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Location services provide users of cellular telephones with information about their location. Inorder to implement location services, several location estimation methods have been developed.Some of them, such as the GPS satellite navigation system, require non-standard features, eitherfrom the cellular telephone or the cellular network. However, it is possible to use the existingGSM technology for location estimation by taking advantage of the signals transmitted betweenthe cellular telephone and the network. A problem with such solutions is usually their inadequatelocation estimation accuracy.The thesis reviews some current location estimation methods. In addition, it describes propagationmodels, which are used to predict some properties of radio signals, such as signal strength. The useof propagation models in location estimation is discussed. This leads to an approach to locationestimation which is di�erent from the prevailing geometric one. We call our approach the statisticalmodeling approach. In the empirical part of the thesis, a location estimation method based on astatistical signal strength model is presented.
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paikannus, etenemismallit, Expectation�Maximization -algoritmi

Matkapuhelimien paikannuspalvelut tarjoavat matkapuhelimen käyttäjälle tiedon käyttäjän sijain-nista. Paikannuspalvelujen tuottamiseksi on kehitetty useita erilaisia paikannusmenetelmiä. Jotkutniistä, kuten GPS-satelliittipaikannus, vaativat joko matkapuhelimelta tai matkapuhelinverkolta li-säominaisuuksia, joita niissä ei tavallisesti ole. Paikannus voidaan kuitenkin tehdä nykyisellä GSM-teknologialla käyttäen hyväksi pelkästään matkapuhelimen ja tukiasemien välisiä signaaleja. Täl-löin ongelmaksi muodostuu paikannustarkkuus, joka on nykymenetelmissä on riittämätön useisiinpaikannuspalveluihin.Tutkielmassa luodaan katsaus nykyisiin paikannusmenetelmiin. Lisäksi kuvataan signaalin ominai-suuksien, kuten voimakkuuden, ennustamiseen käytettäviä malleja ja pohditaan niiden käyttömah-dollisuuksia paikannuksessa. Tämä johtaa niin sanottuun tilastollisen mallinnuksen lähestymista-paan, joka poikkeaa tavanomaisesta, geometrisesta lähestymistavasta. Tutkielman kokeellisessa osas-sa esitetään tilastolliseen signaalinvoimakkuusmalliin perustuva paikannusmenetelmä.
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Chapter 1IntroductionThe popularity of cellular telephones has increased tremendously during therecent years, and the trend doesn't seem to be slowing down. In August 2000the number of cellular telephone users in the world was about 570 millions.With the average rate of a quarter of a million new subscriptions per day, thetotal number of subscribers is expected to reach one billion in only a couple ofyears (UMTS Forum, 2000). These numbers are remarkable for such a youngtechnology: the �rst cellular telephones were introduced not earlier than inthe late 1970s. After two decades, at the turn of the millennium, cellulartelephones have developed enough to compete with �xed-line telephones.Recent advances in digital cellular technology allow transmission of not onlyspeech, but also text and data with speed comparable to �xed-line networks.In this introductory chapter we shall take a cursory look into the basics andhistory of cellular technology, and discuss some of its novel applications.A fundamental concept of cellular telephone networks is a cell.1 Theoperating area of a cellular network is divided in cells, each of which isassociated with one base station. For simplicity, the cells are often presentedas if they had a hexagonal form, as shown in Figure 1.1, although in real life,they overlap each other in a way that allows mobile units to communicatewith several base stations in most locations. The idea of cellular layout is toallow e�cient use of bandwidth: in GSM systems, for instance, each cell isallocated a group of frequency bands which is completely di�erent from thegroup allocated to the neighboring cells. This way two cells can operate onthe same frequency without interfering with each other, as long as the cellsdo not overlap.Without doubt, mobility is the most important feature of cellular tele-phone systems. Small-scale mobility is provided by the cordless radio inter-1See (FTSC, 1996) and (Rappaport, 1996) for de�nitions of telecommunications terms.1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: An idealized diagram of a cellular network layout.face between base stations and mobile units. Allowing mobile units to accessthe network through any base station in the network results in large-scalemobility. Moreover, modern cellular systems perform hand-overs, i.e. changethe active base station on the �y without interrupting an active call.During the 1980s several countries adopted analog cellular networks, inthe United States AMPS, and in some European countries and in the Nordiccountries TACS and NMT respectively (Rappaport, 1996). At that time thesystems were often disabled due to lack of su�cient network coverage andcapacity. Transmission of other than speech was not considered necessary,and it would have been di�cult with the low-performance analog technol-ogy. The �rst digital GSM cellular network started its operation in 1991.Currently GSM network have been installed in more than 100 countries, andthe shift from analog to digital technology is accelerating. Digital technologyprovides an easy way to transmit textual information, and this possibilityis exploited by the SMS technology allowing users of GSM handsets to ex-change text messages. The transmission speed of a GSM network is su�cientfor speech communication and exchange of SMS messages, but the need fordata transmission drives the development towards technologies with highertransmission speed.The next step from GSM will be GPRS. The �rst commercial GPRSnetwork started operating in the end of the year 2000. Current GSM networkscan be upgraded to GPRS with additional network components. Thus itscost compared to building a completely new network infrastructure is small.The e�ective data transmission speed of GPRS is expected to be between 20and 65 kilobits per second, which is an improvement over 9.6 kilobits of GSMnetworks. What is perhaps even more important than increased transmissionspeed, is that unlike in GSM, a packet-switched protocol is used in GPRS.In practical terms, GPRS is better suited for transmission of text, binaryand graphical data than GSM, and it allows billing based on the amount of



3transferred data. The latter feature is essential to interactive applications,because no cost should assigned to the time the user views the response. Incontrast, in GSM systems billing is always based on connection time.Until the recent years the development of cellular telephone handsets hasprimarily focused on decreasing the size of the devices and increasing batterycapacity. Lately the emphasis has been shifting to improving the functional-ity of the devices. Some recent products anticipate the symbiosis of cellulartelephones and PDAs with their e-mail, notebook and calendar features. TheSIM Application Toolkit (ETSI, 1998) and WAP (WAP Forum, 1998) stan-dards mark milestones in the evolution towards multi-functional telephones.Both of them allow operators and third parties to develop specialized appli-cations for GSM handsets, without the necessity to modify the handset.All these technological advances would be of little use without co-evolution of the ways in which they are exploited. Among the most inter-esting ways to exploit the possibilities of modern communication technology,is the concept of location-aware computing: devices which can be locatedor which can locate themselves, and services based upon them. These socalled location-based services have great potential in areas such as personalsecurity, navigation, tourism, and entertainment. The most obvious location-based service is one answering questions like �Where am I?�, and �Where isthe nearest shop/bus-stop/hospital?�. Now that graphical and interactiveapplications are technically feasible, it would even be easy to implement anapplication which presents a map labeled with a mark saying �You are here�.Secondly, location can be thought as a �lter for the ever-increasing amountof information available to us every day. People usually don't want to knowabout daily o�erings of supermarkets, let alone of those which are locatedhundreds of kilometers away.Location information can be useful for other people than the user of thelocation-aware device as well. For instance, people often want to know wheretheir friends are, companies want to know where their delivery vehicles are,rescue o�cials want to know where injured people are, and so forth. In theUnited States location-based services, and in particular location of the originof emergency calls has been considered so important, that it is becomingobligatory for the local network operators to provide means for it. This socalled Enhanced-911 requirement is scheduled to become e�ective in October2001. Similar actions have been considered in the European Union as well.At this point one may have a concern about possible illegal and uneth-ical use of information concerning individuals' whereabouts. It seems thatscientists and engineers are not expected to bother their minds with consid-erations of the goods and evils of the technological advances they pursue; it



4 CHAPTER 1. INTRODUCTIONwas once said by a certain physicist2 that� When you see something that is technically sweet, you go ahead anddo it and you argue about what to do about it only after you have hadyour technical success. �However, regulative actions are being carried out in order to prevent suchproblems. With this in mind, we turn our look back to technical considera-tions.The location of a cellular telephone can be estimated using radio signalstransmitted or received by the telephone. Some location estimation methods,such as GPS, are based on signals transmitted from satellites, while othersrely on terrestrial communication. Additional costs to the service providerare minimal in systems based on existing cellular network infrastructure.However, the location estimation accuracy of such systems is often inadequatefor many location services. Improving the accuracy of location estimationsystems based on the existing cellular network infrastructure would be veryuseful. It is the main motivation of this thesis.One of the most severe problems facing cellular telephone systems is thecomplex propagation of radio waves in environment with obstructions andre�ecting objects. In order to ensure good coverage in their cellular networks,operators use so called cell planning tools which are based on radio wavepropagation models. Such models use information about the environmentand combine it with knowledge about phenomena such as signal attenuation,re�ection, di�raction and interference. The dependency between the locationof the receiver and observable signal properties is important for locationestimation as well. Despite this fact, the fusion of propagation models andlocation estimation is rarely mentioned in the literature.Radio wave propagation, and location estimation are dealt in great de-tail in the literature. These topics are the concern of the �rst chapters ofthe thesis: Chapter 2 presents the principles of radio wave propagation andpropagation models, and in Chapter 3 we describe some existing location es-timation systems. After reviewing relevant literature, we will discuss locationestimation from a point of view which is di�erent from the traditional, geo-metric one. In particular, a location estimation system based on a statisticalpropagation model will be proposed in Chapter 4. Finally, some concludingremarks are presented in Chapter 5.2(USAEC, 1954) as quoted in (ASME, 2000)



Chapter 2Radio Wave PropagationWith location estimation systems based on radio signals, it is importantto know the propagation properties of electromagnetic radiation. Phenom-ena, such as signal attenuation, re�ection, scattering and di�raction haveimportant roles in location estimation. Their importance is emphasized innon-satellite systems which have to operate in complex propagation environ-ments, such as urban or mountainous areas. This chapter addresses the mostimportant theoretical aspects of radio wave propagation and reviews somepropagation models based on them.2.1 PrinciplesThe basic concept in the theory of electromagnetic radiation is an electric�eld, which is always related to electric current (see Asimov, 1966). Anelectric �eld E is de�ned by its direction and magnitude at each point. Themagnitude, denoted by jEj, is measured in units of volts per meter (V/m).Periodic �uctuations of an electric �eld are called radio waves. Radio wavescan be decomposed in orthogonal components, typically the horizontal andthe vertical component. The ratio of the magnitudes of the two components�or equally: the direction of the electric �eld�de�nes the polarization of thewave (see NAWC, 1997). For instance, if the magnitude of the verticalcomponent is always zero, i.e. the direction vector is always parallel to thehorizontal axis, the wave is said to be horizontally polarized.An electric �eld corresponds to a power density �ow F , measured inwatts per square meter (W/m2), which is proportional to the square of themagnitude of the electric �eld. Given the power density �ow, the gain of areceiving antenna, Gr, which depends on the physical size of the antenna andfrequency, the wave length �, and the system hardware loss, L, the received5



