
TCP Performance in the Presence of Congestion

and Corruption Losses

Andrei Gurtov

Master's Thesis

Department of Computer Science

UNIVERSITY OF HELSINKI

Tiedekunta/Osasto � Fakultet/Sektion � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � Övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

Science Dept. of Computer Science

Andrei Gurtov

TCP Performance in the Presence of Congestion and Corruption Losses

Computer Science

M.Sc. Thesis December 2000 80 p.

Wireless networks, mobile computing, performance, TCP, error losses

Library of the Dept. of Computer Science, Report C�2000�

The wireless environment of slow and lossy links presents a challenge for e�cient data

transport. We have performed an experimental evaluation of TCP in an emulated

wireless environment. We consider a network model including a lossy wireless link

and a last-hop router with a limited-size bu�er. We have explored how well the

state-of-art TCP perform, identi�ed key reasons behind the behavior, and measured

the e�ect of di�erent optimizations. We experimented with TCP connections with

di�erent values of the initial window, receiver window, with or without SACK and

New Reno over the emulated network with di�erent error rates and bu�er sizes. The

experimental data is obtained with a state-of-art TCP implementation of the Linux

operating system and a real-time network emulator Seawind. Our main result is a

comparative study and analysis of di�erent TCP optimizations.

Computing Reviews Classi�cation:

C.2.1 (Network Architecture and Design): Wireless Communication,

C.4 (Performance of Systems)

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Transmission Control Protocol 3

2.1.1 Overview . 3

2.1.2 Detection and Recovery of Corruption Losses 6

2.1.3 Selecting the TCP Implementation 7

2.2 Network Environment . 8

2.2.1 Properties of Wireless Links 8

2.2.2 Network Architecture 10

2.3 Related Work . 12

3 Problem Description 17

3.1 Congestion Losses . 17

3.2 Corruption Losses . 20

3.3 OS-Related Problems . 21

3.4 Summary . 21

4 Optimizations 22

4.1 TCP Control Parameters . 22

4.1.1 Initial Window . 22

4.1.2 Receiver Window . 23

4.1.3 Maximum Segment Size 24

4.1.4 Disabling Delayed Acknowledgments 24

4.2 TCP Optimizations . 26

4.2.1 Selective Acknowledgments 26

4.2.2 Control Block Interdependence 27

4.3 Active Queue Management . 28

4.4 Other Modi�cations . 30

4.4.1 Timestamps . 30

4.4.2 Header Compression 31

4.4.3 Explicit Congestion Noti�cation 31

5 Performance Model 33

5.1 Network Model . 33

5.2 Workload Models . 35

5.3 Baseline TCP . 37

6 Experimental Design 39

6.1 Test Environment . 39

6.2 Test Network . 40

6.3 Measurement Data . 42

6.4 Test Cases . 43

7 Measurement Results and Analysis 47

7.1 Unlimited Router Bu�er . 47

7.2 Optimal Router Bu�er Size 48

7.3 Single-Packet Error Losses . 49

7.4 Random Error Losses . 54

7.4.1 Throughput at the end of connections 54

7.4.2 Throughput at the beginning of connections 61

7.5 Burst Error Losses . 63

7.6 Random Early Detection . 65

7.7 Avoiding Multiple Fast Retransmits 68

8 Conclusion 71

A Baseline TCP 81

A.1 TCP parameters, options and settings 81

A.1.1 NewReno TCP modi�cation 81

A.1.2 Recovery from RTO 83

A.1.3 RTO calculation . 83

A.1.4 Delayed acknowledgments 83

A.1.5 Receiver's advertised window 83

A.1.6 Disabling control block interdependence 84

A.2 Implementation issues . 84

A.2.1 New TCP options . 85

A.2.2 Bug �xes . 87

B Measurement Data 90

B.1 Optimal Router Bu�er Size 90

B.2 Baseline TCP . 91

B.3 Initial Window of Three Segments 91

B.4 Initial Window of Four Segments 92

B.5 Receiver Window of 2048 bytes 92

B.6 Receiver Window of 3840 bytes 93

B.7 SACK Enabled . 93

B.8 New Reno Disabled . 94

B.9 Burst Error Losses . 94

B.10 One Connection Over the RED Bu�er 95

B.11 Two Connections Over the Drop-Tail Bu�er 95

B.12 Two Connections Over the RED Bu�er 96

Introduction 1

1 Introduction

The number of nomadic users that access the Internet using wireless tech-

nology grows rapidly. Soon, in the upcoming era of mobile computing, every

portable device will have a wireless interface and an IP address. With all ad-

vantages, mobile computing introduces an environment quite di�erent from

the one found in �xed networks, with limitations that come from physical

properties of the wireless medium. The scarce radio bandwidth allows for a

rather low link speed; miscellaneous external factors like fading of the radio

signal may cause loss of data on the radio path. In a cellular radio network

the mobility is accomplished by changing a cell that serves the user, according

to the user's current location. The handover process may cause data losses

and a drastic change in the available service, when the user moves from a less

busy to a more occupied cell. Improving the service of wireless networks is a

complex task bound by the amount of available radio resources. We believe

that in the future, wireless connections will be widely used, but they will

remain a di�erent environment from wireline networks.

Many popular Internet applications includingWorld-WideWeb (WWW),

File Transfer Protocol (FTP) and email require reliable data delivery over

the network. The Transmission Control Protocol (TCP) is the most widely

used transport protocol for this purpose; tra�c studies in the Internet report

that the dominant fraction of the tra�c belongs to TCP [TMW97]. TCP

was designed and tuned to perform well in �xed networks, where the key

functionality is to utilize the available bandwidth and avoid overloading the

network. However, nomadic users want to run their favorite applications

that are built on TCP over a wireless connection, as well. Packet losses due

to transmission errors, a long latency and sudden delays occurring on the

wireless link may confuse TCP and yield a throughput far from the available

line rate. Optimizing TCP for a wireless environment has been an active

research area for the last few years.

This thesis presents an experimental evaluation of TCP in an emulated

wireless environment. We consider a network model including a lossy wireless

link and a last-hop router with a limited-size bu�er. Our goal is to explore

Introduction 2

how well the state-of-art TCP performs in this environment, what are the

key reasons behind the behavior, and what is the e�ect of di�erent TCP op-

timizations. We experiment with multiple error rates and router bu�er sizes

over TCP connections with di�erent optimizations. In the experiments the

network is represented with a real-time network emulator Seawind [AGKM98]

and the real data communication using TCP. We have used the state-of-art

TCP implementation of the Linux OS. Our main result is a comparative

study of performance of di�erent TCP optimizations. We also present a list

of detected implementation faults, discuss anomalies in performance and give

a detailed analysis of interesting cases.

The rest of the thesis is organized as follows: in Section 2 we describe

the Transmission Control Protocol, the assumed network architecture, the

properties of wireless links and review the related work. In Section 3 we give

speci�c performance problems we focus on. Section 4 lists the relevant opti-

mizations documented by IETF. Section 5 speci�es the network and workload

model. In Section 6 we present our measurement setup and in Section 7 we

illustrate and analyze the results of our experiments.

Background and Related Work 3

2 Background and Related Work

2.1 Transmission Control Protocol

2.1.1 Overview

The Transmission Control Protocol (TCP) [Pos81, Bra89, APS99] is the most

used transport protocol in the Internet. TCP provides applications with re-

liable byte-oriented delivery of data on the top of the Internet Protocol (IP).

TCP sends user data in segments not exceeding the Maximum Segment Size

(MSS) of the connection. MSS is negotiated during the connection establish-

ment procedure known as the three-way handshake. To open a connection

the client transmits a SYN segment, the server replies with its SYN and the

client replies with a SYN-ACK segment. After that the connection is estab-

lished and data can be transmitted in both directions. When all data is sent,

the client and the server exchange FIN and FIN-ACK segments to terminate

the connection.

Each byte of the data is assigned a unique sequence number. The re-

ceiver sends an acknowledgment (ACK) upon reception of a segment. TCP

acknowledgments are cumulative; an ACK con�rms all bytes up to the given

sequence number. The sender has no information whether some of the data

beyond the acknowledged byte has been received. TCP has an important

property of self-clocking; in the equilibrium condition each arriving ACK

triggers a transmission of a new segment. Normally, TCP does not acknowl-

edge a received segment immediately, but waits for a certain time. If a data

segment is sent during this time, the acknowledgment is �piggy backed� into

it. Alternatively, another data segment can arrive, and the acknowledgment

can con�rm both received segments at once. However, TCP must not delay

acknowledgments for more than half a second and should send an acknowl-

edgment for every second received segment [APS99].

Data are not always delivered to TCP in a continuous way; the network

can lose, duplicate or re-order packets. Arrived bytes that do not begin at

the number of the next unacknowledged byte are called out-of-order data. As

Background and Related Work 4

Time

C
on

ge
st

io
n

w
in

do
w

Window = 1

Slow Start

Congestion Avoidance
(linear growth)

(exponential growth)

Window-halving
upon congestion
loss

upon timeout
Slow Start

Fast retransmission

Figure 1: Congestion control in TCP [Bal98].

a response to out-of-order segments, TCP sends duplicate acknowledgments

(DUPACK) that curry the same acknowledgment number as the previous

ACK. In combination with a retransmission timeout (RTO) on the sender

side, ACKs provide reliable data delivery [Bra89]. The retransmission timer

is set up based on the smoothed round trip time (RTT) and its variation.

RTO is backed o� exponentially at each unsuccessful retransmit of the seg-

ment [PA00]. When RTO expires, data transmission is controlled by the slow

start algorithm described below.

To prevent a fast sender from over�owing a slow receiver, TCP im-

plements the �ow control based on a sliding window [Tan96]. In every ac-

knowledgment, the receiver advertises to the sender the receiver window, the

number of bytes allowed for transmission. The receiver window is always rel-

ative to the acknowledgment number. An arriving ACK allows more data to

be sent by advancing the edge of the sliding window to the right. When the

total size of outstanding segments, segments in �ight (FlightSize), reaches the

receiver window, the transmission of data is blocked until the sliding window

advances or a larger receiver window is advertised. Advertising a window of

zero bytes is legal and can be used to force the sender into the persist mode.

In the persist mode the TCP connection is alive, but no new data can be

sent until a non-zero receiver window is advertised.

Early in its evolution, TCP was enhanced by congestion control mech-

Background and Related Work 5

anisms to protect the network against the incoming tra�c that exceeds its

capacity [Jac88]. A TCP connection starts by sending out the initial win-

dow number of segments. The proposed congestion control standard allows

the initial window of one or two segments [APS99]. During the slow start

phase, the transmission rate is increased exponentially. The purpose of the

slow start algorithm is to get the �ACK clock� running and to determine the

available capacity in the network. A congestion window (cwnd) is a current

estimation of the available capacity in the network. At any point of time, the

sender is allowed to have no more segments outstanding than the minimum

of the advertised and congestion window. Upon reception of an acknowledg-

ment, the congestion window is increased by one segment, thus the sender

is allowed to transmit the number of acknowledged segments plus one. This

roughly doubles the congestion window per RTT (depending on whether de-

layed acknowledgments are in use) . The slow start ends when a segment loss

is detected or when the congestion window reaches the slow-start threshold

(ssthresh). When the slow start threshold is exceeded, the sender is in the

congestion avoidance phase and increases the congestion window roughly by

one segment per RTT. When a segment loss is detected, it is taken as a sign of

congestion and the load on the network is decreased. The slow start threshold

is set to the half of the current FlightSize. After a retransmission timeout,

the congestion window is set to one segment and the sender proceeds with

the slow start. Figure 1 shows a possible behavior of the congestion window

for a TCP connection.

TCP recovery was enhanced by the fast retransmit and fast recovery

algorithms to avoid waiting for a retransmit timeout every time a segment

is lost [APS99]. Recall that DUPACKs are sent as a response to out-of-

order segments. Because the network may re-order or duplicate packets,

reception of a single DUPACK is not su�cient to conclude a segment loss.

A threshold of three DUPACKs was chosen as a compromise between the

danger of a spurious loss detection and a timely loss recovery. Upon the

reception of three DUPACKs, the fast retransmit algorithm is triggered. The

DUPACKed segment is considered lost and is retransmitted. At the same

time congestion control measures are taken; the congestion window is halved.

Background and Related Work 6

The fast recovery algorithm controls the transmission of new data until a non-

duplicate ACK is received. The fast recovery algorithm treats each additional

arriving DUPACK as an indication that a segment has left the network. This

allows to in�ate the congestion window temporarily by one MSS per each

DUPACK. When the congestion window is in�ated enough, each arriving

DUPACK triggers a transmission of a new segment, thus the ACK clock is

preserved. When a non-duplicate ACK arrives, the fast recovery is completed

and the congestion window is de�ated.

New Reno [FH99] is a small but important modi�cation to the TCP

fast recovery algorithm. �Normal� fast recovery su�ers from timeouts when

multiple packets are lost from the same �ight of segments [FF96]. New

Reno can recover from multiple losses at the rate of one packet per round

trip time. If during the fast recovery the �rst non-duplicate ACK does not

acknowledge all outstanding data prior to the fast retransmit, such an ACK

is called a partial acknowledgment. The New Reno algorithm is based on an

observation that a partial acknowledgment is a strong indication that another

segment was also lost. During the recovery phase New Reno retransmits

the presumably missing segment and transmits new data if the congestion

window allows it (the exact rule is given in Appendix A.1.1). The recovery

phase ends when all segments outstanding before the fast retransmit are

acknowledged or the retransmission timer expires.

2.1.2 Detection and Recovery of Corruption Losses

Here we describe possible events following a packet corruption on a wireless

link. Normally, corrupted frames are detected and discarded by the link layer.

However, some corrupted packet may be left undetected and delivered to the

serial protocol running over the link. Two protocols are commonly used as a

link-layer service for IP, the Point-to-Point Protocol (PPP) [Sim93] and the

Serial Line Interface Protocol (SLIP) [Rom88]. PPP provides checksumming

of the payload and is able to detect most corrupted frames. The predecessor

of PPP, the SLIP protocol does not have error detection.

If a corrupted packet is delivered to the IP layer, the events following

Background and Related Work 7

depend on which part of the packet was corrupted. A checksum used by IP

protects only the header but not the payload of a datagram. Routers in the

Internet are required to check only IP checksum, but not a checksum of the

payload of an IP datagram. Hence, packets with corrupted IP headers are

discarded at the �rst router.

If the TCP header or payload is corrupted, the packet is transmitted

all the way through the Internet to the destination. Apparently, the trans-

mission of corrupted packets through the Internet wastes resources. It is

the task of the link protocols to detect and discard corrupted packets. A

checksum used by TCP covers the TCP header, the payload and the pseudo-

header composed of IP source and destination addresses and the length of

TCP segment. The TCP checksum detects most of the corrupted packets,

but still there is some chance that corrupted data can be delivered to applica-

tions [Pax99]. TCP takes no actions upon a packet with an invalid checksum.

Such packets are silently discarded. An example of the situation when a cor-

rupted packet is undetected by PPP and is delivered to TCP can be found

e.g. in [Lud00, p. 54].

Some link protocols do at least a limited number of attempts to recover

a corrupted packet locally on the link. Neither PPP nor SLIP provide recov-

ery from frame losses. IP does not have error recovery. Since TCP silently

discards corrupted packets, the recovery procedure is the same whether a

corrupted packet is delivered to TCP or not. Three DUPACKs or a retrans-

mission timeout is used to detect a packet loss. Upon a detection, the packet

is retransmitted and congestion control measures are taken.

2.1.3 Selecting the TCP Implementation

The TCP behavior is standardized by IETF and is described in RFCs. How-

ever, the standards leave many issues unspeci�ed and TCP implementations

di�er in how they behave under similar conditions. For a long time, the

reference implementation has been Reno TCP found in the Unix BSD4.3

operating system [WS95]. Modern TCP implementations di�er signi�cantly

from Reno. The current family of BSD OSes is derived from Unix BSD4.4

Background and Related Work 8

with TCP-Lite implementation [Lud00].

For the baseline in our analysis we wanted to select a state-of-art TCP

implementation that is both widely used in the Internet and has the source

code available for analysis and modi�cation. We chose Linux as a popular

operating system with the source code available. Due to a large amount of

independent developers interested in Linux, implementations of new features

are quick to appear for Linux.

The TCP implementation in earlier versions of Linux had problems

with conforming to standards [Pax97]. We have detected, evaluated and

corrected a number of misbehavior problems. We believe that after these

�xes we obtained a TCP that behaves reasonably with regard to standards.

A recent work gives the requirements for a TCP implementation to be used for

TCP research [AF99]. Our baseline TCP (described in detail is Appendix A)

satis�es these requirements. One useful option would be to run a part of the

tests also with a current version of the BSD Unix and compare with results

obtained with our TCP.

2.2 Network Environment

2.2.1 Properties of Wireless Links

A wide range of wireless technologies that exist today di�er a great dial

in their properties. Wireless in its original meaning refers to communica-

tion without wires, which could based on the radio medium, the infrared

light or other means. In this thesis, we would use wireless to refer to radio

waves. Furthermore, wireless networks that exist today di�er considerably

in their transmission rate and delay properties. Although Wireless LANs,

satellite links and Wireless Wide Area Networks (WWAN) certainly share

some common characteristics, they also have enough distinct properties to

be taken as di�erent environments for data communication. In this thesis

we are focusing on WWAN, that is, cellular phone systems also capable of

data transmission. Hence we furthermore limit the wireless term to refer to

Background and Related Work 9

WWANs in our contents.

Many wireless links are slow, have high latency and may have high error

rates. These link characteristics adversely a�ect the TCP performance. The

line rate of a wireless link may not exceed some tens of kilobits per second.

Such a link speed is typical also for dial-up modem users. For some wireless

links, the line rate can vary over time, due to a change in the amount of

radio resources assigned to the user. We do not consider links with changing

bandwidth in this thesis, although such links may prove to be an interesting

environment and worth studying in the future.

The latency, the propagation delay, of wireless links is typically high.

The latency comes from the special transmission schemas and processing de-

lays the network equipment. For example, the Global System for Mobile

Communications (GSM) uses interleaving of data on the radio link to reduce

the e�ect of error bursts, and this introduces a latency of 90 ms independent

of packet size [Lud00]. Additional latency in using a GSM data service is

caused by the modem link to the Internet Service Provider (ISP) and pro-

cessing time within the GSM system. The total one-way latency in GSM

sums up to 200-300 ms. Note, that we do not include the transmission de-

lay into the link latency. Thus the round-trip time is de�ned as the sum of

transmission and propagation delays in both directions.

Some wireless links impose a signi�cant amount of data corruption due

to transmission errors. The error rate depends on the current radio condi-

tions and the strength of the channel coding schema. For example, in the

transparent GSM data service the residual bit error rate (BER) of the link

can be as high as 10−3 after the Forward Error Correction (FEC) [MP92].

