.

354 K. HAVELUND, K. G. LARSEN

We shall define an equivalence relation ∼⊆ L×L between FC processes.
Two processes p and q are said to be equivalent if (p, q) ∈∼, which is written
more conveniently as p ∼ q. The idea is to say that two processes are equiv-
alent, if they are equivalent when regarded as programs. Put differently: to
see whether two processes are equivalent, “run” them (as programs) and see
whether they behave the same way. Formally, we thus define ∼ as follows:

Definition 4. (Process equivalence) The relation ∼⊆ L×L is defined
as:

p ∼ q ⇔ {|p|} ^ {|q|}

As we shall see, the fork operator causes ∼ not to be a congruence. This is
rather unusual since (strong) bisimilarity is normally preserved by operators.
Consider two processes that are related by ∼:

τ ;α ∼ fork(α)

To see this, consider the behaviours of programs {|τ ;α|} and {|fork(α)|}:

{|τ ;α|}
τ

−→ {|nil;α|}
α

−→ {|nil|}

{|fork(α)|}
τ

−→ {|nil, α|}
α

−→ {|nil,nil|}

Clearly these behaviours are bisimilar (as they are identical). Now, sup-
pose that we put the two processes into the same context ;β. Will it then
hold that τ ;α;β ∼ fork(α);β? Unfortunately no!. This can be seen from
the behaviours of the programs {|τ ;α;β|} and {|fork(α);β|}, as illustrated
by the transition trees for the two programs in Fig. 1.

{|τ ; α; β|} {|fork(α); β|}
↓ τ ↓ τ

{|nil; α; β|} {|nil; β, α|}
↓ α α ↙ ↘ β

{|nil; β|} {|nil; β,nil|} {|nil, α|}
↓ β ↓ β ↓ α

{|nil|} {|nil,nil|} {|nil,nil|}

Fig. 1: Different Transition Trees

Thus, ∼ is not a congruence, and we have to repair this. In the following,
we introduce a process relation that is a congruence. It is even the largest
congruence induced by (contained in) ∼.

THE FORK CALCULUS 355

4. Process Congruence

In this section we introduce a new process equivalence ≡ being strictly finer
than the previously given equivalence ∼. As one of the main results of this
paper we prove that ≡ is precisely the congruence induced by ∼; i.e. ≡ is
preserved by all operators of FC, and is the largest such equivalence included
in ∼. The fact that ∼ is not a congruence is illustrated by the previous
example demonstrating the difference between the two processes τ ;α and
fork(α) when put into the context ;β. The difference lies essentially in the
ability of the action α to be in parallel with future computation, which is
here represented by the action β.

It is this ability to be in parallel with future computation that we want to
capture. Future computation is what computes after the termination of the
observed process. When examining the two programs {|τ ;α|} and {|fork(α)|},
we cannot detect this termination: both programs perform a τ action and
then an α action, and that’s it. The process τ ;α, however, terminates
after the second action (α), while the process fork(α) already terminates
after the first action (τ), when the forking has been performed — the forked
process α can then execute after this termination. We thus need to add some
information that makes it possible to observe termination. This can be done
by introducing a special event, π, that, when being performed, signals the
successful termination of the observed process. For a given process p under
observation, we shall examine {|p;π|} rather than just {|p|}.

As an example, in order to observe the difference in terms of future com-
putations between the processes τ ;α and fork(α), we “run” τ ;α;π and
fork(α);π as programs. That is, we examine the multisets {|τ ;α;π|} and
{|fork(α);π|}. Both programs can perform the trace ταπ, however only the
program {|fork(α);π|} can perform the trace τπα, where the α action occurs
after the π action. This may be illustrated by the transition trees for the
two programs, which will be identical to the trees in Fig. 1 with π replacing
β.

We are now able to give the following formal definition of the process
congruence ≡:

Definition 5. (Process congruence ≡) The relation ≡⊆ L×L is de-
fined as:

p ≡ q ⇔ {|p;π|} ^ {|q;π|}

This equivalence is similar to one of the equivalences defined in [7]; how-
ever, no axiomatisation is provided in [7].

