
TASK-DRIVEN SPECIALIZATION SUPPORT
FOR OBJECT-ORIENTED FRAMEWORKS

Markku Hakala1, Juha Hautamäki1, Kai Koskimies1,

Jukka Paakki2, Antti Viljamaa2, Jukka Viljamaa2

1Software Systems Laboratory, Tampere University of Technology
P.O.Box 553, FIN – 33101 Tampere, Finland
E-mail: {markku.hakala, csjuha, kk}@cs.tut.fi

 2Department of Computer Science, University of Helsinki
P.O.Box 26, FIN – 00014 University of Helsinki, Finland

E-mail: {antti.viljamaa, jukka.viljamaa, jukka.paakki }@cs.helsinki.fi

A framework is a collection of classes implementing the shared architecture of a
family of applications. It is shown how the extension points ("hot spots") of a
framework can be specified formally in such a way that the specification can be
used to automatically generate a task-based wizard for guiding the framework
specialization process. The extension points are specified as parameterized
patterns, which define various constraints over the parameters. The tool (FRED)
allows the application developer to bind actual system elements to the pattern
parameters or generate default code as instructed in the pattern specification. The
tool keeps track of the broken constraints and generates necessary programming
tasks to remedy them. We argue that this kind of tool support could be the core of
a programming environment for architecture-oriented programming, guaranteeing
that the static requirements of the architecture are satisfied. In this sense the
parameterized pattern concept represents an architecture-level (static) typing
system, and the tool is a structure-oriented editor that both guides the user and
checks that the application conforms to the given architecture. The tool has been
implemented in Java for Java, and it has been evaluated against a real industrial
framework. We will explain the underlying concepts of FRED and the main
characteristics of the tool, demonstrate the approach with a simple example, and
summarize our experiences with the approach so far.

1. INTRODUCTION
Background
Product line architecture is a system of rules and conventions for creating software
products for a given domain ([JGJ97], [Bos00], [JRL00]). Object-oriented frameworks are
an established way to implement product line architectures [FSJ99]. A framework
implements the invariant part of an architecture and defines its specialization
interface. A new product can be derived from the framework by providing the
application-specific part written against the specialization interface.

The specialization interface of a framework, like any software interface, can be
regarded as a contract between two systems. A system (framework) defines a
contract that specifies the requirements the system expects from another system
(application-specific part). Any system that fulfills the contract can play the role of
the latter system.

Typically, the documentation provided together with a framework describes in
varying formats the specialization interface of the framework. In addition, the
features of the implementation language can be used to express some aspects of the
specialization interface (e.g. interface classes in Java). Unfortunately, the former

 2

method relies on informal descriptions that cannot be exploited for automated
specialization support and verification, and the latter method can capture only a
fraction of the rules associated with specialization interfaces.

Design patterns [Gam95] have gained popularity as a means to describe architectural
units of frameworks [Joh92]. Many authors have also recognized the close
relationship between the flexibility points of frameworks (“hot spots” [Pre95]) and
design patterns (e.g. [Rie00], [Hak99], and [FMW97]). It seems that the notion of a
design pattern is a promising starting point for systematic approaches to the
specification of framework architectures and specialization interfaces.

Our Contribution
This paper proposes a task-driven approach to framework specialization. Our
model embodies an algorithm that maintains a dynamic “things-to-do”-list in co-
operation with the framework developer. The idea is to provide interactive
specialization instructions that adapt to the current specialization problem. In
addition, code generation, and to some extent, verification, can be implemented on
top of the model.

Motivated by the notions of contract and (design) pattern we define a new kind of
contractual interface concept that we call a programming pattern (simply referred as a
pattern). A pattern is a collection of roles for various language structures (classes,
methods, attributes etc.), and a set of constraints on the roles. Each role can be bound
to an actual instance of a language structure in a system (e.g. a class role is bound to
a particular class).

Structural aspects of a design pattern in the sense of [Gam95] can be represented as
a programming pattern, but our pattern does not take a stand on the purpose or
scope of the pattern. A programming pattern is a mechanism for providing
programming assistance that can be used to specify also idioms, coding
conventions, and framework-specific architectural properties.

We have implemented a development environment called FRED (FRamework
EDitor for Java) to demonstrate the potential of pattern-based framework
engineering. FRED introduces semi-graphical editors for defining patterns and for
carrying out the bindings. It supports the framework specialization process by
guiding the application developer through a task list based on the pattern
definitions. At the same time, it verifies that the patterns are bound to the context
in the required manner. FRED is freely available at http://practise.cs.tut.fi/fred.

The FRED methodology and programming environment have been validated in a
real-world case study carried out for one of our industrial partners.

The rest of this paper is organized as follows. In Chapter 2 we discuss ways to
describe software architectures and possibilities to utilize architectural descriptions
to generate programming tasks. The model adopted for the architectural
descriptions is presented in detail in Chapter 3. In Chapter 4 we use a small case
study to demonstrate the practical implications of the FRED environment. Finally,
conclusions are drawn in Chapter 5 together with some comparisons with the
related work on the field.

2. THE VISION: TASK-BASED FRAMEWORK SPECIALIZATION
Traditionally, the planning of software architecture has been understood as a part of
the software design phase, and architectures have been mainly described with
standard modeling languages (such as UML) or with dedicated architecture

 3

description languages (ADL). To some degree, these abstract descriptions make it
possible to assess the quality of the system at the architectural level, but they fall
short in supporting the construction of the actual executable system based on the
architecture.

Especially the construction of product families calls for systematic architecture-
centric methodologies and tools that support the implementation of both the
reusable core of the family and the products derived from it. In particular, we need
an environment that guarantees that the application-specific code conforms to the
underlying architecture.

Explicit architectural descriptions are needed to enable tool support for framework
specialization. We propose an architecture-oriented programming environment that
takes a definition of an architecture as a set of patterns and provides interactive,
architecture-specific guidance for the development process.

Within the environment, the application of an architecture results in a
corresponding set of pattern instances binding the produced source code elements
to the roles defined in the patterns. Both patterns and pattern instances are
considered as explicit programming entities that can be formally expressed and
processed by a tool. The tool takes pattern definitions as input and gradually
constructs instances for them by recording the bindings interactively with the
developer.

The interaction is carried out by the means of programming tasks, which reflect the
unbound roles of the pattern, as well as the broken constraints related to existing
bindings. Typical programming tasks include creation of new classes and methods
as well as refactoring of program elements to adhere to some semantic constraints.
For instance, the creation of a subclass can be seen as a task. Defining an overriding
method within that subclass might be another task, which may occur only after the
creation of the enclosing class. Hence tasks are executed in ordered sequences, and
a completed task may generate a sequence of new tasks.

