The Sum-Product Bridge

Mikko Koivisto
Academy Research Fellow
Sums of Products United – People

Club members at the CS department of UH
- Esther Galbrun, *PhD student (co-advisor H. Toivonen)*
- Kustaa Kangas, *MSc student*
- Mikko Koivisto, *leader, advisor*
- Janne Korhonen, *PhD student (co-advisor P. Kaski)*
- Teppo Niinimäki, *PhD student*
- Pekka Parviainen, *PhD student*

Associate club members (key collaborators)
- Petteri Kaski (*Algodan, Aalto University*)
- Andreas Björklund (*Lund University*)
- Thore Husfeldt (*IT University Copenhagen*)

...
Build and maintain a bridge that connects algorithm theory and computational statistics by developing the methodology of computing large sums of products.
The amazing Fairyland Bridge connects two mountains at 5,000ft at Huangshan.
SoPU – Mission

Build and maintain a bridge that connects algorithm theory and computational statistics by developing the methodology of computing large sums of products.
Probabilistic Models – Sums of Products

Bayesian network

Computational tasks

Inference:
\[p_G(a|bc) = \frac{\sum_{de} p_G(abcde)}{\sum_{ade} p_G(abcde)} \]

Learning:
\[G^* \in \text{argmax}_G p_G(abcde)p(G), \]
with \(p(G)=p(G_a)p(G_b)\ldots p(G_e) \)

\[p_G(abcde)=p(d)p(e)p(a|de)p(b|a)p(c|ae) \]
Sums of Products – Algebra & Combinat.

Algebra

\[\sum_{x \in A} \prod_S f_S(x_S) \]

- **Rings**
 (+, ⋅) over integers
 (+, ⋅) over polynomials

- **Semirings**
 (max, ⋅)
 (min, +)
 (min, max)

Combinatorics

- The scopes \(S \subseteq \{1, \ldots, n\} \) form a **hypergraph**.
 (E.g., in BN inference)

- The summation is over a domain \(A \subseteq D_1 \times \cdots \times D_n \) that may have a **combinatorial** structure.
 (E.g., in BN learning)
SoPU: Results 2010–2011

- **Algorithm theory**
 - SODA’10,
 - ICALP’10,
 - SODA’12,

- **Computational statistics**
 - AISTATS’10,
 - UAI’11,
 - ECML-PKDD’11,
 - SDM’11.
Interactions: a directed acyclic graph

2012 SODA
2011 UAI ECML-PKDD SDM’11
2010 IPL ICALP SODA AISTATS
2009 IWPEC ESA UAI
2008 FOCS STACS ICALP WABI
2007 STOC
2006 FOCS UAI COLT IPL ECML
2005 ICML JMLR WABI
2004 Thesis
2003 PSB
Permanent stuff (BHKK, IPL 2010)

- per $A = \sum_p a_{1p(1)} \cdots a_{mp(m)}$, where p runs through all injections from $[m]$ to $[n]$.

Theorem

<table>
<thead>
<tr>
<th>Algebraic structure</th>
<th>Time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>semiring</td>
<td>$m \ B(n, m)$</td>
</tr>
<tr>
<td>commutative semiring</td>
<td>$m(n-m+1)2^m$</td>
</tr>
<tr>
<td>ring</td>
<td>$m \ B(n, m/2)$</td>
</tr>
<tr>
<td>commutative ring</td>
<td>$(mn-m^2+n)2^m$</td>
</tr>
</tbody>
</table>

$B(n, m)$ is the number of subsets of $[n]$ of size at most m.
What Next

- Keep the main themes
 - Make use of subtraction (additive inverses)
 - Optimization via counting
 - Space-time tradeoff considerations
- Bilinear transforms
 - Systematic study
- Bayesian networks
 - Implement into a public software
 - Apply to causal discovery with domain experts
- Other
 - Can randomized algorithms be much faster?
 - Better combinatorial bounds?