6 CHAPTER 2. RADIO WAVE PROPAGATIONpower is given byPR = FGr�24�L : (2.1)Even though the wave length � appears in Equation (2.1), it does not followthat the received power would increase proportionally to the square of thewave length, because the wave length also a�ects the gain of the receivingantenna Gr. In fact, if the physical size of the antenna and the power density�ow are constant, the wave length terms cancel each other out, and thus thereceived power is independent of the frequency. However, the frequency canindeed a�ect the power density �ow due to interactions with the propagationmedium. This issue will be discussed in the following sections.Because the values of received power vary over a wide range, it is conve-nient to use logarithmic scale. A ratio of two quantities can can be presentedin decibels (dB) which indicates the logarithm of the ratio multiplied by ten.The unit of decibelwatt (dBW) is the ratio of power referenced to one watt.Conversions between watts and decibelwatts are made with the following twoequations1:P [dBW] = 10 log(P [W]); (2.2)P [W] = 10P [dBW]10 : (2.3)For instance, 0 dBW is equal to one watt, 10 dBW is equal to 10 watts, 20dBW is equal to 100 watts, etc. The unit of decibelmilliwatt (dBm) is de-�ned similarly as the ratio of power referenced to one milliwatt. Conversionsbetween two decibel units, for instance, decibelwatts and decibelmilliwatts,can always be performed simply by adding a constant to the original value.The following two equations are used for converting decibelwatts to deci-belmilliwatts and vice versa:P [dBm] = P [dBW]+ 30; (2.4)P [dBW] = P [dBm]� 30: (2.5)Because of the simple relationship between di�erent decibel units, we willhereafter simply use the word decibel to refer to any kind of decibel unit. Insuch cases all decibel quantities must be expressed in the same units.1The notation � log(�)� is used to denote base 10 logarithm, while the natural logarithmis denoted by � ln(�)�.



2.1. PRINCIPLES 72.1.1 Free-space AttenuationBecause a wave front proceeds in three dimensions, the maximum receivedpower at distance d must decrease in the inverse of the area of a sphere withradius d. If the absorption loss of the propagation medium is ignored, thepower density �ow, F , is given byF = PTGT4�d2 ; (2.6)where PT is the transmitted power, GT is a factor depending on the trans-mitting antenna, and d is the distance (see Rappaport, 1996; Walke, 1999).Combining Equations (2.1) and (2.6) gives the received power, which is usu-ally given in decibels:PR [dB] = PT [dB] + 10 log(GT ) + 10 log(GR) + 20 log(�)� 20 log(d)� 22:0: (2.7)Equations (2.6) and (2.7) are valid only in free-space environment, wherethere are neither re�ections, absorption, di�raction nor other distortions.If the line-of-sight between the transmitter and the receiver is obstructed,the received signal power is signi�cantly lower than the free-space equationssuggest. Furthermore, they do not necessarily give a good approximationeven in line-of-sight conditions.2.1.2 AbsorptionIn any real-world communication system, the signals propagate in somemedium. In wireless terrestrial systems the medium is mainly the atmo-sphere and, in lesser degree, materials such as glass, concrete, wood, etc.Due to interactions with the medium, the signal loses a certain proportion ofits remaining energy on every unit of distance it propagates. Thus, absorp-tion causes the power density �ow to decrease proportionally to �d, whered is the distance, and  is a constant depending on the properties of themedium and signal frequency. This means that in decibel scale, the loss islinear with respect to the distance.Absorption loss is particularly great in the upper microwave region, wherethe frequencies are above 10 GHz. With these frequencies the absorption dueto atmosphere becomes comparable to the free-space attenuation, especiallyin heavy rain conditions and with long transmitter�receiver distances (Xuet al. , 2000). With frequencies used in most wireless communication systems,below 10 GHz, the atmospheric absorption is insigni�cant with distances upto 10 km.



8 CHAPTER 2. RADIO WAVE PROPAGATIONAbsorption caused by other media than air is generally very strong. More-over, in addition to absorption, obstructions cause the wave to be re�ected,which further decreases the amount of energy passing through. Taking intoaccount both re�ection and absorption, the total attenuation per obstructionis typically 1�20 dB below 10 GHz, and 1�60 dB above 10 GHz (Rappaport,1996).2.1.3 Re�ectionRe�ection occurs when a wave meets an obstacle with size much bigger thanthe wave length. The part of the wave that is not re�ected back loses some ofits energy by absorbing to the material and the remaining part passes throughthe re�ecting object. In terrestrial communication systems the waves usuallyre�ect from ground, producing a two-ray path between the transmitter andthe receiver, shown in Figure 2.1. The plane of incidence is de�ned as theplane containing both the incident ray and the re�ected ray, and the angleof incidence is the angle between the re�ecting surface and the incident ray.
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Figure 2.1: Two-ray ground re�ection model.The received signal consists of the direct line-of-sight ray and the re�ectedray. The two rays arriving to a receiver can have di�erent phase and in theworst case they cancel each other out. The magnitude of the re�ected signaldepends on the Fresnel re�ection coe�cient, which depends on the propertiesof the re�ecting ground, the frequency of the wave, and the angle of incidence.Roughness of the re�ecting surface causes the propagating waves to scatterin all directions, and therefore, the re�ection coe�cient of a rough surface issmaller than the one of an otherwise identical but �at surface. In general, there�ection coe�cient is di�erent for the vertical and the horizontal componentof the wave. In such cases, re�ection can change wave polarization.Figure 2.2 presents the attenuation curve of the two-ray model with cer-tain parameters. The exact equation corresponding to the two-ray model isgiven in (Rappaport, 1996, p. 87). It can be seen from the �gure that with



2.1. PRINCIPLES 9long distances the two-ray model coincides with the fourth-power approxima-tion, which is given byPR [dB] = PT [dB] + 10 log(GT ) + 10 log(GR)� 40 log(d)� 22:0; (2.8)where the received power is proportional to the inverse of the fourth powerof the distance rather than the square of the distance which appears in thefree-space model.
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Figure 2.2: The received power referenced to the transmitted power as a func-tion of the transmitter�receiver distance according to the free-space model(Equation (2.7)), the two-ray model (Rappaport, 1996, p. 87), and thefourth-power approximation of the two-ray model (Equation (2.8)). Theparameters are: transmitter elevation = 50 m, receiver elevation = 2 m, fre-quency = 900 MHz, relative permittivity of the ground = 15, antenna gainsand system loss = 1.0 (no loss).2.1.4 Di�ractionAccording to Huygen's principle, all points on a wavefront are point sourcesof secondary waves propagating to all directions. Therefore, each time a radiowave passes an edge such as a corner of a building the wave �bends� aroundthe edge and continues to propagate into the area shadowed by the edge.This e�ect is called di�raction. In Figure 2.3 the transmitter is situated nearan obstacle. The arrows describing the direction of propagation indicate how



10 CHAPTER 2. RADIO WAVE PROPAGATIONthe signal reaches the areas around the corner due to a source of secondarywaves situated at the corner of the obstacle. Note that the single source ofsecondary waves shown in Figure 2.3 is only one of the in�nite number ofsuch sources on the wavefront.The more the waves have to bend around a corner, the more they losetheir energy. Therefore the areas to which the rays have to bend more, gainrelatively less additional �eld strength than the areas to which the rays canproceed almost linearly. The �eld strength of the secondary waves is muchsmaller than the one of the primary waves. In practice the di�racted wavescan be neglected if there is a line-of-sight between the transmitter and thereceiver.
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Figure 2.3: Di�raction.2.2 Propagation ModelsPrediction of radio wave propagation is useful in activities such as allocationof bandwidth, cell planning and location estimation. Propagation models areused to predict the properties of the propagating waves, usually the receivedsignal power and its variability. It is also possible to predict polarization,time dispersion, frequency selectivity and other properties that a�ect theperformance of communication systems (Damosso & Correia, 1998; Fleury &Leuthold, 1996).The theoretical aspects mentioned above can be taken into account onvarious levels of abstraction, depending on the amount of available informa-tion about the environment, and the required accuracy of the predictions.