One of the main results of this paper is that ≡ is the congruence (i.e. pre-
served by the operators of FC) induced by ∼. First of all, it is straightfor-
ward to show that ≡ is an equivalence relation. That it is also a congruence
is stated as the following theorem.

356 K. HAVELUND, K. G. LARSEN

Theorem 1. (Congruence Property) Assume processes p1, p2 and q

where p1 ≡ p2. Then:

fork(p1) ≡ fork(p2)
p1 + q ≡ p2 + q

q; p1 ≡ q; p2

p1; q ≡ p2; q

Proof.
For each equation p ≡ q we shall prove {|p;π|} ^ {|q;π|}. Then the equa-

tion follows from definition 5. To prove {|p;π|} ^ {|q;π|} we define a relation
S containing the pair ({|p;π|}, {|q;π|}), and then show that S is a bisimula-
tion according to definition 3.

That ≡ is the congruence induced by ∼ is formulated as follows.

Theorem 2. (Induced Congruence Property) ≡ is the largest con-
gruence contained in ∼.

Proof.
It is easy to show that ≡ is contained in ∼. Essentially we show that

{|p|} ^ {|q|} whenever {|p;π|} ^ {|q;π|} by using definition 3. To see that
≡ is the largest such, assume that ' is an arbitrary congruence included in
∼. Now assume p ' q. As ' is assumed to be a congruence it follows that
p;π ' q;π, and — as ' is supposed to be included in ∼ — also p;π ∼ q;π.
However, then p ≡ q according to definitions 4 and 5, and it follows that '
is included in ≡.

5. Strong Axiomatisation

In this section we present a sound and complete axiomatisation for the
process congruence ≡. The completeness of the axiomatisation is obtained
in a classical manner through the use of normal forms — being process
expressions with a very restricted use of the fork–operator. More precisely,
the axiomatisation consists of a collection of basic equational axioms, and
two expansion laws. The basic axioms achieve completeness for normal
form processes, and the expansion laws (together with the basic axioms)
enable arbitrary process expressions to be transformed into normal form,
thus yielding completeness for the full calculus.

In more classical process calculi, expansion laws allow parallel composition
to be replaced by non–determinism. In our calculus, the expansion laws will
have an analogous purpose, namely that of replacing as much as possible
forking with non–deterministic choice. However — as we shall see in the next
section — our calculus seems to lack expressive power for suitable expansion
laws to exist. To overcome this problem, we shall extend the calculus with an
extra operator described below. This phenomenon is similar to the necessity
of the leftmerge operator in PL in order to obtain a finite sound and complete
equational axiomatisation as shown in [5].

THE FORK CALCULUS 357

5.1 Searching for an Expansion Law

We need expansion laws, that describe how forking may be expanded (as
much as possible) into non–determinism — similar to the expansion law of
CCS that expands parallel composition into non–determinism. For example,
consider the following instance of the CCS expansion law:

a.nil | b.nil = a.b.nil + b.a.nil

Let us try to search for a similar expansion law for the FC fork operator.
We try to expand the corresponding FC–process fork(a); b. An initial guess
can be the following:

fork(a); b = a; b + b; a

However, this equation is not sound (it does not hold when replacing =
with ≡), and can therefore immediately be ignored. Intuitively, the reason
is that the right hand side contains no information about a’s capability to
be in parallel with “the rest of the program”. In the next seemingly correct
equation we try to take this into account:

fork(a); b = a; b + b; fork(a) (1)

This equation is not sound either: the left hand side can perform a τ

action as the first thing, while the right hand side can perform either an a

action or a b action (note that since we want to axiomatise strong process
congruence ≡, τ actions are observable). Trying to repair this problem we
obtain:

fork(a); b = τ ; (a; b + b; fork(a)) (2)

This equation is not sound either: the left hand side can only perform one
τ action, while the right hand side can perform two (the explicitly mentioned
and the one caused by fork).

