Overlay and P2P Networks

Introduction

Prof. Sasu Tarkoma

19.9.2011
Contents

• Course Overview
• Lectures
• Assignments/Exercises
Course Overview

• Overlay networks and peer-to-peer technologies have become key components for building large scale distributed systems.

• This course will introduce overlay networks and peer-to-peer systems, discuss their general properties, and applications. The course will cover the following topics:
 – Currently deployed peer-to-peer systems and how they work
 – Distributed Hash Tables as a base for structured peer-to-peer systems
 – Peer-to-peer storage systems
 – Performance issues, legal aspects, and privacy issues
 – Peer-to-peer content distribution algorithms
General Info

Advanced course, 4 credits

The course replaces the P2P Networks course
You cannot take this course if you took the old course

Requirements: basics of networking

Assignments/exercises done as group work (1-3 persons),
idea is to keep the same group structure (but do tell about freeriders!)
Lectures

• Lectures
 – Monday 12-14 in D122 19.09-12.10.
 – Wednesday 12-14 in D122 21.09-12.10.

• Assignments
 – Wednesday 10-12 D122 21.09-12.10.
 – First session on 28.9.
 – Assignment topic given one week before, done for the next assignment session.

• Course based on book
Introduction
Overview
Overlay Technology
Applications
Properties of Data
Structure of the Book

Network Technologies
Networking
Firewalls and NATs
Naming
Addressing
Routing
Multicast
Network Coordinates
Network Metrics

Properties of Networks and Data
Data on the Internet
Zipf’s Law
Scale-free Networks
Robustness
Small Worlds

Unstructured Overlays
Overview
Early Systems
Locating Data
Napster
Gnutella
Skype
BitTorrent
Cross-ISP BitTorrent
Freenet
Comparison

Foundations of Structured Overlays
Overview
Geometries
Consistent Hashing
Distributed Data Structures for Clusters

Distributed Hash Tables
Overview
APIs
Plaxton’s Algorithm

Chord
Pastry
Koorede
Tapestry
Kademlia
Content Addressable Network
Viceroy
Skip Graph
Comparison

Probabilistic Algorithms
Overview of Bloom Filters
Bloom Filters
Bloom Filters in Distributed Computing
Gossip Algorithms

Content-based Networking and Publish/Subscribe
Overview
DHT-based Data-centric Communications
Content-based Routing
Router Configurations
Siena and Routing Structures
Hermes
Formal Specification of Content-based Routing Systems
Pub/sub Mobility

Security
Overview
Attacks and Threats
Securing Data
Security Issues in P2P Networks
Anonymous Routing
Security Issues in Pub/Sub Networks

Applications
Amazon Dynamo
Overlay Video Delivery
SIP and P2PSIP
CDN Solutions

Conclusions
References
Index
Lectures

26.9. Unstructured Networks continued.
3.10. Structured networks.
5.10. Distributed Hash Tables (DHTs)
10.10. DHTs continued.
12.10. Applications
Grading

Course grading will be based on the final exam and the assignments.

The exam will be held on 19.10. 16-19 in A111.
Assignments/Exercises

- Assignments are given about one week before the session, due date is the day before the assignment session 4pm
- Assignments can be done in a group (or alone), groups can change between assignments
- Assignments give bonus points for the exam
 - Max 20%
- Wednesdays 10-12 D122 27.09-15.10.
 - 28.9. General questions and BitTorrent
 - 5.10. DHT questions
 - 12.10 DHT, security, and reliability questions
<table>
<thead>
<tr>
<th>Main theme</th>
<th>Prerequisites</th>
<th>Approaches learning goals</th>
<th>Meets learning goals</th>
<th>Deepens learning goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay and peer-to-peer networks: definitions and</td>
<td>Basics of data communications and distributed systems (Introduction to Data</td>
<td>Knowledge of how to define the concepts of overlay and peer-to-peer networks, and state their central features</td>
<td>Ability of being able to compare different overlay and p2p networks in a qualitative manner</td>
<td>Ability to give one’s own definition of the central concepts and discuss the key design and deployment issues</td>
</tr>
<tr>
<td>systems</td>
<td>Communications, Distributed Systems)</td>
<td>Ability to describe at least one system in detail</td>
<td>Ability to assess the suitability of different systems to different use cases</td>
<td></td>
</tr>
<tr>
<td>Distributed hash tables</td>
<td>Basics of data communications and distributed systems (Introduction to Data</td>
<td>Knowledge of the concepts of structured and unstructured networks and the ability to classify solutions into these two categories</td>
<td>Ability of being able to compare different distributed hash table algorithms</td>
<td>The knowledge of choosing a suitable distributed hash table design for a problem</td>
</tr>
<tr>
<td></td>
<td>Communications, Distributed Systems)</td>
<td>Knowledge of the basics of distributed hash tables</td>
<td>Ability of designing distributed hash table-based applications</td>
<td>Familiarity with the state of the art</td>
</tr>
<tr>
<td></td>
<td>Big-O-notation and basics of algorithmic complexity</td>
<td>Ability to describe at least one distributed hash table algorithm in detail</td>
<td>Knowledge of key performance issues of distributed hash table systems and the ability to analyze these systems</td>
<td></td>
</tr>
<tr>
<td>Reliability and performance modelling</td>
<td>Basics of probability theory Basics of reliability in distributed systems</td>
<td>Ability to model and assess the reliability of overlay and peer-to-peer networks by using probability theory</td>
<td>Ability of analytically analyzing the reliability and performance of overlay and peer-to-peer networks</td>
<td>Familiarity with the state of the art</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge of the most important factors pertaining to reliability</td>
<td>Understanding of the design issues that are pertinent for reliable systems</td>
<td></td>
</tr>
<tr>
<td>Content distribution</td>
<td>Introduction to Data Communications</td>
<td>Knowledge of the basic content distribution solutions Ability to describe at least one overlay and p2p network based content distribution solution</td>
<td>Knowledge of different content distribution systems and the ability to compare them in detail</td>
<td>Familiarity with the state of the art</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge of several content distribution techniques</td>
<td>Knowledge of several content distribution techniques</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Basics of computer security</td>
<td>Knowledge of the basic security issues with overlay and p2p networks Knowledge of the sybil attack concept</td>
<td>Ability to discuss how security problems and limitations can be solved</td>
<td>Knowledge of how to prevent sybil attacks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge of the sybil attack concept</td>
<td>Knowledge of how to prevent sybil attacks</td>
<td></td>
</tr>
</tbody>
</table>
Contact information

Lecturer prof. Sasu Tarkoma (contact info on homepage)

Assignments: M.Sc Petri Savolainen (@hiit.fi)

Course homepage can be found: www.cs.helsinki.fi/courses
Questions?