2.2. PROPAGATION MODELS 11For instance, when planning satellite communication or radio links spanningtens of kilometers, su�cient accuracy is often reached by taking into accountfree-space attenuation, absorption and ground re�ection. On the other hand,in urban areas re�ections and di�raction caused by buildings and scatteringcaused by trees have a strong in�uence on wave propagation. Based on howmuch information about the environment the models use, they can be dividedinto the categories of general and site-speci�c models. The division can befurther re�ned as shown in Figure 2.4. For descriptions of the individualmodels listed in the �gure, see (Damosso & Correia, 1998; Andersen et al. ,1995; Rappaport, 1996; Wöl�e & Landstorfer, 1999). The di�erent groups ofpropagation models are discussed in the following.
- Okumura
- Hata
- Feuerstein et al.
- Log-distance
- Ericsson MBP
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- Wölfle & Landstorfer

- Ray-tracing
- Ray-launching

Ray-optical

General

Geographical

Site-specific

Empirical

Propagation Models

Figure 2.4: Classi�cation of propagation models.2.2.1 General ModelsGeneral models typically describe the �eld strength as a function of thedistance between the transmitter and the receiver. The two-ray ground re-�ection model and its approximations described in the previous section areexamples of general models. The models usually include some factors such asground properties, or the Fresnel re�ection coe�cient in the two-ray model.One of the most popular general models is the Okumura model (Rappaport,1996). It consists of the free-space loss (Equation (2.7)) and a correctionfactor. The correction factor is given by a function of the distance and



12 CHAPTER 2. RADIO WAVE PROPAGATIONthe frequency of the signal. Okumura presented the functions graphically ascurves. Di�erent curves exist for open, quasi-open, suburban and urban area.Later, Hata used the empirical data presented by Okumura and gave math-ematical formulae known as the Hata model, which closely �ts Okumura'scurves. The Hata model was extended by the COST-231 working commit-tee to higher frequencies in order to include the 1800 MHz frequency bandused in some cellular telephone systems. A drawback of the Hata-Okumuramodels is that they are restricted to distances of one kilometer or more.The log-loss (a.k.a. log-distance) model is an extension of the basic free-space attenuation of Equation (2.7). The received power is given byPR [dB] = PT [dB] + �0 + �1 log(d) + e; (2.9)where �0 and �1 are parameters indicating how the signal strength decreasesas a function of the distance, and e is an error term. If the value of �1 is �20the attenuation corresponds to the free-space model, and with the value �40it corresponds to the fourth-power approximation.2.2.2 Geographical ModelsThe propagation of radio waves is well-known on macroscopic level. If geo-graphic information such as earth topography, land use maps, building data,etc., is available, one can use geographical models to predict propagation.Such models can be used before the communication system is implemented,which is necessary whenever the predictions are used for optimization of theperformance of a system yet to be build. For instance, the so called ray-optical models use re�ection and di�raction equations to model the paths ofthe signal, see e.g. (Wöl�e & Landstorfer, 1999; Athanasiadou et al. , 2000;Corazza et al. , 1996). There are two main approaches to ray-optical models:ray-launching and ray-tracing, see Figure 2.5. In the former several rays are�launched� from the transmitter to all directions. The rays proceed straighton until they hit an obstacle creating one or more re�ected or di�ractedrays. A prediction of the resulting �eld is computed by considering at eachpoint all the rays that have passed through the point. Alternatively, in theray-tracing approach, one starts from some point in the prediction area, andconsiders potential rays arriving to that point from all directions.When no empirical data is available, the ray-optical approaches producethe most accurate predictions. However, their use if often prohibited bythe lack of detailed and up-to-date information about the environment, andthe fact that they are very time-consuming. Some preprocessing techniquesare proposed to manage the latter problem (Hoppe et al. , 1999). In ad-dition to ray-optical models there are also other geographical models. For
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Figure 2.5: Ray-optical models: (a) ray-launching, and (b) ray-tracing. Therays which a�ect the �eld at point (x1; y1) are denoted by solid arrows. Thetransmitter is denoted by the black dot on the left side of the obstruction.instance, neural networks have been used to predict the signal strength insidebuildings using some attributes derived from the �oor-plan as inputs to thenetwork (Wöl�e & Landstorfer, 1998, 1999).2.2.3 Empirical ModelsEmpirical models use data collected in the same location where the model isused. Therefore, in contrast to general and geographical propagation models,empirical models can be used only when the system is already in operation.The data is used in a way similar to statistical inference�in fact, manyempirical models are statistical� to obtain information on the parameters ofthe signal in di�erent parts of the area. Empirical models are potentially veryaccurate, because their predictions2 correspond to the actual propagationphenomena even when no information about the environment is available.Disadvantages of empirical models are that collecting the measurements canrequire a lot of work, that they can not be exported to other areas than theone from which data was collected, and that they need to be reconstructedevery time the environment changes.
2In this context the word predict is used in the statistical sense, referring not necessarilyto prediction of the future but to prediction of any information that is not known by thepredictor.



Chapter 3Location Estimation MethodsObtaining the location of a mobile unit is called location estimation. Syn-onymous terms include: radio location, radio navigation, position location,positioning, and so forth. Several location estimation systems are reviewedin (Rappaport et al. , 1996) and (Syrjärinne, 2001). A vast majority ofapplications of location estimation use the GPS satellite navigation systemwhich provides location estimates with an accuracy of a couple of meters. Al-ternatives to satellite-based systems are developed to avoid problems, suchas lack of coverage between high buildings and indoors, and high energy-consumption of the devices. These techniques use signals between the mobileunit and terrestrial transmitters or receivers. The transmitters (or receivers)can be either dedicated for this purpose or be a part of a communicationsystem, such as a cellular telephone network.By using the location of the serving base station of a cellular network, onecan easily obtain a very rough location estimate. More accurate estimates re-quire measuring the strength, time delay, angle of arrival or other propertiesof the signals transmitted between the mobile unit and the base stations. Inthe geometric approach to location estimation the measurements are trans-formed into distance and angle estimates. Non-geometric approaches arepossible but unusual. However, we argue that they have certain advantagesover the geometric ones, and we will return to this question in Chapter 4.This chapter presents the principles of location estimation with focus on thegeometric approaches.3.1 ArchitecturesThere are several ways to distribute the location estimation process betweenthe mobile unit and the other components of the system. First of all, the14



3.2. ALGORITHMS 15observed signals can be sent to the mobile unit (downlink) or by the mobileunit (uplink). In addition, the component performing the actual locationestimation can be di�erent from the one that observes the signals. Di�erentcombinations of solutions to the above design choices correspond to four mainarchitecture types, discussed below.Inmobile-based architectures the mobile unit performs the necessary mea-surements of downlink signals to infer its own location without any uplinkcommunication. In order for this to be possible the network has to broad-cast some assistance data, such as the locations of the base stations.1 If theassistance data is provided as a point-to-point transmission requested by themobile unit, the architecture is called network-assisted. Unlike in network-assisted architectures, capacity is no problem in mobile-based architectures.If the mobile unit performs the measurements and transmits the resultsto the network to be processed, the architecture is mobile-assisted. Architec-tures in which the network receives signals from the mobile unit and performsthe necessary operations to estimate the mobile unit's location are callednetwork-based architectures. Perhaps the most severe problem of network-based architectures is the so called hearability problem: the mobile unit ad-justs its transmission power in order to ensure that the active base stationsreceives its signal with minimal energy consumption. Therefore the otherbase stations do not necessarily receive the signal as required.3.2 AlgorithmsLocation estimation can be performed using several di�erent kinds of mea-surements. Traditionally the approaches have been geometric: the mea-surements are transformed into distances or angles with respect to a groupof reference points, for instance base stations. A location estimate is thenderived using basic geometry. The number of independent measurementsrelated to di�erent reference points depends on the used algorithm. Geomet-ric approaches are not directly able to use more than the minimum numberof measurements, although this would in most cases improve the accuracy.Therefore many variations, most of them ad hoc, are proposed. The basicgeometric algorithms are presented in the following sections. Some examplesof non-geometric approaches are presented in (Latapy, 1996; Willassen, 1998;U.S. Wireless, 2001).1Such broadcasts would not be a technical problem in cellular networks. However, theoperators are often very secretive about the layout of their base stations.



16 CHAPTER 3. LOCATION ESTIMATION METHODS3.2.1 Angle of ArrivalIn the Angle of Arrival (AOA) location estimation method the direction of thesignal arriving from the mobile unit to two base stations is measured (Rap-paport et al. , 1996). If the location of the base stations is known, one canuse triangulation to infer the location of the mobile unit. If more than threeangle measurements are available, they are not necessarily compatible due toangle measuring errors, and one has to apply more complicated means to ob-tain a location estimate. Angle measurements require additional hardware,such as antenna arrays, to be installed to the network.3.2.2 Timing-based AlgorithmsIf the time delay between transmitting and receiving a signal is known, onecan estimate the distance by multiplying by the speed of light. Three dis-tance estimates can be used to estimate location with the Time of Arrival(TOA) method. It is obvious that even a small error in the clock at eitherthe transmitting or the receiving end causes a major error in the distanceestimate.Usually the mobile unit can not be synchronized accurately enough todirectly obtain the time used by the signal to travel between a mobile unitand a base stations. One solution to get around the synchronization problemis to use di�erences in the time delays of several base stations instead ofabsolute times. Time di�erences are used in the Time Di�erence of Arrival(TDOA) method. The basic TDOA equation isri;j =q�xi � x�2 + �yi � y�2 �q�xj � x�2 + �yj � y�2; (3.1)where ri;j is the di�erence in the time delays between the mobile unit andbase stations i and j, (xi; yi) and (xj; yj) are the coordinates of base stationsi and j, and x and y are the coordinates of the mobile unit. Equation (3.1)de�nes hyperbolic curves and three base stations are required for a locationestimate.If measurements corresponding to more than three base stations are avail-able in either TOA or TDOA methods, the incompatibility problem men-tioned in conjunction with the AOA method, can arise. In such cases spe-cial heuristics have to be applied to obtain a location estimate. The TDOAmethod is successfully applied in the GPS system and a version of it for GSMnetworks is standardized with the title Enhanced Observed Time Di�erence(E-OTD) (Rantalainen & Pickford, 1999).