So it seems that we cannot in general expand forking! This leaves open
the problem of how to establish equality between process expressions in-
volving the fork-operator. The latter two attempts above suggest that we
need a version of fork which is instantaneous without the initial internal
transition caused by fork. Put alternatively, we lack the ability to express
that something has been forked, with the initial τ action already having
occurred previously. To gain this expressivity, we add a new instantaneous
forking operator to our calculus. We call this operator forked, and we write
forked(p) to mean ‘fork p without a τ ’. One can regard this operator al-
ternatively by reading forked(p) as ‘p has been forked’, or shorter: ‘forked

358 K. HAVELUND, K. G. LARSEN

p’. The latter reading suggests the following relationship between fork and
forked:

fork(p) = τ ; forked(p)

Let us now try to write new versions of Eq. (1) and Eq. (2), that contain
the forked operator in appropriate positions. These equations can be shown
sound on basis of the formal definition we give of the forked operator in
the following section. The equations are:

forked(a); b = a; b + b; forked(a)

fork(a); b = τ ; (a; b + b; forked(a))

However, it remains to settle whether it is possible to find an operator
forked satisfying the above equations. In the next section we give an affir-
mative answer by providing an operational semantics for this new operator.

5.2 Adding the ‘Forked’-operator

The syntax is extended with the forked alternative:

LΦ ::= nil | A | LΦ
1 + LΦ

2 | L
Φ

1;L
Φ

2 | fork(LΦ) | forked(LΦ) | N

The extended calculus is called FCΦ. The set Lab of actions that a process
can perform is extended accordingly:

Lab = Act ∪ {φ(p) | p ∈ LΦ} ∪ {Φ(p) | p ∈ LΦ}

The new semantics of processes and programs is obtained by adding the
following rules:

(Forked)
forked(p)

Φ(p)
↪→ nil

(Forked{||})
p

Φ(q)
↪→ p′, {|p′, q|}

α
−→ R

{|p|}
α

−→ R

The definition of Stop is unchanged for the extended calculus. That is:
¬Stop(forked(p)) for any p. The previous semantic definitions from section
2 — the sets Com and Act (however not Lab), and the operational semantic
rules for the original operators — carry over unchanged to the extended
calculus. Likewise do the definitions of the program equivalence ^ and the
process equivalences ∼ and ≡ from sections 3 and 4. The proofs of the
following properties also carry over: (1) ^ is a congruence with respect to
∪, (2) ∼ is an equivalence (but not a congruence, as before), (3) ≡ is an
equivalence.

THE FORK CALCULUS 359

The congruence property of ≡ does, however, not apply to the extended
calculus. The reason for this can be illustrated by the following example.
It is easily shown that forked(nil) ≡ nil. Now, consider the two processes
forked(nil) + α and nil + α. In order for ≡ to be a congruence, these
two processes should be equivalent (show the same behaviour). They are,
however, not equivalent since forked(nil) + α can avoid to perform the α

action while nil + α must perform the α action.

We choose to loosen the requirement that ≡ is a congruence. The con-
gruence property holds for all the operators, except for the choice operator,
hence it becomes conditioned (even a conditioned congruence can be useful
from a practical point of view). Let Active(q), for any process q ∈ LΦ,

mean that q can perform an action. That is: Active(q)
def
= ∃α ∈ Act, P ∈

LΦ
p · {|q|}

α
−→ P . Then the loosened congruence property can be stated as

follows: assume for two processes p1, p2 that p1 ≡ p2. Then for any process
q:

p1 + q ≡ p2 + q provided Active(q) ⇒ (Stop(p1) ⇔ Stop(p2))

The condition is motivated by our previous example, where q is α, and p1

is forked(nil) and p2 is nil, thus the condition is not satisfied in this case.
Note that Stop(forked(nil)) does not hold according the definition of Stop
which is unchanged for the extended calculus.

5.3 Basic Axioms and Inference Rules

The axiom system AS consists of a set AX of equational axiom schemes, two
expansion laws E1 and E2, using normal forms, and a set I of inference rules,
that represents the fact that ≡ is an equivalence and (nearly) a congruence.
In this section we shall present the basic equational axioms AX .

Definition 6. (Basic axiom system AX) The basic axiom system AX
consists of the axioms:

fork(p) = τ ; forked(p)
forked(α; forked(p) + q) = forked(α; p + q)

forked(nil) = nil

p;nil = p
nil; p = p

(p; q); r = p; (q; r)

(p + q); r
∗
= p; r + q; r

p + (q + r) = (p + q) + r
p + q = q + p

p + nil = p
p + p = p

The
∗
= equality holds when ¬Stop(p) and ¬Stop(q).

