
1

Partitioning Applications
with Agents

Oskari Koskimies
Monads Research Project

oskari.koskimies@cs.helsinki.fi

Department of Computer ScienceDepartment of Computer Science

University of HelsinkiUniversity of Helsinki

Greetings everyone. My name is Oskari Koskimies, and I the subject of my
presentation is Application Partitioning with agents. I work in the Monads
project at the University of Helsinki.

2

– Adapt services to link and terminal
characteristics

– Optimize communication (ACL, RMI, …)
– Agents:

– Predict user movement and QoS

– Use predictions for adaptive services

– Demos
– Prototype I: 16th FIPA conference in London
– Prototype II Alpha: Mobicom 2000 in Boston

Adaptation Agents for Nomadic Users

First I would like to say a few words about our project in general.

The Monads project targets nomadic, wireless users. In this kind of
environment, both link and terminal characteristics vary from one end of the
spectrum to the other. Thus, the goal of monads is to provide adaptive
services that can offer optimal service in every circumstance. Note that
optimal does not mean that the same service level should be maintained -
that is impossible - simply that the service should be the best possible given
the circumstances. Traditional applications are usually optimized for the
most common case, and provide suboptimal service in other cases.

A common question is, “Why use agents?” In our case, the answer is
simple. One of the goals of Monads is to evaluate how useful agents are for
this problem area. Since our goal, adaptiveness, is also one of the main
properties of agents, they seemed like a good choice. So far we have no
complaints.

We optimize communication by using optimized versions of ACL and
RMI. We use earlier results of the Mowgli project to optimize the transport
layer.

So far, we have implemented a system that uses agents for predicting user
movement and Quality-of-Service. The predictions are used by other agents
to provide adaptive services. Our system has been demonstrated twice: the
first prototype was demonstrated in the 16th FIPA conference in London in
January, and an early version of the second prototype was shown at the
Mobicom 2000 conference last month.

3

Monads Communication
Architecture

MOWGLIMOWGLI

Wireless Link SimulatorWireless Link Simulator

TCP/IPTCP/IP

Wireline NetworkWireline Network

Optimized
HTTP

Optimized
HTTP Optimized

HTTP

Optimized
HTTP

ACL
(fipa-string-std)

ACL
(fipa-string-std)

Agent Message
Transport (IIOP)

Agent Message
Transport (IIOP) HTTPHTTP

Terminal Access Node

AgentAgent

AgentAgent

Web
Agent

Web
Agent

AgentAgent AgentAgent

AgentAgent

Web
Agent

Web
Agent

Interaction Protocol/
Content Languages
Interaction Protocol/
Content Languages

ACL
(FIPA-bitefficient-std)

ACL
(FIPA-bitefficient-std)

Agent Message
Transport (MAMA)

Agent Message
Transport (MAMA)

Interaction Protocols/
Content Languages

Interaction Protocols/
Content Languages

ACL
(FIPA-bitefficient-std)

ACL
(FIPA-bitefficient-std)

Agent Message
Transport (MAMA)

Agent Message
Transport (MAMA)

Here is a brief look at the Monads Communication architecture. There is
only one thing here which is of interest for this presentation, and that is the
concept of an Access Node. It is a user’s access point to the fixed network,
and all traffic is routed via it. The access node is also where mediator
software is placed. This allows optimized protocols to be used over the
wireless link both on the transport and the application level.

4

Wireless Link
Partitioning

Terminal

Access Node

Partitioned Application

Partitioned Agent Agent Communication

With partitioning we mean dividing an application into component agents
that communicate using for example FIPA ACL messages. There is nothing
special about partitioning per se, every distributed application has been
partitioned somehow. Actually, the communication architecture enforces
partitioned software, since usually a mediator component is needed at the
access node. Thus, even the client side of an application has to be
partitioned between terminal and access node.