When doing a task, the developer proceeds according to a well-defined plan, but
also makes choices. Creating a new program element for a given task results in a
new binding. There might be several alternative ways to do the task, each generating
succeeding tasks. The tool creates these new tasks based on the information
encoded in the pattern. At the same time the developer sees the effects of the
binding step by step, making it easier for her to understand the architectural
implications of the pattern.

We argue that this kind of interactive guidance is very beneficial in framework
adaptation. Consider, for example, instructions for framework specialization. The
problem with traditional documentation is that it has to be written before the
specialization takes place. Therefore the documentation has to be given in terms of
abstract concepts of the framework, not with the concrete concepts of the
specialization. By providing tasks incrementally, the tool can gather information
about the specialization and "specialize" the documentation as well using
application-specific terms, reflecting the choices the developer has already made.

Similarly, code generation is dynamic in the sense that it adapts to the
implementation context captured by previous bindings. The interactive nature of
the environment makes it natural to show the automatically produced code
immediately to the developer so that she can tailor it according to the instructions
given by the tool.

Semantic constraints defined in programming patterns form the basis of code
verification. The environment can re-evaluate constraint checks whenever the user

 4

manipulates the source code, thus making it possible for the task list to evolve
concurrently with the development process to express constraint violations and
ways to fix them. We use incremental compilation techniques to enable such
interactive response.

3. THE THEORY: PROGRAMMING PATTERNS
As the basis of task-based framework specialization, and task-based programming in
general, we propose the notion of a programming pattern, as a generative description
that can be applied systematically under the guidance of a development tool to
produce a number of similar structures.

A programming pattern is a generalization of recurring implementation. It defines a
generic structure by the means of roles, where each role is an abstraction of a
recurring fragment in a set of concrete structures. Each role is characterized by its
type, which defines the kinds of program elements (e.g. classes, methods, variables,
formal parameters to a method, statements) the role stands for. Furthermore, a role
may stand for a single element, or a set of elements.

Applying the pattern is called instantiation, and the resulting structure is called a
pattern instance. Given a pattern with roles, a pattern instance consists of role instances,
each of which maps to a role in a pattern. Each role instance represents a binding
between a concrete program element within a software system, and a role in the
pattern.

As a programming pattern is composed of roles, placeholders for syntactical
elements in a programming language, a programming pattern is essentially a
template for producing and validating code. Thus, it should not be confused with
design patterns [Gam95]. However, considering only the solution-part of design
patterns, there is a subtle relationship. A design pattern describes a solution as a
collaboration of roles. A design pattern manifests itself within a system if a set of
objects exist that play these roles according to their responsibilities. Thus, in the
context of design patterns, the notion of a role is essentially dynamic, in contrast to
our definition where a role is a placeholder of static program elements. However,
the documentation of a design pattern typically implicitly assumes a class-based
system. Rather than describing the solution by the means of objects, a class-based
implementation schema is outlined that implies the actual object collaboration.
Thus, also design patterns have a static interpretation. These two views can be
defined as static and dynamic perspectives on patterns. Programming patterns
therefore fit in this picture as static, implementation-oriented variations of design
patterns. For the rest of the discussion, we restrict the usage of word "pattern" to
denote our notion of programming patterns.

The instantiation of a programming pattern equals to the process of binding
suitable program elements to the roles of the pattern. The instantiation process is
incremental and carried out in co-operation of a developer and a development tool.
The tool provides the developer with the sequence of programming tasks that
instruct the developer in instantiating the generic solution proposed by the pattern.
Production tasks instruct the developer to instantiate a role. Such an instance will
become part of the pattern instance. Refactoring tasks assist the user in modifying a
program element bound to a role to adhere the constraints imposed by the role.

There might be several ways to do the task, each of which will generate succeeding
tasks, based on the information encoded in the pattern. In addition to semantic
constraints that can be used as the basis of code verification, this information could
include documentation and code templates that are parameterized by the
implementation context captured by previous bindings.

 5

If the user follows the ever-changing task list, a point is reached where no more
mandatory tasks exist. As a result, the abstract structure defined by the roles has
been specialized in a user-defined context. This is recorded as a set of bindings
between roles and program elements – the pattern instance.

We will apply patterns for describing specialization interfaces of frameworks.
Specializations of a framework share a similar, although not the same structure. This
is unavoidable, and even favorable as similarity promotes maintenance and
comprehensibility. A specialization is also guaranteed to work best and be less
sensitive to internal changes of a framework when implemented the way the
framework developer intended. As programming patterns cope with recurring
structures, they constitute a convenient way to define the specialization interface of
a framework. To provide systematic task-based tool support for framework
specialization, the framework developer should provide framework-specific patterns
for the development tool. Although framework-independent, when instructed by
these patterns the tool produces a programming environment for a particular
framework. We call this kind of a tool a metawizard.

Syntax
It is possible to separate the syntactic and semantic aspects of programming
patterns. In this chapter, we will focus on the syntactic side. We will first define
programming patterns and pattern instances as graphs of certain properties, then
pattern instantiation as a process of forming the pattern instance graph based on
the pattern definition graph. We call the structure of the instance graph the syntax of
a pattern instance, defined by the grammar of the definition graph. At the end we
will provide an algorithm for pattern instantiation.

Pattern Definition Graph
Syntactically, a programming pattern can be presented as a directed acyclic graph,
formalized by the following 3-tuple:

 P = (R, D, c)

 R ⊆ L

 D ⊆ R × R

 c : R → {0, 1, 2, …} × {1, 2, 3, …, ∞}, c(r) = (l, u), u ≥ l

This is called the definition graph. The vertices R of the graph are called roles, and the
directed edges D are called dependencies. In the definition of a role, we assume
language L, which defines the set of possible names. Each role is identified by a
unique name within the pattern. Furthermore, a dependency from r to s is an
ordered pair (r, s), where role r is called the depender, and role s is called the dependee.

The third part of the definition, function c, is called the cardinality function. For each
role, it returns an ordered pair (l, u), called the cardinality constraint, where l is called
the lower bound and u is called the upper bound. This bounds the number of
instances of the role, in relation to its dependees. Precise interpretation is provided
later when discussing pattern instantiation.

Figure 1 shows a graphical representation of an example pattern definition graph.
The nodes represent roles and the directed arcs represent dependencies. The
cardinality constraint for a role is placed in parentheses after the label of the
associated node.

