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Abstract

Model selection by the predictive least squares (PLS) principle has been thoroughly
studied in the context of regression model selection and autoregressive (AR) model
order estimation. We introduce a new criterion based on sequentially minimized
squared deviations, which are smaller than both the usual least squares and the
squared prediction errors used in PLS. We also prove that our criterion has a prob-
abilistic interpretation as a model which is asymptotically optimal within the given
class of distributions by reaching the lower bound on the logarithmic prediction
errors, given by the so called stochastic complexity, and approximated by BIC. This
holds both when the regressor (design) matrix is non-random or determined by the
observed data as in AR models. The advantages of the criterion include the fact that
it can be evaluated efficiently and exactly, without asymptotic approximations, and
importantly, there are no adjustable hyper-parameters, which makes it applicable
to both small and large amounts of data.

Key words: linear regression, time series, model selection, order estimation,
predictive least squares

1 Introduction

In this paper we are concerned with deriving a model selection criterion for a
class of normal models f(yn | Xn; σ2, β) = (2πσ2)−n/2 exp

(
− 1

2σ2

∑n
1 (yt − β′x̄t)

2
)
,

induced by the regression equations

yt = β′x̄t + εt, (1)

where the prime indicates transposition, β′ = (β(1), . . . , β(k)), with k ∈ N.
The deviations (εt)

n
t=1 are taken as an i.i.d. sequence generated by a normal

distribution of zero-mean and variance σ2. The columns x̄t = (xt,1, . . . , xt,k)
′
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of real valued elements, defining the regressor matrices Xt, are either non-
random, or x̄t = (yt−1, . . . , yt−k)

′ as in AR models.

For each t = 1, 2, . . . n, let k(t) be the largest integer such that the least
squares estimate bt = (bt,1, . . . , bt,k(t))

′ can be uniquely solved. Hence, typically
k(t) = min{t, k} except for AR models, where k(t) = min{t−1, k}. We denote
by m the smallest integer t such that k(t) = k; note that m defined this way
depends on k. In the following we omit the dependency on k for notational
convenience.

Central to this work are the following three representations of data for t =
1, 2, . . . n, and k ≥ k(t):

yt = b′t−1x̄t + et =
k(t)∑

i=1

bt−1,ixt,i + et, (2)

yt = b′nx̄t + ε̂t(n) =
k(t)∑

i=1

bn,ixt,i + ε̂t(n), (3)

yt = b′tx̄t + êt =
k(t)∑

i=1

bt,ixt,i + êt. (4)

All the representations split yt into a sum of two terms, the first of which can
be interpreted as a predicted value, and the second as an error or a residual.
The representation differ only in terms of the way we define the parameter
estimates. In the first one, the parameters are estimated based on the first t−1
observations; in the second one, all the n observations are used; and in the
third one, the t first observations are used. We describe each representation
in more detail below.

In fact, the second and the third representations can be defined even for t ≤ m,
in which case k(t) < k, since the orthogonal projection of yn to the linear space
spanned by the columns of Xt is always unique, even though the least squares
estimate may not be; for any 1 ≤ t ≤ n, the fitted value b′nx̄t is obtained as the
t’th element of the projected vector. In practice, the solution can be obtained
from

b′nx̄t = x̄′t(XnX ′
n)−Xnyn,

where (·)− denotes the pseudo-inverse. However, for the first representation (2),
the prediction is not unique for t ≤ m, and we will only apply it for t =
m + 1, . . . , n.
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The predictor b′t−1x̄t of yt in the first case is called the ‘plug-in’ predictor, in
which the parameters are calculated from the data available up to t− 1. The
plug-in model defines a conditional normal density function for t > m,

