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Abstract

Rissanen’s proofs for linear regression and wavelet denoising repro-

duced. Generalized NML density introduced.

1 Linear regression

Let X be an n×k matrix of regressor variables (independent variables), and

yn be a vector of n regression variables (dependent variables). In a linear re-

gression model the regression variables are dependent on the regressor variables

and a k × 1 parameter vector β through the equation

yn = Xβ + εn,

where εn is a vector of n noise terms that are modeled as independent Gaussian

with zero mean and variance τ . The linear regression model is equivalent to

f(yn ; β, τ) = (2πτ)−n/2 exp

(

−
1

2τ
‖yn − Xβ‖2

)

= (2πτ)−n/2 exp

(

−
1

2τ

∑

t

(yt − ~xtβ)
2

)

, (1)

where ‖ · ‖2 denotes the square norm, and ~xt denotes the tth row of X . We

define the matrices Z = X ′X and Σ = n−1Z which are assumed to be positive

definite1. The maximum likelihood estimators of β and τ are independent and

given by

β̂(yn) = Z−1X ′yn, (2)

τ̂ (yn) =
1

n
‖yn − Xβ̂′(yn)‖2 =

1

n

∑

t

(

yt − β̂′(yn)~xt

)2

. (3)

1Positive definiteness guarantees that there are unique maximum likelihood parameters.
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2 Normalized maximum likelihood

The normalized maximum likelihood (NML) density for a model class pa-

rameterized by parameter vector θ is defined by

f̄(yn) =
f(yn ; θ̂(yn))

C
, (4)

where

C =

∫

Y

f(yn ; θ̂(yn)) dyn (5)

is a normalizing constant, and Y is the range of integration within which the

data yn is restricted. A range other than the full domain of yn is necessary in

cases where the integral is otherwise infinite.

Assume that the maximum likelihood estimator θ̂(yn) is sufficient for θ.

Then the conditional density of yn given θ̂(yn) is independent of the generating

density so that we can write

f(yn | θ̂(yn) ; θ̂(yn)) = f(yn | θ̂(yn)).

Since the maximum likelihood estimator θ̂(yn) is a function of the data yn, we

have the factorization

f̄(yn) = f(yn | θ̂(yn)) g(θ̂(yn) ; θ̂(yn)) C−1, (6)

where g(θ̂(yn) ; θ) is the density of the maximum likelihood estimator. When

evaluated at the maximum likelihood point θ = θ̂(yn) as above, the density

gives the so called canonical prior.

The difference between the code-length (negative logarithm) of the NML

density and the unachievable maximum likelihood code-length is given by the

regret which is easily seen to be constant for all data sequences yn:

− ln f̄(yn) − [− ln f(yn ; θ̂(yn))] = ln C.

The NML density is the unique solution to Shtarkov’s minmax problem:

min
q

max
yn

− ln q(yn) − [− ln f(yn ; θ̂(yn))] = ln C,

and the following more general problem:

min
q

max
p

Ep − ln q(yn) − [− ln f(yn ; θ̂(yn))] = ln C,

where the expectation over yn is taken with respect to the worst-case data gen-

erating density p. For any density q other than the NML density, the maximum
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(expected) regret is greater than ln C. Thus, NML can be said to give the

shortest description of the data achievable with a given model class.

Codes based on the NML density are sometimes characterized as a com-

putable probabilistic analogues of the Kolmogorov sufficient statistic decompo-

sition in algorithmic information theory. However, this interpretation is not

very straightforward. The main difficulty is that NML does not define a two-

part code where information and noise would be easily separated. In particular,

while the definition of NML (4) as the ratio of the maximum likelihood density

and the normalizing constant might suggest a code where first the logarithm

of the normalizing constant gives the code-length for the maximum likelihood

parameters containing all the interesting information, and secondly, noise is en-

coded using the density indexed by the parameter values, the interpretation

fails because such a code is redundant: code-words are reserved for encoding

data with parameters other than the maximum likelihood ones. Being a density,

NML corresponds to a complete code, i.e., the Kraft inequality is satistied as

an equality and such redundancy is not possible.