Radio conditions can vary greatly. In the ideal conditions all packets are de-

livered correctly, and in the worst case nothing can be correctly sent over the

link. Some links employ the Automatic Link Adaptation (ALA) to change

the channel encoding strength in response to the change of the radio qual-

ity [MP92].

The delay-bandwidth product is an important characteristic of a net-

work [Sta00]. It de�nes the minimum size of data in �ight to utilize the

Background and Related Work 10

available network bandwidth, the pipe capacity. Networks with a large delay-

bandwidth product, for example including satellite links, demand special at-

tention from the transport protocol. For example, the slow start phase of

TCP can be time-consuming in such networks [ADG+00]. In our environ-

ment, the delay-bandwidth product is small, close to one kilobyte. In the

slow start, the pipe capacity is �lled already after one-two RTTs .

2.2.2 Network Architecture

Rather than selecting one particular network architecture and developing a

detailed model that would re�ect the behavior of this network we attempt to

build a generic model that would be suitable for all wireless networks with

similar characteristics. We are interested in the issue how a nomadic user can

use Internet services via a wireless network. In a scenario shown in Figure 2,

the wireless network plays the role of an access network from the Internet

point of view. It is also possible for a nomadic user to exchange data with

another mobile user, so that two wireless links are present on the data path.

We do not consider such con�guration is this thesis, assuming that the access

to a remote host in the Internet would be the dominant case.

The wireless link is often the bottleneck in the path of a data �ow,

because �xed networks are fast and reliable compared to the capabilities of

the wireless link. When data packets �ow from the relatively fast Internet to

the slow wireless link they are bu�ered in the last-hop router which connects

the wireless link to the Internet. This router plays a signi�cant role in the

end-to-end TCP performance because congestion data losses are most likely

to happen at the bottleneck queue. A limited number of bu�ers can be al-

located in the last-hop router per user. This bu�er space is shared among

connections of the same user, but there is no interference between the con-

nections of di�erent users. A similar network architecture was considered,

when three bu�ers are available per user [SP98].

The wireless link in our environment imposes corruption losses. We

assume that all data with transmission errors are detected and discarded at

the wireless link. We also assume no error recovery and no variable delays on

Background and Related Work 11

Mobile Last-hopWireless
Internet

Host Link Router
Fixed
Host

Figure 2: Network Architecture.

the link. We do not include the Internet into our environment in the rest of

the thesis. Thus, di�erent patterns of link errors is the only non-deterministic

element in our environment.

We now discuss how existing wireless networks can be mapped to our

generic model. The Global System for Mobile Communications (GSM) is

a widely successful e�ort to build a WWAN system with millions of users

in Europe and worldwide [MP92, Rah93]. GSM data, High Speed Circuit

Switch Data (HSCSD), and General Packet Radio Service (GPRS) [BW97]

are data transmission services o�ered by GSM. We believe they will be the

dominant wireless data transmission services in the foreseeable future. GPRS

is expected to provide a high speed packet data access suitable for a wide

range of Internet services. The GPRS network is a complex system that

consists of multiple nodes. However, for a �xed user in the Internet it is

visible on the IP layer as a usual Internet subnetwork.

The GPRS data transmission is depicted in Figure 3. It maps well to

our generic model shown in Figure 2. The Gateway GPRS Support Node

(GGSN) acts like a router connecting the Mobile Station (MS) user to the

Internet. The bottleneck queue is located in the Service GPRS Support

Node (SGSN). Although, the link layer in GPRS will normally be operating

in the reliable mode with a very low BER, an unreliable mode of operation is

speci�ed too. Transparent data delivery over a GPRS network with no link-

level error correction might still be used as an inexpensive option [GSM98].

Background and Related Work 12

Internet

BTS

BSC
A

MS BTS

SGSN GGSN
HOST

Figure 3: GPRS Data Transmission Path.

2.3 Related Work

Improving TCP performance over connections including a wireless link has

been an active research area for a few years. An earlier attempt to classify

existing solutions outlines three di�erent categories: end-to-end proposals,

split TCP and link-layer proposals [BKPS96].

A more recent work gives an excellent classi�cation of approaches to

improve the performance of TCP at a high level of corruption losses [Vai99].

In the most general approach, all methods either attempt to hide error losses

from the sender or alternatively make the sender know the cause of a packet

loss. The �rst group corresponds to the ideal network behavior, where errors

are recovered transparently and without performance degradation visible for

the user. The second group corresponds to the ideal TCP behavior, where

TCP simply retransmits corrupted packets without taking any congestion

avoidance measures. The ideal network or TCP behavior cannot be achieved,

but methods attempt to approximate either of two. The next aspect is which

part of the system needs to be modi�ed to achieve the performance improve-

ment. Changes can be made to the sender, receiver or to an intermediate

node. A common agreement is that the legacy servers in the Internet can-

not be modi�ed, or it takes a long time until a change could become widely

employed. An intermediate node can in some cases be modi�ed. The imple-

mentation of the network stack in the mobile host can often be controlled

and we are able to apply any changes there. Such changes, however, must

be backward compatible not to harm interoperability. On the functional

description level, methods are divided into the following groups: link-level

mechanisms, split connection approach, TCP-aware link layer, TCP-unaware

approximation of TCP-aware link layer, explicit noti�cation, receiver-based

Background and Related Work 13

IP
Host Internet

Pure End-to-End:

IP
Host

Hard-state Transport Layer Splitting:

IP
Host

PEP
IP

Host Internet

IP
HostPEP

IP
Host Internet

Soft-state Transport Layer Caching:

IP
Host

IP
Host Internet

Pure Link Layer:

Fixed
ARQ

Fixed
ARQ

IP
HostPEP

IP
Host Internet

Cross Layer Signalling:

Figure 4: Approaches to improve TCP over wireless [Lud99].

discrimination, and sender-based discrimination.

Another recent work gives an excellent state-of-art classi�cation that

we would like to discuss here in detail [Lud99]. Five di�erent categories of

solution are illustrated in Figure 4. The pure transport layer solutions are

based on modi�cations of TCP solely at the end points of a connection. This

scheme retains the end-to-end TCP connection semantics, but enhances the

TCP protocol to make it perform better in the wireless environment. We are

working in this area. It is important, though, not to break the TCP standard

mechanisms, such as the slow start and congestion avoidance, and tolerance

to re-ordered packets. These mechanism are crucial to the stability of the

Internet.

The �transport layer splitting� solutions argue that the properties of the

wired and wireless links are so di�erent, that they are best handled separately.

The TCP connection from the �xed host is terminated at an intermediate

node, a Performance Enhancing Proxy (PEP), and a special protocol is used

for data delivery over the wireless link [BKG+00]. The major advantage of

PEPs is that areas of congestion and corruption losses are handled separately

in an appropriate way. However, PEP violates the end-to-end semantics of

the TCP protocol, because �faked� acknowledgments are sent to the �xed IP

host before data are actually delivered to the destination. The proxy is said

to maintain a hard state, since any data lost beyond it are not recovered by

Background and Related Work 14

TCP.

The �transport layer caching� approach eliminates the problem of main-

taining the hard state in the proxy. The loss of the soft state on the proxy

can a�ect the performance, but does not prevent the end-to-end data delivery

by TCP. The best-known implementation of the soft-state proxy concept is

the Snoop protocol [BSK95]. Snoop examines packets in PEP in a way that

allows to detect TCP segment losses and recover locally by retransmitting

the cached segment. The main shortcoming of Snoop is low performance in

the presence of a high level of congestion losses [Lud00].

Solutions based on soft-state cross-layer signalling inform the transport

layer of speci�c events on the link layer. This category of solutions includes,

for example, an explicit �bad-state� noti�cation [BKPV96] , and an explicit

loss noti�cation [BPSK96]. Such methods are often di�cult to implement

because they require modi�cations both to PEP and to the TCP protocol.

In addition, such methods do not typically work in the presence of the en-

cryption provided by IPsec [KA98].

Pure link layer solutions struggle to isolate the local problems of the

wireless link from the higher layers. Many wireless links can recover from

lost packets by using link-level retransmissions using the Automatic Repeat

Request (ARQ) [Sta00]. Link errors are not visible to the upper layers, at

the expense of variable delays in the data delivery. Some link-layer protocols

provide semi-reliable data delivery, by performing only a small number of

local retransmissions before discarding a packet. The current research favors

highly persistent link-layer recovery [Lud00].

For certain types of tra�c, for example real-time video, link layer re-

covery may be harmful since data must be delivered timely or not at all. The

work [Lud99] introduces the concept of a �ow-adaptive link which is capa-

ble to satisfy the Quality of Service (QoS) requirements of a data packet by

changing, for example, the link retransmission policy. The QoS requirements

of a packet are given to the link layer in the type-of-service octet in the IP

header.

Background and Related Work 15

The standardization body for the Internet protocols, the Internet Engi-

neering Task Force (IETF), is specifying various performance enhancements

to TCP and is documenting the impact of problematic link-layer characteris-

tics to the Internet protocols. State-of-art understanding of the issue is found

in the recent Long Thin Networks (LTN) RFC [MDK+00], and two Internet

Drafts, End-to-end Performance Implications of Slow Links [DMKM00] and

Links with Errors [DMK+00]. Our goal is to provide experimental data on

how well these enhancements actually perform in the presence of congestion

and corruption losses.

In our environment, a natural issue is the achievable improvement when

the sender is able to distinguish between congestion and corruption losses.

In other words, for each packet loss, the TCP sender knows if the loss oc-

curred due to congestion or due to corruption loss over the wireless link. A

study [BV97] shows that the improvement depends on the ratio of congestion

and corruption loss probabilities. The result is obtained from experiments

and theoretical approximations as follows. A simple approximation for long

range throughput T of TCP-Reno is from [MSMO97]:

T =
MSS

RTT
∗ C√

r

where MSS is the Maximum Segment Size, RTT is the Round Trip Time,

C is a constant, r is the random loss rate.

The approximation omits other details of the recovery process, except

the fact that TCP halves the congestion window at every packet loss. The

most important omission is the e�ect of RTO on recovery. If a TCP connec-

tion experiences congestion losses with a rate rc and corruption losses with

a rate rw, the approximation of its long range throughput is

T =
MSS

RTT
∗ C√

rc + rw

.

Next, imaginary Ideal TCP-Reno is introduced that has perfect knowledge

of the reason for a packet loss, and thus halves its congestion window only

for congestion losses. The approximation of long range throughput for Ideal

Reno is

T =
MSS

RTT
∗ C√

rc
.

Background and Related Work 16

The authors do not give a valid range of parameters for the estimation [BV97].

We believe that the approximation is only valid when rw and rc are of a few

per cent.

The improvement of Ideal TCP-Reno over TCP is approximated as

TIdeal/TTCP =
√

1 + rw/rc. We see that rw/rc is the main factor of how

much better Ideal TCP-Reno can perform. The secondary factor a�ecting

the Ideal TCP-Reno performance advantage is the bandwidth-delay product.

When it is small, the congestion window stays small at the presence of error

losses. In this case recovery using a retransmission timeout rather than using

a fast retransmit is more likely when an error loss occurs. In such conditions,

the performance improvement achievable by Ideal TCP-Reno is low.

A TCP implementation that achieves to some extent the performance

of Ideal TCP-Reno can be based either on discrimination heuristics or explicit

loss noti�cations. Attempts to use simple statistics on the round-trip time

and throughput were not successful [BV97]. Proposals based on explicit loss

noti�cation are more promising and include Explicit Loss Noti�cation to the

Receiver (ELNR) [MV97], Explicit Loss Noti�cation (ELN) and Explicit Bad

State Noti�cation (EBSN). However, all these proposals fall into the cross-

layer signalling category and are di�cult to deploy. In our work we do not

consider TCP optimizations based on distinguishing between congestion and

corruption losses.

Problem Description 17

3 Problem Description

In this section we outline the speci�c problems of TCP over wireless links we

focus on in the rest of the thesis.

3.1 Congestion Losses

In this section we discuss the occurrence of congestion losses and their e�ect

on TCP. We use the term congestion for the time period when many packet

losses occur due to a bu�er over�ow, even in the case of a single connection.

We �rst look at a typical TCP connection over a limited-size bu�er, but in

an error-free environment. Figure 5 shows a baseline TCP connection when

the bu�er space is limited to seven packets. Two phases of the connection

are clearly visible. In the �rst phase, which lasts approximately 20 s, the

connection starts up aggressively, creates congestion, loses a large number of

packets and recovers them. We call this phase the start-up bu�er over�ow

hereinafter. In the second phase, the connection proceeds smoothly with

the periodic loss of a packet. This is referred to as the steady state of the

connection. During this phase the connection goes through periodic conges-

tion avoidance cycles following the linear increase � multiplicative decrease

policy [Ste97]. In the beginning of the cycle, the FlightSize is increased by

one MSS per RTT until the FlightSize reaches the size of the router bu�er.

When a single packet is lost due to the router bu�er over�ow and the loss

is detected by the TCP sender, the FlightSize is halved and the cycle starts

over.

Start-up bu�er over�ow. Let us look at the start-up bu�er over�ow

which is also known as the slow-start overshoot [MM96]. Figure 5(b) zooms

on the start-up bu�er over�ow. Ten segments are lost and retransmitted.

The important points to notice on the �gure are: when congestion occurs,

when the �rst packet loss is detected, and how segment losses are recovered.

Questions about the start-up bu�er over�ow are �why does it happen�, �what

is the negative e�ect�, and �how can it be prevented�. We provide the detailed

Problem Description 18

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a) Complete connection

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(b) Start-up zoom

40 45 50 55 60 65 70
4

4.5

5

5.5

6

6.5

7
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(c) Steady-state zoom

Figure 5: An error-free TCP connection over the router bu�er of seven pack-

ets.

Problem Description 19

analysis in Section 7.6

The optimal router bu�er size. The maximum size of the queue in the

router has a signi�cant e�ect on the connection. A router bu�er, which is

too small, can result in a smaller FlightSize than needed by TCP to re-

cover well from packet losses. The size, which is too large, leads to the

heavy start-up bu�er over�ow and overbu�ering. One paper has estimated

1.5*RTT*bandwidth as the optimal value for the bu�er size [Lud00].

Overbu�ering. The situation when signi�cantly more packets are in �ight

than is required to �ll the available network capacity is called overbu�ering.

Overbu�ering does not necessarily cause congestion. If the number of packets

injected into the network equals the number of packets leaving the network,

no congestion take place. However, having a large number of packets bu�ered

in the network has several drawbacks [Lud00]. If bu�ers in the network are

full, there is no capacity left to accommodate tra�c bursts. Some applica-

tions using TCP generate bursty tra�c. In addition, the TCP protocol itself

can inject packets in bursts. Another drawback is a poor service for inter-

active applications, because the end-to-end delay on the overbu�ered path

can be huge. Finally, the data in the network can become stale, when a user

aborts the data transfer, for example using a stop button in a web browser.

Due to these reasons overbu�ering should be avoided.

Fair sharing of resources. Tail-drop routers are known to have problems

with sharing the bandwidth between connections in a fair way [BCC+98].

When two or more TCP connections share the same router bu�er, one con-

nection can starve while other connections monopolize the resources. This

situation is referred to as lock-out and occurs due to timing e�ects. We would

like to avoid this problem in our environment.

Problem Description 20

3.2 Corruption Losses

Performance problems of TCP at the presence of error losses are well

known [BKPS96]. Upon a loss detection, TCP always reduces the transmis-

sion rate, as the reason of the packet loss, congestion or corruption, is not

known. When the level of error losses is low, they do not have a notable

e�ect on the performance. At the moderate level of error losses, TCP under-

estimated the available network bandwidth. When the level of error losses is

high, most of time the connection is idle waiting for a retransmission timeout

to expire. In the worst case, the connection is terminated, when the maxi-

mum number of retransmission is exceeded. Not only the rate of the error

losses is important, but also the burstiness [Lud00]. In general, TCP suf-

fers more when errors are bursty rather when they are uniformly distributed.

Recommendations for using the TCP algorithms and control parameters at

the presence of error losses is given in [DMK+00]. We have identi�ed three

patterns of error losses to be studied.

Single Errors. Normally, single-packet error drops do not have a signi�-

cant e�ect on the TCP behavior, except for a few special cases. We will try

to locate such interesting cases and analyze them.

Random errors. We will try to identify levels of the uniformly-distributed

packet error rate when error losses have no e�ect on performance, when

the link bandwidth is underestimated, when most time is spent in RTOs

and when the connection is terminated. We will study how di�erent TCP

optimizations a�ect the performance for varying size of the router bu�er and

the error loss rate.

Burst errors. It is interesting to study the e�ect of burst errors on TCP.

An error loss rate of one percent does not normally a�ect TCP performance,

if uniformly distributed. However, the same error rate when errors occur

in clusters can adversely impact performance. We expect TCP to perform

Problem Description 21

badly during an error burst; also performance after the burst ends can be

hampered.

3.3 OS-Related Problems

State-of-art TCP performance. Most of the related TCP research con-

centrated on evaluation of TCP performance of the Reno TCP implementa-

tion or an abstract TCP model in the ns simulator [PN98]. However, from

the point of view of an end user, it is much more important how their cur-

rently installed operating system performs under the given conditions. The

upcoming Linux version 2.4 di�ers from Reno in many ways. Thus, it is ac-

tual to evaluate how a state-of-art TCP implementation (our baseline TCP

is de�ned in Appendix A) performs on wireless links.

Conformance of Linux. There is a stereotype among researchers about

the TCP implementation in Linux, that it does not conform to standards.

Indeed, earlier releases of the Linux kernel showed malicious behavior and

were even named as an incoming danger to the Internet [Pax97]. The Linux

networking code has undergone signi�cant changes since version 1.0, and a

large number of independent developers have veri�ed and improved Linux.

Today, when Linux is widely used on Internet servers, it is actual to locate

and �x the remaining inconsistencies with TCP standards produced by IETF.

3.4 Summary

We consider a network model including a lossy wireless link and a last-hop

router with a �xed-size bu�er. The Internet is not included in the study.

We assume no variable delays on the link. We examine the end-to-end TCP

performance using the state-of-art TCP implementation in Linux. The main

problems we address are the start-up bu�er over�ow, overbu�ering, optimal

bu�er size, fair sharing of resources, the e�ect of single, random and burst

errors. A number of optimizations will be tested to study the e�ect on TCP

performance in our environment.

Optimizations 22

4 Optimizations

In this section we discuss optimizations that possibly improve the TCP per-

formance in our environment. First, appropriate values of the standard TCP

control parameters are considered. Second, we describe two TCP extensions

that optimize the protocol operation. Third, the active queue management

in the router bu�er is described. Finally, we list the factors that are relevant

for our work, but are left for the future study.