5

Partitioning Types
– Static Partitioning

– Typical Client-Server

– Partially Dynamic Partitioning
– No repartitioning

– Terminal Adaptation

– Fully Dynamic Partititioning
– QoS Adaptation

– Personal Mobility

Component
Agent
Agent
Communication

Movement

Terminal B

Access Node

Terminal A

Personal Mobility

However, partitioning is usually static, meaning that the way an application
is partitioned is frozen at compile time. Any traditional client-server
application is an example of this.

This is in clear conflict with the dynamic nature of the wireless
environment. Instead, we should defer the partitioning decision until the
application is started. This allows an application adapt to the terminal it is
running on, by choosing the partitioning that best suits the terminal’s
resources.

While this makes partitioning partially dynamic, it still does not take into
account that circumstances may change even during an application session -
for instance, the user may move out of WLAN range. In order to adapt to
these kind of changes, an application has to have fully dynamic partitioning
- it must be able to repartition itself at run-time.

Repartitioning allows adapting to changes that happen during the lifetime of
an application session. The previously mentioned case of losing WLAN
coverage is an example of a QoS change. An application can adapt to it by
choosing a partitioning that is optimal for low QoS. However, by slightly
extending the concept, repartitioning also allows support for terminal
changes, or Personal Mobility. An application can be moved to another
terminal by repartitioning it so that terminal side components are located at
the new terminal. From an agent’s point of view, relocating to another
terminal is no different than relocating to the access node as it does during
normal repartitioning. From partitioning point of view, the partitioning
service of the new terminal has to take over the responsibility for the
application.

6

Application Start
– Profiles contain information about the

agents that make up an application (size,
communication patterns, etc)

– When asked to start the application, the
system determines agent starting locations
based on profile, terminal and (predicted)
QoS, and sends create-agent requests

– Partitioning must be transactional

When an application is started, the partitioning service examines profile
information about the application, the participating agents and the host
machines involved.

Partitioning is a relatively heavy process. Since QoS varies, we need some
idea of what the future QoS will be in order to select a partitioning that does
not need to be redone immediately. For this we use the Monads QoS
prediction agents.

It is worth noting that partitioning and repartitioning are transactional
processes. All component agents must agree on whether partitioning was
successful, and what the new partitioning is. Thus, partitioning is very much
like a two-phase commit. I won’t go into details like message sequence
diagrams here, but they are all in the article.

7

Profiles
TerminalAccess Node

Partitioned Application

Partitioned Agent

Partitioning
Service

Partitioning
Service

Agent A

AA

Profile

Agent C

BB

CC

Profile
Service

Profile
ServiceProfile

Service

Profile
Service

Application

AgentAgent
resourceresource

requirementsrequirements

Terminal

Wireless Link

TerminalTerminal
capabilitiescapabilities

Create

Agent listAgent list
and theirand their

communicationcommunication
profilesprofiles

Agent B

Start app

There are three types of profiles:

Application profiles list the component agents, and give a set of possible
configurations. Each configuration contains agent locations and a
communication profile, as well as an utility value that represents how good
that configuration is from user point of view.

Agent profiles give the resource requirements for agents. They can also
contain startup and movement costs. If an agent is stationary, that is noted
here as well. Stationary agents will limit the way an application can be
repartitioned, but in some cases an ersatz mobility can be achieved by
starting a new agent at the destination instead.

Terminal profiles list terminal capabilities, such as memory and screen size.

Based on this information, the partitioning service selects a configuration
and sends create-agent requests to the appropriate locations. But how does it
make that decision?

8

Decisions

QoS
Prediction

Agent profiles
(resource

requirements)
Profile
Service

Application profiles
for currently running applications

Terminal
capabilities

Distribution
Combination

Combined bandwidth
usage distribution

_

Predicted
distribution

of total
available

 QoS
=Distribution

Combination

+
=

Partitioning Service

Combined
predicted

distribution of
net available QoS

Application profile
for the application
to be started

+_

Each configuration in the application profile gives a bandwidth usage
distribution for that configuration. By adding together the usage
distributions of currently running applications with the distribution of a
configuration for the application to be started, we get combined usage
distribution. This is deducted from the predicted available QoS, which we
get from a QoS prediction agent. Thus we get the predicted distribution of
net available QoS, if this particular configuration is chosen. By comparing
the net QoS distributions for all configurations that are otherwise feasible,
and weighing them against the utility values for the configurations, we can
select an optimal configuration.