The factorization (6) in fact allows a two-part eccoding scheme where the

maximum likelihood parameters are encoded with optimal finite precision which

doesn’t affect the resulting density and is not explicit in the formula. However,

given the (truncated) maximum likelihood parameters, the noise is encoded not

using one of the densities in the model class but benefiting in addition from

the restriction that the maximum likelihood parameters for the data agree with

the truncated versions in the first part of the code. This contradicts the idea

of the sufficient statistic decomposition where data is always encoded using one

of the models in the model class. Indeed, it seems that the sufficient statistic

decomposition is by its nature not optimal for encoding data since it implies

redundancy of the kind described above and therefore, the two objectives of

coding and modeling may at the end of the day lead to somewhat different

solutions.

3 NML for linear regression

Consider the NML density in the case of linear regression:

f̄(yn ; τ0, R) =
f(yn ; β̂(yn), τ̂ (yn))

Cτ0,R
, (7)

with the numerator given by Eq. (1) and the normalizing constant given by

Cτ0,R =

∫

Y (τ0,R)

f(yn ; β̂(yn), τ̂ (yn)) dyn. (8)
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where Y (τ0, R) is the range of integration. The density is defined only for data

sequences yn within the range. A range is necessary since over the n-dimensional

real space R
n the integral would be infinite. Given hyperparameters τ0 and R

we define the range Y (τ0, R) as

Y (τ0, R) = {yn : τ̂ (yn) ≥ τ0, β̂
′(yn)Σβ̂(yn) ≤ R}.

By plugging the maximum likelihood estimators (2) and (3) in the density (1)

we obtain the numerator of the NML density:

f(yn ; β̂(yn), τ̂ (yn)) = (2πeτ̂(yn))−n/2. (9)

In order to do the integral in the denominator, we need to work the same

quantity in a different form. Since β̂(yn) and τ̂(yn) are sufficient statistics and

independent of each other, we have the factorization

f(yn ; β, τ) = f(yn | β̂(yn), τ̂(yn))g1(β̂(yn) ; β, τ)g2(τ̂ (yn) ; β, τ), (10)

The density of the maximum likelihood estimator β̂(yn) is Gaussian with mean

β and covariance τ/nΣ−1:

g1(β̂(yn) ; β, τ) = N (β̂(yn) ; β, τ)

=
1

(2π)k/2|τ/nΣ−1|1/2
exp

(

1

2
(β̂(yn) − β)′(τ/nΣ−1)−1(β̂(yn) − β)

)

=
nk/2|Σ|1/2

(2πτ)k/2
exp

( n

2τ
(β̂(yn) − β)′Σ(β̂(yn) − β)

)

,

where we used the equations |aΣ| = ak|Σ|, |Σ−1| = |Σ|−1, and (aΣ)−1 =

1/aΣ−1, for all a 6= 0 and Σ invertible and of size k × k. When evaluated

at β = β̂(yn) the exponential term disappears and we get

g1(β̂(yn) ; β̂(yn), τ̂(yn)) =
nk/2|Σ|1/2

(2πτ̂ (yn))k/2
. (11)

Consider next the the density of nτ̂ (yn)/τ which is χ2 (Chi-squared) with

n − k degrees of freedom. Recall that the density of a χ2 distributed random

variable with n − k degrees of freedom is given by

χ2
n−k(ξ) =

ξ(n−k)/2−1 exp
(

− ξ
2

)

Γ
(

n−k
2

)

2(n−k)/2
.

By change of variables the density of τ̂(yn) is obtained by plugging nτ̂ (yn)/τ in

the above density and multiplying by n/τ . Thus, the density of τ̂(yn) is in fact

independent of β and we can write

g2(τ̂ (yn) ; τ) =
(nτ̂(yn)/τ)(n−k)/2−1 exp

(

−nτ̂(yn)
2τ

)

Γ
(

n−k
2

)

2(n−k)/2

n

τ
.
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Evaluating the above at the maximum likelihood parameter τ = τ̂ (yn) yields

g2(τ̂ (yn) ; τ̂(yn)) =
n(n−k)/2−1 exp

(

−n
2

)

Γ
(

n−k
2

)

2(n−k)/2

n

τ̂(yn)
=

n(n−k)/2 exp
(

−n
2

)

Γ
(

n−k
2

)

2(n−k)/2τ̂(yn)
.