4.1 TCP Control Parameters

4.1.1 Initial Window

The TCP protocol starts transmitting data in the connection by injecting

the initial window number of segments into the network. The initial window

of one or two segments is allowed by the current congestion control stan-

dard [APS99]. An experimental extension allows an increase of the initial

window to three or four segments [AFP98]. However, the number of seg-

ments sent after RTO, the loss window, is �xed at one segment and remains

unchanged.

The increased initial window size has the advantage of saving up to

three RTTs from the connection time. It also decreases the time when the

FlightSize of the connection is smaller than necessary to trigger the fast

retransmit if a packet loss occurs. This decreases the probability of the

connection experiencing RTOs. The increased initial window may have a

possible disadvantage for an individual connection in an increased probabil-

ity of a congestion loss in the connection start-up when the router bu�er size

is small. A study has been made to evaluate a connection with the initial

window of four segments when the router bu�er size is three packets [SP98].

The study shows that the four-packet start is no worse than what happens

after two RTTs in the normal slow start with the initial window of two seg-

ments. Another simulation study has evaluated the e�ect of the increased

initial window on the network [PN98]. The study concludes that the in-

Optimizations 23

creased initial window size does not signi�cantly increase congestion losses

but improves the response time for short-living connections.

Using an increased initial window can be bene�cial in our environment

because of the high RTT of the wireless link and presence of error losses. We

expect that the performance increases with increasing the initial window, but

the improvement only a�ects the beginning of connections. In addition, in-

teresting questions are, whether the number of RTOs is reduced and whether

the start-up bu�er over�ow is worsened by the increased initial window.

4.1.2 Receiver Window

The amount of outstanding data, the FlightSize, is limited at any time of

a connection by the minimum of the congestion window and the receiver's

advertised window. The size of the receiver window is a standard control

parameter of TCP [Pos81]. By advertising a smaller window the receiver can

control the number of segments that the sender is allowed to transmit. The

basic analysis of the e�ect of the receiver window on a protocol performance

can be found e.g. in [Sta00].

If the receiver window is limited to an appropriate value that re�ects

the available network capacity, then congestion losses are prevented. The

receiver rarely has any knowledge of the underlying network properties and

current state. However, when a host knows that it is connected to a last-hop

wireless link, it could limit the advertised window [DMKM00]. Limiting the

receiver window also prevents excessive queueing in the network (overbu�er-

ing). Overbu�ering occurs when the size of the router bu�er is much larger

than required to utilize the link.

It is interesting to examine whenever the limited receiver window pre-

vents the start-up bu�er over�ow, whether error recovery is disturbed and

what the appropriate size of the receiver window is for a given size of the

router bu�er. We expect that when the receiver window is limited to an

appropriate value, TCP performance is improved, but the improvement only

a�ects the beginning of connections and is more visible for a larger router

Optimizations 24

bu�er. When the receiver window is larger than appropriate, we expect TCP

to perform similar to the baseline. The receiver window which is too small

can adversely a�ect TCP performance.

4.1.3 Maximum Segment Size

The Maximum Segment Size a�ects TCP performance [Ste95, MDK+00].

The Maximum Transfer Unit (MTU) of the network path imposes an upper

limit for MSS; in certain cases using a smaller MSS is desirable. For example,

with an MSS of 1024 bytes, each segment will occupy a 9600-bps link for

almost a second. This is unacceptable for an interactive application, because

a large �le transfer packet can delay a small telnet packet for a time much

longer than the human-perceptible delay. Links that rely on the end-to-

end TCP error recovery also demand a small MSS. For a �xed BER, the

probability of segment corruption increases with its size. On the other hand,

the header overhead grows with a smaller MSS, especially in the absence of

the TCP/IP header compression. A MSS value of 256 bytes for a 9600-bps

link is often used as a compromise.

It is interesting to examine the e�ect of a larger MSS on the TCP

congestion and error control. TCP grows the congestion window in units

of segments, independently of the number of bytes acknowledged. Using a

larger MSS allows a connection to complete the slow start phase faster. On

the other hand, connections with a larger MSS may su�er more from RTOs.

A larger segment size causes a larger RTT and thus a number of packets in

�ight grows slower than for a smaller MSS. There is smaller probability to

have enough DUPACKs to trigger a fast retransmit. Furthermore, a larger

RTO, especially after a back o�, increases the recovery time.

4.1.4 Disabling Delayed Acknowledgments

Delayed acknowledgments is an important feature of TCP that can a�ect the

performance of a connection. The basic information about delayed acknowl-

edgments was given on page 3, a more detailed description can be found

Optimizations 25

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Line rate (kbps)

T
ra

ns
m

is
si

on
 d

el
ay

 p
er

 p
ac

ke
t (

m
s)

256−byte packets
384−byte packets
512−byte packets
768−byte packets
1024−byte packet

Figure 6: Length of the transmission delay for di�erent packet sizes and line

rates.

for example in [Ste95]. A common value for the delay of 200 ms is used by

Linux. Furthermore, Linux TCP detects the situation when packets arrive

less frequently than the delayed acknowledgment timeout and sends acknowl-

edgments immediately upon reception of a segment, i.e. without waiting for

200 ms. When acknowledgments are delayed on a bulk data transfer, every

second segment is normally ACKed. An arriving ACK advances the slid-

ing window and increases the congestion window; thus, a connection with

delayed ACKs is less aggressive. This is especially visible in the slow start

phase, because in the slow start each arriving ACK increases the congestion

window by one segment.

We need to consider the implication of delayed acknowledgments on our

tests. The transmission delay of the link corresponds to the interval at which

packets arrive to the receiver. If the transmission delay is larger than the

timeout for delaying acknowledgments, every packet is acknowledged. The

value of the transmission delay depends on the line rate and MSS used on

the connection. Figure 6 shows the transmission delay for packet sizes and

line rates of interest to us. In our environment (MSS of 256 bytes and the

Optimizations 26

line rate of 9600 bps) the transmission delay is longer than the timeout for

delayed ACKs. Thus, each segment is acknowledged.

Linux introduces a new feature called �quick ACKs�. The idea is to

disable delayed ACKs for the �rst n packets of the connection, where n is a

con�gurable parameter. Acknowledging every packet at the beginning of the

connection allows achieving the equilibrium state (congestion avoidance) in

shorter time. On the other hand, such a policy could increase the probability

of network congestion, as the sender transmits data more aggressively. Quick

ACKs do not a�ect our tests, because at the 9600 bps bandwidth, every

segment is ACKed anyway as explained above.

4.2 TCP Optimizations

4.2.1 Selective Acknowledgments

TCP acknowledgments are cumulative; an ACK con�rms reception of all

data up to a given byte, but provides no information whether any bytes be-

yond this number were received. The Selective Acknowledgment (SACK)

option [MMFR96] in TCP is a way to inform the sender which bytes have

been received correctly and which bytes are missing and thus need a re-

transmission. How the sender uses the information provided by SACK is

implementation-dependent. For example, Linux uses a Forward Acknowl-

edgment (FACK) algorithm [MM96]. Another implementation is sometimes

referred to as �Reno+SACK� [MMFR96, MM96]. SACK does not change the

semantics of the cumulative acknowledgment. Only after a cumulative ACK,

data are �really� con�rmed and can be discarded from the send bu�er. The

receiver is allowed to discard SACKed, but not ACKed, data at any time.

The FACK algorithm uses the additional information provided by the

SACK option to keep an explicit measure of the total number of bytes of data

outstanding in the network [MM96]. In contrast, Reno and Reno+SACK

both attempt to estimate the number of segments in the network by assuming

that each duplicate ACK received represents one segment which has left the

Optimizations 27

network. In other words, FACK assumes that segments in the �holes� of the

SACK list, are lost and thus left the network. This allows FACK to be more

aggressive than Reno+SACK in recovery of data losses. In particular, the

fast retransmit can be triggered already after a single DUPACK in FACK

implementation if the SACK information in the DUPACK indicated that

several segments were lost. In contrast, Reno+SACK will wait for three

DUPACKs to trigger the fast retransmit.

A loss of multiple segments from a FlightSize of data often presents

a problem for TCP [FH99]. As one option, the sender either have to re-

transmit outstanding segments using the slow start; most of the segments

could be received correctly already and thus are unnecessarily retransmitted.

As another option, the sender can recover by one segment per RTT as the

cumulative acknowledgment number advances. In the presence of SACK,

the sender knows exactly which segments were lost and thus can recover

multiple segments per RTT without unnecessary retransmits. SACK TCP

has been shown to perform well even at a high level of packet losses in the

network [MM96].

We expect SACK TCP to perform better than the baseline and other

optimizations under all conditions. The di�erence will be most signi�cant

at a high level of error losses. It is interesting to examine whether SACK

recovers well from the start-up bu�er over�ow.

4.2.2 Control Block Interdependence

A control block of a TCP connection maintains the connection state, round-

trip time estimation, slow start threshold, maximum segment size, and other

similar parameters. When a new connection is created, it has no idea what

the properties of the underlying network path are, and it has to determine

values of these parameters empirically. The performance of this new con-

nection could be improved if it takes advantage of parameters obtained by

earlier connections. TCP Control Block Interdependence (CBI) [Tou97] is

the way to share the information between connections.

Optimizations 28

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a) The �rst connection

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data sent
ack rcvd
win

(b) The second connection

Figure 7: E�ect of CBI on TCP connections. Both connections are to the

same host. The second is started after the �rst has been completed.

Figure 7 shows two subsequent connections to the same host in the

presence of CBI. The second connection avoids the start-up bu�er over�ow,

because the congestion control variables were initialized with values obtained

by the �rst connection. To be exact, the slow start threshold (ssthresh) is

set to an appropriate value so that TCP switches from the slow start to the

congestion avoidance before the router bu�er over�ows.

To collect reasonable statistics we need to rerun the same test multiple

times. Enabling CBI would make connections dependent on each other and

disturb the results. Also the e�ect of other optimizations cannot be easily

observed in the presence of CBI. For these reasons, we had to disable CBI

for our tests. However, we believe that CBI is a useful feature that improves

TCP performance and should be widely used.

4.3 Active Queue Management

A method that allows routers to decide when and how many packets to

drop is called the active queue management. The Random Early Detection

Optimizations 29

(RED) algorithm is the most popular active queue management algorithm

nowadays [FJ93]. A RED router detects incipient congestion by observing

the moving average of the queue size. To notify connections about upcoming

congestion, the router selectively drops packets. TCP connections reduce

their transmission rate when they detect lost packets and congestion is pre-

vented.

The RED algorithm solves two problems related to congestion losses:

overbu�ering and fair sharing of resources. RED is recommended as a default

queue management algorithm in the Internet routers [BCC+98]. This is

motivated by the statement that all available empirical evidence shows that

the deployment of RED in the Internet would have substantial performance

bene�ts. There are seemingly no disadvantages to using the RED algorithm,

and numerous advantages [FJ93].

RED may not be useful in our environment. The major advantages

of RED in providing fair sharing of resources and the low-delay service for

interactive applications simply are not needed in the case of a single bulk

data transfer. It is probable that RED does not prevent the start-up bu�er

over�ows. Still, we would like to evaluate the e�ect of RED on TCP per-

formance in our environment, because RED can improve the performance of

two concurrent bulk connections and the algorithm is expected to be widely

deployed in the Internet.

Here we provide some details about the RED algorithm for an inter-

ested reader. The algorithm contains two parts. The �rst part is to com-

pute the moving average of queue size avg that determines the degree of

burstiness allowed in the router queue. The second part is to determine the

packet-dropping probability, given the moving average of the queue size. The

general RED algorithm is shown in Figure 4.3. The moving average of the

queue size is computed by a low-pass �lter giving the current queue size a

certain weight in the result. When the moving average is below the minimum

threshold minth no packets are dropped, and when it is above the maximum

threshold maxth, every arriving packet is dropped. Between these boundary

conditions, each packet is marked with a probability pa that depends on the

Optimizations 30

for each packet arrival

calculate the moving average of the queue size avg

if minth ≤ avg < maxth

calculate probability pa

with probability pa:

drop the arriving packet

else if maxth ≤ avg

drop the arriving packet

Figure 8: The general algorithm of the Random Early Detection (RED).

moving average. During congestion the probability that the router drops a

packet from a connection is roughly proportional to the bandwidth share of

that connection. By default the RED algorithm measures the queue size in

packets, not in bytes.

4.4 Other Modi�cations

4.4.1 Timestamps

The TCP timestamp option [BBJ92] requires the sender to place a current

timestamp and echo the most recent received timestamp into each transmit-

ted segment. The timestamp option was introduced for protection against

wrapped sequence numbers. It can also be used to improve the RTT estimate

collection. With timestamps, every received segment, also retransmitted, can

be used as an RTT sample. The timestamp option occupies 12 bytes in each

segment.

Several algorithms for improving TCP over wireless links are dependent

on the timestamps. One example is the Eifel algorithm for the prevention of

spurious retransmits [LK00]. Thus, it is actual to evaluate the e�ect of using

timestamps in our environment. A better RTT estimate may be helpful to

reduce the number of RTOs. However, due to time limits, we left TCP with

Optimizations 31

timestamps for the future work.

We do not expect that timestamps would improve TCP performance.

The overhead caused by a timestamp in every segment is too high for a small

MSS. When timestamps are used the number of segments is larger than for

the baseline.

4.4.2 Header Compression

Compressing TCP and IP headers can decrease the header overhead signif-

icantly. A widely used Van Jacobson (VJ) header compression [Jac90] is

a proposed standard. The VJ compression is sensible to packet losses; a

single-packet loss causes the full FlightSize to be dropped that forces TCP

into RTO. A more recent header compression proposal [DNP99] supports an

explicit request for a retransmission of an uncompressed packet, and thus

does not have this drawback. In addition, the PPP protocol de�nes its own

type of the header compression [ECB99]. Some TCP options, for example

timestamps, prevent the header compression.

For a typical packet of 296 bytes, the overhead from TCP/IP headers

is reduced from 40 to 3-5 bytes, or in other words from 13 % to 1 - 1.5 %.

Reducing the overhead is especially important for connections with a small

MSS.

We do not use any compression method in our tests. Using the header

compression is problematic on links with errors [DMK+00]. Also it would

make the comparison of optimizations di�cult, because the header compres-

sion cannot be applied to segments with a timestamp or SACK TCP option.

4.4.3 Explicit Congestion Noti�cation

A packet loss serves TCP as an implicit noti�cation of congestion. The

Explicit Congestion Noti�cation (ECN) is a complementary mechanism to

the active queue management [FR99, RF99]. ECN provides means to notify a

TCP connection of incipient congestion as an alternative to dropping packets.

Optimizations 32

ECN uses bits in the packet header to indicate that this packet has passed

through a congested router. The receiver echos the congestion indicator in

ACKs. Upon reception of a congestion noti�cation the sender must react in

the same way as for a single dropped packet, that is reducing the transmission

rate.

ECN has obvious advantages in avoiding unnecessary dropped packets

(since there is actually free queue space to store them), avoiding excessive

delays due to retransmissions and wasted bandwidth on the path from the

sender to the router.

We have not used ECN in our tests. In future, it will be interesting to

evaluate performance bene�ts of ECN. It is important not to treat a lack of

ECN noti�cation for a lost packet as a signal of a corruption loss. An ECN-

capable packet can well be dropped by a non-ECN aware router or even by an

ECN router under heavy congestion. Performing aggressive retransmissions

in such a case is a network equivalent of �pouring gasoline on a �re� [Jac88].

Performance Model 33

5 Performance Model

5.1 Network Model

In this section we describe the network model for the network architecture

depicted in Figure 2 on page 11. The network model is implemented in a

real-time emulator. The model of downlink and uplink channels is shown in

Figure 9. The last-hop router is modeled as a queue. The wireless link is

modeled as a combination of the transmission and propagation delays; error

losses are modeled as packet drops. The uplink and downlink directions in

our model are independent.

In the downlink direction, packets arriving to the emulator are placed

in the queue. The maximum queue length can be limited; when an over-

�ow happens, packets are tail-dropped. The RED algorithm can be used to

actively control the queue length. Packets are taken from the head of the

queue one-by-one for �transmission� over the link. The length of the trans-

mission delay is computed according to the line rate and the packet size.

When the transmission delay for a packet is completed, the packet is moved

to the propagation delay node. The length of the propagation delay is the

same for all packets independently of packet size. Several packets can be

in the propagation delay node simultaneously. Error losses are modeled by

dropping packets after the propagation delay. If a packet was not dropped,

it is sent out from the emulator.

On the uplink direction, the transmission and propagation delay nodes

are used in the same way as for downlink. We assume no queueing in the

uplink direction. With our workload model described in Section 5.2 the

chance of two or more packets (i.e. acknowledgments) to be queued in the

uplink direction is negligible. Error losses are modeled in the same way as

for downlink.

We assume the link rate of 9600 bps and the propagation delay of 200 ms

hereinafter. Our error model assumes that all corrupted packets are detected

and discarded on the wireless link, that is, no corrupted packets are delivered

Performance Model 34

Drops

Drops

Delay
Propagation

Delay
Transmission Queue

Propagation
Delay

Transmission
Delay

downlink

uplink

Figure 9: The model of downlink and uplink data channels.

to the IP layer. The packet drop probability is independent of the packet

size. This may be considered inaccurate because, for example, the loss rate

of small ACKs is the same as of large packets. However, this is the case, for

example, when acknowledgments are piggybacked to large data packets.

We do not attempt to include the Internet in the model, although the

Internet is a part of our environment (Figure 2). Modeling of the Internet is

hard because of its great heterogeneity and the rate at which its properties

change [Pax97]. Indeed, there is a tremendous number of di�erent routes

in the Internet, each one with its own characteristics that di�er sometimes

by several orders of magnitude. More importantly, no single route remains

in a constant state. In our case the situation is more tractable than in

general, because the wireless link is in most cases the bottleneck in the route

between the mobile host and the �xed host in the Internet. Data packets

traveling through the Internet experience a varying propagation delay and

have a certain loss probability to congestion on the route. Thus for our

purposes a very simple model that would take these factors into account

would su�ce. An alternative approach would be to perform tests when a

�xed host is really located somewhere in the Internet. Our emulator tool

allows for such kind of a setup.

Another di�erent need for simulating the Internet comes from the obli-

Performance Model 35

gation to prove that modi�cations to TCP improving its performance on

wireless links do not have a negative impact on the performance in other en-

vironments and do not introduce a congestion danger on the network. This

is much harder than building a simple model to re�ect the e�ect of the In-

ternet on a data packet traveling toward the mobile host. Since it is almost

an intractable task to evaluate how a modi�ed TCP would perform in all

scenarios possible in the Internet, we should be conservative in what changes

we can implement, and prefer improvements that have been already widely

evaluated by the research community.