3.3. EXISTING LOCATION SYSTEMS 173.2.3 Signal StrengthIf the signal strength is known, the distance can be estimated in a waysimilar to one used in the TOA method. Therefore, TOA algorithms areapplicable to signal strength measurements. Some non-geometric algorithmsbased on signal strength measurements have been presented as well (Latapy,1996; Willassen, 1998). It has been suggested that signal strength is notsu�cient for accurate location estimation, meaning that accuracies below afew hundred meters are not achievable (Syrjärinne, 2001).3.3 Existing Location SystemsSome existing location systems, based on either satellites or cellular net-works, are reviewed in the following. Most of the systems are commercialproducts and information about them is mainly provided by companies whichlicense them. Therefore, the credibility of the information presented belowis questionable.3.3.1 Satellite-based Location SystemsSatellite-based location systems, often called satellite navigation systems, andamong them especially GPS, are used extensively in military and commercialapplications, such as vehicle tracking, navigation, and clock synchronization.Advantages of the GPS system include worldwide availability, high accuracyand the fact that it is free for everyone. GPS is applicable only in areas wherethere is a simultaneous line-of-sight to several satellites. This rules out the useof conventional GPS systems, for instance, under dense foliage, between highbuildings and indoors. In addition, it requires relatively expensive hardwarein handsets.The Russian satellite navigation system, GLONASS, is in principle similarto GPS. However, its functionality is currently limited because there areonly nine of 24 satellites operating (Bretz, 2000). The European Union isalso planning a satellite navigation system, called Galileo. According to thecurrent plan, Galileo will start operating between 2005 and 2008.Until recently the accuracy of plain GPS location was about 100 me-ters. More sophisticated equipment used prelocated reference points in theso called di�erential GPS scheme to obtain accuracy of approximately onemeter. However, in the beginning of May 2000 the United Stated Depart-ment of Defense removed the so called selective availability from the satellitesignals, thus eliminating the main source of inaccuracy of GPS for civilian



18 CHAPTER 3. LOCATION ESTIMATION METHODSusers. Since then the accuracy of plain GPS without di�erential correctionshas been a couple of meters (FGCS, 2000).Some GPS systems, such as SnapTrack (SnapTrack, 2001) and Tid-get (Belle et al. , 1997), use only a sensor recording a �snapshot� of the GPSdata and transmit it to a server to obtain a location estimate. SnapTrack usesa network of supporting GPS receivers to demodulate the satellite naviga-tion message, thus being able to use the supporting receivers to perform thetask which requires the highest signal level in the GPS location estimationprocedure. The supporting receivers also provide aiding data to the mobileunit, enabling it to extract the necessary information from a weaker signalthan conventional GPS receivers. SnapTrack has reported accuracy of 3�100meters even inside buildings and severe blockage and multipath conditions,which would be a remarkable improvement compared to conventional GPSsystems.3.3.2 Network-based Location SystemsMany location estimation systems that are based on the signals transmittedbetween a cellular telephone and the network are proposed. These so callednetwork-based location systems2 are used in order to avoid the necessity tointegrate GPS hardware to handsets or to serve as fall-back systems in loca-tions where GPS is not available. Many network location systems use specialreceivers to monitor signals from cellular phones. The receivers can be placedeither at base stations or separate sensor stations. Systems based on timemeasurements are usually synchronized with GPS receivers or high-precisionclocks.Implemented location estimation systems using TDOA implemented withadditional hardware include Cellocate (Cell-Loc, 2001), TruePosition (True-Position, 2000), and Cursor (CPS, 2001). Nokia has also implemented a testversion of its TDOA system (Ruutu, 2000). Additional hardware is used alsoby GeoPhone (Radix Technologies, 2001) which is based on a TDOA/AOAhybrid, Telesentinel (KSI, 2001) using AOA, and RadioCamera (U.S. Wire-less, 2001; Driscoll, 1998). RadioCamera is an empirical system which mon-itors the mobile unit's transmission to obtain ��ngerprints� of the multipathcharacteristics of the signal. The �ngerprints are compared to a databaseof �ngerprints with known coordinates. The system has been reported toachieve accuracy of 86 meters in 67 percent of location requests in both ur-ban and rural environments as well as in outdoor and indoor conditions (U.S.2Note that the term network-based location system does not imply a network-basedarchitecture.



3.3. EXISTING LOCATION SYSTEMS 19Wireless, 1999).Current systems requiring no additional hardware either to the mobileunit nor the network components have severe accuracy problems. By usingthe serving base station's location as a location estimate yields an averageerror of about one kilometer or more, depending on the density of the basestations. A location estimation system developed by ModelSoft uses signalstrength measurements made by the mobile unit (ModelSoft, 2001). In bothrural and urban areas 95 percent of the location estimates are said to bewithin 1000 meters of the true location. The system will be implementedin GSM handsets manufactured by Benefon and it will be supported by aFinnish GSM carrier Radiolinja (ModelSoft, 1999). CellPoint (CellPoint,2001) and Alcatel (Kelsey Group, 2000) have also developed location esti-mation systems requiring no additional hardware. The required softwaremodi�cations are implemented with the SIM Application Toolkit technology.



Chapter 4Statistical Location EstimationIn this chapter a statistical approach to location estimation is presented. Thebasic idea is to construct a statistical model which describes the distributionof signal strength at any given location, and to use the model to estimatethe mobile unit's location when the signal strength is observed. In fact, themodel in question is a sort of a propagation model and therefore propagationmodeling is strongly linked to this approach. The use of a statistical modelallows certain theoretically and practically feasible solutions in the locationestimation phase. The approach is di�erent from most of the other locationestimation systems presented in the literature.The chapter is organized as follows: We shall �rst give a detailed descrip-tion of a suitable propagation model and show how its parameters can beestimated from empirical data. The rest of the chapter deals with locationestimation using the model. The elementary probability theory and statisticsused in this chapter can be found in, for instance, (DeGroot, 1986).4.1 Propagation Model DescriptionA propagation model predicts some properties of a radio signal at a givenlocation. If the �output� of the model is a probability distribution of thesignal's properties, the model is statistical, as opposite to a deterministicmodel which gives a single value for each of the predicted properties. Signalstrength1, denoted by s, will be used throughout this chapter, although theapproach is applicable to any observable property or properties of the signal.1In principle the terms �eld strength and signal strength refer to the magnitude of anelectric �eld. However, in this context they are used as if they were synonymous to thereceived power which depends on the magnitude of the electric �eld through the powerdensity �ow and the receiving antenna as described in Chapter 2.20



4.1. PROPAGATION MODEL DESCRIPTION 214.1.1 Single Transmitter ModelThe log-loss model de�ned by Equation (2.9) in Chapter 2 can be used asa statistical propagation model as long as the distribution of the error terme is de�ned. If a zero-mean Gaussian distribution with a constant varianceis used, the model is a linear regression model2 with three parameters: tworegression coe�cients, �0 and �1, which de�ne the mean value of the signalstrength at a given distance, and the variance of e denoted by �2. The meanvalue of the signal strength is given by�(d; p; �) = p+ �0 + �1 log(d); (4.1)where p is the transmitted power in decibels, and � denotes the set of pa-rameters.The transmitters of cellular networks are often directed to some directionof transmission to which the transmitted power is higher than to other di-rections. Therefore, the log-loss model can be improved by adding a termwhich depends on the deviation between the direction of the receiver and thedirection of transmission. The deviation is denoted by �, and its values arebetween zero and 180 degrees (see Figure 4.1).In addition to the parameters of the log-loss model, the improved log-lossmodel has an additional parameter, �2, which is related to �. The mean valueof s is given by�(d; �; p; �) = p+ �0 + �1 log(d) + �2� log(d)= p+ �0 + (�1 + �2�) log(d): (4.2)It can be seen on the second row of Equation (4.2) that if the deviation, �, isconstant, the improved model is identical to the normal log-loss model with�1 replaced by �1+�2�. In other words, attenuation obeys the log-loss modelalong any straight line originating from the transmitter. Figure 4.2 showsvalues of � evaluated using Equation (4.2).The distribution of s is Gaussian with the following p.d.f.:f(s j d; �; p; �) = 1p2� � exp"�12�s� �(d; �; p; �)� �2#: (4.3)2It is important to remember that the term linear does not imply that the model cannot contain non-linear functions. For instance, in our model the average signal strength islinear with respect to the logarithm of the distance.
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Figure 4.1: The deviation, �, between the direction of transmission and thedirection of the receiver as measured from the transmitter.
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Figure 4.2: An illustration of the average attenuation evaluated using Equa-tion (4.2). The transmitter is located in the center of the area and its direc-tion of transmission is towards the upper right corner of the area.



4.1. PROPAGATION MODEL DESCRIPTION 234.1.2 Multiple Transmitters ModelWe have now described how the distribution of the signal strength is evalu-ated with respect to one transmitter. Let us now extend the model to dealwith several transmitters. First, because several channels, each operatingon a separate frequency range, are used simultaneously in cellular networks,there are actually as many signal strength variables as there are channels.Let sj denote the signal strength of channel j, and ci denote the channel oftransmitter i. Second, transmitters are classi�ed depending on their trans-mission properties and location with respect to buildings. For instance, thesignal received from an indoor transmitter is usually weaker than the signalreceived from an outdoor transmitter at the same distance, because of the at-tenuation caused by buildings. In order to take these di�erences into account,we use di�erent parameters for each transmitter type. Let ti 2 f1; : : : ; kg,where k is the number of di�erent types, denote the type of transmitter i,and let � denote the parameters of all transmitter types. The parameters oftransmitter type j are denoted by �(j). Thus, the parameters of transmitteri are denoted by �(ti).If there are two transmitters on the same channel they cause interferenceand it is di�cult to predict the resulting �eld strength. However, the situa-tions in which two transmitters on a same channel are close to each other areintentionally avoided while planning the layout of the network, and thus thesignal strength of no more than one transmitter is likely to be signi�cant. Insuch cases we assume the signal strength at a given location to be distributedas if the only transmitter were the one whose mean signal strength accordingto Equation (4.2) is higher at that particular location. The strongest signalis not necessarily the one of the nearest transmitter, because of the e�ectof the direction of transmission and di�erences in the parameters betweendi�erent transmitter types.Thus, each transmitter has location, denoted by li, type, denoted by ti,direction of transmission, denoted by �i, and transmitted power, denoted bypi. Let gj denote the p.d.f of the signal strength of channel j, given that themeasurement is performed at location l. It is given by the equationgj(s j l; �) df.= f�s j d(l; li); �(l; li; �i); pi; �(ti)� (4.4)where d(l; li) is the distance between locations l and li, �(l; li; �i) is thedeviation at location l with respect to a transmitter located at li and directedto �i. The index i is chosen so that it maximizes the mean signal strength:i = argmaxf i : ci=j g��d(l; li); �(l; li; �i); pi; �(ti)�; (4.5)