(12)

By independence, the joint density of (β̂(yn), τ̂ (yn)) is obtained by combin-

ing (11) and (12) which yields

g(β̂(yn), τ̂ (yn) ; β̂(yn), τ̂ (yn)) = g1(β̂(yn) ; β̂(yn), τ̂(yn)) g2(τ̂ (yn) ; τ̂ (yn))

= τ̂ (yn)−k/2−1
( n

2e

)n/2 |Σ|1/2

πk/2Γ
(

n−k
2

) . (13)

By the factorization (10), the integral (8) can be performed by subsequent

integration over the maximum likelihood parameters and the corresponding data

vectors:

Cτ0,R =

∫

Y (τ0,R)

f(yn ; β̂(yn), τ̂ (yn)) dyn

=

∫ ∞

τ0

∫

BR

g(β̂, τ̂ ; β̂, τ̂)

∫

{y : β̂(yn)=β̂,τ̂(yn)=τ̂}

f(yn | β̂(yn), τ̂(yn)) dyndβ̂dτ̂ ,

where BR is the ellipsoid

BR = {β ∈ R
k :β′Σβ ≤ R}, (14)

and the inner integral is over data vectors yn such that the maximum likelihood

parameters are β̂ and τ̂ . By definition, the value of the inner integral is unity,

and by Eq. (13) we get

Cτ0,R =
( n

2e

)n/2 |Σ|1/2

πk/2Γ
(

n−k
2

)

∫

BR

dβ̂

∫ ∞

τ0

τ̂−k/2−1dτ̂ . (15)

Next we evaluate the volume of the ellipsoid BR. Consider first the k-dimen-

sional sphere of radius R1/2:

SR = {b ∈ R
k : b′b ≤ R}. (16)

Its volume is given by

Vol(SR) =

∫

SR

db =
2πk/2Rk/2

kΓ(k/2)
.

Since by assumption, Σ is positive definite, it has a positive definite square root

Σ1/2 which further has the inverse Σ−1/2. By the symmetry of Σ, both Σ1/2 and

Σ−1/2 are symmetric. Matrix Σ−1/2 defines a linear map R
k → R

k : β = Σ−1/2b
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which is one-to-one, and we have b = Σ1/2Σ−1/2b. The image of sphere SR under

map Σ−1/2 is given by

Σ−1/2(SR) = {β : b′b ≤ R}

= {β : (Σ1/2Σ−1/2b)′(Σ1/2Σ−1/2b) ≤ R}

= {β : (Σ1/2β)′(Σ1/2β) ≤ R}

= {β : β′Σβ ≤ R} = BR.

Thus, the image of the sphere SR under map Σ1/2 is the ellipsoid BR whose

volume is thereby

Vol(BR) =

∫

BR

dβ̂ = |Σ−1/2|Vol(SR) = |Σ|−1/2 2πk/2Rk/2

kΓ(k/2)
. (17)

The value of the latter integral in Eq. (15) is given by

∫ ∞

τ0

τ̂−k/2−1dτ̂ =
2

kτ
k/2
0

. (18)

Combining Eqs. (15), (17) and (18) gives

Cτ0,R =
4nn/2Rk/2

(2e)n/2k2Γ
(

n−k
2

)

Γ
(

k
2

)

τ
k/2
0

. (19)

The NML density (7) is then given by

f̄(yn ; τ0, R) =
k2Γ

(

n−k
2

)

Γ
(

k
2

)

τ
k/2
0

(nπτ̂ (yn))n/24Rk/2
, (20)

and the negative logarithm of this is

− ln f̄(yn ; τ0, R)

=
n

2
ln τ̂ (yn) − ln Γ

(

n − k

2

)

− ln Γ

(

k

2

)

+ ln
4

k2
+

k

2
ln

R

τ0
+

n

2
ln(nπ).

4 Second level NML

In order to get rid of the last term that depends on k and the choice of

the hyperparameters R and τ0, and thus, affects the criterion, we do a second

normalization. Let R̂(yn) and τ̂0(y
n) denote the maximum likelihood values of

R and τ0. Their values are given by

R̂(yn) = β̂′(yn)Σβ̂(yn), (21)

τ̂0(y
n) = τ̂(yn). (22)
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The second level NML density is given by

f̄(yn) =
f̄(yn ; τ̂0(y

n), R̂(yn))

Cτ1,τ2,R1,R2

, (23)

where

Cτ1,τ2,R1,R2
=

∫

Y (τ1,τ2,R1,R2)

f̄(yn ; τ̂0(y
n), R̂(yn)) dyn, (24)

and the range of integration is defined by

Yτ1,τ2,R1,R2
= {yn : τ1 ≤ τ̂0(y

n) ≤ τ2, R1 ≤ R̂(yn) ≤ R2}.