f(yt | yt−1, Xt ; bt−1, σ̂
2
t−1) =

1√
2πσ̂2

t−1

exp

(
− e2

t

2σ̂2
t−1

)
,

where σ̂2
t−1 = 1

t−1

∑t−1
i=1 ε̂2

i (t − 1), and yt−1 = y1, . . . , yt−1. The resulting joint
density function obtained by multiplying the conditional densities of ym+1,
. . . , yn, and ignoring constant terms, defines (by its negative logarithm) the
so-called predictive minimum description length (PMDL) criterion, studied in
[4], [6], [8], and [21]. Its special case for constant variance σ̂2

t−1 = σ2 is the
predictive least squares (PLS) criterion,

PLS(n, k) =
n∑

t=m+1

(yt − b′t−1x̄t)
2,

studied in [15] and [21].

The second representation (3) is the traditional least squares formulation.
The predictions are the ones that minimize the sum of squared residuals,∑n

t=1 ε̂t(n)2 over all predictions of the form b′nx̄t where the parameter vector
bn is the same for all t = 1, . . . , n. Model selection criteria associated with (3)
include AIC [1], and BIC [19],

BIC(n, k) =
n

2
log σ̂2

n +
k + 1

2
log n,

where k + 1 is the number of parameters (including the variance). The BIC
criterion is obtained by an approximation of a joint density function of the data
where the negative logarithm of the maximized likelihood f(yn | Xn ; bn, σ̂

2
n)

determines the first term. In the AIC criterion the second term is k + 1, the
number of parameters. Both criteria are often multiplied by 2/n, so that the
first term is simply the logarithm of the residual sum of squares.

Also involving the second representation, the normalized maximum likelihood
(NML) criterion is obtained directly as the normalized version of the maxi-
mized likelihood, where the normalizing term is given by Cn,k =

∫
yn∈Y f(yn |

Xn ; bn, σ̂
2
n) dyn [2], [16], [20]. In order to make the integral finite, the range of

integration Y has to be restricted, which requires hyper-parameters. A solu-
tion which eliminates the effect of the hyper-parameters to model selection by
a second normalization is presented in [17], see also [12, 18]. The corresponding
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parameter-free criterion is

NML(n, k) =
n− k

2
log

σ̂2
n

n− k
+

k

2
log

R̂

k
+

1

2
log(k(n− k)),

where R̂ = b′nXnX ′
nbn/n. We also mention that a very similar construct as

a Bayesian mixture, which also requires hyper-parameters for the prior, ex-
ists [7].

The third representation, which we are interested in, is new. In it, the predic-
tion b′tx̄t is obtained by minimizing the sum of squared deviations

∑t
i=1 ê2

i . The
difference between this and the first represenation is that here we also include
the information in the t’th data point. We show that the sum of squared devi-
ations is smaller than either the sum of the traditional least squares

∑t
i=1 ε̂2

i (t),
or the sum of the squared prediction errors

∑t
i=1 e2

i . However, since the param-
eters of the corresponding conditional density function f(yt | yt−1, Xt ; bt, σ̂

2
t )

involve at each step t > m the response variable yt, the density needs to be
normalized in order to obtain a proper density function.

We study the asymptotic behavior of the resulting sequentially normalized least
squares (SNLS) criterion for both fixed designs and random ones appearing in
AR models. The criterion involves no approximations and is free of any hyper-
parameters which tend to affect the outcome especially for small samples.

2 Sequentially normalized least squares

We start by showing that the new representation (4) achieves a better fit, in
terms of the residuals, than traditional least squares representation (3). To
see this, assume that the statement holds for sequences of length t, for some
t ≥ 1:

ŝt =
t∑

i=1

ê2
i ≤

t∑

i=1

ε̂2
i (t) = tσ̂2

t . (5)

For t = 1, the two representations are identical and the assumption is trivially
satisfied. By induction, the claim holds for all t ≥ 1:

ŝt+1 =
t∑

i=1

ê2
i + ê2

t+1 ≤
t∑

i=1

ε̂2
i (t) + ê2

t+1 =
t∑

i=1

ε̂2
i (t) + ε̂2

t+1(t + 1)

≤
t∑

i=1

ε̂2
i (t + 1) + ε̂2

t+1(t + 1) = (t + 1)σ̂2
t+1,
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where the first inequality follows from the assumption (5), the second equality
follows from the definitions (3) and (4) via êt+1 = yt+1−b′t+1x̄t+1 = ε̂t+1(t+1),
and the second inequality follows from the definition of the least squares.