24 CHAPTER 4. STATISTICAL LOCATION ESTIMATIONwhere function � is given by Equation (4.2). Thus, when the propagationparameters, and the location, channel, direction of transmission, and trans-mitted power of the transmitters are �xed, an estimate of the distribution ofsj, for each channel j, is available for every location. We shall next considerhow to deal with the unknown propagation parameters.4.2 Estimation of Propagation ParametersIn most propagation models there are some parameters whose values cannot be derived from the underlying theory. These parameters are typicallysomehow related to the environment and hence, there are no universally goodvalues for them. In such cases, it is obligatory to use empirical data to obtaininformation about the parameter values. Note, however, that it is generallyunjusti�ed to assume the existence of some true parameter values which arereferred to in the following quote:� In many statistics problems, the probability distribution that gener-ated the experimental data is completely known expect for the valuesof one or more parameters. � (DeGroot, 1986, p. 311)When modeling phenomena as complex as radio wave propagation the as-sumption is certainly incorrect. Instead of trying to �nd the real parametervalues, a more realistic goal would be to maximize the expected predictiveaccuracy. Because even this is often beyond our capabilities, it is a com-mon practice to maximize the likelihood of the parameters. This results inthe simple, but generally unjusti�ed and suboptimal maximum likelihoodapproach, which we will use.In our case the propagation parameters for each transmitter type are es-timated from data consisting of signal strength measurements, each labeledwith the corresponding channel and location of the receiver. The trans-mitter information consists of the already mentioned properties, namely thelocation, channel, direction of transmission, and transmitter power of eachtransmitter. Based on the data we need to estimate the parameters �0; �1; �2and � of Equations (4.2) and (4.3) for each transmitter type.As a preprocessing step the transmitter information is combined with thesignal strength measurements in order to produce a table consisting of thefollowing columns:1. received signal strength, denoted by s = s(1); : : : ; s(n),2. transmitter�receiver distance, denoted by d = d(1); : : : ; d(n),



4.2. ESTIMATION OF PROPAGATION PARAMETERS 253. deviation between the direction of transmission and the direction of thereceiver, � = �(1); : : : ; �(n), and4. transmitted power, p = p(1); : : : ; p(n).5. transmitter type, denoted by t = t(1); : : : ; t(n),Filling in �elds 2�5 requires that the source of each measured signal is iden-ti�ed, also in cases where there are several transmitters on the same channel.In such cases we assume that the signal is coming from the transmitter whichis nearest to the receiver, although in principle Equation (4.5) should be used,and these two criteria do not always agree. This is a deliberate pragmaticchoice: Using Equation (4.5) would require treating the ambiguous cases asmissing data because �, whose value is unknown, appears in the equation.We shall next describe how to obtain maximum likelihood estimates(MLEs) of the parameters, or approximations thereof, from empirical data.First, the simple case where none of the data is missing is discussed, afterwhich a solution to the realistic missing data case is presented.4.2.1 Maximum Likelihood from Complete DataEvaluating the MLEs from complete data can be performed easily by ex-ploiting the fact that, what we have is in e�ect a set of linear regressionmodels. By minor rearrangements, the problem can be formulated in sucha way that standard methods for solving MLEs for linear regression modelscan be applied.Given fully observed data vectors, s, d, �, p and t, the likelihood, L(�),is a product of the conditional p.d.f.'s of the individual observations:L(�) = nYi=1 f�s(i) j d(i); �(i); p(i); �(t(i))�= nYi=1 1p2� �(t(i)) exp �12�s(i) � �(i)�(t(i)) �2!; (4.6)where �(t(i)) denotes the parameter � of transmitter type t(i), and �(i) isgiven by�(i) df.= ��d(i); �(i); p(i); �(t(i))�: (4.7)The factorization of L(�) is based on the assumption that the variabless(1); : : : ; s(n) are independent and identically distributed.



26 CHAPTER 4. STATISTICAL LOCATION ESTIMATIONThe terms in (4.6) can be arranged in k groups where each group corre-sponds to one of the k transmitter types. Within each group j we use thenotation shi;ji, dhi;ji, �hi;ji, phi;ji, and �hi;ji to denote the observations relatedto the group. For instance, sh1;2i denotes the signal strength of the �rst ob-servation having t(i) = 2. The value of t(i), and hence also �(t(i)) and �(t(i)),is constant for each i belonging to the same group, and we can write thelikelihood function asL(�) = kYj=1" n(j)Yi=1 1p2� �(j) exp �12�shi;ji � �hi;ji�(j) �2!#= kYj=1 "� 1p2� �(j)�n(j) exp��SSE(j)2 �(j)2�#; (4.8)where n(j) is the number of terms having t(i) = j, and the sum of squarederrors, SSE(j), is given bySSE(j) df.= n(j)Xi=1 �shi;ji � �hi;ji�2= n(j)Xi=1�shi;ji � phi;ji � �0(j)� �1(j) log�dhi;ji�� �2(j) �hi;ji log�dhi;ji��2: (4.9)It is now fairly easy to verify that each of the k terms in (4.8) is determinedby the parameters of the corresponding transmitter type only, and we canmaximize L(�) by maximizing each term at a time. Those familiar withlinear regression notice that the terms are actually the ones used for obtainingMLEs for linear regression models.Without proof�one can be found in (DeGroot, 1986)�we state that themaximum likelihood estimates3 [�0(j), [�1(j) and [�2(j) are independent ofd�(j), and that they can be obtained by minimizing SSE(j). Using matrixnotation4 the solution is given byd�(j) = �Z(j)T Z(j)��1 Z(j)T Y(j); (4.10)3We denote the MLE of a variable by bX.4The notation AT denotes the transpose of matrix A, and the inverse of matrix A isdenoted by A�1.



4.2. ESTIMATION OF PROPAGATION PARAMETERS 27where d�(j), Z(j), and Y(j) are de�ned asd�(j) df.= 264[�0(j)[�1(j)[�2(j)375 ; Y(j) df.= 26664 sh1;ji � ph1;jish2;ji � ph2;ji...shn(j);ji � phn(j);ji37775 ;Z(j) df.= 266641 log(dh1;ji) �h1;ji log(dh1;ji)1 log(dh2;ji) �h2;ji log(dh2;ji)... ... ...1 log(dhn(j);ji) �hn(j);ji log(dhn(j);ji)37775 : (4.11)Finally, the MLE of �(j) can be obtained fromd�(j) =sSSE(j)n(j) : (4.12)The value of SSE(j) is obtained by �xing the values of the �-parametersto their MLEs given by Equation (4.10). Equations (4.10) and (4.12) giveus the MLEs of the parameter in closed form when the data is complete.The somewhat more complicated missing data case is discussed in the nextsection.Example 1. Figure 4.3 shows an arti�cial data set containing 66 observa-tions. The path loss values plotted on the vertical axis are the same values thatare contained in matrix Y(j). The data was generated by sampling from thepropagation model presented in this chapter. Table 4.1 shows the parametersused for generating the data, and the MLEs evaluated using Equations (4.10)and (4.12). parameter actual MLE�0 -30.00 -36.43�1 -10.00 -8.77�2 -0.0400 -0.0413� 10.0 9.8Table 4.1: The actual parameter values used when generating the data setof Example 1, and the corresponding MLEs.
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Figure 4.3: Mean path loss curves obtained from sample data. Small blotsrepresent observed path loss values at varying distances from the transmitter.The two curves show the mean path loss to the direction of transmission(� = 0�), and to the opposite direction (� = 180�).4.2.2 Maximum Likelihood from Incomplete DataIn our case some of the signal strengths can not be directly observed becauseof two reasons related to the measuring device. First, the signal strengthvalues are binned, i.e. rounded to the accuracy of one decibelmilliwatt. Sec-ond, after each measurement operation the signal strength of only sevenchannels�those with the strongest signal�is reported. The only informa-tion about the other channels is that their signal strength value does notexceed any of the seven known values. In such cases we say that the signalstrength variable is truncated at a point given by the smallest of the sevenknown values.Let the random vector o = o(1); : : : ; o(n) denote the observations. Forsimplicity we assume that the observations are labeled in such a way thatthe �rst m variables correspond to binned observations and the n�m otherones correspond to truncated observations. Thus, the relationship betweeno and s is de�ned byo(i) � �2 � s(i) < o(i) + �2 for i 2 f1; : : : ; mgs(i) � o(i) + �2 for i 2 fm+ 1; : : : ; ng; (4.13)



4.2. ESTIMATION OF PROPAGATION PARAMETERS 29where the accuracy is determined by �, whose value can be, for instance,1:0 dBm.The likelihood function for incomplete data, LI (the I stands for incom-plete) for an observation vector o is given byLI(�) = mYi=1 Z o(i)+ �2o(i)� �2 f�s j d(i); �(i); p(i); �(t(i))� dsnYi=m+1 Z o(i)+ �2�1 f(s j d(i); �(i); p(i); �(t(i))� ds: (4.14)The equation is analogous to the likelihood function for complete data givenby Equation (4.6). However, it is not straightforward to derive a closedform solution analogous to the complete-data solution.5 Instead, there is amethod which can be used to approximate a local maximum of the likelihoodfunction from incomplete data, namely the Expectation�Maximization (EM)algorithm (Dempster et al. , 1977; McLachlan & Krishnan, 1997).The EM algorithm can be applied whenever it is possible to evaluatethe expected value of the logarithm of the complete data likelihood (log-likelihood). In order to evaluate the expected log-likelihood we need a proba-bility distribution for the missing signal strength values. In the EM algorithmthe distribution is obtained by �xing the parameters to some hypotheticalvalues, say �(r). The expectation of the log-likelihood function, denoted byQ(�; �(r)), is then evaluated in the expectation step using the equationQ(�; �(r)) df.= E�lnL(�) j �(r)	; (4.15)where L(�) is the complete-data likelihood, given by Equation (4.6). In themaximization step the parameter values are replaced by ones which maximizethe expected log-likelihood, thus giving�(r+1) = argmax� Q(�; �(r)); (4.16)where �(r) denotes the parameters on step r. The algorithm consists ofrepeating these two steps, one after the other. It can be shown that thelikelihood of the parameter values is never decreased during an iteration.Thus, if the algorithm converges, it converges to a local maximum of thelikelihood function.5As usual, the phrase �not straightforward� is used as an indirect way to say that theauthor is not aware of such a solution.