5.2 Workload Models

The type of workload used for evaluation of di�erent solutions has a signi�-

cant e�ect on the results. Important factors characterizing the workload are

the behavior of individual connections, the number of simultaneous connec-

tions and their relative position in time. By the relative position in time we

mean whether the connections are started at once, or a at a certain time

interval. Below we brie�y discuss existing types of workload, and outline the

workload we have used. Workload parameters are given in detail later in

Section 6.2.

Two major classes of connections are recognized: the bulk data tra�c

and the interactive tra�c. Bulk data connections consist of a continuous �ow

of data packets of the maximum size allowed by the network. The interactive

data tra�c is of sporadic nature, small varying size packets are sent at irreg-

ular intervals. A typical example of a bulk connection is a �le transfer using

FTP, while a telnet application is an example of an interactive connection.

These two tra�c classes require di�erent service from the network. For bulk

data connections the latency and its variance are not very important, but

the total throughput is. For interactive connections, extensive delays irritate

the user.

A relatively recent addition to these two traditional tra�c classes is

the Hypertext Transfer Protocol (HTTP) protocol [BLFF96], which is both

Performance Model 36

of the interactive nature, since the user is waiting for a web page to be

displayed, and can transfer a considerable amount of data, for example, in

images. This third class represents transactional tra�c and in addition to

HTTP also includes larger database queries. On the average, a duration

of a single HTTP/TCP connection is short, often too short to get a valid

picture of the network condition. Modern web browsers tend to generate a

large amount of simultaneous connections. Such an approach can congest

the network, because short connections tend to overestimate the available

network capacity. Modeling HTTP requires constructing a complex model

of request-reply interaction, which de�nes the number and size of retrieved

objects.

A TCP connection between hosts A and B is a combination of two inde-

pendent data �ows, from A to B, and from B to A. In theory, A can transfer

data to B in a bulk data transfer, while B to A as an interactive tra�c.

However, in practice most bulk data connections are unidirectional, that is,

application data is only sent in one direction, and only the acknowledgments

are sent in the other direction.

The next question is how many simultaneous TCP connections are

present on the radio link. It is quite common for several connections to

share the link simultaneously. For example a �le transfer is proceeding in

the background while the user is browsing the web. The last question is

whether the concurrent connections are started at once, or in some time

interval, for example 10 seconds.

In most of our tests we use a single unidirectional bulk data transfer

as the workload. In the limited set of tests we use two such transfers. We

chose such a workload type because it is commonly used, and it is simple to

implement and analyze. We do not consider any �background� tra�c that

would compete with the workload under study. We believe that in mobile

computing most data is transferred from the �xed host to the mobile. Indeed,

a typical nomadic user is in most cases concerned with obtaining information

rather than sending it. Examples of downlink-intensive applications are web

browsing, a �le transfer and email. The downlink direction is also more

Performance Model 37

interesting from the modeling point of view, because the downlink is more

problematic than the uplink. Thus we use downlink transfers in our tests.

In general, a sound TCP study should include a consideration of com-

peting tra�c [AF99]. Furthermore, both congestion sensitive �ows (e.g.

TCP) and congestion insensitive �ows (e.g. a UDP video stream) should

be studied. We draw most of our observations from experiments without

competing tra�c, that may seem somewhat limited. However, we aim our

study at the speci�c environment and do not claim that the conclusions hold

in general. Indeed, a typical mobile user would mostly have a single or a

few TCP transfers concurrently. Resource demanding real-time tra�c seems

hardly reasonable on a slow wireless link.

5.3 Baseline TCP

In Section 2.1.3 we outline the requirements for a TCP implementation and

stated our selection of the Linux OS. Appendix A lists �xes and improvements

we have made to the Linux implementation. We refer hereinafter to baseline

TCP as our TCP implementation with a �xed set of control parameters and

algorithms.

Table 1: Features in the baseline TCP.

Feature Availability

Fast Retransmit, Fast Recovery ON

New Reno ON

Initial Window Size, segments 2

SACK OFF

MSS, bytes 256

Timestamps OFF

Delayed Acks ON

Advertised Window, kilobytes 32

PPP Compression OFF

Control Block Interdependence OFF

Performance Model 38

Recent studies of the Internet tra�c indicate that both the New Reno

algorithm and the Selective Acknowledgment (SACK) option are widely used

nowadays [All00]. We have decided to include the New Reno algorithm into

the baseline, but leave SACK as one of optimizations. This corresponds to the

current practise and makes easier comparisons with the related work. Table 1

presents a list of relevant parameters that we assume in the baseline TCP

if not mentioned otherwise. Appendix A gives more details and justi�cation

behind such a choice.

Experimental Design 39

6 Experimental Design

6.1 Test Environment

In this section we describe our test environment: how the network model

shown in Figure 9 on page 34 is realized in our emulator, and how the work-

load generator (TTCP, see the next section) is positioned. Figure 10 shows

the protocol layering in our setup. The workload source, the Seawind emula-

tor [AGKM98] and the workload sink are each located on a separate computer

in Ethernet LAN (802.3). The test TCP tra�c is encapsulated into a regular

TCP/IP connection. Seawind runs on a normal Linux workstation, as it gets

the test TCP tra�c from a standard socket interface.

IP

socket socket

��������
��������
��������

��������
��������
��������

PPP

NPA

802.3

pty

tty

workload source

TCP

TTCP

TCP

IP

socket socket

802.3

Seawind emulator

SW

��������
��������
��������

��������
��������
��������

tty

pty

IP

TCP

socket socket

workload sink

PPP802.3

NPA TTCP

IP | TCP | PPP | IP | TCP IP | TCP | PPP | IP | TCP

Figure 10: Seawind protocol stack. The modi�ed TCP code is dashed.

The Seawind emulator implements the network model shown in Figure 9

by delaying and dropping TCP segments in real time. The downlink and

uplink channels are parameterized independently. The maximum length of

the queue in packets is controlled by a parameter; in the �unlimited� mode

the length is only bound by the available memory. For the purpose of our

experiments, it can be considered in�nite. One packet is considered currently

�in transmission� and is not counted into the queue limit. Through the rest of

the thesis we assume that the �router bu�er size� does not include this packet.

Link errors can be emulated as a �xed pattern (e.g. 5th and 12th packets

are dropped) or with a speci�ed dropping probability per each packet.

The workload source and sink computers use the TCP implementation

Experimental Design 40

under study. The Point-to-Point (PPP) protocol is used as a link service for

a TCP connection under study. This corresponds to a real-world situation,

as most dial-up users employ PPP. We have disabled all kinds of header and

data compression, as well as escaping of control characters in PPP (except

the �ag byte and the escape byte). The PPP/IP/TCP tra�c is forwarded

by the Network Protocol Adapter (NPA) via a TCP/IP connection to the

Seawind emulator.

6.2 Test Network

We use a modi�ed TTCP tool for generating tra�c for TCP connections.

TTCP is a popular public domain tool for testing the end-to-end through-

put by sending a high volume of data over the network [Sti90]. TTCP is

commonly used as a workload generator for bulk data transfers. We have

made several extensions to TTCP to make it more suitable to our needs.

In our tests we used 400 writes of 256-byte data blocks, which results in a

100-kilobyte transfer.

kaide pihlaisto tainio

fs
cfg,logs

saviletto
GUI

Internet

Private LAN (10 Mpbs Ethernet)

Department LAN (100 Mpbs Ethernet)

TTCP TTCPSeawind

Figure 11: Test Network.

Experimental Design 41

The Nagle algorithm in TCP does not allow transmission of segments

smaller than MSS if such a segment is currently in �ight [Nag84]. The Nagle

algorithm could disturb our results. To prevent this, the size of data passed

by TTCP for transmission with a single write is set to the MSS of the con-

nection. We have also afterwards checked the minimum segment size in a

connection trace. We could also have used a socket option TCP_NODELAY

to disable Nagle altogether.

For our tests we have used a specially set up network, as shown in

Figure 11. Test TCP connections are performed inside a private LAN, so that

interference with other tra�c is avoided. From computers in the test network,

only kaide is connected to the department network. Other computers cannot

directly communicate with other hosts but those located in the private LAN.

Computers connected to the department LAN can use a �le server fs. All

machines in the test network are 400-MHz Celerons, running RedHat Linux

6.1.

TTCP runs on pihlaisto and tainio that are used as a tra�c source or

sink interchangeably. The Seawind emulator runs on kaide. The con�gura-

tion and control of all tests can be done remotely from a computer in the

department LAN that runs the user interface. We store con�guration and

log �les in the fs server, so that they are accessible from kaide and any other

computer in the department LAN.

We have used the Linux kernel version 2.2.14 on kaide that runs the

emulator. In principle, any stable kernel version could be used, since we are

not concerned with the details of kernel behavior here. The only requirement

is the correct and timely execution of the emulator code. In contrast, pihlaisto

and tainio are running the kernel with the modi�ed TCP implementation as

they are used for workload generation.

As all tests are done in a private LAN, the overhead of transmitting

workload data from source to emulator to sink is minimal and predictable.

In our tests we have ignored this overhead. In the future, it can be measured

and substracted from a delay calculations in the emulator. We also have not

run any tests where a workload generator is located in the Internet. It can

Experimental Design 42

be done in future, by making kaide forward packets between the private LAN

and the Internet.

6.3 Measurement Data

The experimental data is collected from three sources: the tcpdump, the

seawind log and the kernel log. Tcpdump captures a binary dump of the

packets at the TCP sender and receiver. Seawind logs down the amount of

delay imposed on each packet, the current queue size when a packet is en-

queued, and events such as a packet drop due to exceeding a queue limit or

as a result of a random error. The kernel log provides values of TCP inter-

nal variables, e.g. the congestion window (cwnd), the slow start threshold

(ssthresh), the retransmission timeout (rto). We believe that the overhead

caused by collecting the logs is negligible and does not a�ect our results.

For TCP bulk data connections the most important performance metric

is the throughput. It is de�ned as the ratio of the amount of user data

transfered during the connection over the connection elapsed time (taken at

the sender from the �rst SYN until the last FIN-ACK). We compare the

e�ect of di�erent optimizations based on achieved throughput. In addition

we summarize the following metrics for each test: the elapsed time (quartiles

and median), throughput (median), number of TCP retransmission (median),

number of packets dropped in Seawind (median). For the detailed analysis

of some cases we can also produce the trace of the queue size in Seawind.

Because of the large number of tests, it is important to use automated tools

for the basic analysis. We have developed a set of scripts to produce the

statistics and graphs of TCP connections.

The number of replications of a test that we could perform has been

limited by time considerations. A typical test connection takes approximately

two minutes to complete. Taking into account the broad parameter space,

we could make 15 replications per each test. We have used common random

numbers as a standard variance-reduction technique, see e.g. [LK91]. All

comparison tests of di�erent TCP optimizations at the presence of random

Experimental Design 43

error losses were run with the same sequence of packet drops. This allows

obtaining statistically sound data with the limited number of replications.

We have extended the Linux kernel to print the values of internal

TCP variables into the kernel log. In general, tcpstats is used for this pur-

pose [Pad98]; it is the de-facto complement for tcpdump in the TCP analysis.

Unfortunately, tcpstats is available only for BSD Unix OS. In the future, we

plan porting tcpstats to Linux and developing an analysis tool similar to

MultiTracer [LRK+99]. The new tool will allow automatically combining

and analyzing data from tcpdump, tcptrace and the Seawind emulator.

6.4 Test Cases

Here we de�ne a scope and parameters of our test sets. To select interesting

cases that are worth a detailed study, a large number of di�erent optimiza-

tions with a smaller number of repetitions was run in preliminary tests.

Unlimited router bu�er. In the �rst set of tests we examine the behavior

of TCP in the environment with the unlimited router bu�er. We assume the

presence of constant bandwidth and propagation delay, but lack of any other

adverse factors, such as variable delays, error or congestion losses. We will

use the baseline TCP in this set of tests.

Optimal router bu�er size. The purpose of this set of tests is to deter-

mine a range of router bu�er sizes where TCP performs well on an error-free

link. We will use the baseline TCP and the router bu�er size of 3, 4, ..., 12,

15, 20, 40 packets.

Single-packet error losses. We will try to locate and analyze the cases

when an error loss of a single segment has a signi�cant e�ect on performance.

We drop a segment at di�erent places in a connection. In general, we expect

single-segment errors to be recovered well by the fast retransmit algorithm

without noticeable performance degradation. An interesting e�ect can be

Experimental Design 44

expected when error losses happen at the point of time when the router bu�er

over�ows. Also errors at the beginning of a connection would interrupt the

slow start and force the congestion avoidance. It will be interesting to �nd

out whether this would reduce the throughput of the connection. We expect

bad e�ects to be caused by retransmission timeouts. We will use the baseline

TCP in this set of tests and a varying size of the router bu�er.

Random errors losses. In our largest set of tests we study the e�ect

of random error losses on the TCP performance. To determine the packet

loss rates to experiment with, we took 1 % as the lower bound of interest.

The non-congestion loss rate of less than 1 % is given as a condition for

�normal� operation of the TCP protocol [Ste97]. Some of the related work

has experimented with a broad range of loss probabilities (from 0.001 to

1) [MSMO97]. We selected the uniformly distributed loss rates of 2 %, 5 %

and 10 %. An alternative and possibly better option would be to �x the

Bit Error Rate (BER) and compute the loss probability separately per each

packet based on its size. Unfortunately, our emulator tool does not yet allow

this. Following a practice commonly used in the related work, the error rates

are assigned to good, mediocre and poor radio link conditions. We have

selected the router bu�er sizes of 3, 5, 7, 10 and 20 packets.

Table 2 lists the optimizations we have experimented with. There is a

large number of possible interesting combinations, for example the limited

receiver window and the increased initial window. However, due to the time

limits we did not tests the combinations. The receiver's advertised window

size was limited by setting the receiver bu�er with a socket option. Although

we have used two and four kilobytes for the size of the receive bu�er, the

actual advertised window was slightly less in TCP traces. This is the reason

for the values given in Table 2.

Not only the total throughput at the end of the connection is interest-

ing, but also the throughput taken at di�erent stages of a connection, e.g.

when 15 kilobytes of data was sent. In this way we can estimate the behavior

of shorter transaction-type connections. Due to concerns about the validity

Experimental Design 45

of such approach, no detailed conclusions on the transactional workload can

be made. We could not run tests with the transactional workload because of

time limits.

Burst error losses. We will perform a limited number of tests with the

baseline TCP to study the e�ect of error bursts on TCP performance. We

will experiment with three-packet and ten-packet router bu�ers. The length

of the burst period is set to ten and twenty seconds and the loss rate during

the burst to 20% and 40%. We will trigger an error burst in the middle (after

60 seconds) of an otherwise error-free connection.

RED. It is interesting to experiment with RED parameters to determine a

set of values appropriate for our environment. The goal for a single connec-

tion is to prevent the start-up bu�er over�ow. For the case of two parallel

connections, we also evaluate how fair the bandwidth is shared. We have

selected three router bu�er sizes of 10, 20, and 40 packets. We have omit-

ted smaller sizes from our experiments, because the start-up bu�er over�ow

problem is not severe for a small bu�er. In addition, we do not expect RED

to perform well for a small bu�er size. The weight of the current queue size

Table 2: TCP optimizations tested with random errors.

Label iw win sack newreno mss

segm. bytes on/o� on/o� bytes

baseline 2 32696 o� on 256

iw3 3

iw4 4

win2K 2048

win4K 3840

sack_on on

newreno_o� o�

mss536 536

Experimental Design 46

in calculating the moving average of the queue size should be rather high to

detect the start-up bu�er over�ow. The maximum drop probability should

not be high to prevent retransmission timeouts. During preliminary tests

we have identi�ed the following parameters to be interesting for the detailed

experimentation: the queue weight of 0.2 and 0.4, the maximum drop prob-

ability of 0.05 and 0.1. The minimum and maximum thresholds are �xed

at 25 % and 75 % correspondingly. We will use the baseline TCP over an

error-free link in this set of tests.

Measurement Results and Analysis 47

7 Measurement Results and Analysis

In this section we provide and analyze the most interesting cases found in

the tests. The complete results of tests are given in Appendix B.

7.1 Unlimited Router Bu�er

First, we examine the behavior of TCP over a router bu�er of unlimited size.

We assume the presence of constant bandwidth and the propagation delay,

but no variable delays, error or congestion losses. Detailed results are given

in Appendix B.1. Figure 12(a) shows the behavior of the baseline TCP under

such conditions. The achieved throughput of 1002 bytes per second (Bps) is

close to the maximum in this environment. Taking into account 20 bytes of

TCP header, 20 bytes of IP header, 5 bytes of PPP header and 3 bytes of

PPP trailer, a SYN segment of 56 bytes and SYN-ACK of 57 bytes, and the

elapsed time of 102.15 seconds we get the raw throughput of 1192 Bps. This

is very close to the line rate of 1200 Bps.

TCP behaves as expected; the FlightSize increases until the size of the

receiver window is reached. When it happens, the FlightSize stays constant

at the size of the receiver window; the congestion window does not a�ect the

connection. When the FlightSize equals the receiver window (32 kilobytes),

127 segments are queued in the network. In our environment, where the

FlightSize of a few segments is su�cient for utilizing the pipe capacity, this

is undesirable for reasons discussed in Section 3.1 on page 19. We will add

here that the measured RTT also includes the queuing time and thus is

highly in�ated with regard to the actual RTT of the link. It can be seen

from Figure 12(a) that RTT reaches 30 seconds compared to less than a

second in the beginning of the connection. A second connection started over

the same link will experience a timeout because the time required to get an

acknowledgment for the �rst packet would be greater than the initial RTO

value (3 seconds). The second connection will have di�culties in obtaining

a fair share of the link bandwidth, when the �rst connection has e�ectively

blocked the link.

Measurement Results and Analysis 48

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a) No segment losses.

0 50 100 150 200
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(b) Three last segments and the �rst re-

transmission are lost.

Figure 12: TCP behavior with the unlimited router bu�er size.

An adaptive link layer can change the strength of the radio channel

coding when the number of transmission errors on the link changes [Lud00].

A stronger coding schema allows to reduce the packet loss rate over the link

at the expense of the reduced line rate. A complete lack of segment losses

creates the overbu�ering problem and is not desirable in our environment.

In order to keep the FlightSize at the optimal level, TCP needs a low rate of

segment losses. Losses due to congestion at the router bu�er and losses due

to link errors are treated in the same way by TCP. Thus a link can provide

a low level of error losses with a bene�cial e�ect on TCP. For an adaptive

link it means that the channel coding can be kept as weak as possible to

maximize the line rate, leaving a low level of packet losses to be noticed and

corrected by TCP.