By Eqs. (7), (10) and (13) the integrand allows the factorization

f̄(yn ; τ̂0(y
n), R̂(yn))

= f(yn | β̂(yn), τ̂ (yn))g(β̂(yn), τ̂ (yn) ; β̂(yn), τ̂ (yn))/Cτ̂0(yn),R̂(yn).

Again, the integral (24) can be performed by subsequent integration over the

maximum likelihood parameters and the corresponding data vectors:

Cτ1,τ2,R1,R2
=

∫

Y (τ1,τ2,R1,R2)

f̄(yn ; τ̂0(y
n), R̂(yn)) dyn

=

∫

BR1,R2

∫ τ2

τ1

g(β̂, τ̂ ; β̂, τ̂)/Cτ̂ ,R̂

∫

{y : β̂(yn)=β̂,τ̂(yn)=τ̂}

f(yn | β̂(yn), τ̂ (yn)) dyndτ̂dβ̂,

where BR1,R2
contains parameters β̂ inside ellipsoid BR2

but outside ellipsoid

BR1
as defined in Eq. (14). Again, the inner integral equals unity. By Eqs. (13)

and (19) the fraction equals

g(β̂, τ̂ ; β̂, τ̂ )/Cτ̂ ,R̂ =
k2|Σ|1/2Γ (k/2)

4πk/2
τ̂−1R̂−k/2.

Thus the integral becomes

Cτ1,τ2,R1,R2
=

k2|Σ|1/2Γ (k/2)

4πk/2

∫ τ2

τ1

τ̂−1dτ̂

∫

BR1,R2

R̂−k/2dβ̂

=
k2|Σ|1/2Γ (k/2)

4πk/2
ln

τ2

τ1

∫

BR1,R2

R̂−k/2dβ̂. (25)

The set BR1,R2
is the union of surface areas of ellipsoids BR̂ with R̂ in [R1, R2].

The surface area of ellipsoid BR̂ is given by

Area(BR̂) =
∂Vol(BR̂)

∂R̂
= |Σ|−1/2 2πk/2

kΓ(k/2)

∂R̂k/2

∂R̂
= |Σ|−1/2 πk/2R̂k/2−1

Γ(k/2)
.
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On the surface of BR̂ the integrand in Eq. (25) is constant and integration can

be done in terms of the surface areas by varying R̂ instead of β̂:
∫

BR1,R2

R̂−k/2dβ̂ =

∫ R2

R1

R̂−k/2|Σ|−1/2 πk/2R̂k/2−1

Γ(k/2)
dR̂ = |Σ|−1/2 πk/2

Γ(k/2)
ln

R2

R1
.

(26)

Plugging this into Eq. (25) and cancelling like terms gives

Cτ1,τ2,R1,R2
=

k2

4
ln

τ2

τ1
ln

R2

R1
. (27)

Putting together Eqs. (23), (7), (9), (19) and (27) yields the following formula

for the second level NML density:

f̄(yn) =
f̄(yn ; τ̂0(y

n), R̂(yn))

Cτ1,τ2,R1,R2

=
f(yn ; β̂(yn), τ̂ (yn))

Cτ̂0(yn),R̂(yn)Cτ1,τ2,R1,R2

=
k2Γ

(

n−k
2

)

Γ
(

k
2

)

τ̂0(y
n)k/24

(nπτ̂ (yn))n/24R̂(yn)k/2 ln τ2

τ1

k2 ln R2

R1

=
Γ
(

n−k
2

)

Γ
(

k
2

)

τ̂(yn)(n−k)/2(πn)n/2R̂(yn)k/2 ln τ2

τ1

ln R2

R1

, (28)

where we noted that by Eq. (22) the maximum likelihood estimates τ̂ and τ̂0

are equal. The negative logarithm of this is

− ln f̄(yn) =
n − k

2
ln τ̂ (yn) +

k

2
ln R̂(yn) − ln Γ

(

n − k

2

)

− ln Γ

(

k

2

)

+
n

2
ln(πn) + ln

(

ln
τ2

τ1
ln

R2

R1

)

. (29)

Unlike in the case of first level NML, the hyperparameters now affect only terms

that are constant for all models.