30 CHAPTER 4. STATISTICAL LOCATION ESTIMATIONIt now remains to be shown how to obtain a set of parameter values fromEquation (4.16). By taking the logarithm of L(�), given by Equation (4.6),and substituting it into Equation (4.15) we getQ(�; �0) = E( nXi=1"�12 ln(2�)� ln��(t(i))�� 12�s(i) � �(i)�(t(i)) �2# ����� �0):(4.17)By switching the order of the expectation and sum operators and takingterms that are independent of s outside of the expectation, the equationbecomesQ(�; �0) = nXi=1��12 ln(2�)� ln��(t(i))�� 12 �(t(i))2 E n�s(i) � �(i)�2 ��� �0o�: (4.18)Like in the complete data case the function to be optimized, Q(�; �0),can be rearranged into to k terms each depending on the parameters of onetransmitter type only. Therefore we can �nd the maximizing parametersfor each transmitter type at a time. Let Qj(�(j); �0(j)) denote the terms ofQ(�; �0) that are determined by the parameters of transmitter type j. Foreach type j, we haveQj(�(j); �0(j)) =� n(j)2 ln(2�)� n(j) ln(�(j))� 12 �(j)2 SESE(j);(4.19)where SESE(j) is the sum of expected squared errors given bySESE(j) df.= n(j)Xi=1�E n�shi;ji � �hi;ji�2 ��� �0(j)o�: (4.20)The value of �(j) which maximizes Equation (4.19) is given by (see Ap-pendix A for a proof)d�(j) = �Z(j)T Z(j)��1 Z(j)T Y(j) (4.21)where d�(j),6 and Z(j) are de�ned by Equation (4.11), and Y(j) is de�ned6The notation d�(j) is used, although the solution is in fact the maximizer ofQj(�(j); �0(j)), not the (incomplete-data) likelihood.



4.2. ESTIMATION OF PROPAGATION PARAMETERS 31as Y(j) df.= 26664 Efsh1;ji j �0(j)g � phi;jiEfsh2;ji j �0(j)g � ph2;ji...Efshn(j);ji j �0(j)g � phn(j);ji37775 : (4.22)Thus, in order to obtain estimates of the �-parameters we need to evaluatethe expected value of shi;ji, for each j 2 f1; : : : ; kg and i 2 f1; : : : ; n(j)g.For binned observations, the expected value of shi;ji is (see Appendix A fora proof)Efshi;ji j �0(j)g = �exp(�12(ahi;ji)2)� exp(�12(bhi;ji)2)� �0(j)p2� (�(bhi;ji)� �(ahi;ji)) + �0hi;ji;(4.23)where � is the cumulative distribution function of a Gaussian distributionwith zero mean and unity variance; �0hi;ji is the mean signal strength valueaccording to the log-loss model with parameters �0(j):�0hi;ji df.= ��dhi;ji; �hi;ji; phi;ji; �0(j)�; (4.24)and ahi;ji and bhi;ji are given byahi;ji df.= ohi;ji � �2 � �0hi;ji�0(j) ; bhi;ji df.= ohi;ji + �2 � �0hi;ji�0(j) : (4.25)Because the value of shi;ji is known to be within the range ohi;ji � �2 , itsexpected value must also be within the same range. The di�erence betweenthe exact solution and ohi;ji is bound by the equation��Efshi;ji j �0(j)g � ohi;ji�� � �2 : (4.26)Thus, the expectation can be approximated by ohi;ji.For truncated observations, the expectation of shi;ji is given by (see Ap-pendix A for a proof)Efshi;ji j �0(j)g = �exp(�12(bhi;ji)2) �0(j)p2� �(bhi;ji) + �0hi;ji; (4.27)where bhi;ji is given by Equation (4.25).



32 CHAPTER 4. STATISTICAL LOCATION ESTIMATIONThe value of �(j) maximizing (4.19) is given by (see Appendix A for aproof)d�(j) =sSESE(j)n(j) : (4.28)In order to evaluate SESE(j), which appears in Equation (4.28), we need aclosed form solution for the expected squared error E �(shi;ji��hi;ji)2 �� �0(j)	:For binned observations, it is given by (see Appendix A for a proof)E n�shi;ji � �hi;ji�2 ��� �0(j)o= �0(j)2 �ahi;ji exp(�12(ahi;ji)2)� bhi;ji exp(�12(bhi;ji)2)�p2� (�(bhi;ji)� �(ahi;ji)) + �0(j)2+ 2 �0(j)��0hi;ji � �hi;ji� �exp(�12(ahi;ji)2)� exp(�12(bhi;ji)2)�p2� (�(bhi;ji)� �(ahi;ji))+ ��0hi;ji � �hi;ji�2; (4.29)where ahi;ji, and bhi;ji are given by Equation (4.25), and �hi;ji is obtained byusing the estimates of the �-parameters given by Equation (4.21). A reason-able approximation to Equation (4.29) is given by (ohi;ji � �hi;ji)2, becauseshi;ji is known to be within the range ohi;ji � �2 .7For truncated observations, the expected squared error is given by (seeAppendix A for a proof)E n�shi;ji � �hi;ji�2 ��� �0(j)o= ��0(j)2 bhi;ji exp(�12(bhi;ji)2)p2��(bhi;ji) + �0(j)2� 2 �0(j)��0hi;ji � �hi;ji� exp(�12(bhi;ji)2)p2��(bhi;ji) + ��0hi;ji � �hi;ji�2: (4.30)By looking at Equation (4.30) one can see that the last two terms can beignored, if we assume that the di�erence j�0hi;ji � �hi;jij, i.e. the di�erencebetween two consequent estimates of the mean signal strength value, is verysmall. Unless the EM-algorithm does not converge at all, this is guaranteedto be the case in the long run.7Such an approximation is in fact implicitly used every time �nite-precision values aretreated as precise ones. This was the case also in the complete-data case of the previoussection.



4.2. ESTIMATION OF PROPAGATION PARAMETERS 33We now have closed form solutions for the parameters maximizing Equa-tion (4.19): Equation (4.21) for �(j) and Equation (4.28) for �(j). By usingthem for each transmitter type j 2 f1; : : : ; kg we obtain the parameter vec-tor � maximizing Equation (4.15). This vector is all that is needed to solveEquation (4.16), and in fact, all that is needed to perform an iteration of theEM algorithm.Example 2. Figure 4.4 shows an arti�cial data set containing 66 observa-tions, 37 of which are binned, while the 29 other ones are truncated. Fortruncated observations, the �gure shows the truncation point which is knownto be higher than the unknown path loss value. Table 4.2 shows the parametersused for generating the data, and estimates obtained with the EM-algorithm.The data set of Example 2 is the same as the one used in Example 1 withthe exception that in Example 2 some of the observations are truncated. Notethat the parameter estimates given in Tables 4.1 and 4.2 are very much alike,which shows that the di�erence between the actual values and the ones ob-tained with the EM-algorithm are mainly caused by the relatively small samplesize, not for instance, by the incomplete data.
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34 CHAPTER 4. STATISTICAL LOCATION ESTIMATIONiteration �0 �1 �2 �1 -51.84 -6.38 -0.0280 9.42 -48.57 -6.98 -0.0313 9.43 -44.58 -7.59 -0.0337 9.54 -42.01 -7.98 -0.0352 9.55 -40.36 -8.23 -0.0362 9.66 -39.27 -8.40 -0.0368 9.67 -38.52 -8.51 -0.0373 9.78 -38.01 -8.59 -0.0376 9.79 -37.65 -8.65 -0.0378 9.710 -37.40 -8.69 -0.0379 9.711 -37.22 -8.71 -0.0380 9.812 -37.09 -8.73 -0.0381 9.813 -37.00 -8.75 -0.0382 9.814 -36.94 -8.76 -0.0382 9.815 -36.89 -8.76 -0.0383 9.816 -36.85 -8.77 -0.0383 9.817 -36.83 -8.77 -0.0383 9.818 -36.81 -8.77 -0.0383 9.819 -36.80 -8.78 -0.0383 9.820 -36.79 -8.78 -0.0383 9.821 -36.79 -8.78 -0.0383 9.822 -36.78 -8.78 -0.0383 9.823 -36.78 -8.78 -0.0383 9.824 -36.78 -8.78 -0.0383 9.825 -36.77 -8.78 -0.0383 9.8actual -30.00 -10.00 -0.0400 10.00Table 4.2: The values of the parameter estimates for EM-iterations 1�25 withthe data set of Example 2. The algorithm has converged with the precisionused in the table by iteration 25. The actual parameter values used whengenerating the data set are shown at the bottom of the table.



4.3. ESTIMATION OF LOCATION 354.3 Estimation of LocationGiven the estimates of the propagation parameters �̂, the p.d.f. of the �eldstrength of channel j at location l is given by gj(sj j l; �̂), where gj is de�nedby Equation (4.4). The posterior p.d.f. of the location variable l is given bythe Bayes rule8:p(l j s; �̂) = g(s j l; �̂) �(l)R g(s j l0; �̂) �(l0) dl0 ; (4.31)where s is a vector consisting of the �eld strength values sj for each channelj, and g(s j l; �̂) is the likelihood function given byg(s j l; �̂) =Yj gj(sj j l; �̂); (4.32)and � is the prior p.d.f. of the location variable.However, Equation (4.32) is not directly applicable for practical locationestimation purposes if some of the signal strength observations are trun-cated.9 It is not the actual signal strength vector, s, that is observed, butthe observation vector, o, whose relation to s is the following:oj � �2 � sj < oj + �2 if j 2 Bsj � oj + �2 if j 2 T ; (4.33)where B is the set of binned channels, and T is the set of truncated channels,and the accuracy of the measurements is determined by �.Now that the propagation parameters, �̂, are �xed, the likelihood functionis de�ned with respect to the location variable, l, and thus, the likelihoodfunction is given byg(o j l; �̂) =Yj2B Z oj+ �2oj� �2 gj�s j l; �̂)� dsYj2T Z oj+ �2�1 gj�s j l; �̂)� ds: (4.34)8The application of the Bayes rule might be opposed by some people who prefer tradi-tional statistical theory over its Bayesian correspondent (Box & Tiao, 1973; Berger, 1980).The primary concern of the opponents is usually related to the concept of prior distri-butions. However, in this case the results obtained with traditional statistical methodswould be similar to the ones presented here, as we will note later.9If there are no truncated observations, i.e. all the observations are binned, Equa-tion (4.32) is applicable because one can use the center points of the bins as approximationsto the actual values of the signal strength variables, unless the bins are very wide.