 6

Figure 1. An example pattern definition graph.

Note that no semantic information is encoded in the notation, even though the
names of the roles may intuitively suggest associated semantics (role named Class
should probably be bound to a class, etc.). We can however assume semantic
constraints stating e.g. that Class represents an implementation class, Field represents
a private attribute within that class, and Getter represents a method for accessing the
Field within a Class. Given this semantics, the pattern would represent a reusable
structure for a class having a number of attributes and an accessor method for each
attribute. Nevertheless, we will explain the patterns first in a purely syntactic way,
and continue to the semantics thereafter.

Pattern Instance Graph
A pattern instance can be presented as a directed acyclic graph as well. Instance P’
of pattern P = (R, D, c) can be formalized by the following 3-tuple:

 P’ = (R’, D’, s)

 R’ ⊆ R × Z+

 D’ ⊆ R’ × R’, ∀ ((r, x), (s, y)) ∈ D’ : (r, s) ∈ D

 s : R’ → { mandatory, optional, done }

In this instance graph, the vertices R’ are called role instances. Each role instance is a
manifestation of some role in the associated definition graph. Role instances are of
form (r, x) where r is that role and x, as a positive integer, identifies the instance
amongst all instances of role r. The directed edges D’ between role instances are
called dependency instances. Each dependency instance (a, b) manifests a dependency
defined between the two roles that a and b are instances of.

Role instances correspond to production tasks within a tool environment. Function
s, called the state function, maps each role instance to a state. As a task, role instance
can be done or undone. Furthermore, an undone task may be considered as mandatory
or optional. To understand the state function, and instance graph in general we must
look at the instantiation process.

Pattern Instantiation
The process of creating a pattern instance based on a pattern is called instantiation.
Instantiation of a pattern takes place in a development tool environment. It is an
incremental process, which is carried out co-operatively by the tool and the
developer. In the perspective of the tool, the instantiation process can be described
by an algorithm that assumes a definition graph P = (R, D, c) and an instance graph
P’ = (R’, D’, s) and augments P’ with new role instances, if possible. The newly
created role instances are mandatory or optional production tasks, to be carried out
by the developer. Whenever the user completes a task, the state of the role instance
is changed to done, and the tool should re-evaluate the algorithm to determine
whether it is possible to create new role instances based on existing role instances.

Class (1,∞)

Field (0,∞) Getter (1,1)

 7

Figure 2 shows a graphical representation of a pattern instance, based on the pattern
in Figure 1. The nodes represent role instances and the directed arcs represent
dependency instances, respectively. The state of a role instance is written in
superscript after the label of the associated node.

Figure 2. An example pattern instance graph.

Figure 2 portrays a partial pattern instance, i.e. a pattern instance that is in the
middle of instantiation. Some tasks have been done, resulting in a graph of role
instances. The interpretation of the graph can be based on the semantic outline
sketched in Figure 1. The developer has created two classes and an attribute. (Getter,
1) represents a task to provide a getter-method for that attribute. As this is a
mandatory task, the instance is not yet considered complete instantiation of a
pattern. The developer has also a choice of continuing with optional tasks, some of
which may lead to new tasks, even mandatory.

Before examining the instantiation algorithm, let us provide some auxiliary
definitions.

If within a graph vertex b is reachable from vertex a, i.e. either a=b or there is a path
from a to b, we call b an ancestor of a, and a a descendant of b. Within the instance
graph we define binary relation π : R’ × R’ such that π(a, b) if and only if b is
reachable from a. In addition, we define three functions. All of these are defined
below.

 π(a, b) ≡ a = b ∨ (∃ c ∈ R’ : (a, c) ∈ D’ ∧ π(c, b))

 Id(r) = { (r, x) ∈ R’ | s((r, x)) = done }, r ∈ R’

 Iu(r) = { (r, x) ∈ R’ | s((r, x)) ≠ done }, r ∈ R’

 dependees(r) = { s | (r, s) ∈ D }

Given these definitions we can introduce a statement called syntactic goal:

 ∀ r ∈ R :

 { s1, …, sn } = dependees(r),

 ∀ (d1, …, dn) ∈ { (d1, …, dn) ∈ Id(s1) ×…× Id(sn) |

 ∀ t ∈ R : ∀ i, j : π(di, (t, x)) ∧ π(dj, (t, y)) → x = y } :

 Q ={ q ∈ Id(r) | ∀ i : ∃ (q, di) ∈ D’ },

 l ≤ |Q| ≤ u, (l, u) = c(r)

(Class, 1) done

(Field, 1) done (Getter, 1) mandatory

(Class, 2) done

(Field, 2) optional

(Class, 3) optional

(Field, 3) optional

 8

If this statement holds the instance graph is considered to be syntactically valid. The
responsibility of a tool can therefore be restated as an effort to achieve the syntactic
goal. Informally, for each role r with a cardinality constraint (l, u), the syntactic goal
states the following:

There should be n ∈ (l, u) number of instances of r for each
ordered list (d1,…,dn) where di and dj are instances of different
dependees of r such that if both di and dj have an ancestor that is an
instance of role t, then this ancestor is unambiguous. There should
be no other instances of r.

When the instance graph conforms to this statement, it is called complete. If it is
possible to achieve the syntactic goal by adding more role instances to the instance
graph, the instance as well as the instantiation is called partial. The tool should
ensure that any time, the pattern instance is either complete or partial, but not
otherwise malformed or in a form that would lead to a malformed pattern by the
completion of an existing task. An algorithm is given in following (Algorithm 1) that
assumes a pattern P = (R, D, c) and an instance P’ = (R’, D’, s); the latter presents
the current instantiation situation. The algorithm augments P’ with missing role
instances, i.e. production tasks. The process considers each role and decides
whether it is necessary to create new instances of that role. This is determined by
first constructing all possible combinations of the instances of the dependee roles.
Then the algorithm checks if a correct amount of instances exists for each of these
combinations. If not, a new role instance is created, with state set to optional or
mandatory, depending on whether the lower bound denoted by the cardinality
constraint has been exceeded.

When the user carries out a task, the state of the task is changed to done, and the
algorithm is re-evaluated.