5 Stirling approximation

The Gamma functions can be approximated by applying the Stirling approx-

imation

ln Γ(n + 1) = ln n! ≈

(

n +
1

2

)

ln n − n +
1

2
ln(2π)

ln Γ(n) = ln Γ(n + 1) − ln n ≈

(

n −
1

2

)

ln n − n +
1

2
ln(2π).

Applying the approximation to Eq. (29) yields

− ln f̄(yn) ≈
n − k

2
ln τ̂ (yn) +

k

2
ln R̂(yn) −

(

n − k − 1

2

)

ln

(

n − k

2

)

+
n − k

2

−
1

2
ln(2π) −

(

k − 1

2

)

ln
k

2
+

k

2
−

1

2
ln(2π) +

n

2
ln(πn) + ln

(

ln
τ2

τ1
ln

R2

R1

)

.
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When interested only in minimizing the code-length formula with respect to

k we can simplify the criterion further by multiplying it by two and dropping

terms that do not have k in them2:

− 2 ln f̄(yn)

+
= (n − k) ln τ̂ (yn) + k ln R̂(yn) − (n − k − 1) ln

(

n − k

2

)

− (k − 1) ln
k

2

= (n − k) ln τ̂ (yn) + k ln R̂(yn) − (n − k − 1) ln(n − k) − (k − 1) ln k

= (n − k) ln
τ̂ (yn)

n − k
+ k ln

R̂(yn)

k
+ ln(k(n − k)), (30)

The approximation to the Gamma functions is accurate except for very small k

or n − k, and the error can be bounded.

6 Wavelet denoising

Assume the vector yn can be considered a series, i.e., the data points are

ordered in a meaningful way. We can obtain the regressor matrix X by various

transformations of the index i of the yi variables. Thus, we define for each

j ≤ k, Xi,j = fj(i), where fj are arbitrary basis functions.

One both theoretically and practically appealing way of defining the func-

tions fj is to use a wavelet basis. By letting the regressor matrix be square

and taking as the n basis functions fj(i) a wavelet basis, we get an orthogonal

regressor matrix X , i.e., X has as its inverse the transpose X ′:

Z = X ′X = X−1X = I,

where I is the identity matrix. Further, the maximum likelihood parameters

are given by

β̂(yn) = Z−1X ′yn = X ′yn (31)

τ̂ (yn) =
1

n
‖yn − Xβ̂′(yn)‖2 =

1

n
‖yn − yn‖2 = 0, (32)

i.e., the reconstructed version ŷn = Xβ̂(yn) = yn is identical to the original

signal and nothing remains to be modeled as noise, thus ending up with τ̂ (yn) =

0.

Instead of using all the basis vectors, it may be useful to choose a subset γ

of them. This gives the reconstructed version

ŷn
γ = Xβ̂γ(yn)

2This can be seen to be the same criterion as the version Rissanen gives in Lecture Notes:

(n − k) ln τ̂ + k ln(nR̂) + (n − k − 1) ln n

n−k
− (k − 1) lnk.
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not equal the original signal but an approximated version with the difference to

the original signal modeled as noise. With a wavelet basis, the noise variance

is easily obtained. First, since the basis is orthogonal, the maximum likeli-

hood values of any subset of all the parameters are equal to the corresponding

maximum likelihood parameters in the full model and one gets the parameter

vector

β̂γ(yn) = (δi(γ)β̂i(y
n))′,

where δi(γ) is equal to one if the index i is in the index set γ of retained

coefficients and zero otherwise. The difference between the reconstructed version

and the original signal is then

‖yn − ŷn
γ ‖

2 = ‖Xβ̂(yn) − Xβ̂γ(yn)‖2 = ‖X
(

β̂(yn) − β̂γ(yn)
)

‖2.

Since X is an orthogonal matrix it preserves the norm, i.e.,

‖X
(

β̂(yn) − β̂γ(yn)
)

‖2 = ‖β̂(yn) − β̂γ(yn)‖2.

Thus, the noise variance is simply the mean of the squared coefficients that are

set to zero:

τ̂γ(yn) =
1

n
‖β̂(yn) − β̂γ(yn)‖2 =

1

n

n
∑

i=1

(1 − δi(γ))(β̂i(y
n))2.

Thus, the sum of the retained coefficients and the sum of squared errors between

the original and reconstructed signals is always equal to the sum of squares of

the original signal:

‖yn‖2 = ‖X ′yn‖2 = ‖β̂(yn)‖2 = ‖β̂(yn) − β̂γ(yn)‖2 + ‖β̂γ(yn)‖2

= ‖yn − ŷn
γ ‖

2 + ‖β̂γ(yn)‖2.