36 CHAPTER 4. STATISTICAL LOCATION ESTIMATIONThe corresponding posterior p.d.f. of the location variable is thenp(l j o; �̂) = g(o j l; �̂) �(l)R g(o j l0; �̂) �(l0) dl0 : (4.35)The denominator of the right hand side of Equation (4.35) is constantwith respect to l and thus, the posterior p.d.f. of the location variable isproportional to the numerator:p(l j o; �̂) / g(o j l; �̂) �(l): (4.36)In theory, the location variable might be continuous in R2 . In that case,no proper uniform prior � would exist.10 In practice, however, the locationvariable is always restricted to some area, and thus, a uniform prior can beused. Of course, if an informative prior is available, it should be used instead.A location estimate is chosen depending on the penalty function, whichde�nes how di�erent errors are penalized. Two reasonable estimates are themaximum a posteriori location, i.e. the location maximizing Equation (4.36),and the expected value of the location variable. The latter minimizes theexpected value of the squared error of the location estimate. If a uniformprior is used, the maximum a posteriori location is the same as the maximumlikelihood estimate of l, which would probably be the solution preferred byadvocates of the traditional statistical theory.Because no closed form solution for either the maximum a posteriori valueor the expected value is available, the location variable must be discretized.One can, for instance, split the area into squares of �xed size, say 50 � 50meters, and use the center point of each square to evaluate the distributionof the �eld strength variables in that particular square. After discretizationthe maximum a posteriori value can be obtained simply by going througheach of the squares and choosing the value which maximizes Equation (4.36).The expected value of the location variable can be obtained by calculatingan average of the location variable weighted by Equation (4.36).Evaluating the empirical performance of the presented method requiresthat the layout of a cellular network is known. Such information is onlyaccessible to network operators. We will therefore present only an illustrativeexample using an arti�cial network layout, shown in Figure 4.5.Example 3. Figure 4.5 represents a hypothetical network layout. Figure 4.6shows four examples of the posterior p.d.f. of the location variable, the re-sulting maximum a posteriori location estimate, and the expected value of the10A prior �(x) is proper if it is non-negative, �(x) � 0, for all x, and it integrates toone, R �(x) dx = 1. A uniform prior �(x) � c, where c is some constant, violates the lattercondition, unless the range of x is �nite.
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Figure 4.5: A hypothetical network layout consisting of ten transmitters.Arrows indicate direction of transmission, and labels indicate channels. Notethat channels one and two are both shared by two transmitters.location variable with arti�cial signal strength measurement results. In graph(a), signal strength of channel two is known to be �55 dBm, and informationconcerning the other channels is nonexistent. Most of the probability mass isconcentrated within two elliptical areas around the channel two transmitters.In graph (b), in addition to channel two, signal strength of channel six is ob-served to be �60 dBm. Observing the signal strength of channel six resolvesthe ambiguity caused by the fact that two transmitters share channel two, andtherefore the p.d.f. in (b) becomes unimodal.Graphs (c) and (d) illustrate the e�ect of truncated observations. In bothcases the following signal strength were observed:Channel 1: -70 dBm Channel 3: -75 dBmChannel 4: -70 dBm Channel 8: -65 dBmHowever, the two cases di�er with respect to the other channels (2, 5, 6,and 7); in (c) no information concerning them is available, unlike in (d),where the signal strength of those channels is truncated at -75 dBm, i.e. thesignal strength values are known to be less than or equal to -75 dBm. Bycomparing graphs (c) and (d), one can see that the truncated observationscan be very useful when estimating location.
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Figure 4.6: Examples of the posterior p.d.f. of the location variable withdi�erent signal strength observations. Labels indicate the maximum a poste-riori estimate (�MAP�), and the expected value (�E�) of the location variable.In graphs (b) and (c) they are practically identical.



Chapter 5ConclusionsAfter a short introduction to cellular telephone systems, we presented theprinciples of radio wave propagation and propagation models. The emphasiswas on prediction of signal strength, although several other signal propertiescan be used in location estimation. An overview of the conventional loca-tion estimation methods was then given. In Chapter 4, which is the maincontribution of the thesis, a statistical location estimation method based ona propagation prediction model was presented. To conclude, we shall nowdiscuss some lessons learned during the process of developing a location es-timation method, and writing this thesis.The conceptual development of location estimation methods has beenmodest after the ancient Egyptians and Greeks invented the art of trian-gulation. The problem has been mostly considered by engineers, and con-sequently, a majority of proposed solutions are geometric in nature. Forinstance, the Angle of Arrival method is nothing more than triangulation. Inaddition to triangulation, some geometric methods, such as Time of Arrival,and Time Di�erence of Arrival�which is used in the GPS system�are basedon distance measurements rather than angle measurements. The geometricsolutions work very well in certain situations. However, if the signal prop-agation environment di�ers signi�cantly from ideal conditions, the distanceor angle measurements are unreliable. In such cases, serious problems occurbecause the various measurements are inaccurate at best, incompatible atworst. Special ad hoc heuristics have to be applied in order to compensatefor these errors.In this thesis, an alternative approach to the location estimation problemwas taken, which we call the statistical approach. Here signal properties,such as signal strength, angle of arrival and propagation delay, are treatedas random variables which are statistically dependent on the locations ofthe transmitter and the receiver, and the propagation environment. In this39



40 CHAPTER 5. CONCLUSIONSrespect, the conceptual di�erence between the two approaches is clear: In thegeometric approach the reasoning goes from the measured signal propertiesto the location of the transmitter, whereas in the statistical approach, theemphasis is on the propagation model, which describes the dependency of themeasured signal properties on the location variable, that is, the reasoningproceeds from the location to the signal properties. This is the kind ofreasoning that is typical to statistics in general. In statistical terms, thepropagation model is a sampling distribution whose parameters�in the �rstphase, the propagation parameters, and in the second phase, the locationvariable�we wish to estimate.The problem of incompatible measurements is not present in the statisti-cal approach, unlike the geometric ones, because no matter how unlikely thecombination of measurement results, it is always possible. Of course, if thepropagation model does not �t well the actual propagation phenomena andthe environment, the propagation prediction accuracy, and accordingly, thelocation estimation accuracy is poor. However, whereas the only possibilityto enhance the accuracy of the geometric location estimation methods is toincrease the accuracy of the angle and distance measurements, this is notthe case with methods based on the statistical approach. Their accuracycan be enhanced also by switching to an other propagation model, which isbetter suited for predicting the relevant signal properties in the environmentin question.The advantages of the statistical approach include also certain types of�exibility, which presented itself in the present work. In our case, the ob-servations made by the mobile unit in order to be located, were associatedwith a set of channels whose signal strength was known, and an other setof channels, whose signal strength was only bounded from above. We calledthe latter kind of partial observations truncated. The geometric approachprovides no principled way of exploiting the information contained in thetruncated observations. However, as we saw in Chapter 4, the statisticalapproach lends itself easily to exploiting any kind of observations, partial orcomplete.To be realistic, one has to say that the few empirical results presented inthis thesis su�ce to prove nothing more than the theoretical validity of theproposed location estimation method. In order to show its practical meritsone should provide results obtained with real-world data.The statistical approach is by no means restricted to the use of signalstrength measurements. One could also use angle or timing measurements,as long as the used propagation model is capable of handling them. The�exibility of the approach allows also the fusion of di�erent types of mea-surement results, for instance, signal strength and timing information. Using



41the terminology of Chapter 2, the propagation model considered in this workbelongs to the class of general models. In other words, the model does nottake into account the e�ect of the heterogeneity of the propagation environ-ment. Another interesting line of investigation is the application of empiricalpropagation prediction methods to location estimation. Our guess is thatthere is some potential in such solutions.
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Appendix AProofsProof of Equation (4.21). The values of �0(j), �1(j), and �2(j), maximiz-ingQj(�(j); �0(j)) can be obtained by setting the partial derivatives of the lat-ter, with respect to the former, to zero. The �rst two terms of Qj(�(j); �0(j)),given by Equation (4.19), do not depend on the �-parameters. Thus, the par-tial derivatives depend on the third term only, and we get@ Qj(�(j); �0(j))@ �i(j) = @ 12 �(j)�2 SESE(j)@ �i(j) = 12 �(j)2 @ SESE(j)@ �i(j) ; (A.1)for each i 2 f0; 1; 2g. Note that SESE(j) does depend on the �-parameters.In order to obtain the partial derivative of SESE(j) with respect to the�-parameters, we manipulate SESE(j). From the de�nition of SESE(j) inEquation (4.20) it directly follows thatSESE(j) = n(j)Xi=1�E n�shi;ji � �hi;ji�2 ��� �0(j)o�= n(j)Xi=1�E n�shi;ji�2 ��� �0(j)o� 2E nshi;ji �hi;ji ��� �0(j)o+ E n��hi;ji�2 ��� �0(j)o�: (A.2)Because the value of �hi;ji does not depend on the unknown variable, shi;ji,the former can be taken outside the expectation operators, and we getSESE(j) = n(j)Xi=1�E n�shi;ji�2 ��� �0(j)o� 2�hi;jiE nshi;ji ��� �0(j)o + ��hi;ji�2�:(A.3)46



47The derivative of the above, with respect to �i(j), is@ SESE(j)@ �i(j) = n(j)Xi=1 @ E ��shi;ji�2 �� �0(j)	@ �i(j)� 2 n(j)Xi=1 @ �hi;jiE �shi;ji �� �0(j)	@ �i(j) + n(j)Xi=1 @ ��hi;ji�2@ �i(j) : (A.4)In the above, the expectation of shi;ji depends on parameters �0(j), not on�(j). Therefore it is also independent of �0(j), �1(j), and �2(j), and the �rstsum in Equation (A.4) equals zero.To see the similarity with the complete data case, we replace shi;ji withE fshi;ji j �0(j)g, in SSE(j), given by Equation (4.9), and derivate with respectto �i(j), yieldingn(j)Xi=1 @ �E fshi;ji j �0(j)g � �hi;ji�2@ �i(j)= n(j)Xi=1 @ �E ��shi;ji� �� �0(j)	�2@ �i(j)� 2 n(j)Xi=1 @ �hi;ji E �shi;ji �� �0(j)	@ �i(j) + n(j)Xi=1 @ ��hi;ji�2@ �i(j) : (A.5)Like in Equation (A.4), the �rst sum on the right-hand side of Equation (A.5)equals zero. The second and the third sum are identical to the second andthird sum of Equation (A.4). Thus, the partial derivatives (A.4) and (A.5) arealways equal. The roots of the derivatives are the MLEs of the �-parameters.Consequently, MLEs of the �-parameters in the incomplete data case can beobtained by replacing the unknown variables shi;ji with the their expectationsE fshi;ji j �0(j)g, and using the same formula as in the complete data case,given by Equation (4.10).Proof of Equation (4.23). The distribution of shi;ji is assumed to be Gaus-sian with mean �0hi;ji and variance �0(j)2, with the additional constraintohi;ji � �2 � shi;ji � ohi;ji + �2 . Let variable X be de�ned asX df.= shi;ji � �0hi;ji�0(j) : (A.6)