7.2 Optimal Router Bu�er Size

The purpose of this set of tests is to determine a range of router bu�er

sizes appropriate for TCP in our environment. We have used the baseline

TCP and an error-free link and set the router bu�er size to 3, 4, ..., 12, 15,

Measurement Results and Analysis 49

20, 40 packets. Detailed results are given in Appendix B.1. The achieved

throughput is shown in Figure 13. We observe that throughput is good for

bu�er sizes in the range of 3 to 12 packets. A bu�er size as small as three

packets already allows �lling the pipe capacity. Figure 14 shows the receiver-

side trace of a TCP connection over the router bu�er size of three packets.

Segments are arriving with an interval equal to the transmission delay of the

link. Periodic packet losses at the end of each congestion avoidance cycle

do not a�ect the performance. This is because a packet loss occurs �before�

the wireless link and no data is actually retransmitted over the wireless link.

These losses are recovered well by the fast retransmit, and although the lost

segment is delivered behind �ve other segments, a bulk transfer application

does not notice the delay.

Variations in throughput for the bu�er size of 3-12 packets have a simple

explanation. If a congestion control cycle happens to occur at the end of a

connection, it causes a retransmission timeout. Figure 15 shows that the

connection su�ers from the RTO for the six-packet router bu�er, but does

not for the �ve-packet bu�er. The connection in Figure 15(b) simply does

not have any more data to send when the periodic packet loss due to a

router bu�er over�ow occurs. Three DUPACKs cannot arrive making the

fast retransmit impossible. Whether RTO occurs or not for the given router

bu�er size depends on the amount of data sent over the connection.

Starting with the bu�er size of 15 packets, performance decreases. The

severity of the start-up bu�er over�ow increases with the bu�er size. Some

examples are given later in Section 7.4.2 on page 61. The start-up bu�er

over�ow for a 15-packet bu�er already lasts for 40 seconds. Thus, we can

conclude that any bu�er size in the range of 3-12 packets o�ers the adequate

performance for a TCP connection in our environment.

7.3 Single-Packet Error Losses

Normally, single-packet error losses do not have a signi�cant impact on TCP

performance. We have identi�ed the following special cases when a single-

Measurement Results and Analysis 50

0 5 10 15 20 25 30 35 40
945

950

955

960

965

970

975

980

985

990

995

Buffer size in router, packets

T
C

P
 th

ro
ug

hp
ut

, B
ps

Figure 13: Throughput vs. bu�er

size for the baseline TCP over an

error-free link.

0 2 4 6 8 10 12
4.2

4.4

4.6

4.8

5

5.2

5.4
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data rcvd
ack sent

Figure 14: Even a bu�er size of three

packets allows �lling the pipe capac-

ity. The receiver-side trace.

0 1 2 3 4 5 6 7 8
9.6

9.7

9.8

9.9

10

10.1

10.2

10.3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Bu�er of 5 packets, the fast retrans-

mit.

0 1 2 3 4 5 6 7 8
9.6

9.7

9.8

9.9

10

10.1

10.2

10.3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) Bu�er of 6 packets, the RTO.

Figure 15: The congestion avoidance cycle causes periodic packet losses. If

a loss is at the end of the connection, RTO occurs.

Measurement Results and Analysis 51

packet loss has a notable e�ect. We have not run a systematic set of tests

for this section, but searched for interesting events in all test sets and exper-

imented with dropping segments at the di�erent phases of TCP connections.

The cases concern a loss of:

a) the SYN, SYN-ACK, the �rst segment from the initial window,

b) a data segment when the number of packets in �ight is less than four,

c) a retransmitted segment.

In all cases, the adverse e�ect is related to the retransmission timeout,

because the fast retransmit is impossible in these situations.

In case a) a valid RTT sample has not yet been collected; the default

value of three seconds is used for RTO. A usual timeout value without a back

o� based on RTT measurement is three to �ve seconds for our connections.

Thus, the initial timeout value of three seconds is appropriate for our envi-

ronment. Figure 16 shows an example where the �rst segment in the initial

window of two segments is lost. The sender has to recover by a timeout to

retransmit the lost segment. Furthermore, the retransmission is lost, and the

second recovery attempt is made after back o� of RTO as discussed in case

c).

In case b) there are not enough packets in �ight to reach the threshold

of three DUPACKs to trigger the fast retransmit. The FlightSize of less

than four segments occurs when a connection is limited by the congestion

or receiver window, or does not have enough data to send. For a bulk data

connection, the latter is only possible at the end of the transfer. Figure 15

shows an example of a timeout at the end of the connection. In case segment

losses do suddenly happen on an overbu�ered link (with a large router bu�er),

the recovery time is long, as shown in Figure 12(b) on page 48. Four last

segments in a connection are lost (three original and the �rst retransmission).

The retransmission of a lost segment happens only after 40 seconds after its

loss.

The receiver window can be set smaller than four MSSs only in patho-

logical cases. On the other hand, a small congestion window preventing the

Measurement Results and Analysis 52

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 16: Loss of a packet in the

initial window causes a timeout.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 17: Repeated bu�er over�ows

when the slow start threshold is set

too high after RTO.

fast retransmit is a common case. In the beginning of a connection the con-

gestion window is not yet large enough to allow fast retransmit. In another

part of a connection, the congestion window may be small as a result of

packet losses. Figure 25 on page 60 shows RTOs when the congestion win-

dow is too small to allow fast retransmits. However, the penalty of RTO

recovery compared to the fast retransmit is not large in such a case.

In case c) a segment retransmitted by the slow start or by the fast

retransmit is lost. Note that fast retransmits are not allowed for segments

retransmitted by the slow start after RTO [APS99]. A loss of a segment

retransmitted due to a timeout causes an RTO back o�; the timeout value is

doubled on each unsuccessful retransmission attempt. Figure 16 shows the

back o� of RTO from three seconds to six seconds at the second retrans-

mission. The backed o� RTO value can be as large as two minutes. The

back o� has a particularly bad e�ect if the original RTO value was in�ated.

In this case the backed o� RTO can be a minute already at the second re-

transmission, as shown in Figure 12(b) on page 48. The connection time is

doubled.

A loss of a fast-retransmitted segment or a segment retransmitted dur-

ing the fast recovery phase by New Reno always leads to a timeout. This

Measurement Results and Analysis 53

introduces a notable delay, as can be seen in Figure 24 on page 60. Another

potential problem is shown in Figure 17. The loss of a retransmitted segment

during the fast recovery phase causes a timeout. At this time, the FlightSize

is huge. The slow start threshold is set to a half of the FlightSize, which is

more than the FlightSize at the time when the �rst packet loss is detected.

The slow start threshold, which is too high, overestimates the available net-

work capacity and the second bu�er over�ow happens similar to the start-up

bu�er over�ow. Such a bad behavior can continue through the connection

lifetime. A correct interpretation of the congestion control standard [APS99]

requires to halve the slow start threshold twice if a loss of a retransmitted

packet is detected.

A positive e�ect of an error loss can be in the prevention of the start-up

bu�er over�ows. Figure 18 shows two graphs, one without error losses and

another when the eighth segment is lost due to an error. An error loss triggers

a fast retransmit that decreases the transmission rate and limits the value of

the slow start threshold early. The start-up bu�er over�ow is avoided, and

the connection proceeds smoothly for its lifetime.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) No error losses

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) The 8th packet is lost

Figure 18: A single-packet error prevents the bu�er over�ow. Baseline TCP

over the seven-packet router bu�er.

Measurement Results and Analysis 54

7.4 Random Error Losses

7.4.1 Throughput at the end of connections

In this section we compare the performance of TCP optimizations based on

the achieved throughput at the end of a connection. Detailed results are

given in Appendix B.2�B.8.

Good radio conditions. In this set of tests the error loss rate is rela-

tively low, an average eight packets and eight acknowledgments are dropped

in a connection. The performance picture we observed with di�erent TCP

optimizations is shown in Figure 19(a). The general trend is an increase of

throughput from the bu�er size of three packets up to ten packets for about

6 %. For the 20-packet bu�er the throughput increases for a limited receiver

window, decreases for a larger initial window, and stays the same for other

optimizations. We explain it as follows. For smaller router bu�er sizes, there

is a higher probability of RTOs due to a short congestion avoidance cycle and

due to a small FlightSize at the presence of error losses. For larger bu�er

sizes, the severity of the start-up bu�er over�ow increases. In general, all

modi�cations and the baseline perform well; the achieved throughput is less

than the maximum by only 3-15 %. Multiple error losses rarely occur in a

single FlightSize of data; most losses are recovered well by a fast retransmit.

Errors do have some e�ect: the throughput is less than in an error-free link

as was shown in Figure 13 on page 50. The key performance problem is the

start-up bu�er over�ows.

TCP with SACK provides better throughput than other modi�cations

for all bu�er sizes and about 7 % better than the baseline. The performance

gain is achieved mostly by more e�cient recovery from the start-up bu�er

over�ow, as shown in Figure 20(a). Other modi�cations, in general, perform

slightly better than the baseline. TCP with the increased initial window

achieves 1-2 % better throughput than the baseline. The reason for the

improvement is the prevention of RTOs when segments are lost in the very

beginning of a connection, when the FlightSize may not yet be enough to

Measurement Results and Analysis 55

2 4 6 8 10 12 14 16 18 20
840

860

880

900

920

940

960

980

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(a
)
G
o
o
d
ra
d
io
co
n
d
it
io
n
s
(2
%
er
ro
r

ra
te
)

2 4 6 8 10 12 14 16 18 20
600

650

700

750

800

850

900

950

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(b
)
M
ed
io
cr
e
ra
d
io
co
n
d
it
io
n
s
(5
%

er
ro
r
ra
te
)

2 4 6 8 10 12 14 16 18 20
400

450

500

550

600

650

700

750

800

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(c
)
P
o
o
r
ra
d
io
co
n
d
it
io
n
s
(1
0
%
er
ro
r

ra
te
)

F
ig
u
re
19
:
T
h
ro
u
gh
p
u
t
of
T
C
P
at
th
e
en
d
of
co
n
n
ec
ti
on
s.
T
h
e
av
er
ag
e
ov
er
15
re
p
li
ca
ti
on
s.
N
ot
e
th
e
d
i�
er
en
t
sc
al
e.

Measurement Results and Analysis 56

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) E�cient recovery by SACK. The router

bu�er is seven packets.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(b) E�cient prevention by a limited re-

ceiver window of four kilobytes. The router

bu�er is twenty packets.

Figure 20: Possible solutions to the start-up over�ow of the router bu�er.

trigger a fast retransmit. Figure 21 illustrates the idea. The initial window

of four segments is better than of three segments for all bu�er sizes but for

a ten-packet bu�er. There are two scenarios which explain this. In the �rst

scenario, a larger FlightSize caused by the initial window of four segments

triggers one additional DUPACK that resets the retransmission timer. A

few more seconds are required before the RTO timer expires, Figure 22. In

another scenario, the larger FlightSize causes another bu�er over�ow due to

the slow start threshold, which is too high, as was shown in Figure 17 on

page 52. The second bu�er over�ow increases the connection time by about

ten seconds.

A limited receiver window yields worse throughput than the baseline

for a bu�er size of up to ten packets. A smaller window size limits the Flight-

Size and decreases the bu�er over�ow in the connection startup. However,

this advantage is overruled by disturbing the fast recovery procedure. This

happens as follows. After a fast retransmit the baseline TCP transmits a

new segment per each additional DUPACK during the fast recovery. A small

receiver window prevents the transmission of new segments during the fast

Measurement Results and Analysis 57

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) The baseline TCP (initial window of

two segments).

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data sent
ack rcvd

(b) Initial window of four segments.

Figure 21: The RTO in the connection start due to an error loss is present

for the baseline, but is prevented by the increased initial window.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Initial window of three segments.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) Initial window of four segments.

Figure 22: The larger initial window triggers a partial ACK that resets RTO

and delays the recovery of other segments.

Measurement Results and Analysis 58

0 1 2 3 4 5
3.8

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Receiver window of 32 kilobytes.

0 1 2 3 4 5
3.8

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data sent
ack rcvd
win

(b) Receiver window of 2 kilobytes.

Figure 23: The limited receiver window prevents sending new data after the

fast retransmit.

recovery as shown in Figure 23. For a larger bu�er size, limiting the receiver

window improves the throughput. With a larger bu�er size, fast retransmits

at the end of congestion avoidance cycles are less frequent and thus limit-

ing the fast recovery at each fast retransmit has less e�ect. In contrast, the

prevention of the start-up bu�er over�ow becomes increasingly important.

Figure 20(b) on page 56 shows that the start-up bu�er over�ow is reduced

to the minimum, and the fast recovery is not disturbed afterwards.

TCP without New Reno (and SACK) normally recovers by RTO when

two or more segments are lost from the same �ight. We noticed that it can

have either a bad or a good e�ect on performance. When a few segments are

lost, New Reno recovers faster than Reno. However, when a large number

of segments are lost, the slow start recovers much faster than New Reno

which is retransmitting only one segment per RTT. For a bu�er size of ten

and twenty packets Reno performs better than New Reno, because a large

number of segments lost in the start-up bu�er over�ow is recovered faster.

Measurement Results and Analysis 59

Mediocre radio conditions. In this set of tests the error loss rate is

moderate, an average 20 packets and 20 acknowledgments are dropped in a

connection. The performance picture we observed is shown in Figure 19(b).

As a general trend, the throughput increases from the bu�er size of three

packets to the bu�er size of seven packets. This is because for smaller router

bu�er sizes, there is a higher probability of RTOs due to a short congestion

avoidance cycle and due to a small FlightSize at the presence of error losses.

For a part of TCP optimizations the throughput drops slightly for a bu�er

size of ten packets, and increases again for the bu�er size of 20 packets.

We found that connections over the bu�er size of ten packets are prone to

timeouts after the fast retransmit, as shown in Figure 24.

The bu�er size of 20 packets may actually have less frequent start-up

bu�er over�ows than a smaller bu�er size. This is because it takes a longer

time to increase the FlightSize to a large enough value to cause the over�ow.

There is a higher probability of an error loss during this time. If an error

loss occurs, the bu�er over�ow is reduced or prevented. SACK TCP achieves

about 10 % less than the maximum throughput, other optimizations about

30 % less. Start-up bu�er over�ows are not frequent and less severe than in

�good radio� tests. The frequency of TCP timeouts is moderate, one-two per

connection. The back o� of RTO has an especially bad e�ect on performance.

The e�ect of modi�cations is generally the same as in �good radio�

tests. A small receiver window of two kilobytes performs worse than the

baseline for all bu�er sizes because it disturbs the fast recovery after the fast

retransmit. As the amount of error losses is greater than in �good radio� tests,

fast retransmits are more frequent. The distortion of fast recovery overrules

the prevention of bu�er over�ows. A similar reasoning holds for Reno TCP,

the more e�cient recovery from bu�er over�ows is less important here than

the recovery of multiple error losses. We observe that Reno performs worse

than the baseline for all bu�er sizes.

Poor radio conditions. In this set of tests there are 40 segments and

40 acknowledgments lost on the average in a connection. The performance

Measurement Results and Analysis 60

0 10 20 30 40 50
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 24: RTO occurs if the fast

retransmitted packet is lost.

0 5 10 15
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 25: RTOs are not much worse

than the fast retransmit when the

FlightSize is small.

picture we observed is shown in Figure 19(c). The throughput increases from

the router bu�er size of three packets up to seven packets. This is because

for smaller router bu�er sizes, there is a higher probability of RTOs due

to a short congestion avoidance cycle and due to a small FlightSize at the

presence of error losses. For bu�er sizes above seven packets, the throughput

stays nearly the same. This is because at the high level of error losses the

FlightSize is small and thus start-up bu�er over�ows are not present for a

larger bu�er size. SACK throughput is about 25 % less than the maximum,

other modi�cations achieve only about 50 % of the maximum. The main

reason of the performance problem is the back o� of RTO.

SACK TCP proceeds smoothly with a FlightSize of a few packets, time-

outs are rare. The di�erence in performance among other TCP optimizations

is not signi�cant. Due to the small FlightSize the RTT on the link is close

to the minimum and RTO is not in�ated. This makes timeouts less severe

than in a case of overbu�ering. Figure 25 shows that the RTO recovery is

not much worse than with a fast retransmit.

At a high level of error losses TCP tends to underestimate the available

network capacity and to spend time in waiting for the RTO to expire. As

all TCP optimizations but SACK utilize only half of the line rate, using

Measurement Results and Analysis 61

two or more parallel connections could yield better total throughput (we

have not yet run tests that can con�rm or disprove this). Although each

individual connection proceeds slowly, the total throughput for an application

is improved. Such an approach can improve the performance of applications

without any modi�cations to the baseline TCP. For example, many web

browsers open several concurrent TCP connections which is bene�cial at the

presence of error losses.

Before we have modi�ed Linux TCP to use all valid samples for re-

setting the backed o� RTO and the counter of retransmissions as described

in Appendix A.2, some of connections terminated before all data has been

sent. We �nd it useful to increase the maximum number of retransmission

attempts when operating over a lossy link.

7.4.2 Throughput at the beginning of connections

In this section we evaluate the performance of TCP optimizations at the

beginning of a connection. In such a way we can estimate the performance

for a transaction-like tra�c composed of shorter connections. We calculate

throughput for n bytes based on the elapsed time until the nth byte is ac-

knowledged. Our estimation is not fully accurate, because the segments just

before n are a�ected by segments that carry data beyond n that are not

present in a connection sending only n bytes. For example, Figure 15(b) on

page 50 shows a timeout at the end of the connection. If some more data

would be send over the connection, the timeout could be avoided.

We would like to select n in a way that would capture the e�ect of

the start-up bu�er over�ow. This is not straightforward, as the number of

bytes transmitted before the over�ow and the length of the recovery from

the over�ow depends on the bu�er size. Figure 26 shows the over�ow and

the recovery for the router bu�er of three, seven, and twenty packets. The

value of n of 15 kilobytes is appropriate, because it captures the over�ow and

a part of the recovery for a bu�er size of twenty packets. Also it is not very

distant from the end of the recovery for a three-packet bu�er.

Measurement Results and Analysis 62

0 2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

14000

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd (a

)
3
-p
a
ck
et
ro
u
te
r
b
u
�
er
.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b
)
7
-p
a
ck
et
ro
u
te
r
b
u
�
er
.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd (c

)
2
0
-p
a
ck
et
ro
u
te
r
b
u
�
er
.

F
ig
u
re
26
:
B
u
�
er
ov
er
�
ow
at
th
e
b
eg
in
n
in
g
of
co
n
n
ec
ti
on
s.
N
ot
e
th
e
d
i�
er
en
t
sc
al
e.

Measurement Results and Analysis 63

Figure 27(a) shows the throughput of a connection in �good radio�

conditions with a 2 % packet loss rate after 15 kilobytes have been transfered.

SACK performs well for all bu�er sizes, about 15 % less than the maximum.

The baseline TCP and the increased initial window TCP su�er from a long

recovery and do not perform well for larger bu�er sizes. In opposite, a limited

receiver window prevents bu�er over�ows and performs increasingly well for

larger bu�ers. TCP with disabled New Reno recovers faster than the baseline

TCP for larger bu�ers.