360 K. HAVELUND, K. G. LARSEN

5.4 Normal Forms

Our way to completeness is classical in that it is based on normal forms.
For processes in normal form, the basic axioms AX will be shown to be
complete, and we shall in the next section present two expansion laws that
will enable any process term to be transformed into a provable equivalent
normal form process term.

Processes in normal form contain no applications of the fork operator, and
applications of the forked operator occur last. One intuition behind this is
that when observing a process we cannot observe the individual forkings; and
as long as the original process has not terminated, we cannot observe which
actions come from it and which actions come from the forked processes. We
can, however, in contexts observe when the process terminates and what at
that time has been forked. In principle a process is brought into normal
form by first replacing applications fork(p) by τ ; forked(p), and then by
moving the applications of forked as much as possible “to the right”. Note
that we must deal with the forked operator in normal forms, since we must
keep track of what is potentially in parallel with future computation.

As an example, consider the process fork(α);β. First, we can replace
fork(α) with τ ; forked(α), obtaining τ ; forked(α);β. Then the process
forked(α);β, is brought into the form α;β + β; forked(α). As result we
obtain τ ; (α;β + β; forked(α)). We see that there is no application of the
fork operator, and that the application of the forked operator occurs last.
Let us now formally introduce normal forms:

Definition 7. (Normal form) A process p is in normal form, if it is a
term in N , where:

N ::=
∑

i αi;Ni +
∑

j βj ; forked(Bj) and B ::=
∑

k βk;Bk

A process p is in simple normal form, if it is a term in B.

Note that simple normal forms contain no applications of the forked op-
erator. That is, once we have reached the termination of a process (second
alternative in the definition of N), what remains has all been forked, and to
express this we only need one application of the forked operator. That is,
we do not care about any “further” forking.

5.5 Expansion Laws

The two expansion laws to be presented in this section will enable any pro-
cess term to be transformed into normal form. To motivate the two expan-
sion laws consider the case of a sequential composition of two process terms
N and M already in normal form. Now assume N is of the following form:

N =
∑

i

αi;Ni +
∑

j

βj ; forked(Bj)

THE FORK CALCULUS 361

Then, when using the laws for distributing ; over + and laws of associa-
tivity for ;, we obtain:

` N ;M =
∑

i

αi; (Ni;M) +
∑

j

βj ; (forked(Bj);M)

To enable this term to be transformed into a normal form we introduce
the following expansion law:

Definition 8. (Expansion law E1)
Let: A =

∑

i αi;Ai, N =
∑

j βj ;Nj, L =
∑

k γk; forked(Ck) and
M = N + L where M is not nil. Then:

forked(A); M = p + q + r + s + t

where

p =
∑

i αi; forked(Ai); M
q =

∑

j βj ; forked(A); Nj

r =
∑

k γk; forked(A); forked(Ck)
s =

∑

αi=rev(βj)
τ ; forked(Ai); Nj

t =
∑

αi=rev(γk) τ ; forked(Ai); forked(Ck)

To be able to inductively transform forked(A);M into normal form, we
see in definition 8 that we need to be able to handle terms of the form
forked(A); forked(B). This motivates the second expansion law below:

Definition 9. (Expansion law E2)
Let: A =

∑

i αi;Ai and B =
∑

j βj ;Bj. Then:

forked(A); forked(B) = forked(p + q + r)

where

p =
∑

i αi; forked(Ai); forked(B)
q =

∑

j βj ; forked(A); forked(Bj)
r =

∑

αi=rev(βj)
τ ; forked(Ai); forked(Bj)

The basic axioms AX , the two expansion laws E1 and E2 and the inference
rules I constitute our proof system AS, which we shall show to be (limited)
complete. We write ` p = q if the equivalence of p and q can be entailed
within the proof system AS.

5.6 Soundness and Limited Completeness

In this section we state, that the axiom system AS is sound and complete
with respect to strong process congruence. That is, ` p = q ⇔ p ≡ q. The
basic technique for showing completeness is classical; i.e. first to prove that
each process term in the original forked-free calculus of section 2 is equiv-
alent to a term in normal form, and then to prove completeness for normal
forms. The fact that the completeness result only will apply to forked-free
processes makes it “limited”. First we state the soundness result.