In order to obtain a meaningful model selection criterion with a capability to
find a balance between goodness of fit and complexity, we convert the squared
deviations into a density model.

Consider first the simple case where the variance σ2 is fixed. The non-normalized
conditionals

f(yt | yt−1, Xt; σ
2, bt) =

1√
2πσ2

exp

(
−(yt − ŷt)

2

2σ2

)
, (6)

are obtained by replacing the parameter vector β in the conditional normal
density function f(yt | yt−1, Xt; σ

2, β) by the least squares estimate bt.

For each fixed k, for t > m, where m is the smallest value for t for which
k(t) = k, the well known recursions exist, see for instance [10],

bt = Vt

t∑

j=1

x̄jyj = bt−1 + Vt−1x̄t(yt − x̄′tbt−1)/(1 + ct) (7)

Vt = (XtX
′
t)
−1 = Vt−1 − Vt−1x̄tx̄

′
tVt−1/(1 + ct) (8)

ct = x̄′tVt−1x̄t

dt = x̄′tVtx̄t

1− dt = 1/(1 + ct). (9)

The last equality was shown in [8] and [21] with the interpretation that the
quantity 1−dt is the ratio of the (Fisher) information in the first t−1 observa-
tions relative to all the t observations, [21]. This also implies that 0 ≤ dt ≤ 1.

By (7) we obtain

ŷt = x̄′t [Vt−1x̄t(yt − x̄′tbt−1)/(1 + ct) + bt−1]

= ct/(1 + ct)(yt − x̄′tbt−1) + x̄′tbt−1

= (1− dt)x̄
′
tbt−1 + dtyt. (10)

which is a weighted average of the plug-in prediction x̄′tbt−1 and the true value
yt. This gives the remaining error as

êt = yt − ŷt = (1− dt)(yt − x̄′tbt−1) = (1− dt)et, (11)

5



which is seen to be smaller than the plug-in prediction error by a constant
factor. The normalization of (6) is straightforward, and the result is a normal
density function, the mean given by the plug-in predictor and the variance by
τ = (1 + ct)

2σ2.

If we in (6) replace the variance by the minimized variance ŝt/t and try to
normalize the result the normalizing integral will be infinite. To make it finite
would require hyper-parameters. Consider instead the maximization problem

max
σ2

n∏

t=m+1

f(yt | yt−1, Xt; σ
2, bt). (12)

The maximizing σ2 is

τ̂n =
ŝn − ŝm

n−m
=

1

n−m

n∑

t=m+1

ê2
t ,

which gives the maximized product (2πeτ̂n)−(n−m)/2. By dropping the con-
stants we get the non-normalized and normalized conditional density functions

f(yt | yt−1, Xt) =
τ̂
−(t−m)/2
t

τ̂
−(t−m−1)/2
t−1

= τ̂
−1/2
t−1

(
1 +

(yt − ŷt)
2

τ̂t−1

)−(t−m)/2

f̂(yt | yt−1, Xt) = K−1(yt−1)τ̂
−1/2
t−1

(
1 +

(yt − ŷt)
2

τ̂t−1

)−(t−m)/2

K(yt−1) = τ̂
−1/2
t−1

∞∫

−∞

(
1 +

(yt − ŷt)
2

τ̂t−1

)−(t−m)/2

dyt.