Figure 27(b) shows throughput of a connection in �mediocre radio�

conditions with a 5 % packet loss rate after 15 kilobytes have been transfered.

At this error rate the prevention and recovery of bu�er over�ows becomes

less important. We observe that the limited receiver window and Reno do

not perform as well as in �good radio�. SACK performance is not worse than

in �good radio� conditions. This is because SACK is able to avoid practically

all RTOs in the beginning of connections. Using SACK in combination with

the FACK algorithm allows to trigger the fast retransmit even when the

FlightSize is less than four segments. TCP with the increased initial window

performs slightly better than the baseline TCP because some timeouts due

to error losses are avoided.

Figure 27(c) shows throughput of a connection in �poor radio� condi-

tions with a 10 % packet loss rate after 15 kilobytes have been transfered. In

this environment start-up bu�er over�ows are rare and the key problem is re-

transmission timeouts. SACK performance is good, about 25 % less than the

maximum. Other modi�cations achieve only half of the possible throughput.

7.5 Burst Error Losses

We have performed a limited number of tests with the baseline TCP to

study the e�ect of an error burst on TCP performance. Tests were run with

a three-packet and ten-packet bu�ers, burst length of ten or twenty seconds

and a packet error loss rate of 20% and 40%. We triggered an error burst

after 60 seconds from the connection start. There were no error losses other

Measurement Results and Analysis 64

2 4 6 8 10 12 14 16 18 20
550

600

650

700

750

800

850

900

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(a
)
G
o
o
d
ra
d
io
co
n
d
it
io
n
s
(2
%
er
ro
r

ra
te
)

2 4 6 8 10 12 14 16 18 20
500

550

600

650

700

750

800

850

900

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(b
)
M
ed
io
cr
e
ra
d
io
co
n
d
it
io
n
s
(5
%

er
ro
r
ra
te
)

2 4 6 8 10 12 14 16 18 20
350

400

450

500

550

600

650

700

750

800

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(c
)
P
o
o
r
ra
d
io
co
n
d
it
io
n
s
(1
0
%
er
ro
r

ra
te
)

F
ig
u
re
27
:
T
h
ro
u
gh
p
u
t
of
T
C
P
at
th
e
b
eg
in
n
in
g
of
co
n
n
ec
ti
on
s
af
te
r
15
k
il
ob
y
te
s
w
as
tr
an
sf
er
ed
.
T
h
e
av
er
ag
e
ov
er

15
re
p
li
ca
ti
on
s.
N
ot
e
th
e
d
i�
er
en
t
sc
al
e.

Measurement Results and Analysis 65

than during the error burst. Detailed results are given in Appendix B.9. In

general, we found that TCP is prone to RTOs already at a 10-second burst

with a loss rate of 20 %. This occurs because in the beginning of the burst

the FlightSize is halved several times down to the threshold value of four

packets; after that already a single-packet loss causes an RTO. We noticed

that normally little or no data is transferred during an error burst. A back

o� of RTO to a value larger than the burst length causes the connection to

be idle even after the error burst, when the link quality is perfect. We also

noticed that New Reno is not very useful for recovery during an error burst,

because of the high probability of a retransmission loss. The loss of a segment

retransmitted by the New Reno algorithm anyway leads to a timeout.

For a three-packet bu�er we have mostly observed several timeouts

during a burst; the small FlightSize does not generate enough DUPACKs to

trigger a fast retransmit. However, RTO is not in�ated and even in the case

of backed o� RTOs transmission resumes shortly after the error burst ends.

Because the FlightSize is small, some new segments that are not retrans-

missions can often be sent during the burst. Getting some new segments

through is important, because an ACK for non-retransmitted data can be

used to reset the backed o� RTO to the normal estimate of RTT.

For a ten-packet bu�er we have observed a number of varying combi-

nations of fast retransmits and RTOs. A connection often stays idle after

the burst ends for a time of approximately half of the burst length. A large

FlightSize at the time of the burst occurrence prevents sending new data

during the burst. Thus, no valid RTT sample can be collected and a backed

o� RTO cannot be reset. In addition, RTO at the time of the burst is already

in�ated because of the queueing time. Using a smaller bu�er size is bene�cial

in the environment where error bursts are present.

7.6 Random Early Detection

We have experimented with a broad range of parameters of the RED algo-

rithm to determine a set of values appropriate for our environment. Using

Measurement Results and Analysis 66

values of parameters recommended for �normal� routers [FJ93] is de�nitely

inappropriate. This is because a �normal� router typically has a large number

of simultaneous �ows and connects high bandwidth links, while in our case

only one or few connections exist and the link is slow.

We did not �nd parameter values that would give a performance im-

provement for a single connection. Detailed results are given in Appendix B.10.

RED is not able to prevent the start-up bu�er over�ow, which is the main

performance problem for a single connection. Calculating a packet marking

probability based on a moving average of the queue size is not e�cient for

this purpose. TCP increases the transmission rate very rapidly during the

slow start, but the moving average increases slower (Figure 28). A drop de-

cision based on the increase of the moving average comes too late, because

the queue over�ow has already occurred. Furthermore, additional dropped

packets would only harm the performance because the connection would not

reduce its transmission rate anyway until the �rst packet loss due to the

bu�er over�ow is detected.

For two simultaneous connections started at the interval of ten seconds

using RED gives an improvement in throughput and fairness for larger bu�er

sizes. We use the fairness index as de�ned in [Jai91]. The performance of two

baseline TCP connections over a drop-tail router is shown in Table 3. The

explanation of the table format is given in Appendix B on page 90. Using

RED with appropriate parameters gives an improvement of 10 % in through-

put compared to the baseline for a twenty-packet and forty-packet bu�er, as

shown in Table 4. The fairness among the connections is slightly improved

as well. Detailed results are given in Appendix B.12 and Appendix B.11.

Here we present the detailed analysis of the start-up bu�er over�ow

shown in Figure 29. The segment marked 1, is the last segment transmitted

before the over�ow is detected after the third DUPACK (2) for the lost

segment (3). The number of segments between 1 and 2 is the FlightSize

when a packet loss is detected, it is about twice as large as the router bu�er.

Approximately, every second segment from this �ight is lost due to the bu�er

over�ow. The time between points 2 and 3 shows the current RTT of the

Measurement Results and Analysis 67

Table 3: Two baseline TCP connections over the drop-tail bu�er.

Name throughput

(min)

throughput

(max)

throughput

(avg)

throughput

(fairness)

buf_10 549.00 654.00 601.50 99.24

buf_20 428.00 600.00 514.00 97.28

buf_40 456.00 589.00 522.50 98.41

Table 4: Two baseline TCP connections over the RED bu�er.

Name throughput

(min)

throughput

(max)

throughput

(avg)

throughput

(fairness)

buf_10_maxp0.05_w0.2 448.00 662.00 560.00 96.72

buf_10_maxp0.05_w0.4 465.00 549.00 505.00 99.41

buf_10_maxp0.1_w0.2 453.00 548.00 517.50 99.00

buf_10_maxp0.1_w0.4 467.00 519.00 489.00 99.37

buf_20_maxp0.05_w0.2 492.00 577.00 531.00 99.46

buf_20_maxp0.05_w0.4 507.00 554.00 529.50 99.72

buf_20_maxp0.1_w0.2 485.00 579.00 527.00 99.60

buf_20_maxp0.1_w0.4 504.00 584.00 543.50 99.77

buf_40_maxp0.05_w0.2 503.00 609.00 564.00 99.20

buf_40_maxp0.05_w0.4 496.00 577.00 535.00 99.22

buf_40_maxp0.1_w0.2 491.00 569.00 532.00 99.20

buf_40_maxp0.1_w0.4 524.00 607.00 574.50 99.62

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time (s)

S
iz

e
of

 th
e

ro
ut

er
 q

ue
ue

 (
pk

ts
)

queue trace
0.05 weight
0.2 weight
0.4 weight

Figure 28: Trace of the router queue

and its smoothed average. The base-

line TCP over a 7-packet bu�er.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

1

2

3

45

8

7

6 data sent
ack rcvd

Figure 29: Analysis of the start-up

bu�er over�ow. The baseline TCP

over a 20-packet bu�er.

Measurement Results and Analysis 68

link, it is about six seconds. The number of segments between 3 and 5 is

the FlightSize at the moment when the �rst loss occurs. Thus, the segment

marked 5 is the latest segment to be dropped by an active queue management

algorithm, so that a packet loss is detected before point 3. When a loss of

5 would be detected, the FlightSize is not grown anymore and additional

losses are prevented. The number of segments between points 6 and 7 is

the minimum FlightSize to trigger the fast retransmit, four segments. Thus,

segment 8 is the earliest segment of the connection, which loss would be

recovered by the fast retransmit. The segments before that can be recovered

only by the retransmission timeout.

Thus, if we drop a segment between points 5 and 6 we avoid the bu�er

over�ow at the cost of a single packet drop. It is better to select a packet

closer to point 5 to avoid underutilization of the link. A practical imple-

mentation of such a policy could de�ne a soft queue limit in the router, for

example ten packets. The hard limit can be two-three times larger than the

soft limit. When the current queue size reaches the soft limit, a single packet

is dropped. When the TCP sender detects a packet loss, it decreases the

transmission rate and the bu�er over�ow is prevented. If the hard queue

limit is reached, the router drops all arriving packets. Extending this al-

gorithm to work well for a few concurrent connections requires a counter

or a timer-based mechanism to determine when to drop another packet in

case the load is not decreased, i.e. a previously dropped packet was not from

the most aggressive connection. Some heuristics that favors connections with

small packets can be implemented to protect interactive �ows. The suggested

algorithm is similar to the Dual Threshold Early Packet Discard [CH00].

7.7 Avoiding Multiple Fast Retransmits

In this section we discuss the issue of avoiding multiple fast retransmits in

a more general environment than was assumed in the thesis. We have not

run a systematic set of tests for this section, but a few speci�c tests. Fast

retransmits are not allowed after a retransmission timeout until all retrans-

mitted data are acknowledged [FH99]. A more careful version of this rule

Measurement Results and Analysis 69

0 50 100 150 200 250
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 30: Spurious retransmissions

after a delay in FreeBSD Unix.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 31: Spurious retransmissions

after an error burst in Linux.

requires that at least one non-retransmitted segment is acknowledged. Most

TCP implementations, including Linux and FreeBSD, use the less careful

version of the rule, which only requires that all retransmitted segments are

acknowledged. We have collected some empirical evidence suggesting that

the more careful version should be implemented in all TCPs. The less careful

version interprets DUPACKs for the last retransmitted segment as an indi-

cation of its loss and triggers the fast retransmit. Thus, the advantage of the

less careful version is a quick recovery in case the last retransmitted segment

was really lost. The more careful version, on the contrary, argues that in

many cases DUPACKs for the last retransmitted are due to the out-of-order

delivery of segments before the last retransmitted segment. Assuming the

loss of the last retransmitted segment in such a case is a dangerous choice as

it can lead to a spurious retransmission of many segments. The more careful

version simply ignores DUPACKs for the last retransmitted segment.

We found two scenarios that show the necessity of the more careful

version. In the �rst scenario, the retransmission timeout is caused by a

long delay on the link [LRK+99]. The timeout is spurious, since no data

was actually lost. Unnecessary retransmitted segments generate a number

of DUPACKs for the last received segments and trigger a false retransmit.

For example Figure 30 shows a TCP connection in Unix FreeBSD 4.1 after

Measurement Results and Analysis 70

a delay. The connection collapses after a spurious timeout, because of the

several spurious retransmissions triggered by DUPACKs and an impatient

retransmission timer. The Eifel algorithm is aimed to prevent unnecessary

retransmissions after a spurious timeout [LK00].

In the second scenario, several adjacent segments are lost in the mid-

dle of the �ight. After a retransmission timeout, part of the segments are

unnecessarily retransmitted. Figure 31 shows a Linux TCP connection in

this situation. DUPACKs trigger a false fast retransmit twice. New Reno

makes the situation worse by making more unnecessary retransmissions. Im-

plementing the more careful version of the �bug �x� would prevent the invalid

behavior in both scenarios.

Conclusion 71

8 Conclusion

The wireless environment presents a challenge for an e�cient data transport

over slow and lossy links. We have performed an experimental evaluation

of TCP in an emulated wireless environment. We consider a network model

including a lossy wireless link and a last-hop router with a limited-size bu�er.

We have explored how well the state-of-art TCP perform, identi�ed the key

reasons behind the behavior, and determined the e�ect of di�erent TCP

optimizations. We experimented with multiple error rates and bu�er sizes

over TCP connections with di�erent values of the initial window, the receiver

window, with or without SACK and New Reno. The experimental data is

obtained with a state-of-art TCP implementation of the Linux operating

system and a real-time network emulator Seawind. Our main result is a

comparative study and analysis of di�erent TCP optimizations.

Before we obtained what we call a �baseline TCP�, several bugs were

�xed in the Linux TCP implementation. We reported some of them and

we intend to make the patched kernel publicly available. We found our

methodology particularly useful as it allows an easy comparison of di�erent

TCP implementations. For example, we ran and compared the same set of

tests with di�erent versions of Linux or BSD operating systems.

We use a simple model of a lossy wireless network connected to a �xed

host via a router. Packets are lost on the wireless link due to transmission

errors (corruption), and in the router due to a bu�er over�ow (congestion).

Our workload model is a downlink unidirectional bulk data transfer of 100

kilobytes. The main problems we address are the start-up bu�er over�ow,

overbu�ering, optimal bu�er size, fair sharing of resources, the e�ect of single,

random and burst errors.

In the �rst set of tests we have shown that an unlimited bu�er size in

the router is not desirable. It creates the overbu�ering problem and worsens

the recovery from sudden data losses. We have determined a range of the

router bu�er sizes, of 3-12 packets, giving the optimal performance on an

error-free link. We have located and analyzed the cases where a loss of a

Conclusion 72

single packet signi�cantly a�ects the performance of TCP. The bad e�ect

appears when a packet loss leads to RTO, while the good e�ect appears in

the prevention of the start-up bu�er over�ow.

Our largest group of tests is with random errors on the link. The error

rate was set to 2, 5, and 10 % with a queue limit of 3, 5, 7, 10, and 20 packets.

We studied how di�erent TCP optimizations perform in such an environment.

We found that the optimal bu�er size to be 7-10 packets. Throughput of the

baseline TCP is adequate at a 2 % error rate, but is only half of the line rate

for a 10 % loss rate. TCP with SACK performed signi�cantly better than

other modi�cations under all conditions, especially at higher loss rates. The

increased initial window gives slightly better throughput than the baseline.

A small receiver window (2 kilobytes) decreases throughput, especially for

smaller bu�er sizes. A moderate window (4 kilobytes) is bene�cial for larger

bu�ers. Disabling New Reno is helpful at a low error rate and larger bu�er

sizes; in other cases it is worse. In general, our results are coherent with a

previous evaluation of Reno, New Reno, and SACK TCP at the presence of

error losses [FF96].

We have also studied what time it takes to transmit the �rst 15 kilo-

bytes of data in the bulk data connections. In this way we can estimate the

performance of a transaction-type tra�c. The performance picture is dif-

ferent than for whole connections. The optimal bu�er size varies with error

rates and TCP optimizations. A limited receiver window and disabled New

Reno are quite helpful at the low error loss rate. SACK performs better than

other modi�cations in this case, as well.

We have studied the e�ect of an error burst on the TCP connection.

Typically, little or no data gets through during the burst already at a 20

% packet loss rate. After the bursts ends, the transmission is resumed im-

mediately, except when RTO was backed o� several times during the burst.

In the later case the connection is idle approximately for half of the burst

length after the link quality returns to normal. The likelihood of the RTO

back o� is increased with the bu�er size. This is because most packets sent

during the burst are retransmissions, but not the new data. In such a case no

Conclusion 73

valid RTT sample can be collected and RTO is more likely backed o� several

times. Thus a smaller router bu�er size is preferable for a link where error

bursts are possible.

We found that RED worsens the performance when only a single TCP

connection is present. This is because the moving average of the queue

size does not react timely to the start-up bu�er over�ow, and late packet

drops only worsen the recovery. For two concurrent TCP connections, RED

improves the throughput and the fairness among the connections, but only

for large bu�er sizes (20, 40 packets). We have provided the detailed analysis

of the start-up bu�er over�ow and have suggested using a dual threshold drop

policy to prevent it. However, its implementation and evaluation is left for

future work. A deployment of the Explicit Congestion Noti�cation (ECN)

could make RED more attractive in our environment, because ECN avoids

congestion-related losses. The implementation of ECN in our emulator and

a performance evaluation is left for future work.

We have collected some empirical evidence suggesting that the more

careful version of the �bug �x� for preventing multiple fast retransmits should

be implemented in all TCPs. In the �rst scenario, multiple fast retransmits

are caused by a long delay on the link and a spurious timeout and in the

second scenario, by a loss of a block of segments in the middle of the �ight.

New Reno adversely a�ects the performance at the presence of multiple fast

retransmits.

REFERENCES 74

References

[ADG+00] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Hen-

derson, J. Heidemann, J. Touch, H. Kruse, S. Ostermann,

K. Scott, and J. Semke. Ongoing TCP research related to satel-

lites. IETF RFC 2760, 2000.

[AF99] M. Allman and A. Falk. On the e�ective evaluation of TCP.

ACM Computer Communication Review, 5(29), October 1999.

[AFP98] M. Allman, S. Floyd, and C. Partridge. Increasing TCP's initial

window. IETF RFC 2414, September 1998.

[AGKM98] T. Alanko, A. Gurtov, M. Kojo, and J. Manner. Seawind: Soft-

ware requirements document. University of Helsinki, Depart-

ment of Computer Science, September 1998.

[All00] M. Allman. A web server's view of the transport layer. ACM

Computer Communication Review, 30(5), October 2000.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP congestion control.

IETF RFC 2581, April 1999.

[Bal98] H. Balakrishnan. Challenges to Reliable Data Transport over

Heterogeneous Wireless Networks. PhD thesis, Computer Sci-

ence Division, Univ. of California at Berkeley, Berkeley, CA,

August 1998.

[BBJ92] D. Borman, R. Braden, and V. Jacobson. TCP extensions for

high performance. IETF RFC 1323, May 1992.

[BCC+98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Es-

trin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peter-

son, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang.

Recommendations on queue management and congestion avoid-

ance in the Internet. IETF RFC 2309, April 1998.

REFERENCES 75

[BKG+00] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby.

Performance enhancing proxies. IETF Internet draft �draft-ietf-

pilc-pep-05.txt�, November 2000. Work in progress.

[BKPS96] H. Balakrishnan, R. Katz, V. Padnamabhan, and S. Seshan. Im-

proving performance of TCP over wireless networks. Technical

report, Texas A&M University, 1996.