Okay, that was quite a lot to absorb at once. Would anyone like to make a
question at this point?

9

Repartitioning
– The system monitors QoS, possibly also

other resource consumption

– When circumstances change radically
enough to warrant different type of
partitioning (taking overhead into account),
repartitioning is initiated

– This would typically happen after vertical
handover (or when one is predicted)

In repartitioning, the previous decision-making process is rerun when QoS
is predicted to change dramatically. Since the process is costly, smaller
changes should be ignored. To further reduce overhead, one might only
consider vertical handovers, which are guaranteed to result in a lasting,
drastic change in QoS.

10

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN

– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)

– Palmtop, WAN / WLAN / LAN

– Smartphone, WAN

Here is a use case to further explain the idea in partitioning. In order to have
an application that everyone is familiar with, the example is sometimes a bit
contrived. Please bear with me.

An email application consists of four component agents:

A User Interface agent, which may be either a dedicated GUI or a generic
FIPA UDMA agent - by the way, our project has implemented such an
agent.

A Core Email agent, which provides the basic application functionality

A Filtering agent, that groups and prioritizes messages, and handles any
automatic email processing.

A Compression agent, which compresses messages prior to sending them to
the terminal. This includes lossy methods such as leaving out attachments.

There are five possible configurations:

- A desktop computer or a laptop with a LAN connection

- A laptop with a Wireless LAN connection

- A laptop with a Wide Area Network connection, for example GSM Data

- A palmtop with any type of connection - the terminal is the deciding factor
here

- A smartphone that can only have a Wide Area Network connection.

11

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN

– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)

– Palmtop, WAN / WLAN / LAN

– Smartphone, WAN

Access Node Terminal

I will now go through the configurations, and show how the application is
partitioned in each case.

12

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN
– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)

– Palmtop, WAN / WLAN / LAN

– Smartphone, WAN

Access Node Terminal

GUI

Core

Filter

In the first case, all the components are located at the terminal. Since a LAN
is available, no compression agent is needed.

13

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN

– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)

– Palmtop, WAN / WLAN / LAN

– Smartphone, WAN

Access Node Terminal

GUI

Core

FilterCompr

In the second case, we still have the same class of terminal, but a slightly
slower connection. Thus, in some cases we may want to compress data. An
example would be a large attachment in a message from a mailing list. Also,
the link speed may be down due to network load or bad radio conditions.

14

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN

– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)
– Palmtop, WAN / WLAN / LAN

– Smartphone, WAN

Access Node Terminal

GUI

CoreFilter

Compr

With a very slow connection, we move the filtering agent from the terminal
to the Access Node. While this makes it harder for the filtering agent to
communicate with the user, disabling some interactive filtering strategies, it
allows handling of some emails automatically, and when messages are
prioritized on the network side the most important messages can be sent
first.

15

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN

– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)

– Palmtop, WAN / WLAN / LAN
– Smartphone, WAN

Access Node
Terminal

UDMA

CoreFilter

Compr

With a palmtop we replace the dedicated GUI agent with a generic UDMA
agent. Not only has the UDMA agent a smaller footprint, but it can also be
shared by other applications, further reducing total memory requirements.

16

Use Case: Email
– Components:

– User Interface agent (UDMA/Dedicated GUI)

– Core Email agent

– Filtering agent
– Compression agent

– Configurations:
– Desktop/Laptop, LAN

– Laptop, WLAN
– Laptop, WAN (e.g. GSM Data)

– Palmtop, WAN / WLAN / LAN

– Smartphone, WAN

Access Node

Core

Filter

Compr Terminal

UDMA

Finally, if we have a smartphone, we only run the user interface in the
terminal. Effectively, we use the smartphone as an “almost-dumb” terminal.

