Exact inference in singly-connected networks

- A singly connected BN = polytree (disregarding the arc directions, no two nodes can be connected with more than one path).

![Singly-connected and multi-connected networks](image)
Belief propagation

- Developed by Judea Pearl
- Computes the marginal distribution of an unobserved variable given the observed ones.
- A message-passing algorithm:
 - Each node maintains a belief of its state
 - Nodes pass messages to their neighbors and update their beliefs based on received messages
Belief propagation in chains

- A node can have at most one parent and child, no loops.
- We want to compute the marginal probability \(P(X \mid e) \), where the evidence \(e \) is an instantiation of node set \(E \).
- Let us partition the evidence \(e \) into evidence from “downstream” \(e^+ \) and evidence from “upstream” \(e^- \).

\[
P(X \mid e) = P(X \mid e^+, e^-) \\
\propto P(e^- \mid X, e^+) P(X \mid e^+) = P(e^- \mid X) P(X \mid e^+)
\]

where \(X \rightarrow \) is a directed edge.
Belief propagation in chains

- Let us define messages
 - Diagnostic support:
 \[\lambda(X) = P(e^- | X) \]
 - Causal support:
 \[\pi(X) = P(X | e^+) \].
- Now \(P(X | e) \propto \lambda(X)\pi(X) = BEL(X) \).
- Node \(X \) sends the message \(\lambda(U) \) to its parent and \(\pi(X) \) to its child.
- Note that the messages \(\lambda(X) \) and \(\pi(X) \) are vectors; they contain one entry per each possible value of \(X \).
- Let \(\lambda(X = x) = P(e^- | X = x) \) or shortly \(\lambda(x) \). Similarly for \(\pi \).
Belief propagation in chains

\[\pi(e^+) \quad \pi(T) \quad \pi(U) \quad \pi(X) \quad \pi(Y) \quad \pi(Z) \]

\[e^+ \quad T \quad U \quad X \quad Y \quad Z \quad e^- \]

\[\lambda(e^+) \quad \lambda(T) \quad \lambda(U) \quad \lambda(X) \quad \lambda(Y) \quad \lambda(Z) \]
Belief propagation in chains

How to compute the messages?

\[\lambda(U = u) = P(e^- | U = u) \]
\[= \sum_x P(e^- | X = x)P(X = x | U = u) \]
\[= \sum_x \lambda(X = x)P(X = x | U = u) \]

\[\pi(X = x) = P(X = x | e^+) \]
\[= \sum_u P(X = x | U = u)P(U = u | e^+) \]
\[= \sum_u P(X = x | U = u)\pi(U = u) \]
Belief propagation in chains

- **Initialization:**
 - For nodes E with evidence e
 \[
 \lambda(E = e) = 1, \text{ otherwise } \lambda(E = x) = 0 \\
 \pi(E = e) = 1, \text{ otherwise } \pi(E = x) = 0
 \]

 - Nodes with no parents
 \[
 \pi(x) = P(x) \quad \text{(prior probabilities)}
 \]

 - Nodes with no children
 \[
 \lambda(x) = 1, \text{ for all } x
 \]
Example

- 5 binary variables
- \(P(E2 = 0) = 0.4 \)
- \(P(U = 0 | E2 = 0) = 0.8, P(U = 0 | E2 = 1) = 0.3 \)
- \(P(X = 0 | U = 0) = 0.6, P(X = 0 | U = 1) = 0.9 \)
- \(P(Y = 0 | X = 0) = 0.7, P(Y = 0 | X = 1) = 0.3 \)
- \(P(E1 = 0 | Y = 0) = 0.4, P(E1 = 0 | Y = 1) = 0.7 \)

We observe that \(E1 = 0 \) and \(E2 = 0 \). What are \(P(U | E) \), \(P(X | E) \) and \(P(Y | E) \)?
Belief propagation in trees

- Every node has at most one parent.
- Differences compared to chains:
 - Each node must combine impacts of the λ-messages obtained from its children.
 - Each node should distribute a separate π-message to each of its children.
Belief propagation in trees

- Messages
Belief propagation in trees

- Notation: $\lambda_Y(X)$ is the λ-message that Y sends to X, $\pi_Y(X)$ is the π-message that X sends to Y, e_Y^{-} is the evidence that is “connected” to X via node Y.

- How to compute $P(X | e)$?

$$\begin{align*}
P(X | e) &= P(X | e^+, e_Y^-, e_Z^-) \\
&\propto P(X | e^+)P(e_Y^- | X, e^+)P(e_Z^- | X, e^+) \\
&= P(X | e^+)P(e_Y^- | X)P(e_Z^- | X) \\
&= \pi(X)\lambda_Y(X)\lambda_Z(X) \\
&= BEL(X)
\end{align*}$$
Belief propagation in trees

- Node X has a parent U and children Y_1, \ldots, Y_k.
- Belief updating

\[\text{BEL}(x) = \lambda(x)\pi(x), \]

where

\[\lambda(x) = \prod_{i=1}^{k} \lambda_{Y_i}(x) \]

and

\[\pi(x) = \sum_u P(X = x \mid U = u)\pi_X(U = u) \]
Belief propagation in trees

- How to compute a message from X to its parent U?