48 APPENDIX A. PROOFSThe distribution of X is Gaussian with zero mean and unity variance. Theconstraint becomes ahi;ji � X � bhi;ji, whereahi;ji = ohi;ji � �2 � �0hi;ji�0(j) ; bhi;ji = ohi;ji + �2 � �0hi;ji�0(j) : (A.7)The expectation of X is1EfXg = 1p2� (�(bhi;ji)� �(ahi;ji)) Z bhi;jiahi;ji x exp(�12x2) dx; (A.8)where � denotes the cumulative distribution function of a Gaussian distri-bution with zero mean and unity variance. Let functions f and g be de�nedas f(x) = �12x2; g(x) = exp(x): (A.9)Let h be their composite mappingh(x) = (g � f)(x) = exp(�12x2): (A.10)The derivatives of f and g aref 0(x) = �x; g0(x) = exp(x): (A.11)From Equations (A.9)�(A.11) it follows that the derivative of the compositemapping is2h0(x) = exp(�12x2) (�x); (A.12)and thus3Z �h0(x) dx = Z x exp(�12x2) dx = � exp(�12x2): (A.13)By applying Equation (A.13) to Equation (A.8), we getEfXg = exp(�12(ahi;ji)2)� exp(�12(bhi;ji)2)p2� (�(bhi;ji)� �(ahi;ji)) : (A.14)1For brevity, we denote the expectation of X by EfXg, instead of the full notationEfX jX � N (0; 1); ahi;ji � X � bhi;ji g.2The derivative of a composite mapping is given by (g � f)0(x) = g0(f(x)) f 0(x):3We thank Tomi Silander for the above proof of Equation (A.13).



49From Equation (A.14), and the de�nition of X in Equation (A.6), it followsthat the expectation of shi;ji isEfshi;ji j �0(j)g = EfXg �0(j) + �0hi;ji= �exp(�12(ahi;ji)2)� exp(�12(bhi;ji)2)� �0(j)p2� (�(bhi;ji)� �(ahi;ji)) + �0hi;ji:(A.15)
Proof of Equation (4.27). The only di�erence between a truncated and abinned observation is that in the former there is no lower limit for shi;ji.Therefore, for a truncated observation, the expectation of shi;ji can be ob-tained by letting the lower limit, ohi;ji � �2 , approach minus in�nity. In thelimit, both exp(�12(ahi;ji)2) and �(ahi;ji) in Equation (A.15) become zero,and the expectation becomesEfshi;ji j �0(j)g = �exp(�12(bhi;ji)2) �0(j)p2� �(bhi;ji) + �0hi;ji; (A.16)where b is given by Equation (A.7).Proof of Equation (4.28). The value of �(j) maximizing Qj(�(j); �0(j))can be obtained by setting the partial derivative of the latter with respectto �(j) to zero. The �rst term of Qj(�(j); �0(j)), given by Equation (4.19),does not contain �(j). Thus, the contribution of the �rst term to the partialderivative is zero, and the derivative becomes@ Qj(�(j); �0(j))@ �(j) = �@ n(j) ln(�(j))@ �(j) � @ 12 �(j)�2 SESE(j)@ �(j)= �n(j)@ ln(�(j))@ �(j) � SESE(j)2 @ �(j)�2@ �(j) : (A.17)The two derivatives on the second row have analytical solutions, and we get@ Qj(�(j); �0(j))@ �(j) = �n(j)�(j) + SESE(j)�(j)3 : (A.18)



50 APPENDIX A. PROOFSLet d�(j) denote the value of �(j) for which the value of the partial derivativeis zero. By solving d�(j), we get� n(j)d�(j) + SESE(j)d�(j)3 = 0 , d�(j) =sSESE(j)n(j) : (A.19)In order to show that d�(j) is indeed the maximizer, not minimizer, ofQj(�(j); �0(j)), we take its the second derivative, which is the derivative ofEquation (A.18):�@ n(j) �(j)�1@ �(j) + @ SESE(j) �(j)�3@ �(j) = n(j)�(j)2 � 3 SESE(j)�(j)4 : (A.20)Substituting d�(j), given by Equation (A.19), in the place of �(j), yieldsn(j)d�(j)2 � 3 SESE(j)d�(j)4 = n(j)2SESE(j) � 3 n(j)2SESE(j) = � 4 n(j)2SESE(j) : (A.21)Because both the nominator and the denominator are squared quantities, andtherefore, always non-negative, the result is always non-positive. Thus, thesecond derivative of Qj(�(j); �0(j)) is non-positive at d�(j), which therefore isthe maximizer.Proof of Equation (4.29). The distribution of shi;ji is assumed to be Gaus-sian with mean �0hi;ji and variance �0(j)2, and with the additional constraintohi;ji � �2 � shi;ji � ohi;ji + �2 . Let variable X be de�ned asX df.= shi;ji � �0hi;ji�0(j) : (A.22)The distribution of X is Gaussian with zero mean and unity variance. Theconstraint becomes ahi;ji � X � bhi;ji, whereahi;ji = ohi;ji � �2 � �0hi;ji�0(j) ; bhi;ji = ohi;ji + �2 � �0hi;ji�0(j) : (A.23)From the de�nition of X, it follows thatE�shi;ji j �0(j)	 = �0(j)EfXg+ �0hi;ji; (A.24)



51and E�(shi;ji)2 j �0(j)	 = E�(X�0(j) + �0hi;ji)2	= �0(j)2EfX2g+ 2�0(j)�0hi;jiEfXg+ (�0hi;ji)2:(A.25)The expectation of X2 isEfX2g = 1p2� (�(bhi;ji)� �(ahi;ji)) Z bhi;jiahi;ji x2 exp(�12x2) dx; (A.26)where � denotes the cumulative distribution function of a Gaussian distri-bution with zero mean and unity variance. Let functions f and g be de�nedas f(x) = �x; g(x) = exp(�12x2): (A.27)From Equation (A.12) it follows thatg0(x) = �x exp�12x2: (A.28)Let h(x) be the product of f(x) and g0(x)h(x) = f(x) g0(x) = �x (�x) exp(�12x2) = x2 exp(�12x2): (A.29)From Equations (A.27) and (A.28) it follows that the integral of theproduct is given by4Z h(x) dx = �x exp(�12x2) + Z exp(�12x2) dx: (A.30)The integrand in the latter term is the density function of a Gaussian distri-bution with zero mean and unity variance except that it lacks the constant(2�)� 12 . Therefore the integral can be replaced by p2� �(x), and the equa-tion becomes5Z h(x) dx = Z x2 exp(�12x2) dx = �x exp(12x2) +p2� �(x): (A.31)4R fg0 dx = fg � R gf 0 dx5We thank Tomi Silander for the proof of Equation (A.31) presented above.



52 APPENDIX A. PROOFSFrom Equations (A.26) and (A.31) it follows thatEfX2g = �bhi;ji exp(�12(bhi;ji)2) +p2� �(bhi;ji)p2�(�(bhi;ji)� �(ahi;ji))� �ahi;ji exp(�12(ahi;ji)2) +p2� �(ahi;ji)p2�(�(bhi;ji)� �(ahi;ji))= ahi;ji exp(�12(ahi;ji)2)� bhi;ji exp(�12(bhi;ji)2)p2�(�(bhi;ji)� �(ahi;ji)) + 1: (A.32)By using Equations (A.24) and (A.25), we obtain a closed form solution forthe expectation of (shi;ji � �hi;ji)2 as follows6E n�shi;ji � �hi;ji�2 ��� �0(j)o= Ef(shi;ji)2g � 2�hi;jiEfshi;jig+ (�hi;ji)2= �0(j)2EfX2g+ 2 �0(j)�0hi;jiEfXg+ (�0hi;ji)2� 2 �0(j)�hi;jiEfXg+ 2�hi;ji �0hi;ji + (�hi;ji)2= �0(j)2EfX2g+ 2 �0(j) ��0hi;ji � �hi;ji�EfXg+ ��0hi;ji � �hi;ji�2:(A.33)Plugging in EfX2g, given by Equation (A.32), and EfXg, given by Equa-tion (A.14), yieldsE n�shi;ji � �hi;ji�2 ��� �0(j)o= �0(j)2 �ahi;ji exp(�12(ahi;ji)2)� bhi;ji exp(�12(bhi;ji)2)�p2� (�(bhi;ji)� �(ahi;ji)) + �0(j)2+ 2 �0(j)��0hi;ji � �hi;ji� �exp(�12(ahi;ji)2)� exp(�12(bhi;ji)2)�p2� (�(bhi;ji)� �(ahi;ji))+ ��0hi;ji � �hi;ji�2: (A.34)
Proof of Equation (4.30). The only di�erence between a truncated and abinned observation is that in the former there is no lower limit for shi;ji.Therefore, for a truncated observation, the expectation of shi;ji can be ob-tained by letting the lower limit, ohi;ji � �2 , approach minus in�nity. In the6For brevity, we use here the short-hand notations Ef(shi;ji)g and Ef(shi;ji)2g, insteadof their respective full versions Ef(shi;ji) j �0(j)g and Ef(shi;ji)2 j �0(j)g.



53limit, all the terms in Equation (A.34) that are related to ahi;ji, namelyahi;ji exp(�12(ahi;ji)2), and exp(�12(ahi;ji)2), and �(ahi;ji), become zero, andthe expectation becomesE n�shi;ji � �hi;ji�2 ��� �0(j)o= �0(j)2 bhi;ji exp(�12(bhi;ji)2)p2��(bhi;ji) + �0(j)2� 2 �0(j)��0hi;ji � �hi;ji� exp(�12(bhi;ji)2)p2��(bhi;ji) + ��0hi;ji � �hi;ji�2: (A.35)where bhi;ji is given by Equation (A.23).