To get the normalizing integral we substitute (11), which gives

K(yt−1) = τ̂
−1/2
t−1

∞∫

−∞

[
1 +

(1− dt)
2

τ̂t−1

(y − x̄′tbt−1)
2

]−(t−m)/2

dy. (13)

By change of variables

z =
1− dt√

τ̂t−1

(y − x̄′tbt−1)

we get
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K(yt−1) = Kt−1 =
1

1− dt

∞∫

−∞
(1 + z2)−(t−m)/2dz

=

√
π

1− dt

Γ
(

t−m− 1

2

)
/Γ

(
t−m

2

)
,

the last equality by the fact that z is seen to have Student’s z-distribution.
We need t > m + 1 to make the normalizer non-zero.

For t > m + 1, the conditional density function is then given by

f̂(yt | yt−1, Xt) =
τ̂
−1/2
t−1

Kt−1

(
1 +

(1− dt)
2

τ̂t−1

(yt − x̄′tbt−1)
2

)−(t−m)/2

(14)

= K−1
t−1

τ̂
−(t−m)/2
t

τ̂
−(t−m−1)/2
t−1

.

We see that again the predictor that maximizes the conditional density func-
tion is the plug-in predictor x̄′tbt−1.

By putting the initial density function as some prespecified function q(ym+1 |
Xm+1), which will not play a role in comparison of different models, we get
the desired parameter-free density function

f̂(yn | Xn) = q(ym+1 | Xm+1)
n∏

t=m+2

f̂(yt | yt−1, Xt).

Ignoring the initial density, the negative logarithm of the remaining part is
given by

− ln
n∏

t=m+2

( √
π

1− dt

Γ
(

t−m− 1

2

)
/Γ

(
t−m

2

))−1
τ̂
−(t−m)/2
t

τ̂
−(t−m−1)/2
t−1

,

where we note that both the Gamma functions and the τ̂ ’s telescope. Thus,
we get the following simplified expression, which we call the sequentially nor-
malized least squares (SNLS) criterion:

SNLS(n, k) =
n−m

2
ln τ̂n − 1

2
ln êm+1 − ln

Γ
(

n−m

2

)

Γ(1/2)
+ ln

n∏

t=m+2

√
π

1− dt

=
n−m

2
ln(2πeτ̂n) +

n∑

t=m+1

ln(1 + ct) +
1

2
ln n + O(1),

(15)
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where Stirling’s formula was applied on the second row to the Gamma func-
tion, and terms independent of n are implicit in the O(1) term. The SNLS
criterion can be used for subset selection and order estimation for both small
and large data sets. One of its distinguished properties is the fact that unlike
the regular NML universal model it has no hyper-parameters.

We conclude this section by a large data set behavior of the SNLS model.

Theorem 1 If the regressor variables x̄t satisfy

1

n
XnX ′

n =
1

n

n∑

i=1

x̄ix̄
′
i → Σ (16)

with Σ non-singular, then

SNLS(n, k) =
n−m

2
ln(2πeτ̂n) +

(
2k + 1

2

)
ln n + o(ln n). (17)

Proof. Use (16) to get Vt → t−1Σ−1, so that ct = O(1/t), and ln(1 + ct) =
ct + O(1/t2). By the first of the following results, derived in [15] and [21],

n∑

t=m+1

ct = k ln n + o(ln n) (18)

n∑

t=m+1

dt = k ln n + o(ln n). (19)

we deduce (17). 2

3 Fixed regression matrix

The first theorem shows the mean square deviations in the three representa-
tions of data (2), (3), and (4), which are of some interest, and which we will
need later on. Since we need the recursive formulas (7), (8), (9) we give the
results for t > m.

Theorem 2 If the regressor variables are non-random satisfying (16) and the
data generated by (1), then

1

n−m

n∑

t=m+1

Ee2
t = σ2


1 +

1

n−m

n∑

t=m+1

ct


 (20)
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1

n−m

n∑

t=m+1

Eê2
t = σ2


1− 1

n−m

n∑

t=m+1

dt


 (21)

1

n−m

(
n∑

t=1

Eε̂2
t (n)−

m∑

t=1

Eε̂2
t (m)

)
= σ2, (22)

where the expectation is with the parameters β and σ.