FOR EACH r ∈ R DO

 { s1, …, sn } ← dependees(r)

 (l, u) ← c(r)

 FOR EACH (d1, …, dn) ∈ Id(s1) ×…× Id(sn)

 WHERE ∀ t ∈ R : ∀ i, j : π(di, (t, x)) ∧ π(dj, (t, y)) → x = y DO

 Q ← { q ∈ Id(r) | ∀ i : ∃ (q, di) ∈ D’ }

 IF |Q| < u ∧ ¬∃ p ∈ Iu(r) : ∀ i : ∃ (p, di) ∈ D’ THEN

 q ← (r, x) WHERE (r, x) ∉ R’ ∧ ((r, x - 1) ∈ R’ ∨ x = 1)

 R’ ← R’ ∪ { q }

 D’ ← D’ ∪ { (q, d1), …, (q, dn) }

 s(q) ←(IF |Q| ≤ l THEN mandatory ELSE optional)

 END
 END
END

Algorithm 1. Augmenting the pattern instance with new tasks.

 9

The tool should also allow the developer to backtrack her choices. A role instance
can be removed from the instance graph if it has no descendants but itself. After
the removal of a role instance the states of other undone tasks should be updated
(as a result of the removal, an optional task may become mandatory), and the
algorithm given should be re-evaluated.

As an example of the instantiation process, consider Figure 3, which presents three
initial steps of an instantiation of a pattern presented in Figure 1. The first step
represents the initial situation; the tool has created an instance of role Class, as it has
no dependencies. In the second step, the developer has completed that task
(indicated by a gray arrow). Given the semantics we sketched when describing the
example pattern, the completion of this task could have resulted by the
implementation of a new class, pointed out by the developer as the program
element for the task (Class, 1). This has resulted in the re-evaluation of Algorithm 1.
Creation of a task has resulted in new tasks, based on the dependencies defined in
the pattern (a dependency (Field, Class) is defined is the pattern definition graph).
Therefore, for each (done) instance of Class, the tool creates an instance of Field.
Actually, as the upper bound of the cardinality constraint on Field is infinity, a new
(optional) task is created from Field each time the developer succeeds to complete
the earlier one. This eventually leads to a number of Field instances for each Class
instance.

In addition to (Field, 1), the first instance of Field, a new instance of role Class has
been created, as the upper bound denoted by the cardinality constraint is not yet
reached. Both of the new tasks are optional, as the lower bounds defined in the
pattern have been exceeded.

 10

Figure 3. Three initial steps of an example pattern instantation.

Step 3 shows yet another situation, resulted from the previous situation on the
completion of task (Field, 1). This has resulted in a new instance of Field, as well as
an instance of Getter. The latter is possible as there now exists an instance of both
Class and Field, and given the dependencies (Getter, Class) and (Getter, Field) in the
definition graph, a Getter should be instantiated for each pair of such instances.
Note that an instance of Getter is not created for pair (Class, 2) for two reasons;
firstly, the state of that instance is not done, and secondly, that would result in a role
instance with ambiguous ancestor of role Class, which is prohibited by the syntactic
goal, defined earlier as the basis for the instantiation process.

As the fourth step of the instantiation, you may consider Figure 2, resulted from
Step 3 on the completion of (Class, 2).

Semantics
The definition graph provides a grammar for describing patterns. In the previous
subchapter, we provided an algorithm that gradually generates an instance graph
based on that grammar. The resulting pattern instance can be regarded as a sentence
of a language defined by the pattern. So far, we have discussed only the syntax of
these languages. To provide useful tool support, the grammar described by the
definition graph has to be decorated with tool-specific semantics.

A semantic system can be constructed by attaching semantic properties to vertices
of the definition and instance graphs. Roles are supplied with expressions, role

(Class, 1) mandatory

(Class, 1) done

(Field, 1) optional

(Class, 2) optional

(Class, 1) done

(Field, 1) done (Getter, 1) mandatory

(Class, 2) optional

(Field, 2) optional

Step 3. The situation after the user completes (Field, 1)

Step 2. The situation after the user completes (Class, 1)

Step 1. The initial situation.

 11

instances with values. An expression attached to role r will be evaluated in the
context of a role instance, reading and writing values to and from the instance and
its ancestors. The approach relates to attribute grammars, where rules attached to
the grammatical productions (pattern) are used in calculating values on the concrete
syntax tree (pattern instance). Thus, an expression attached to role r can be used to
express constraints on the instances of r. In a development tool environment, role
instances are bound to program elements like classes and methods, and the
expressions are used to provide code generation and verification, as well as context-
sensitive documentation for program development.

We assume a suitable expression language for defining these expressions. The
language should be compatible to the previously mentioned language for naming
the roles, so that expressions can refer to other roles by their names. References can
be made only to the ancestors of the role. If an expression for role r refers to
ancestor role s, when evaluated in the context of an instance q, that reference
evaluates to an instance, which is of role s and an ancestor of q. Although there can
be multiple instances of s, given the syntactic goal, the tool warrants the
unambiguity of the reference.

4. THE TOOL: FRED ENVIRONMENT
FRED (FRamework EDitor for Java) is a prototype tool implementing the model
discussed above. It provides a task-driven programming environment for the
framework specialization process by guiding the application developer through a
task list based on pattern definitions and keeping track of the progress of the tasks,
verifying that the patterns are bound to the context in the required manner.

FRED is implemented in Java and intended for providing task-driven assistance for
architecture-oriented Java programming. Our original motivation was to support
specialization of Java frameworks, but it has later turned out that the approach can
be used to guide programming according to various kinds of other architectural or
coding conventions as well. As an example, we have modeled parts of the JavaBeans
architecture as patterns, obtaining thus an environment for JavaBeans
programming.

The user interface of FRED is shown in Figure 4. It contains number of views to
manage Java projects and programming patterns. In the figure, the application
developer has opened the Architecture view, which shows the project in terms of
instantiated patterns and subsystems. The Task View tool shows the task list for a
selected pattern instance.

 12

Figure 4. User interface of FRED.

The task list is automatically updated according to the stage of the source code.
Typically, doing a task opens the source code editor to write the required code, or
the code can be automatically generated, if possible. Violated constraints and
unbound roles will generate new tasks during the pattern usage, until the whole
pattern has been bound to its context.

FRED-specific Semantics for Java Programs
FRED uses patterns to support the development of Java programs, especially in the
context of framework specialization. The semantic system is implemented as a class-
based object-oriented language, classes presenting roles, role instances being
instances thereof, and expressions implemented as class members, roughly divided
to constraints and templates. Currently, both patterns and pattern instances are
expressed in a tool-specific storage format, manipulated only by graphical or semi-
graphical editors within the tool environment.