362 K. HAVELUND, K. G. LARSEN

Theorem 3. (AS is sound) For all p, q ∈ LΦ, whenever ` p = q then
p ≡ q.

Note that the result holds for all p, q in FCΦ. The following proposition
states that there exists a normal form for every process term in FC. Note
that there does not exist a normal form for every process term in FCΦ; as
an example, the process forked(α) has no normal form.

Proposition 1. (Normal forms for FC) For all p ∈ L, there exists a
normal form N such that: ` p = N .

The next step is to show completeness for normal forms.

Proposition 2. (Normal form completeness) For all normal forms
M,N ∈ LΦ, whenever M ≡ N then ` M = N .

These two propositions can be used to prove the (limited) completeness
result. The completeness result is limited in the sense that it only holds for
process terms of FC (and not FCΦ).

Theorem 4. (AS is limited Complete) For all p, q ∈ L, whenever p ≡
q then ` p = q.

6. Conclusion and Future Work

In this paper we have identified and axiomatised a congruence ≡ between
FC–processes. Also, it has been demonstrated that ≡ is the congruence
induced by a natural strong bisimulation equivalence ∼.

In practice, however, both ∼ and ≡ are too fine, as they are sensitive
to internal computations. To obtain a more suitable equivalence, we may
consider the weak bisimulation equivalence ≈ between processes, in which
we abstract away from τ–transitions. Doing this, we will observe the same
phenomena as we did for the strong equivalence: ≈ is not preserved by
sequential composition. Applying the technique of this paper — i.e. defining
p ∼= q iff p;π ≈ q;π — we obtain the coarsest equivalence contained in ≈
which is also preserved by ; (and fork). However, ∼= will not quite be a
congruence as it will not be preserved by the choice–operator. This is a
classical problem [4], and we conjecture that the classical techniques for
overcoming this problem will apply to ∼=. Also, we conjecture that the
congruence obtained in this manner will be completely axiomatized by the
axiomatization AS presented in this paper augmented with the classical
τ–laws [4].

As immediate future work we intend to investigate the FC–calculus ex-
tended with primitives for dynamic channel creation and communication of
channels. Further future work includes design of a (logical) specification
language for specifying properties of FC programs. It should be shown that

THE FORK CALCULUS 363

the designed specification language is adequate with respect to a suitable
process–equivalence (for example the one defined here); i.e. two processes
enjoy the same properties of the specification language precisely when they
are behaviourally equivalent. One may consider a modification of the spec-
ification language which is defined in [3] for CCS, usually referred to as
Hennessy-Milner logic.

A more long–term ambition is to extend our work to the full language of
CML.

References

[1] Berry, D., Milner, R., and Turner, D.N. 1992. A Semantics for ML Concur-
rency Primitives. In Proceedings of the 19th ACM Symphosium on Principles of
Programming Languages.

[2] Groote, J. F. and Vaandrager, F. W. 1989. Structured Operational Semantics
and Bisimulation as a Congruence. LNCS 372.

[3] Hennessy, M. and Milner, R. 1985. Algebraic Laws for Nondeterminism and Con-
currency. Journal of ACM 32, 1 (January).

[4] Milner, R. 1989. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall.

[5] Moller, F. 1990. The Importance of the Left Merge Operator in Process Algebra.
LNCS 443.

[6] Plotkin, G. 1981. A Structural Approach to Operational Semantics. FN 19, DAIMI,
Aarhus University, Denmark.

[7] Prasad, S., Giacalone, A., and Mishra, P. 1990. Operational and Algebraic
Semantics for Facile. In Proceedings of ICALP90, LNCS 443.

[8] Reppy, J. H. 1991. CML: A Higher-order Concurrent Language. In ACM SIG-
PLAN’91 Conference on Programming Language Design and Implementation (SIG-
PLAN Notices 26(6)).

[9] Reppy, J.H. 1991. An Operational Semantics of First–class Synchronous Operations.
Tech. Report TR 91–1232, Cornell University, Department of Computer Science.