Alternatively, we could move even the UDMA agent to the access node,
and make it use WML forms for communicating with the user. This way,
any WAP phone could use the application, at the cost of a more
uncomfortable interface.

17

Partitioning in Monads
– Location of QoS prediction agents depends

on terminal capabilities
– Configurations:

– Minimal terminal resource use
– Minimal bandwidth use

– Compromises

As I said before, the Email example was constructed for illustrative
purposes. Our project is not going to implement it. We have a better, from
our point of view, use for partitioning.

In reality, QoS is not predicted by a single agent, although it looks like that
for a client. Many agents collaborate to produce the predictions. It is not
obvious how these agents should be located. One configuration is optimal
from communication point of view, but places all agents at the terminal,
stretching terminal resources. A configuration that reduces the number of
agents at the terminal to a minimum wastes bandwidth. Between these two
extremes, there are different compromises.

There is one problem, of course. In the initial partitioning, we do not have
QoS predictions available, since the prediction system is not running yet!
We have to select a configuration based on current QoS, and then
repartition later if necessary. Fortunately, terminal resources is a more
deciding factor here than QoS.

18

Summary: Benefits

– Adapt to terminal capabilities
– Personal Mobility

– Adapt to available bandwidth

– Adapt to changing location of information
sources (e.g. terminal location information)

– Load balancing

To summarize, the benefits of partitioning are as follows:

It allows adapting to terminal capabilities, including personal mobility

It allows adapting to available bandwidth

We can also adapt to changes in where information is available. For
example, terminal location can be available either at the terminal (GPS), or
at the fixed network (cell-based location). The part of an application that
processes the information can be moved close to it.

Finally, we can do load balancing by repartitioning applications when a
terminal starts to get short on resources.

19

Summary: Challenges

– Partitioning decisions require information
about communication patterns
– Communication profiles, learning

– Benefits depend on application being
designed in a way that supports having
different partitioning strategies for different
environments

There are also some challenges. Making partitioning decisions requires
detailed information about application communication patterns. While
generic patterns can be stored into profiles, communication patterns are
often partially user-specific. User-specific patterns would have to be learned
by observing application behavior.

For an application to benefit from partitioning, it has to be designed in such
a way that there are possible configurations for all the alternative
environments.

While for simple applications it would be possible to make partitioning
transparent, in the general case this is very hard or impossible. We have
therefore chosen the approach that applications must be aware of
partitioning. Our approach has the benefit of simplicity and increased
application control, and the disadvantage of requiring specially-designed
applications.

I must further stress that the component agents really must be agents,
themselves capable of adaptation. For example, if the user interface of an
application is switched from a dedicated GUI to a generic UI during
repartitioning, agents probably have to change their behavior in non-trivial
ways.

20

Current Status

– We are in the process of implementing
Prototype II
– Initial tests indicate that partitioning is a feasible

method for adaptation

– However, repartitioning requires agents to be very
aware of partitioning

– Implementation and evaluation to be ready by
the end of the year

– Papers on results to be written in early 2001

The implementation of prototype II is well underway - an early version has
already been demonstrated, as you recall. However, it did not include
partitioning. Initial tests indicate that we can use partitioning as planned.
However, it also seems that repartitioning requires agents to be quite aware
of partitioning. We are trying to reduce that.

According to schedule, implementation and evaluation of prototype II
should be ready by the end of the year. Thus, you can expect papers on the
results in conferences that have call for papers in early 2001.

21

More Information

http://www.cs.helsinki.fi/research/monads/
oskari.koskimies@cs.helsinki.fi

Questions?Questions?

For more information, you can consult the project website. It has many of
our papers available. You can also email me.

Or, you can make a question now.