\[
\lambda_X(u) = P(e_Y^-, e_Z^- | u)
\]
\[
= \sum_x P(e_Y^-, e_Z^- | u, x)P(x | u)
\]
\[
= \sum_x P(e_Y^-, e_Z^- | x)P(x | u)
\]
\[
= \sum_x P(e_Y^- | x)P(e_Z^- | x)P(x | u)
\]
\[
= \sum_x \lambda(x)P(x | u)
\]
Belief propagation in trees

- How about a message from X to its child Y?

\[
\pi_Y(x) \propto P(e^-_Z \mid x, e^+e)P(x \mid e^+)
= P(e^-_Z \mid x)P(x \mid e^+)
= \lambda_Z(x)\pi(x)
= \frac{BEL(x)}{\lambda_Y(x)}
\]
Example

- 4 binary variables
- \(P(U = 0) = 0.4 \)
- \(P(X = 0 \mid U = 0) = 0.8, \ P(X = 0 \mid U = 1) = 0.3 \)
- \(P(Y = 0 \mid X = 0) = 0.9, \ P(Y = 0 \mid X = 1) = 0.6 \)
- \(P(Z = 0 \mid X = 0) = 0.6, \ P(Z = 0 \mid X = 1) = 0.8 \)
- We observe that \(Z = 0 \). What are \(P(U \mid Z = 0) \), \(P(X \mid Z = 0) \) and \(P(Y \mid Z = 0) \)?
Belief propagation in polytrees

- Nodes can have multiple parents
- No loops

Differences compared to trees:

- Each node must combine impacts of the π-messages obtained from parents.
- Each node should distribute a separate λ-message to each of its parents.
Belief propagation in polytrees
Belief propagation in polytrees

Let U_1, \ldots, U_k be the parents of X and $e_{U_i}^+$ the evidence that is “connected” to X via U_i.

$$
\pi(x) = P(x \mid e^+)
= P(x \mid e_{U_1}^+, \ldots, e_{U_k}^+)
= \sum_{u_1,\ldots,u_k} P(x \mid u_1,\ldots,u_k)P(u_1,\ldots,u_k \mid e_{U_1}^+, \ldots, e_{U_k}^+)
= \sum_{u_1,\ldots,u_k} P(x \mid u_1,\ldots,u_k)P(u_1 \mid e_{U_1}^+) \cdots P(u_k \mid e_{U_k}^+)
= \sum_{u_1,\ldots,u_k} P(x \mid u_1,\ldots,u_k) \prod_{i=1}^k \pi_X(u_i)
$$
Belief propagation in polytrees

Consider the \(\lambda \)-message to be sent from \(X \) to \(U_i \). Denote the set of all other parents of \(X \) with \(V \) and \(v \) is a instantiation of variables in \(V \).

\[
\lambda_X(u_i) = P(e_V^+, e_X^- | u_i) = \sum_x \sum_v P(e_V^+, e_X^- | u_i, x, v)P(x, v | u_i) = \sum_x \sum_v P(e_X^- | x)P(e_V^+ | v)P(x, v | u_i)
\]

\[
\propto \sum_x P(e_X^- | x) \sum_v P(v | e_V^+) \frac{P(x | v, u_i)P(v | u_i)}{P(v)} = \sum_x P(e_X^- | x) \sum_v P(v | e_V^+)P(x | v, u_i)
\]

\[
= \sum_x \lambda(x) \prod_{v \neq i} \pi_X(v_k)P(x | v, u_i)
\]
Belief propagation in polytrees

- Initialize the network according to the evidence
- Repeat until convergence
 - For each node
 - Inspect π-messages from its parents and λ-messages from its children.
 - Update the beliefs.
 - Propagate the new messages to parents and children.
Example

- 5 Binary variables
- \(P(U = 0) = 0.4 \)
- \(P(W = 0) = 0.7 \)
- \(P(X = 0 \mid U = 0, W = 0) = 0.1, \)
 \(P(X = 0 \mid U = 0, W = 1) = 0.3, \)
 \(P(X = 0 \mid U = 1, W = 0) = 0.6, \)
 \(P(X = 0 \mid U = 1, W = 1) = 0.9 \)
- \(P(Y = 0 \mid X = 0) = 0.9, \ P(Y = 0 \mid X = 1) = 0.6 \)
- \(P(Z = 0 \mid X = 0) = 0.6, \ P(Z = 0 \mid X = 1) = 0.8 \)
- We observe that \(Z = 0 \). What are \(P(U \mid Z = 0), \ P(X \mid Z = 0), \)
 \(P(Y \mid Z = 0), \ P(W \mid Z = 0) \)?
Belief propagation

- Time complexity
 - Number of messages sent depends linearly on the diameter of the network
 - The time needed to compute a message is exponential with respect of the number of parents.

- (Conditional) Independence assumptions do not hold in multi-connected networks.
Further readings

- Belief propagation
 - Neapolitan (2004), Chapter 3.2
 - Pearl (1988), Chapters 4.2