Proof. To obtain (20) we start with yi = x̄′iβ + εi. Since (εi)
n
i=1 is a zero-mean

i.i.d. sequence, the estimate bt−1 is independent of εt. Thus, we get

Ee2
t = E[(yt − b′t−1x̄t)

2] =E[((yt − β′x̄t) + (β′x̄t − b′t−1x̄t))
2]

=E[(yt − β′x̄t)
2] + E[(β′x̄t − b′t−1x̄t)

2]. (23)

Using the well known result on the covariance matrix of the least squares
estimates, the latter expectation in (23) becomes

E[((β − bt−1)
′x̄t)

2] = x̄′tE[(β − bt−1)(β − bt−1)
′]x̄t = x̄′t(σ

2Vt−1)x̄t = ctσ
2.

The former expectation in (23) clearly equals σ2, and thus, Ee2
t = (1 + ct)σ

2

for all t > m, and Eq. (20) follows.

Equation (21) follows from this by (11), and

Eê2
t = (1− dt)

2Ee2
t =

ctσ
2

(1− dt)2
= (1− dt)σ

2.

To prove the remaining statement, Eq. (22), we use the important equality
(2.6) in [21]:

n∑

t=m+1

e2
t =

n∑

t=1

ε̂2
t (n)−

m∑

t=1

ε̂2
t (m) +

n∑

t=m+1

dte
2
t , (24)

which implies that the expected difference in the least squares is given by

n∑

t=m+1

(1− dt)Ee2
t =

n∑

t=m+1

(1− dt)(1 + ct)σ
2 = (n−m)σ2,

which implies the claim. 2

The next theorem shows the asymptotic optimality of the SNLS model in
terms of logarithmic prediction errors, see [14], both in the mean and almost
surely, in the case where the regressor matrix is fixed.
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Theorem 3 Let the assumption (16) hold, and let the data be generated by (1).
Then

E SNLS(n, k) =
n−m

2
ln(2πeσ2) +

k + 1

2
ln n + o(ln n), (25)

for almost all parameters b and σ. Also,

SNLS(n, k) =
n−m

2
ln(2πeσ2) +

k + 1

2
ln n + o(ln n) (26)

almost surely.

Before giving the proof of the theorem, we elaborate on the the meaning of
optimality in the sense of the theorem. The idea is that for any criterion
which is a negative logarithm of a probability density, say − ln f(yt | Xt),
we can extract a sequence of probabilistic predictions as the conditionals
f(yt | yt−1, Xt) = f(yt | Xt)/f(yt−1 | Xt), t = m + 1, . . . , n, where f is the
corresponding density function. This includes criteria such as PLS and NML.
The BIC criterion is included asymptotically since it is an approximation of a
(mixture) probability density, see [19], but AIC is not. Since our SNLS crite-
rion is derived via a probability density, it is included in this class. We further
note that both PLS and SNLS are applicable in the so called on-line predic-
tion setting where the sample size need not be determined in advance, while
NML is only applicable in the so called batch scenario, where the sample size
is fixed in advance.

For any criterion corresponding to a density function (BIC, PLS, NML, SNLS),
Theorem 1 in [14] gives a lower bound on the expectation of the sum of
logarithmic errors, E ∑n

t=m+1− ln f(yt | yt−1, Xt), where f is again the density
function used for prediction; note that the sum is completely determined by
the criterion and vice versa:

E
n∑

m+1

− ln f(yt | yt−1, Xt) = E − ln f(yt | Xt).

The bound cannot be beaten except for some data generating parameters
which belong to a set of Lebesgue measure zero. It has a fundamental role in
universal prediction, see [9], and also in statistical inference by means of the
Minimum Description Length (MDL) principle [13, 18].