Patterns within FRED are used for expressing reusable structures within Java
programs. Roles are considered as abstract representations of recurring program
elements. Being implemented as classes, each role extends a base class that specifies
the kind of program element the role represents: e.g. a class, a method, a field (Java-
term for attribute) or a formal parameter to a method. The base class is called the
type of the role. It defines what kinds of expressions can be attached to the role. A
role instance represents a production task for providing a program element denoted
by the type. The task is considered done if the user, using the tool, assigns a suitable
program element to the instance.

A refactoring task is generated if the program element assigned to a role instance

 13

does not conform to the constraints of the role. In such case, the assigned element
needs to be modified or the role instance has to be associated with more suitable
element. Table 1 lists some typical constraints for role r with an ancestor role s.
Each expression given is evaluated in the context of some instance q of role r.
Therefore, each occurrence of r in the descriptions stand for "the program element
bound to q", and each occurrence of s stands for "the program element bound to an
instance of s that is an ancestor of q".

Constraint Description

contained in s r should be contained in s (This denotes containment
in the syntactic sense. E.g. a class contains methods
and attributes whereas method contains formal
parameters and statements.)

inherit s r should inherit s (Classes, interfaces and primitive
types are all considered classes in FRED. Inheritance
is a generalization over the extends- and implements-
relationships of Java.)

override s r should override s

return s r should declare s as its return type
Table 1. Some semantic constraints.

Templates are used for generating context-sensitive code and documentation. A
template is essentially a string with embedded sub-expressions. Like all expressions,
a template is evaluated in the context of a role instance. During the evaluation, all
embedded sub-expressions are evaluated and expanded to strings. Table 2 lists some
of the most important types of templates in FRED.

Template Description

taskTitle Returns an informal string representation of the
production task (all role instances are considered
production tasks). This is shown to the user when
the task is not yet done. It should shortly
summarize what the user should do in order to
complete the task.

description Returns a description of the role instance that
should document the purpose and characteristics of
the role instance.

defaultImplementation Returns a piece of code that constitutes a default
implementation of the role.

defaultName The default name of a code element. As with
implementation-template, this is used for code
generation.

Table 2. Some templates.

As an example, consider Figure 5. It defines a minimal pattern and a partial instance
thereof. The pattern defines an inheritance relationship between two class roles, and
presents a couple of templates to aid in the instantiation of the pattern. The graph
has been annotated accordingly with sufficient semantic information. The instance
graph in turn shows a snapshot of a moment of instantiation, where the super class
has been bound to a Java class named Vehicle (indicated in the figure by a value

 14

named element attached to a role instance). This has resulted in a production task for
providing a subclass. The taskTitle-template for that task evaluates literally to
"Provide a subclass of Vehicle". Provided the tool requests a proper name for the
class (say, Bicycle) from the user, the default implementation is

"public class Bicycle extends Vehicle { }",

resulted from the defaultImplementation-template. Note that before expanding the
evaluated sub-expressions within a template, appropriate string conversion must be
defined by the tool.

Figure 5. A minimal example pattern with semantics and a partial instantiation.

A Small Case Study
As an example of task-driven framework specialization in FRED environment, we
will go through the specialization of a framelet called Red. Framelets are small
frameworks consisting of a handful of classes and used as reusable building blocks
for creating components. The Red framelet is an evolved version of a framelet
discussed by Pree and Koskimies [Prk98]. Red provides user interface facilities to
maintain a list of Record-objects and edit their fields. A specialization of Red
typically defines a new Record subclass with some application domain–specific
fields. Once the user has defined this new record type and derived some other
classes, the framelet provides facilities to automatically generate the user interface to
create and modify records. Typical user interface windows provided by Red are
shown in Figure 6.

BaseClass (1,1)

DerivedClass (1,∞)

roleType = ClassRole
constraints = { inherit BaseClass }
defaultName = "My<BaseClass>"
taskTitle = "Provide a subclass of <BaseClass>"
defaultImplementation = "public class <DerivedClass> extends <BaseClass> { }"

(BaseClass, 1) done

(DerivedClass, 1) mandatory

element = class Vehicle roleType = ClassRole

 15

Figure 6. Typical views provided by Red framelet

To illustrate FRED methodology and tool we demonstrate the specialization
support for Red. From the application developer's standpoint one of the
specialization problems is how to create new record types in a way the framelet is
able to provide user interface functionality for them. The specialization problem is
expressed as a programming pattern called RecordType, encapsulating this particular
hot spot of the framework. The definition graph of this pattern is shown in Figure
7.

Figure 7. The syntactical definition graph of the RecordType pattern.

To make the graph more compact, we have adopted a slightly developed notation in
this figure; the nodes are represented as boxes and the dependencies are represented
either by arcs or visual composition. That is, a role enclosed within another role
depends on the enclosing role. Moreover, we make a distinction between roles that
map to the framework elements and roles that describe the structure of the
specialization. The gray boxes denote roles for the framework elements. These roles
are associated with semantic constraints that bound the roles to program elements
of the framework. This means that there will be exactly one instance of the role, and
that role is bound to a certain program element in each instantiation. Instead of a

 Record (1,1)

fields (1,1)

RecordFactory (1,1)

createNewRecord (1,1)

RecordManager (1,1)

factories (1,1)

MyRecordFactory (1,1)

recordDescription' (1,1)

MyRecord (1,∞)

label' (1,1)

MyRecordManager (1,1)

title' (1,1)

factories' (1,1)

Factory (1,1)

title (1,1)

fields' (1,1)

Adapter (1,1)

field (1,∞) createNewRecord' (1,1)

recordDescription (1,1) label (1,1)

 16

pattern parameter, such constraint will denote a pattern-specific constant. In
addition, within this example, we assume that given these bound roles, the name of
the required program element matches the name of the role.

The semantic constraints associated with the roles of RecordType pattern are
numerous and thus not shown in the figure. However, the type of the role is
indicated by the border decoration; classes have thick, methods thin and attributes
dashed border. Roles with a bent corner denote code snippets, i.e. pieces of code
that can be written within a method. FRED supports such roles by generating
anchor-tags within method implementations when necessary. In FRED, the
generated behavior is however always considered as default, and the developer may
choose to write her own implementation.

In FRED, the patterns are created with an integrated Pattern Editor tool. It is a
semi-graphical programming tool for specifying patterns. Figure 8 shows part of the
RecordType pattern within the tool window. Within FRED implementation, the roles
are organized in a hierarchy and the dependencies are named. The hierarchy
combined with cross-references constitutes the definition graph of the pattern. The
role hierarchy of a pattern is shown in the left side of the window. After each role,
the cardinality constraint, if other than (1, 1), is shown, as well as the names of the
associated dependencies. The right side of the window lists the set of constraints,
templates and dependency definitions for a role selected in the left side.