Define

S(yn) = ‖yn‖2, and Sγ(yn) = ‖β̂γ(yn)‖2.

We have then

τ̂γ(yn) =
S(yn) − Sγ(yn)

n
. (33)

The maximum likelihood value for the hyperparameter R is by Eq. (21) simply

R̂γ(yn) = β̂′
γ(yn)Σβ̂γ(yn) =

1

n
β̂′

γ(yn)X ′Xβ̂γ(yn) =
1

n
‖β̂γ‖

2 =
Sγ(yn)

n
. (34)

Thus, the criterion (30) becomes

(n − k) ln
τ̂γ(yn)

n − k
+ k ln

R̂γ(yn)

k
+ ln(k(n − k))

= (n − k) ln
S(yn) − Sγ(yn)

n(n − k)
+ k ln

Sγ(yn)

nk
+ ln(k(n − k))

= (n − k) ln
S(yn) − Sγ(yn)

n − k
+ k ln

Sγ(yn)

k
+ ln(k(n − k)),
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where k is the number of retained coefficients determined by γ. It is remarkable

that the criterion is symmetric in the two sets of coefficients; the ones that

are set to zero and the retained ones. It can be shown that the criterion is

always maximized by choosing γ such that either the k largest or the k smallest

coefficients are retained for some k.

7 Generalized NML

In some cases, such as the linear regression case, unless the range of possible

values of the data sequence yn is restricted, the integral in the denominator

of the NML density is not be bounded and thus, NML is not defined. In the

above, the problem was solved by bounding the range of integration in a set

defined by some hyperparameters (τ0 and R), fixing the hyperparameters to

their maximum likelihood values, and doing a second normalization. Another

solution to the problem of unbounded integrals is to use the following generalized

NML (gNML) density for a model family parameterized by parameter vector θ:

f̄w(yn) =
f(yn ; θ̂(yn)) w(θ̂(yn))

Cw
(35)

where w is a non-negative function of the parameter vector called the slack

function, and the normalizer Cw is given by

Cw =

∫

Y

f(yn ; θ̂(yn)) w(θ̂(yn)) dyn.

The range of integration Y may or may not be bounded. Using a constant

function as the slack function w yields the standard first level NML density (4).

The name ‘slack function’ comes from the fact that the gNML density falls

short of achieving the minmax regret of the standard NML density, i.e., the

regret for sequence yn is given by

− ln f̄w(yn) − [− ln f(yn ; θ̂(yn))] = ln Cw − ln w(θ̂(yn)),

which is seen not to be constant unless w is constant. In other words, for some

sequences yn the gNML density allows more slack in terms of regret than the

standard NML density (and vice versa for some other sequences) if the latter is

defined.

For gNML, the factorization (10) of the numerator becomes

f(yn ; θ̂(yn)) w(θ̂(yn)) = f(yn | θ̂(yn)) g(θ̂(yn) ; θ̂(yn)) w(θ̂(yn)), (36)

which shows that the slack function can also be seen as using instead of the

canonical prior an arbitrary prior for the maximum likelihood estimator.
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8 Generalized NML for linear regression

In the linear regression case, the denominator of the gNML density is given

by

Cw =

∫

Y

f(yn ; β̂(yn), τ̂(yn)) w(β̂(yn), τ̂ (yn)) dyn.

Let the range Y be defined as the set of data sequences for which the maximum

likelihood estimates β̂(yn) and τ̂ (yn) are such that the slack function w takes

non-zero values. The integral can be done in three parts as before:

Cw =

∫ ∫ ∫

{y:β̂(yn)=β̂,τ̂(yn)=τ̂}

f(yn ; β̂(yn), τ̂ (yn)) w(β̂(yn), τ̂ (yn)) dyndβ̂dτ̂ ,

Using the factorization (36) we get

Cw =

∫ ∫

g(β̂, τ̂ ; β̂, τ̂) w(β̂, τ̂ )

∫

{y:β̂(yn)=β̂,τ̂(yn)=τ̂}

f(yn | β̂(yn), τ̂ (yn)) dyndβ̂dτ̂ . (37)

Once again, the innermost integral equals unity. Plugging in the canonical

prior (13) yields

Cw =
( n

2e

)n/2 |Σ|1/2

πk/2Γ
(

n−k
2

)

∫

τ̂−k/2−1

∫

w(β̂, τ̂) dβ̂dτ̂ . (38)

It now remains to be decided how to choose the slack function w so that the

integral (38) remains bounded and the gNML density is defined.