In the Gaussian case, the bound is given by

E
n∑

t=m+1

− ln f(yt | yt−1, Xt) ≥ nH(σ2) +
k + 1

2
ln n + o(ln n),
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where H(σ2) = 1
2
ln(2πeσ2) is the differential entropy of the Gaussian density,

see [3]. Whenever the logarithmic prediction errors of a given model match
this bound, the model is called optimal. By Eq. (25), SNLS is optimal — the
difference between n−m and n in the first term is insignificant compared to
the o(ln n) remainder term.

Proof (of Theorem 3). To prove (25) take the mean in (17) and exchange the
mean and the logarithm on the right hand side. We get by Jensen’s inequality

E SNLS(n, k) ≤ n−m

2
ln(2πeEτ̂n) +

(
2k + 1

2

)
ln n + o(ln n).

Substituting (21) and applying (19) we then conclude that

E SNLS(n, k) ≤ n−m

2
ln(2πeσ2) +

k + 1

2
ln n + o(ln n). (27)

By Theorem 1 in [14] the opposite inequality holds for all data generating
parameters except some in a set of Lebesgue measure zero, see Remark 1, and
(25) holds.

The proof of the a.s. result (26) is an exercise in martingales; in fact, Problem
15, page 165, in [11]. Define ξt = ê2

t − (1− dt)σ
2, and sn =

∑n
t=m+1 ξt/t, which

is a martingale. We have

Es2
n =

n∑

t=m+1

Eξ2
t /t

2 + 2
∑

i,j : m<i<j

Eξiξj

ij
.

Since Eξiξj = E
[
Ej|i[ξiξj]

]
= EξiEj|i[ξj], where Ej|i denotes the conditional

expectation, we have Eξiξj = Eξi·0 = 0, and the second term equals zero. Since
Eξ2

t is uniformly bounded so are both Es2
n and E|sn|. By Doob’s martingale

convergence theorem sn converges a.s. to a finite limit. By Kronecker’s lemma,
this implies that

Sn =
1

n−m

n∑

t=m+1

ξt =
1

n−m

n∑

t=m+1

ê2
t −

σ2

n−m

n∑

t=m+1

(1− dt) → 0 a.s.,

which we write as

τ̂n =
σ2

n−m

n∑

t=m+1

(1− dt) + o(1) a.s.
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Further

ln τ̂n = ln σ2 + ln


1−

n∑

t=m+1

dt/(n−m)


 + o(1) a.s.,

so that by Taylor expansion and (19)

ln τ̂n = ln σ2 − k

n−m
ln n + o(1) a.s.,

which, together with Thm. 1, concludes the proof. 2

4 AR models

We then consider the case where the data are generated by an AR model,

yt =
k∑

i=1

β(i)yt−i + εt, t ≥ 1, (28)

in which the regressor matrix is random, determined by the the data yn,
and where the coefficients are again given by the parameter vector β =
(β(1), . . . , β(k)).

The following theorem shows the almost sure asymptotic optimality of the
SNLS model, in the sense explained in Remark 1 above, also in this case.

Theorem 4 Let the data be generated by an AR model (28), where the roots
of the polynomial 1−∑k

i=1 β(i)zi are outside the unit circle, and εt is an i.i.d.
zero-mean Gaussian process with variance σ2. The process is also assumed
to be ergodic and stationary with Ex̄tx̄

′
t = Σ nonsingular. Then for σ̂2

n =
(1/n)

∑n
i=1 ε̂2

i (n), we have

ln τ̂n = ln σ̂2
n −

(
k

n−m
ln n

)
(1 + o(1)) a.s., (29)

and

SNLS(k, n) =
n−m

2
ln(2πeσ̂2

n) +
k + 1

2
ln n + o(ln n) a.s.