Figure 8. The Pattern Editor tool is used to create patterns in FRED.

Let us now assume that the application developer is creating the person manager
application. The aspired user interface of this specialization of Red was shown in
Figure 6. The developer chooses to create the application by specializing the Red
framelet. Using the RecordType pattern specification, FRED acts as the specialization
wizard for the Red framework.

FRED begins by instantiating each role that has no dependencies. Figure 9 presents
this initial condition where an instance of both MyRecord and MyRecordManager role
has been created. The figure shows both the user interface of FRED in this
specialization situation, and the instance graph using the notation introduced in
Chapter 3. Note that the visual appearance of the user interface differs slightly from
the previous screenshot just because the tool environment can be freely customized.

Considering our syntactic theory on programming patterns, the newly created
instances are presented by ordered pairs (MyRecord, 1) and (MyRecordManager, 1),
where the first part denotes the role and the second part identifies the instance
amongst all the instances of the role. Therefore, (MyRecord, 1) can also be read as

 17

"the first instance of MyRecord".

The state of both (MyRecord, 1) and (MyRecordManager, 1) is set to mandatory, as the
lower bounds of the associated cardinality constraints are 1. Task (MyRecord, 1) tells
the developer to provide a subclass of Record (a framework class that is the only
instance of a bound role with the same name). To continue, the application
developer may choose either task. However, as tasks are mandatory, the developer
need eventually to complete them both.

Figure 9. The developer has just started to specialize the Red framelet.

We assume the developer continues by providing a class for the MyRecord role.
FRED provides user interface functionality to point out an existing class to be
bound to the role, as well as to generate a new class based on the templates and
constraints associated with the role.

Because the developer is specializing Red to store information on personnel, he
chooses to create a new Record subclass named Person. The developer types in the
desired name of the class for the tool, which generates the default implementation
for the class. FRED changes the state of the (MyRecord, 1) task from mandatory to
done. The binding between the class and the role is recorded in the role instance so
that the violations of the semantic constraints can be reported by the means of
refactoring tasks whenever changes are detected in the associated source code. As
FRED environment provides an integrated syntax-aware source code editor
common to most contemporary development environments, any changes to the
source code can be immediately evaluated in a background execution thread within
the environment. If suitable heuristics were provided, it would be possible to
consider every subclass of Record to be bound to the role MyRecord. Then, the task
would be considered done automatically whenever the developer constructs a
suitable class. If such heuristics are unavailable (as with the current FRED release),
the user must point out the Person class explicitly to adhere the task. It is important
to note that such heuristics could never entirely replace the explicit user interaction.

After completion of (MyRecord, 1) task, FRED re-evaluates the pattern instance
against the definition. A new instance of the MyRecord role is created because the
upper bound of the associated cardinality constraint is infinite. However, the state

(MyRecord,1) mandatory

(MyRecordManager,1) mandatory

 18

of the new (MyRecord, 2) instance is optional. In addition, a mandatory task (field, 1) is
created to denote a member variable that should play the Field role. The (field, 1) task
is mandatory, as the lower bound of the associated cardinality constraint is 1,
requiring there to be at least one instance of Field for each instance of MyRecord. The
(fields’,1), (label’,1) and (MyRecordFactory, 1) instances are created similarly. These tasks
request the developer to override the methods declared in the Record-class. Figure 10
presents the instance graph at this point. Java editor displays the source code for
Person, which is yet very minimal, as only one task has been carried out. The
implementation of the class is guided by the sequence of programming tasks to
follow.

Figure 10. Tasks for the new record type.

To complete the created Person class, new tasks (field, 1), (fields’, 1), and (label’, 1) are
provided and the application developer may continue in any order she wishes. Task
(field, 1) represents an instance variable that will become editable in the user
interface provided by the framelet. The developer creates a variable called name to
the Person class, and associates this variable as the required program element. For
(fields’, 1) and (label’,1) the developer requests the tool to generate the default
implementations.

Figure 11 presents the situation where the developer has done all these tasks and
the tool has re-evaluated the pattern instance once again. Two new tasks have been
created. The role instance (field, 2) offers the possibility to create another member
variable. The role instance (Adapter, 1) instructs the developer to type in the
required adapter code in the overridden fields method. In Red specialization, this
adapter code provides access to read and write the member variable through the
Red user interface. Our pattern definition states that such adapter code must exist
for each member variable declared to play the role field. Based on the pattern
definition it is possible to generate such adapter code, and inject it to the method
implementation.

(MyRecord,1) done

(MyRecordManager,1) mandatory

(MyRecord,2) optional

(MyRecordFactory,1) mandatory

(label',1) mandatory (fields',1) mandatory(field,1) mandatory

 19

Figure 11. The fields method needs an adapter for the created name field.

To carry out the specialization the developer needs to complete all the rest of the
mandatory tasks shown, and the required tasks resulting from the completion of
these tasks. However, this process need not be a linear process. A mechanism is
provided to undo selected tasks, providing the means to backtrack the instantiation
process and reconsider the decisions made. Therefore, the pattern instance may
evolve during the lifetime of the software development. In FRED, the source code
is modified under the supervision of the tool, thus earlier decisions are refined
automatically based on the modified source code. Whenever the code no longer
complies with constraints of the pattern, the associated refactoring tasks are
generated, reminding the user of the architectural rules and conventions.

RELATED WORK AND CONCLUSION
Framework Documentation, Adaptation, and Organization
To tackle the complexities related to framework development and adaptation we
need means to document, specify, and organize them. The key question in
framework documentation is how to produce adequate information dealing with a
specific specialization problem and how to present this information to the
application developer. A number of solutions have been suggested, including
framework cookbooks [KrP88, Pre95], smartbooks [OrC99], and patterns [Joh92].

As shown in this paper, an application framework's usage cannot be adequately
expressed as a static and linear step-by-step task list, because a choice made during
the specialization process may change the rest of the list completely. That is why
cookbooks [KrP88, Pre95], although a step to the right direction, are not enough.
Our model can be seen as an extension of the notion of framework cookbooks.

Another advanced version of cookbooks is the SmartBooks method [OrC99]. It
extends traditional framework documentation with instantiation rules describing the
necessary tasks to be executed in order to specialize the framework. Using these
rules, a tool can be used to generate a sequence of tasks that guide the application

(MyRecord,1) done

(MyRecordManager,1) mandatory

(MyRecord,2) optional

(MyRecordFactory,1) mandatory

(label',1) done(fields',1) done (field,2) optional (field,1) done

(Adapter,1) mandatory

 20

developer through the framework specialization process [OCS00]. This reminds our
model, but whereas they provide a rule-based, feature-driven, and functionality-
oriented system, our approach is pattern-based, architecture-driven and more
implementation-oriented.