[BKPV96] B. Bakshi, N. Krishna, D.K. Padhan, and N. Vaidya. A com-

parison of mechanism for improving performance of TCP over

wireless links. In ACM SIGCOMM, Stanford, California, August

1996. ACM.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer

protocol � HTTP/1.0. IETF RFC 1945, May 1996.

[BPSK96] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.

Katz. A comparison of mechanisms for improving TCP per-

formance over wireless links. In Proceedings of ACM SIG-

COMM '96, Stanford, CA, August 1996.

[Bra89] R. Braden. Requirements for internet hosts � communication

layers. IETF RFC 1122, October 1989.

[BSK95] H. Balakrishnan, S. Seshan, and R. H. Katz. Improving reliable

transport and hando� performance in cellular wireless networks.

ACM Wireless Networks, 1(4), December 1995.

[BV97] S. Biaz and N. Vaidya. Using end-to-end statistics to distinguish

congestion and corruption losses: A negative result. Technical

Report TR97-009, Texas A&M University, August 9, 1997.

[BW97] G. Brasche and B. Walke. Concepts, services and protocols of

the new GSM phase 2+ general packet radio service. IEEE

Communications Magazine, pages 94�104, August 1997.

[CH00] R. Cohen and Y. Hamo. Balanced packet discard for improving

TCP performance in ATM networks. Tel Aviv, Israel, March

2000.

REFERENCES 76

[DMK+00] S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N. Vaidya.

End-to-end performance implications of links with errors. Inter-

net draft �draft-ietf-pilc-error-06.txt�, November 2000. Work in

progress.

[DMKM00] S. Dawkins, G. Montenegro, M. Kojo, and V. Magret. End-to-

end performance implications of slow links. IETF Internet draft

�draft-ietf-pilc-slow-05.txt�, November 2000. Work in progress.

[DNP99] M. Degermark, B. Nordgren, and S. Pink. IP header compres-

sion. IETF RFC 2507, February 1999.

[ECB99] M. Engan, S. Casner, and C. Bormann. IP header compression

over PPP. IETF RFC 2509, February 1999.

[FF96] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe,

Reno, and SACK TCP. ACM Computer Communication Re-

view, July 1996.

[FH99] S. Floyd and T. Henderson. The NewReno modi�cation to

TCP's fast recovery algorithm. IETF RFC 2582, April 1999.

[FJ93] S. Floyd and V. Jacobson. Random early detection gateways for

congestion avoidance. IEEE/ACM Transactions on Networking,

1(4):397�413, August 1993.

[FR99] S. Floyd and K. K. Ramakrishnan. A proposal to add explicit

congestion noti�cation (ECN) to IP. IETF RFC 2481, January

1999.

[GSM98] GPRS service description. ETSI GSM 03.60, August 1998.

[Jac88] V. Jacobson. Congestion avoidance and control. In Proceedings

of ACM SIGCOMM '88, pages 314�329, August 1988.

[Jac90] V. Jacobson. Compressing TCP/IP headers for low-speed serial

links. IETF RFC 1144, February 1990.

REFERENCES 77

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation

and Modeling. John Wiley & Sons, 1991.

[KA98] S. Kent and R. Atkinson. IP Encapsulating Security Payload

(ESP). IETF RFC 2406, November 1998.

[LK91] A. M. Law andW. D. Kelton. Simulation Modeling and Analysis.

McGraw-Hill, second edition, 1991.

[LK00] R. Ludwig and R. H. Katz. The Eifel algorithm: Making

TCP robust against spurious retransmissions. ACM Com-

puter Communication Review, 30(1), January 2000. Available

at: http://www.acm.org/sigcomm/ccr/archive/2000/jan00/ccr-

200001-ludwig.html.

[LRK+99] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph.

Multi-layer tracing of TCP over a reliable wireless link. In

Proceedings of the ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computing Systems

(SIGMETRICS-99), volume 27,1 of SIGMETRICS Performance

Evaluation Review, pages 144�154, New York, May 1�4 1999.

ACM Press.

[Lud99] R. Ludwig. A case for �ow-adaptive wireless links. Technical

Report CSD-99-1053, University of California, Berkeley, 1999.

[Lud00] R. Ludwig. Eliminating Ine�cient Cross-Layer Interactions in

Wireless Networking. PhD thesis, Aachen University of Tech-

nology, April 2000.

[MDK+00] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya.

Long thin networks. IETF RFC 2757, January 2000.

[MM96] M. Mathis and J. Mahdavi. Forward acknowledgement: Re�ning

TCP congestion control. In Proceedings of ACM SIGCOMM '96,

volume 26, October 1996.

REFERENCES 78

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selec-

tive acknowledgement options. IETF RFC 2018, October 1996.

Standards Track.

[MP92] M. Mouly and M. Pautet. The GSM System for Mobile Com-

munications. Europe Media Duplication S.A., 1992.

[MSMO97] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic

behavior of the TCP congestion avoidance algorithm. ACM

Computer Communication Review, 27(3), July 1997.

[MV97] M. Mehta and N. Vaidya. Delayed duplicate-acknowledgments:

A proposal to improve performance of TCP on wireless links.

Technical report, Texas A&M University, December 1997.

[Nag84] J. Nagle. Congestion control in IP/TCP internetworks. IETF

RFC 896, January 1984.

[PA00] V. Paxson and M. Allman. Computing TCP's retransmission

timer. IETF RFC 2988, November 2000. Standards Track.

[Pad98] V. N. Padmanabhan. Addressing the Challenges of Web Data

Transport. PhD thesis, University of California at Berkeley,

September 1998.

[Pax97] V. Paxson. Automated packet trace analysis of TCP im-

plementations. In Proceedings of the ACM SIGCOMM Con-

ference: Applications, Technologies, Architectures, and Proto-

cols for Computer Communication (SIGCOMM-97), volume 27

of Computer Communication Review, pages 167�180, Cannes,

France, September 14�18 1997. ACM Press.

[Pax99] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM

Transactions on Networking, 7(3):277�292, September 1999.

[PN98] K. Poduri and K. Nichols. Simulation studies of increased initial

TCP window size. IETF RFC 2415, September 1998.

REFERENCES 79

[Pos81] J. Postel. Transmission control protocol. IETF RFC 793, 1981.

Standard.

[Rah93] M. Rahnema. Overview of the GSM system and protocol ar-

chitecture. IEEE Communications Magazine, 31:92�100, April

1993.

[RF99] K. Ramakrishnan and S. Floyd. A proposal to add Explicit

Congestion Noti�cation (ECN) to IP. IETF RFC 2481, January

1999.

[Rom88] J. L. Romkey. Nonstandard for transmission of IP datagrams

over serial lines: SLIP. IETF RFC 1055, June 1988.

[Sim93] W. Simpson. The point-to-point protocol (PPP). IETF RFC

1548, December 1993.

[SP98] T. Shepard and C. Partridge. When TCP starts up with four

packets into only three bu�ers. IETF RFC 2416, September

1998.

[Sta00] W. Stallings. Data and Computer Communications. Prentice-

Hall, sixth edition, 2000.

[Ste95] W. Stevens. TCP/IP Illustrated, Volume 1; The Protocols. Ad-

dison Wesley, 1995.

[Ste97] W. Stevens. TCP slow start, congestion avoidance, fast retrans-

mit, and fast recovery algorithms. IETF RFC 2001, January

1997.

[Sti90] R. H. Stine. FYI on a network management tool catalog: Tools

for monitoring and debugging TCP/IP internets and intercon-

nected devices. IETF RFC 1147, April 1990.

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice-Hall Interna-

tional, 1996.

REFERENCES 80

[TMW97] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet

tra�c patterns and characteristics. IEEE Network, 11(6):10�23,

November/December 1997.

[Tou97] J. Touch. TCP control block interdependence. IETF RFC 2140,

April 1997.

[Vai99] N. Vaidya. Tutorial on TCP for wireless and mobile

hosts, 1999. Available at: http://cashew.cs.tamu.edu/fa-

culty/vaidya/seminars/tcp-tutorial-aug99.ppt.

[WS95] G. Wright and W. Stevens. TCP/IP Illustrated, Volume 2; The

Implementation. Addison Wesley, 1995.

Baseline TCP 81

A Baseline TCP

This appendix 1 gives the detailed description of the baseline TCP. The

TCP implementation we use to execute the tests is based on Linux kernel

2.3.99-pre9. The situation with Linux kernel was quite inconsistent since

the �nal stable release 2.4 had not yet been published (and still has not).

Many new patches came every week. We decided to take the pre9 version

and start working with it because we did not have the time to wait for the

�nal release that we still might have to patch to achieve a TCP that works

like we would wish. This section outlines the modi�cations we have made

to the pre9 kernel. We call this modi�ed TCP version Baseline TCP, as it

represents the standard behaving TCP that is outlined in [Pos81], [Bra89]

and [APS99].

A.1 TCP parameters, options and settings

The TCP standards let the TCP implementations choose some of the pa-

rameters and for their own convenience. This section outlines the behavior

of Baseline TCP in more detail. Because NewReno TCP modi�cation is ac-

cepted as a possible fast recovery modi�cation in [APS99], we have included

it in the Baseline TCP as it represents the "best current practice".

A.1.1 NewReno TCP modi�cation

When receiving a partial ack the TCP sender retransmits the following seg-

ment immediately. The question is, should the congestion window be sup-

pressed. It is not clearly stated in [FH99] if a retransmissions is counted as

a new transmitted segment which should be taken into account by lowering

the cwnd by one SMSS. The alternative interpretation is that retransmissions

do not count when calculating the new value for cwnd. In this case, a new

segment may be transmitted in addition to the retransmitted one. We took

1Written chie�y by Panu T. Kuhlberg

Baseline TCP 82

the latter interpretation and so the Baseline TCP sends a new data segment

after receiving a partial acknowledgment.

After the TCP sender has received the ACK that acknowledges all seg-

ments up to and including the variable recover, the fast recovery period is

ended. [FH99] gives two possible values for the new value of the cwnd: it can

be set to ssthresh or �ightsize + SMSS. We chose the latter alternative as

it reduces the possible burst that may follow after the recovery period. After

fast recovery is exited, the cwnd is raised by one SMSS upon every incoming

ACK until ssthresh is reached, as in regular slow start. However, if the cwnd

is exactly four segments, while the third duplicate acknowledgment arrives,

the cwnd is not reduced after exiting the algorithm upon the new ACK that

acknowledges all the four segments. Thus, after the recovery, the cwnd is

retained, and congestion avoidance is used to further increase the cwnd. By

doing this, the cwnd is not lowered beyond four segments, and the possibility

to use fast retransmits is maintained2.

The NewReno speci�cation [FH99] describes a �bug�x�. The question

is, how to avoid multiple fast retransmits. Because the data sender remains

in fast recovery until all of the data outstanding when fast retransmit was

entered has been acknowledged, the problem of multiple fast retransmits can

only occur after a retransmission timeout. After RTO, the highest segment

sent during the recovery period is recorded to a new variable send_high. If

the data sender receives three dupacks that do not cover send_high, fast

retransmit is not triggered. Two di�erent variants of exists for the �bug�x�,

called Careful and Less Careful [FH99]. The Less Careful variant triggers

fast retransmit if the ACKs covers the variable send_high and the Careful

variant enters fast retransmit only if the ACK covers more than send_high.

Baseline TCP implements Less Careful variant of the �bug�x�.

2If the cwnd is less than four segments, there are not enough segments in the network

that would produce three duplicate acks to trigger a fast retransmit.

Baseline TCP 83

A.1.2 Recovery from RTO

Linux kernel was modi�ed to implement �BSD style� RTO recovery3.

A.1.3 RTO calculation

The RTO calculations were not changed from original Linux kernel 2.3.99-

pre9. However, there are some occasions, where the RTO calculation is not

accurate. Linux uses the cwnd as a parameter, when setting the RTO. Due

to Intel Celeron's processor achitecture and unde�ned functionality in C-

programming language conserning right shift operations, a cwnd that is mul-

tiple of 32, creates very high RTO values. When analyzing the tests, the

e�ect of invalid RTOs were observed, and excluded from the test results.

A.1.4 Delayed acknowledgments

Baseline TCP makes use of delayed acknowledgments. The threshold for de-

laying an ACK is 200ms. Using a bandwidth of 9600bits/second, the time

between the arrival of two consecutive data segments of size 296 bytes is

more than 200ms. Therefore, in most of our tests each data segment is ac-

knowledged separately. When using higher bandwidths, two segments are

"quickacked" 4 in the beginning of the connection before the delayed ac-

knowledgments are taken into use.

A.1.5 Receiver's advertised window

Due to implementation problems, Linux kernel 2.3.99-pre9 advertised a win-

dow of 32Kbytes in maximum even if the socket bu�er size was bigger. We

have not modi�ed this in any way and therefore, Baseline TCP has a socket

bu�er of 64Kbytes of which 32 Kbytes is advertised. This feature does not

3We call it BSD style, because Baseline TCP imitates the behavior that was used in

the 4.4BSD-Lite version.
4A term used to describe that each data segment is acknowledged separately

Baseline TCP 84

a�ect the tests and the tests should be interpreted similarly as a "regular"

TCP connection with a socket bu�er and advertised window of 32 Kbytes.

When we run tests with a reduced advertised window, the size announced is

the size of the advertised window, not the size of the socket bu�er.

A.1.6 Disabling control block interdependence

Linux kernel 2.3.99-pre9 used control block interdependence for ssthresh,

RTT and RTT variance. We disabled this feature and made it a sysctl option.

Table 5 summarizes the algorithms, parameters and their values used

in Baseline TCP.

Table 5: Baseline TCP

Item Value and explanation

Slow start As de�ned in [APS99]

Congestion Avoidance As de�ned in [APS99]

Initial window (IW) Initial window of 2 segments

NewReno As de�ned in [FH99] and Appendix A.1.1

cwnd after exiting NewReno �ightsize + SMSS (Appendix A.1.1)

NewReno �Bug�x� Less Careful variant (Appendix A.1.1)

Delayed ACK threshold 200ms (Appendix A.1.4)

Quickacks Two segments in the beginning of the connection

Advertised window (rwnd) 32Kbytes (Appendix A.1.5)

Control Block Interdependence Disabled by default (Appendix A.1.6)

SACK SACK option is disabled

Timestamps timestamps are disabled

A.2 Implementation issues

This section describes the modi�cations which were made to Linux kernel

version 2.3.99-pre9. There are two types of modi�cations: bug �xes and new

Baseline TCP 85

TCP options added for the IWTCP project.

A.2.1 New TCP options

Linux provides a mechanism to set kernel-speci�c options at runtime. We

added a set of new TCP options for the purposes of IWTCP. These options

can be accessed in /proc/sys/net/ipv4 in the Linux �lesystem.

• iwtcp_cbi. Control Block Interdependence for congestion control

variables was used in the unmodi�ed Linux. We added this param-

eter to make Control Block Interdependence a user-selectable option.

• iwtcp_iw. This parameter can be used to set the initial congestion

window in the beginning of the connection.

• iwtcp_newreno. Unmodi�ed Linux used NewReno unconditionally.

However, we added this option to follow the regular Reno congestion

control policy instead of NewReno.

• iwtcp_quickacks. The parameter sets the number of quickacks used

to quickly exit the early slow start phase. If the value is set to 0, the

regular Linux-behavior is used. (i.e. number of quickacks is rwnd / (2

* MSS)).

• iwtcp_srwnd_addr. This parameter is used to activate the shared

advertised window for connections originating from speci�ed IP ad-

dress. The user may specify the least meaningful octet of the peer

IP address, for which the connections use shared advertised window.

Only the connections from 10.0.0.* address family may be shared. This

might not be the correct functionality for the real world (in which case

the sharing should be done per device interface), but for the IWTCP

purposes we decided to follow the above mentioned logic when deciding

whether to share the advertised window or not.

The TCP receiver calculates the advertised window following the stan-

dard procedures, but after the calculation it checks whether the sender's

Baseline TCP 86

IP address was same than what speci�ed with this parameter. In such

case, the receiver calculates the current amount of shared advertised

window and sets minimum of the original and shared window to the

TCP window advertisement �eld.

• iwtcp_srwnd_size. This parameter speci�es the size of the adver-

tised window in bytes to shared among the connections originating

from the IP address speci�ed by iwtcp_srwnd_addr parameter. For

the sharing purposes, our modi�cation keeps track of the number of

connections open from the speci�ed source address. When a connec-

tion sharing the window receives data, the available space in the win-

dow is decreased by the amount of data received. When application

reads data from a connection sharing the window, available space in

the window is increased by the amount of data read by the applica-

tion. The size of the window advertisement for each acknowledgement

is min(real_wnd, avail_shared/connection_count), where real_wnd

is the calculated window which would normally be advertised, based

on the available bu�er size for the socket, avail_shared is the amount

of shared window space currently available and connection_count is

number of connections sharing the window.

If there are new connections opened to share the advertised window, the

available window for old connections would decrease, because connec-

tion_count would increase. However, the advertised window will not

be shrinked in such a case, but if a connection was advertising more

than its share, no new window space will be advertised when new data

arrives. This way the connection's advertised window will gradually

decrease when new data arrives.

• iwtcp_rto_behaviour. With this parameter the user may choose

from three policies of how to act when retransmission timeout occurs.

LINUX (1) is the unmodi�ed Linux behavior, which allowed new data

to be sent while retransmitting the segments from retransmission queue.

In particular, duplicate ACKs increased cwnd, which made this possi-

ble. HOLDCWND (2) holds the cwnd value as 1 during the transmis-

sion from post-RTO retransmission queue. BSD (3) is the default used

Baseline TCP 87

in the IWTCP performance tests, named after BSD because it mimics

the BSD style go-back-N behavior when RTO expires. This is achieved

by making to alternations to the LINUX style: the duplicate ACKs do

not increase the cwnd when retransmitting from post-RTO retransmis-

sion queue, and only the number of originally sent packets is compared

to cwnd when deciding on whether to send new data. Original Linux

compared the sum of original transmissions and retransmissions to the

cwnd.

A.2.2 Bug �xes

Following �xes were made to the Linux kernel version 2.3.99-pre9 before

running the IWTCP performance tests.

• Linux keeps the data received or to be transmitted in data blocks called

sk_bu�s. Each sk_bu� has over 100 bytes of control data in addition

to the segment data. Additionally, Linux allocates a �xed size memory

block (usually 1536 bytes) for each IP packet it receives, instead of

using the actual MTU in allocation requests.

The user may limit the amount of memory allocated for each connection

by setting socket options for sending and receiving socket bu�er size.