Recall the second level NML density (23):

f̄(yn) =
f̄(yn ; τ̂0(y

n), R̂(yn))

Cτ1,τ2,R1,R2

.

The numerator is given by Eq. (20):

f̄(yn ; τ̂0(y
n), R̂(yn)) =

k2Γ
(

n−k
2

)

Γ
(

k
2

)

τ̂ (yn)k/2

(nπτ̂ (yn))n/24R̂(yn)k/2
,

which differs from the numerator of the first level NML density (9) given by

f(yn ; β̂(yn), τ̂ (yn)) = (2πeτ̂ (yn))−n/2

by a factor dependent on τ̂ (yn) and β̂(yn) through R̂(yn). Let the function w

be given by

w(β, τ) = τk/2 (β′Σβ)−k/2, if τ1 ≤ τ ≤ τ2, R1 ≤ β′Σβ ≤ R2, (39)
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and zero otherwise.

For data such that the slack function takes non-zero value at the maximum

likelihood estimates, the numerator of the gNML density becomes

f(yn ; β̂(yn), τ̂ (yn)) w(β̂(yn), τ̂ (yn)) = (2πeτ̂ )−n/2τ̂ (yn)k/2 (β̂′(yn)Σβ̂(yn))−k/2

= (2πe)−n/2τ̂(yn)−(n−k)/2 R̂(yn)−k/2,

which is seen to be equivalent to the numerator of the second level NML density

(where we have τ̂0(y
n) = τ̂ (yn)) except for a constant c′ independent on the

parameter values:

f(yn ; β̂(yn), τ̂ (yn)) w(β̂(yn), τ̂ (yn)) = c′f̄(yn ; τ̂0(y
n), R̂(yn)).

Since the range of integration (support) is the same for both the gNML density

and the second level (standard) NML density, the two densities must be iden-

tical, which shows that the two-fold normalization procedure is equivalent to

using the generalized NML density with the slack function given by Eq. (39).

Whether the slack function induced by the two-fold normalization procedure is

a reasonable choice is of course an interesting question.

Example 1. Fig. 1 compares the standard NML density and the second level

NML (or equivalently, the gNML density with the slack function given by

Eq. (39)) in terms of the likelihood ratio of each of the two densities versus the

maximized likelihood (9). The second level NML density gives non-zero like-

lihood to data with the maximum likelihood estimate R̂(yn) within the range

[R1, R2], whereas the standard NML density gives non-zero likelihood to data

with R̂(yn) ≤ R. In case both densities give non-zero density values, the sec-

ond level NML density gives higher density for data with R̂(yn) small than the

standard NML density.

9 Generalized NML for wavelet denoising

For any wavelet basis, the shape of the slack function (39) is very simple.

First, by Eqs. (33) and (34) we have

w(β̂(yn), τ̂ (yn)) = n−k

(

√

S(yn) − Sγ(yn)

)k (√

Sγ(yn)
−1
)k

,

which is a product of three factors; a constant together with a factor that

depends on the coefficients that are set to zero, and another factor that depends

on the retained ones. Further, the two factors are both of the form (·)k where in

the latter case the argument is the inverse of the Euclidean norm of the vector

of retained coefficients. Especially this latter factor suggests an interpretation
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Figure 1: Ratios of the standard NML density (solid line) and the second level

NML density (dashed line) to the maximum likelihood density as a function of

R̂(yn). The setting is defined by n = 8, k = 4, τ̂(yn) = 0.5; the hyperparameters

of the standard NML density are given by τ0 = 0.1, R = 0.5, and for the second

level NML density by τ1 = 0.1, τ2 = 1, R1 = 0.1, R2 = 1.

of the slack function as a spherical prior density for the retained coefficients

proportional to the inverse of the Euclidean norm. Such a prior density is not

proper for the whole real space but this is not a problem since the range of

integration is bounded by the hyperparameters R1 and R2.

It has been suggested that wavelet coefficients in ‘noiseless’ natural images

tend to be well modeled by a Laplacian density. It might therefore be reasonable

to use a slack function that has the shape of a Laplacian density in terms of the

components of β.
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