Fontoura, Pree, and Rumpe present a UML extension UML-F to explicitly describe
framework variation points [FPR00]. They use a UML tagged value (a name-value-pair
that can be attached to a modeling element to extend its properties) to identify and
document the hot spots. Each of the variation point types has its own tag. In
addition, there are tags for differentiating between static and dynamic variation
points (i.e. whether or not the variable information is available at compile time) as
well as for identifying application-specific classes as opposed to classes belonging to
the framework.

Fontoura et al. identify the most common kinds of variation points in frameworks
to be extensible interfaces, variable methods, and extensible classes. An extensible interface
variation point denotes that a new application specific subclass must be provided
for the interface. This can be directly implemented by inheritance in any object-
oriented language. The latter two mean changes made to existing methods and
classes, respectively. They cannot be directly mapped to constructs of standard
object-oriented languages. That is why implementation transformations are needed to
formalize, for example, design patterns to transform variable methods and
extensible classes into extensible interface variation points. Implementation
transformations utilize tagged values to denote pattern roles.

Framework adaptation is considered to be a very straightforward process in
[FPR00]. UML-F descriptions are viewed as a structured cookbook, which can be
executed with a wizard-like framework instantiation tool. This vision resembles
closely that of ours. We see the framework specialization problem to be more
complex than what is implied in [FPR00], however. The proposed implementation
technique is based on adapting standard UML case tools. This does not directly
support interactive task-driven framework specialization.

To manage the complexity of large frameworks they should be organized into
smaller and more manageable units. Framelets provide a way to do just that [PrK99].
A framelet is a small framework with a clearly defined simple interface used for
structuring new software architectures and especially for reorganizing legacy code.
Implementation cases document framelets by giving examples of how applications
should extend them [PaP00]. We have gained good experiences with annotating
framelets with FRED patterns to make it easy to adapt and combine them in
systems (see, e.g. Red example in chapter 4). We think that it is possible to represent
implementation cases with programming patterns to enable tool support in the
FRED environment.

Pattern Tools and Formalisms
The specification of an architectural unit of a software system as a pattern with roles
bound to actual program elements is not a new idea. One of the earliest works in
this direction is Holland’s thesis [Hol93] where he proposed the notion of a
contract. Like UML's collaborations, and unlike our patterns, Holland’s contracts
aimed to describe run-time collaboration. After the introduction of design patterns
[Gam95], various formalizations have been given to design patterns resembling our
pattern concept (for example, [FMW97], [MDE97], [Mik98], [Rie00]), often in the
context of specifying the hot spots of frameworks. Our contribution is a pragmatic,
static interpretation of the pattern concept and the infrastructure built to support it
in realistic software development. Our view of patterns as a generalized interface
mechanism is also somewhat different from the usual picture of a design pattern as
a "mini-architecture".

 21

In [EHL99] Eden, Hirshfeld, and Lundqvist present LePUS, a symbolic logic
language for the specification of recurring motifs (patterns) in object-oriented
architectures. They have implemented a PROLOG based prototype tool and show
how the tool can utilize LePUS formulas to locate pattern instances, to verify source
code structures' compliance with patterns, and even to apply patterns to generate
new code. Furthermore, they claim that LePUS can give basis for defining
refinement relations between patterns.

We recognize the need for a rigor formal basis for pattern tools, especially for code
validation. Our model, however, is more analogous with programming languages
and attribute grammars than with logic formalisms. In addition, we emphasize
adaptive documentation and automatic code generation instead of code validation.

In [ACL96] Alencar, Cowan, and Lucena propose another logic-based formalization
of patterns to describe Abstract Data Views (a generalization of the MVC concept).
Their model resembles ours in that they identify the possibility to have (sub)tasks as
a way to define functions needed to implement a pattern. They also define
parameterized product texts corresponding to our code snippets.

Experiences
We have applied FRED to the development of a framework-specific programming
environment for an industrial Java framework intended for creating GUI
components for a family of network management systems. The framework
comprises of about 300 classes. After analyzing the specialization problems of the
framework, a collection of 13 patterns was defined to cover the specialization
interface of the framework. This work required about 5 man-months for a person
not initially familiar with the framework. The experience showed that the FRED
patterns are sufficiently powerful to define the specialization interface of a real
framework, and that FRED scales up for industry-sized frameworks. Several other
benefits were noted in our approach, some of which were not even originally
foreseen. In particular, the pattern-directed specialization tool facilitates the
understanding of a complex framework architecture, by offering the user a view to
single architectural "aspects" (i.e. patterns) at a time, with focused explanations.
Hence the tool can be used also as a training aid in a company. The specialization
process can be actually carried out by persons who are not thoroughly familiar with
the framework. On the other hand, for an experienced user the tool produces
automatically a lot of essential and strictly regulated, but uninteresting code.
However, certain problems were also recognized in our current approach.

First, it seems to be difficult to capture a pattern specification for a hot spot in one
go. Especially for a person who has not been actually using the framework it is hard
to know what aspects are actually intended to be specialized. New ways of
specializing a framework are found even in the application development process.
Hence the tool should make it possible to easily modify the patterns even during the
specialization process. Currently this is not possible. A possible solution is to make
pattern instances more dynamic, modifiable entities.

Second, sometimes patterns depend on each other. Our current model of patterns
does not include dependencies between patterns. In principle, this problem can
always be solved by fusing the patterns that depend on each other into a single
pattern, but this leads to large, unstructured patterns that are difficult to understand.
A possible solution is to make patterns hierarchical and use patterns of patterns.

Third, currently FRED does not provide techniques to define the semantics of a
method, that is, to define what the effect of a method should be (except for default
implementations of method bodies). Hence there is no way to check that the user
has given a method body in a way intended by the framework designer. Defining

 22

the abstract semantics of a method (for example by pre- and post-conditions) and
checking the implementation against such specifications is, however, beyond our
current research scope.

Discussion
We have presented a new approach to architecture-oriented programming and
shown how a tool can support it. Our approach is founded on object-oriented
frameworks and patterns that specify the design decisions made when developing
the framework. The systems are specialized from the framework by following the
tasks generated from the patterns. The tool supports architecture-oriented
programming by guiding the application developer through the specialization
process and by checking that the pattern constraints are not violated.