Proof. The proof takes advantage of the proof of the asymptotic optimality of
the predictive model (2) in [21]. The beginning point is the equality (24). It
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gives

ln
1

n

n∑

t=m+1

e2
t = ln σ̂2

n + ln

[
1 +

∑n
t=m+1 dte

2
t

nσ̂2
n

−
∑m

t=1 ε̂2
t (m)

nσ̂2
n

]
. (30)

On the other hand, by Corollary 4.2.1 in [21]

ln
1

n

n∑

t=m+1

e2
t = ln σ̂2

n +

(
k

n
ln n

)
(1 + o(1)) a.s. (31)

Hence

ln

[
1 +

∑n
t=m+1 dte

2
t −mσ̂2

m

nσ̂2
n

]
=

(
k

n
ln n

)
(1 + o(1)) a.s., (32)

where mσ̂2
m =

∑m
t=1 ε̂2

t (m).

Since the right hand side of (32) vanishes, we have

∑n
t=m+1 dte

2
t −mσ̂2

m

nσ̂2
n

→ 0 a.s.

Thus,

ln

[
1 +

∑n
t=m+1 dte

2
t −mσ̂2

m

nσ̂2
n

]
=

∑n
t=m+1 dte

2
t −mσ̂2

m

nσ̂2
n

(1 + o(1)) a.s.,

which by (31) gives

n∑

t=m+1

dte
2
t = σ̂2

n (k ln n) (1 + o(1)) + mσ̂2
m a.s. (33)

From (11),

n∑

t=m+1

ê2
t =

n∑

t=m+1

e2
t − 2

n∑

t=m+1

dte
2
t +

n∑

t=m+1

d2
t e

2
t

which with (24) and (33) gives

n∑

t=m+1

ê2
t = nσ̂2

n −mσ̂2
m −

n∑

t=m+1

dte
2
t +

n∑

t=m+1

d2
t e

2
t
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= nσ̂2
n − σ̂2

n(k ln n)(1 + o(1)) +
n∑

t=m+1

d2
t e

2
t − 2mσ̂2

m a.s.

After we show that

n∑

t=m+1

d2
t e

2
t = o(ln n) a.s., (34)

we finally get

1

n

n∑

t=m+1

ê2
t = σ̂2

n

[
1−

(
k

n
ln n

)
(1 + o(1))

]
a.s.,

and, since n/(n−m) = 1 + o(1/n), also

τ̂n =
1

n−m

n∑

t=m+1

ê2
t = σ̂2

n

[
1−

(
k

n−m
ln n

)
(1 + o(1))

]
a.s.,

which implies the first claim, (29), by Taylor expansion. By ergodicity, (16)
holds, so that the second claim in the theorem follows from (17) and (29).

It now remains to prove (34). We first show that x̄′tx̄t ≤ α ln t almost surely
for all but finitely many t, with α large enough.

The density function for x̄t is Gaussian

f(x̄t) =
|Σ|1/2

(2π)k/2
e−

1
2
x̄′tΣ

−1x̄t ,

where by stationarity Σ = Eax̄tx̄
′
t. For λmin the least eigenvalue of Σ,

f(x̄t) ≤ |Σ|1/2

(2π)k/2
e−

λmin
2

x̄′tx̄t .

Let At = {x̄t : x̄′tx̄t ≥ α ln t}. Then

P (At) ≤ |Σ|1/2

(2π)k/2

∑

i≥t

∫

Bi

e−
λmin

2
x̄′ix̄idx̄i,

where dx̄i is the differential volume and Bi = {x̄t : α ln i ≤ x̄′tx̄t ≤ α ln(i +
1)}. The integrand is upper bounded by i−γ for γ = αλmin/2, which remains
constant on the surface of the k-dimensional sphere of radius α ln i. Hence, the

14



integration of the surface area over the radius difference α ln(1+1/i) = O(α/i)
gives i−γ times the volume of Bi, or

i−γ
∫

α ln i≤r≤α ln(i+1)

dr ≤ O(i−(1+γ)(ln i)k−1).