If the MTU is signi�cantly smaller than the size of the �xed memory

block allocated, the socket bu�er limits will be reached, even though

the amount of actual data received is signi�cantly smaller. However,

Linux uses the amount of actual data received for the basis of receiving

window advertisements, which causes the receiver to advertise more it

is allowed to receive when the MTU size is small. As a result, if the

Linux receiver gets more segments than it has allocated space in its

bu�ers, it discards all packets in its current out-of-order queue.

As this behavior was not acceptable, we modi�ed the TCP code to use

actual data size in sending and receiving bu�er allocations instead of

the �xed prede�ned size.

Baseline TCP 88

• When exiting from fast recovery, unmodi�ed Linux sender set cwnd

to the value of ssthresh. In many situations, this caused a burst of

ssthresh packets, harmful in environments with limited last-hop bu�er

space. We �xed this to set max(packets_in_flight, 2) to cwnd when

exiting fast recovery. packets_in_�ight is the amount of unacknowl-

edged packets in network, including retransmissions.

• The unmodi�ed Linux forced the minimum advertised segment size to

be 536 bytes by default (unless changed by sysctl route/min_adv_mss).

We changed this to be 256 bytes.

• When a burst of segments arrives, Linux does not acknowledge every

second segment violating SHOULD in RFC [FH99]. The reason for this

may be treating segments of the size less than 536 bytes as a not full

sized segments independently on the MSS of the connection.

• The unmodi�ed Linux did not reduce the congestion window when

partial ACKs were received during fast recovery, as required in [FH99].

We �xed this to decrease the congestion window by the amount of new

data acknowledged with the partial ACK. After decreasing cwnd, it is

increased by one. As a result, one new segment is transmitted in addi-

tion to the �rst unacknowledged segment next to the one acknowledged

with partial ACK.

• Unmodi�ed Linux did not parse TCP option �eld for incoming seg-

ments unless it was about to send some options. This made, for exam-

ple, SACK unusable. We �xed it to parse option �elds for all incoming

segments.

• Linux grows the congestion window above the receiver window. This

can lead to bursts and should not be done.

• Unmodi�ed Linux did not use an ACK that con�rms both a retrans-

mitted and a new segment to collect an RTT sample. It is possible to

collect a valid RTT sample in this situation (i.e. there is no contradic-

tion to Karn's algorithm) and it is quite helpful for reseting backed o�

RTO. We �xed it.

Baseline TCP 89

• Linux uses a single variable seq_high for two purposes instead of two

recommended variables [FH99]. The the variable recover should be

used for New Reno, while the variable send_high should be used for

preventing Fast Retransmits after RTO. Mixing those two variables

leads to a non-conformant behavior for example when several packets

are dropped in the middle of the current FlightSize.

Measurement Data 90

B Measurement Data

Percent values refer to quantiles, for example 50 % is the median. In tests

names, bufx gives the limit on the router bu�er length on downlink in packets;

err0.y gives the error loss rate. The zero value means the unlimited bu�er and

no error losses correspondingly. For error burst tests, lenz gives the length of

the burst period in seconds. For RED tests, maxp gives the maximum drop

probability and w gives the weight of the current queue size in the moving

average of the queue size. For tests with two parallel connections, (min) and

(max) in the column header refers to the slower and faster connection.

B.1 Optimal Router Bu�er Size

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf_3 104.61 104.64 104.65 979.00 23.00 23.00

buf_4 105.62 105.63 105.64 969.00 22.00 22.00

buf_5 103.18 103.20 103.21 992.00 19.00 19.00

buf_6 105.25 105.26 105.27 973.00 18.00 18.00

buf_7 105.24 105.26 105.26 973.00 18.00 18.00

buf_8 103.19 103.20 103.21 992.00 16.00 16.00

buf_9 104.99 105.01 105.33 975.00 18.00 18.00

buf_10 103.19 103.20 103.21 992.00 17.00 17.00

buf_11 103.20 103.21 103.21 992.00 17.00 17.00

buf_12 103.20 103.20 103.20 992.00 18.00 18.00

buf_15 104.33 104.35 104.36 981.00 20.00 20.00

buf_20 106.64 106.65 106.67 960.00 24.00 24.00

buf_40 108.08 108.10 108.11 947.00 44.00 44.00

buf_in�nite 102.06 102.06 102.07 1003.00 0.00 0.00

Measurement Data 91

B.2 Baseline TCP

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 102.06 102.07 102.08 1003.00 0.00 0.00

buf3_err0.1 200.16 220.38 256.60 465.00 69.00 96.00

buf3_err0.05 139.38 147.08 156.85 696.00 41.00 58.00

buf3_err0.02 113.22 115.76 119.08 885.00 30.00 36.00

buf5_err0.1 173.25 210.69 236.13 486.00 57.00 90.00

buf5_err0.05 130.73 136.83 144.18 748.00 33.00 51.00

buf5_err0.02 109.79 111.84 118.54 916.00 25.00 29.00

buf7_err0.1 167.87 199.54 238.34 513.00 53.00 87.00

buf7_err0.05 127.16 129.57 139.41 790.00 29.00 47.00

buf7_err0.02 107.88 111.69 115.44 917.00 21.00 27.00

buf10_err0.1 169.92 193.33 236.52 530.00 52.00 84.00

buf10_err0.05 129.14 139.54 153.29 734.00 27.00 46.00

buf10_err0.02 106.90 109.04 117.67 939.00 20.00 26.00

buf20_err0.1 171.13 195.65 230.96 523.00 50.00 84.00

buf20_err0.05 124.32 139.33 144.09 735.00 27.00 44.00

buf20_err0.02 104.22 108.10 121.30 947.00 12.00 22.00

B.3 Initial Window of Three Segments

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 101.85 101.85 101.86 1005.00 0.00 0.00

buf3_err0.1 205.43 219.37 271.17 467.00 70.00 96.00

buf3_err0.05 140.34 146.58 151.63 699.00 42.00 59.00

buf3_err0.02 113.51 115.51 121.36 887.00 29.00 35.00

buf5_err0.1 172.72 189.93 250.51 539.00 58.00 90.00

buf5_err0.05 130.62 135.51 141.63 756.00 33.00 51.00

buf5_err0.02 109.17 112.36 118.09 911.00 25.00 30.00

buf7_err0.1 168.48 200.12 240.79 512.00 54.00 88.00

buf7_err0.05 127.60 131.70 138.05 778.00 30.00 48.00

buf7_err0.02 107.54 112.11 115.28 913.00 21.00 27.00

buf10_err0.1 168.70 201.90 237.07 507.00 52.00 85.00

buf10_err0.05 128.91 135.07 142.99 758.00 27.00 46.00

buf10_err0.02 105.66 107.30 112.35 954.00 20.00 26.00

buf20_err0.1 166.94 195.88 244.36 523.00 50.00 84.00

buf20_err0.05 124.96 130.19 138.12 787.00 26.00 45.00

buf20_err0.02 103.96 107.37 117.10 954.00 13.00 22.00

Measurement Data 92

B.4 Initial Window of Four Segments

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 101.85 101.85 101.86 1005.00 0.00 0.00

buf3_err0.1 203.07 229.19 279.66 447.00 66.00 97.00

buf3_err0.05 138.21 150.45 154.93 681.00 41.00 57.00

buf3_err0.02 112.96 115.05 120.33 890.00 28.00 35.00

buf5_err0.1 178.56 204.26 245.33 501.00 57.00 90.00

buf5_err0.05 132.52 137.31 142.66 746.00 33.00 49.00

buf5_err0.02 108.98 111.08 114.66 922.00 24.00 30.00

buf7_err0.1 166.64 202.37 236.02 506.00 54.00 89.00

buf7_err0.05 129.85 132.23 138.47 774.00 31.00 49.00

buf7_err0.02 107.86 111.65 113.00 917.00 23.00 28.00

buf10_err0.1 165.37 202.99 232.31 504.00 52.00 86.00

buf10_err0.05 129.01 134.87 141.86 759.00 27.00 46.00

buf10_err0.02 105.64 108.66 113.55 942.00 21.00 26.00

buf20_err0.1 166.13 199.06 229.85 514.00 50.00 84.00

buf20_err0.05 126.35 132.40 144.68 773.00 26.00 45.00

buf20_err0.02 103.96 107.40 117.98 953.00 14.00 22.00

B.5 Receiver Window of 2048 bytes

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 102.05 102.06 102.07 1003.00 0.00 0.00

buf3_err0.1 194.57 221.59 250.09 462.00 63.00 94.00

buf3_err0.05 137.60 141.77 163.42 722.00 39.00 57.00

buf3_err0.02 114.26 114.75 122.44 892.00 26.00 33.00

buf5_err0.1 184.90 202.98 236.01 504.00 53.00 85.00

buf5_err0.05 132.69 137.76 152.76 743.00 29.00 45.00

buf5_err0.02 113.41 117.45 119.82 872.00 16.00 22.00

buf7_err0.1 172.81 195.75 216.38 523.00 52.00 84.00

buf7_err0.05 131.50 138.69 155.41 738.00 23.00 40.00

buf7_err0.02 107.34 109.06 116.57 939.00 8.00 14.00

buf10_err0.1 172.50 202.04 215.98 507.00 52.00 84.00

buf10_err0.05 131.53 138.76 155.59 738.00 23.00 40.00

buf10_err0.02 107.35 109.07 116.75 939.00 8.00 14.00

buf20_err0.1 172.60 195.94 216.24 523.00 52.00 84.00

buf20_err0.05 131.51 138.75 161.00 738.00 24.00 40.00

buf20_err0.02 107.37 109.07 116.55 939.00 8.00 14.00

Measurement Data 93

B.6 Receiver Window of 3840 bytes

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 102.06 102.06 102.07 1003.00 0.00 0.00

buf3_err0.1 201.52 222.85 265.76 460.00 67.00 96.00

buf3_err0.05 139.25 151.16 156.46 677.00 41.00 58.00

buf3_err0.02 114.01 115.71 121.59 885.00 31.00 35.00

buf5_err0.1 174.32 213.56 236.03 479.00 57.00 89.00

buf5_err0.05 133.86 138.06 144.58 742.00 33.00 52.00

buf5_err0.02 109.62 112.79 115.95 908.00 25.00 29.00

buf7_err0.1 169.69 201.06 225.36 509.00 53.00 87.00

buf7_err0.05 127.99 132.52 140.50 773.00 28.00 46.00

buf7_err0.02 109.00 112.65 118.02 909.00 19.00 25.00

buf10_err0.1 171.04 193.11 222.01 530.00 51.00 84.00

buf10_err0.05 133.84 138.93 143.98 737.00 26.00 44.00

buf10_err0.02 105.82 108.07 115.69 947.00 13.00 20.00

buf20_err0.1 171.25 199.95 221.88 512.00 50.00 84.00

buf20_err0.05 123.60 136.42 148.20 751.00 23.00 40.00

buf20_err0.02 104.71 105.81 110.43 968.00 7.00 14.00

B.7 SACK Enabled

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 102.05 102.05 102.07 1003.00 0.00 0.00

buf3_err0.1 135.87 146.72 161.20 698.00 61.00 96.00

buf3_err0.05 115.08 117.37 122.15 872.00 45.00 61.00

buf3_err0.02 109.59 111.90 113.23 915.00 43.00 48.00

buf5_err0.1 125.54 137.31 152.45 746.00 50.00 87.00

buf5_err0.05 112.20 116.58 121.07 878.00 36.00 52.00

buf5_err0.02 107.28 109.12 112.71 938.00 37.00 39.00

buf7_err0.1 123.21 133.37 141.91 768.00 45.00 83.00

buf7_err0.05 110.60 112.93 115.82 907.00 29.00 48.00

buf7_err0.02 104.48 105.41 109.53 971.00 28.00 31.00

buf10_err0.1 123.84 133.12 144.63 769.00 45.00 83.00

buf10_err0.05 109.76 111.48 114.22 918.00 25.00 46.00

buf10_err0.02 104.17 105.03 105.57 975.00 24.00 28.00

buf20_err0.1 123.31 133.18 140.93 769.00 44.00 83.00

buf20_err0.05 109.77 112.01 113.67 914.00 23.00 44.00

buf20_err0.02 103.69 104.11 106.22 983.00 12.00 22.00

Measurement Data 94

B.8 New Reno Disabled

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf0_err0 102.06 102.07 102.07 1003.00 0.00 0.00

buf3_err0.1 200.94 237.13 268.68 432.00 68.00 100.00

buf3_err0.05 145.29 156.40 161.32 655.00 40.00 59.00

buf3_err0.02 115.43 121.25 126.11 845.00 31.00 35.00

buf5_err0.1 181.91 214.43 244.02 478.00 58.00 90.00

buf5_err0.05 140.53 149.11 166.59 687.00 33.00 51.00

buf5_err0.02 112.18 114.02 122.63 898.00 29.00 28.00

buf7_err0.1 186.71 211.88 246.83 483.00 56.00 89.00

buf7_err0.05 135.39 145.82 158.19 702.00 31.00 47.00

buf7_err0.02 112.15 116.28 120.79 881.00 27.00 26.00

buf10_err0.1 184.39 212.19 250.38 483.00 54.00 86.00

buf10_err0.05 136.75 146.53 152.11 699.00 27.00 46.00

buf10_err0.02 108.59 109.64 112.02 934.00 30.00 25.00

buf20_err0.1 184.26 212.03 243.26 483.00 51.00 84.00

buf20_err0.05 131.85 143.37 151.64 714.00 27.00 44.00

buf20_err0.02 107.49 109.94 115.70 931.00 20.00 22.00

B.9 Burst Error Losses

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf3_len10_err0.2 113.16 114.04 117.94 898.00 28.00 30.00

buf3_len10_err0.4 119.10 120.28 121.02 851.00 29.50 31.00

buf3_len20_err0.2 119.95 121.93 129.63 840.00 31.00 33.50

buf3_len20_err0.4 127.75 137.27 138.18 746.00 31.00 32.00

buf10_len10_err0.2 111.83 112.90 116.91 906.50 20.50 24.50

buf10_len10_err0.4 117.12 117.52 119.36 871.50 24.00 25.00

buf10_len20_err0.2 120.22 127.14 132.29 805.00 23.00 24.00

buf10_len20_err0.4 133.89 134.40 136.70 762.00 25.00 26.50

Measurement Data 95

B.10 One Connection Over the RED Bu�er

Test name elapsed

time 25%

elapsed

time 50%

elapsed

time 75%

throughput

50%

rexmt

pkts 50%

dropped

pkts 50%

buf10_maxp0.05_w0.2 113.14 114.60 119.30 893.00 32.00 37.00

buf10_maxp0.05_w0.4 111.75 112.90 116.75 907.00 30.00 33.00

buf10_maxp0.1_w0.2 114.52 118.18 127.41 866.00 35.00 37.00

buf10_maxp0.1_w0.4 114.44 116.17 120.59 881.00 29.00 34.00

buf20_maxp0.05_w0.2 106.78 108.53 115.57 943.00 22.00 26.00

buf20_maxp0.05_w0.4 104.66 108.03 115.77 948.00 19.00 26.00

buf20_maxp0.1_w0.2 107.67 118.43 126.49 864.00 20.00 27.00

buf20_maxp0.1_w0.4 105.18 109.45 122.65 935.00 18.00 25.00

buf40_maxp0.05_w0.2 104.39 108.08 116.83 947.00 11.00 20.00

buf40_maxp0.05_w0.4 103.93 110.32 114.58 928.00 10.00 17.00

buf40_maxp0.1_w0.2 104.53 110.32 118.66 928.00 12.00 20.00

buf40_maxp0.1_w0.4 104.20 106.36 110.99 963.00 12.00 18.00

B.11 Two Connections Over the Drop-Tail Bu�er

Test name elapsed

time

(min)

25%

elapsed

time

(min)

50%

elapsed

time

(min)

75%

elapsed

time

(max)

25%

elapsed

time

(max)

50%

elapsed

time

(max)

75%

rexmt

pkts

(min)

50%

rexmt

pkts

(max)

50%

buf_10 78.24 78.25 78.27 93.23 93.24 93.25 15.00 19.00

buf_11 82.53 82.55 82.56 93.23 93.24 93.26 16.00 21.00

buf_12 87.52 87.52 87.53 93.43 93.43 93.44 16.00 22.00

buf_15 83.48 83.49 83.50 103.86 103.87 103.88 3.00 29.00

buf_20 85.33 85.34 85.37 119.55 119.57 119.60 2.00 27.00

buf_3 93.36 99.25 100.06 100.05 102.50 109.92 28.50 36.50

buf_4 69.80 71.76 75.86 104.97 106.65 108.90 14.00 28.00

buf_40 86.96 86.97 86.98 112.20 112.21 112.23 3.00 42.00

buf_5 93.76 94.12 94.43 94.96 97.54 98.98 17.50 23.00

buf_6 94.01 94.51 95.63 97.96 101.73 103.93 12.00 31.00

buf_7 92.35 93.40 93.53 105.08 105.19 105.43 11.00 37.00

buf_8 87.12 87.89 95.49 95.79 96.27 97.37 14.50 34.50

buf_9 91.37 93.53 96.24 99.67 102.50 110.83 37.00 44.00

buf_in�nite 52.36 52.37 52.37 93.37 93.38 93.38 0.00 5.00

Measurement Data 96

B.12 Two Connections Over the RED Bu�er

Test name elapsed

time

(min)

25%

elapsed

time

(min)

50%

elapsed

time

(min)

75%

elapsed

time

(max)

25%

elapsed

time

(max)

50%

elapsed

time

(max)

75%

rexmt

pkts

(min)

50%

rexmt

pkts

(max)

50%

buf10_maxp0.05_w0.2 64.87 77.30 91.94 111.20 114.16 121.86 19.00 33.00

buf10_maxp0.05_w0.4 86.70 93.21 98.25 105.55 110.01 113.52 17.00 29.00

buf10_maxp0.1_w0.2 81.84 93.45 99.00 107.27 113.11 115.79 21.00 32.00

buf10_maxp0.1_w0.4 80.38 98.62 101.64 106.11 109.57 119.05 21.00 30.00

buf20_maxp0.05_w0.2 78.61 88.75 95.27 100.16 104.01 110.33 9.00 25.00

buf20_maxp0.05_w0.4 85.37 92.35 94.67 96.62 101.03 105.10 11.00 19.00

buf20_maxp0.1_w0.2 84.92 88.48 96.27 100.31 105.54 115.62 13.00 25.00

buf20_maxp0.1_w0.4 80.72 87.73 94.96 95.79 101.51 106.38 10.00 18.00

buf40_maxp0.05_w0.2 72.29 84.11 92.92 97.18 101.87 103.47 6.00 9.00

buf40_maxp0.05_w0.4 79.80 88.69 94.90 96.03 103.19 109.60 6.00 12.00

buf40_maxp0.1_w0.2 84.43 90.06 94.29 96.76 104.22 111.02 7.00 11.00

buf40_maxp0.1_w0.4 74.65 84.36 93.60 95.57 97.79 103.47 7.00 11.00