The idea of applying frameworks for the implementation of system families is not
new. For instance, [BCS00] explores the relation of frameworks and system families
and presents techniques for defining an interface between a framework and the
applications specialized from it. The main advances in our approach when
compared to previous ones are that the architectural design decisions are explicitly
specified as patterns, and that we have developed a tool that supports framework
development and specialization from an architecture- and pattern-oriented
perspective. Strong task-driven automation support also makes our work different
from previous approaches to framework development based on design patterns.

The notion of a pattern has been developed to support architecture-oriented
programming paradigm, and is not meant for replacing the established concept of
pattern. However, we pursue to extend our model to enable hierarchies of patterns,
where more specific patterns refine more generic ones, thus narrowing the
conceptual gap between design patterns and our patterns. We investigate alternative
solutions on such hierarchies based on forms of inheritance, prototyping,
composition, or patterns of patterns, not to forget explicit support for the
separation of dynamic and static perspectives on patterns.

Other work to be done includes more advanced techniques for pattern classification
and retrieval, explicit support for the separation of dynamic and static perspectives
on patterns, automated facilities to recover patterns from framework code, support
for standard architectures like Enterprise Java Beans, and integration of additional
software development tools (such as a debugger) into the FRED tool box.
Additional industrial case studies with framework development and specialization
will be conducted as well.

ACKNOWLEDGEMENTS
FRED methodology and programming environment have been developed in a joint
research project between the University of Tampere, Tampere University of
Technology, and the University of Helsinki. The project has been funded by the
National Technology Agency of Finland (Tekes) and by several software companies.

REFERENCES
ACL96 Alencar P., Cowan C., Lucena C., A Formal Approach to Architectural

Design Patterns. In Proc. 3rd International Symposium of Formal Methods
Europe, 1996, 576-594.

BCS00 Batory D., Cardone R., Smaragdakis Y., Object-Oriented Frameworks and
Product Lines. In: Proc. First Software Product Lines Conference, Denver,
Colorado. Kluwer, 2000, 227-247.

Bos00 Bosch J., Design & Use of Software Architectures — Adopting and Evolving a

 23

Product-Line Approach. Addison-Wesley, 2000.

EHL99 Eden A., Hirshfeld Y., Lundqvist K., LePUS — Symbolic Logic
Modeling of Object Oriented Architectures: A Case Study. NOSA '99
Second Nordic Workshop on Software Architecture, University of
Karlskrona/Ronneby, Ronneby, Sweden, 1999.

FMW97 Florijn G., Meijers M., van Winsen P., Tool Support for Object-Oriented
Patterns. In: Proc. ECOOP ‘97 (LNCS 1241), 1997, 472-496.

FPR00 Fontoura M., Pree W., Rumpe B., UML-F: A Modeling Language for
Object-Oriented Frameworks. In: Proc. ECOOP '00 (LNCS 1850), 2000,
63-83.

FSJ99 Fayad M., Schmidt D., Johnson R., (eds.), Building Application Frameworks
— Object-Oriented Foundations of Framework Design. Wiley 1999.

Gam95 Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns — Elements of
Object-Oriented Software Architecture. Addison-Wesley, 1995.

Hak99 Hakala M., Hautamäki J., Tuomi J., Viljamaa A., Viljamaa J., Koskimies
K., Paakki J., Task-Driven Framework Specialization. In: Proc. Fenno-Ugric
Symposium on Software Technology (FUSST '99) (Penjam J., ed.), Sagadi,
Estonia, 1999. Technical Report 104/99, Institute of Cybernetics, Tallinn
Technical University, 1999, 65-74.

Hol93 Holland I., The Design and Representation of Object-Oriented
Components. Ph.D. thesis, Northeastern University, 1993.

JGJ97 Jacobson I., Griss M., Jonsson P., Software Reuse — Architecture, Process and
Organization for Business Success. Addison-Wesley, 1997.

Joh92 Johnson R.: Documenting Frameworks Using Patterns. In: Proc.
OOPSLA '92, Vancouver, Canada, October 1992, 63-76.

JRL00 Jazayeri M., Ran A., van der Linden F., Software Architecture for Product
Families. Addison-Wesley, 2000.

KrP88 Krasner G., Pope S., A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80. Object-Oriented Programming, 1988.

MDE97 Meijler T., Demeyer S., Engel R., Making Design Patterns Explicit in
FACE — A Framework Adaptive Composition Environment. In: Proc.
ESEC '97 (LNCS 1301), 94-111.

Mik98 Mikkonen T., Formalizing Design Patterns. In: Proc. 20th International
Conference on Software Engineering (ICSE '98), IEEE Press, 1998, 115-124.

OCS00 Ortigosa A., Campo M., Salomon R., Towards Agent-Oriented Assistance
for Framework Instantiation. In Proc. OOPSLA '00, Minneapolis, Minnesota
USA, ACM SIGPLAN Notices, 35, 10, 2000, 253-263.

OrC99 Ortigosa A., Campo M., SmartBooks: A Step Beyond Active-Cookbooks
to Aid in Framework Instantiation. Technology of Object-Oriented Languages
and Systems 25, June 1999, IEEE Press. ISBN 0-7695-0275-X

PaP00 Pasetti A., Pree W., Two Novel Concepts for Systematic Product Line
Development. In: Donohoe P. (ed.), Software Product Lines: Experience and
Research Directions (First Software Product Lines Conference, Denver, Colorado),
Kluwer Academic Publishers, 2000.

 24

Pre95 Pree W., Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1995.

PrK99 Pree W., Koskimies K., Framelets — Small is Beautiful. In: Building
Application Frameworks — Object-Oriented Foundations of Framework Design
(Fayad M., Schmidt D., Johnson R., eds.), Wiley, 1999, 411-414.

Rie00 Riehle R., Framework Design — A Role Modeling Approach. Ph.D.
thesis, ETH Zürich, Institute of Computer Systems, February 2000.

	1. Introduction
	Background
	Our Contribution

	2. The Vision: Task-Based Framework Specialization
	3.	The Theory: Programming Patterns
	Syntax
	Pattern Definition Graph
	Pattern Instance Graph
	Pattern Instantiation

	Semantics

	4.	The Tool: FRED Environment
	FRED-specific Semantics for Java Programs
	A Small Case Study

	Related Work and Conclusion
	Framework Documentation, Adaptation, and Organization
	Pattern Tools and Formalisms
	Experiences
	Discussion
	
	
	Acknowledgements
	References