The sum of this from i = t to i = ∞ is upper bounded by O(
∫∞
t y−γdy) =

O(t−(γ−1)) for γ > 2, which can be satisfied by making α sufficiently large,
which implies

∑∞
t=1 P (At) < ∞. The claim follows by Borel-Cantelli lemma,

namely, that the probability of the event that x̄′tx̄t ≥ α ln t infinitely often is
zero.

By the ergodic theorem, (16) holds, and Vt → t−1Σ−1 almost surely, giving

dt ≤ λminx̄
′
tx̄t

t
≤ λminα ln t

t
=

O(ln t)

t
a.s., (35)

where λmin is again the least eigenvalue of Σ. Since by (33), for any s > m,∑n
t=s dte

2
t = O(ln(n/s)), we have

n∑

t=m+1

d2
t e

2
t =

s−1∑

t=m+1

d2
t e

2
t +

n∑

t=s

d2
t e

2
t ≤ O(ln s) +

O(ln s)

s
O

(
ln

n

s

)
a.s.,

where the inequality holds by dt ≤ 1 and (35). Take s = ln n, which implies
(34) and the proof of the theorem follows. 2

5 Simulation study

We study the behavior of the proposed SNLS model selection criterion in
a simulation study where the AIC, BIC, PLS, NML, and SNLS (Eq. (15))
methods are used to estimate the order of an AR model. The scripts, in R

language, needed to reproduce all the experiments in this paper are available
for download 1 .

The true order was varied between k∗ = 1, . . . , 10, and the sample sizes were
n = 100, 200, 400, 800, 1600. The parameters of the AR models are generated
by sampling parameter vectors uniformly at random from the range [−1, 1]k

∗

and rejecting combinations that result in unstable processes, until 1000 ac-
cepted (stable) models were produced per each (n, k∗) pair. The criteria were

1 http://www.cs.helsinki.fi/teemu.roos/snls/snls2.R
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evaluated for orders up to k = 15, and the order minimizing each criterion
was chosen as the estimate.

Figures 1 and 2 (left panels) show the percentage of correctly estimated orders
for each true order k∗ and sample size n. For the lowest orders, k∗ = 1, 2, the
BIC criterion is clearly the most accurate one and wins for almost all sample
sizes; this was expected since BIC is known to have a tendency to underes-
timate rather than overestimate the order. Likewise, it is not too surprising
that AIC, which a priori favors more complex models than the other criteria,
wins for the smallest sample size whenever k∗ ≥ 5. For the orders k∗ = 3 and
k∗ = 4, BIC, PLS, NML, and SNLS share the first place with small margin.
For orders k∗ ≥ 5, SNLS is usually the best method with again a very small
margin.

As pointed out by an anonymous referee, the goal of model selection is not
always to pick the “correct” model, but to find one that minimizes future
prediction errors. To this end, we also carried out a predictive experiment
where the model learned by each of the criteria was used for predicting a
new outcome from the same process. The right panels of Figs. 1 and 2 show
the the predictive accuracy corresponding to the chosen model order under
the different criteria. Predictive accuracy is measured in terms of the squared
error. The boxplots show the first to third quartile range as a box, with the
median (bar) and the mean (triangle) superimposed. Overall, the differences
in predictive accuracy are extremely small.
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Fig. 1. Experimental results. Left: Percentages of correctly estimates orders for
true model order k∗ = 1, . . . , 5 (to be continued in Fig. 2); sample sizes
n = 50, 100, 200, 400, 800, 1600. Right: Boxplots of the corresponding squared pre-
diction errors, black bars indicate median, triangles indicate mean.
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Fig. 2. Experimental results. Left: Percentages of correctly estimates orders
for true model order k∗ = 6, . . . , 10 (continued from Fig. 1); sample sizes
n = 50, 100, 200, 400, 800, 1600. Right: Boxplots of the corresponding squared pre-
diction errors, black bars indicate median, triangles indicate mean.
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