
Sparse Logistic Regression with Logical Features

Yuan Zou(B) and Teemu Roos

Helsinki Institute for Information Technology HIIT,
Gustaf Hällströmin katu 2b, 00014 Helsinki, Finland

{yuan.zou,teemu.roos}@cs.helsinki.fi
http://www.hiit.fi/cosco/promo

Abstract. Modeling interactions in regression models poses both com-
putational as well as statistical challenges: the computational resources
and the amount of data required to solve them increases sharply with
the size of the problem. We focus on logistic regression with categori-
cal variables and propose a method for learning dependencies that are
expressed as general Boolean formulas. The computational and statis-
tical challenges are solved by applying a technique called transformed
Lasso, which involves a matrix transformation of the original covariates.
We compare the method to an earlier related method, LogicReg, and
show that our method scales better in terms of the number of covariates
as well as the order and complexity of the interactions.

Keywords: Feature selection · Logistic regression · Lasso

1 Introduction

A basic logistic regression model includes individual effects of feature variables
(a.k.a. regressors or covariates) on the probability of a response event. In addition
to the individual effects, interactions between the feature variables are impor-
tant in a wide range of applications. Examples include identifying important
single nucleotide polymorphism (SNPs) in genome-wide association studies [6],
pathway analysis of gene-expression or metabolomic data [14], regulatory motif
identification [7], and association studies of gene-gene interactions [16].

Pairwise and higher order interactions between the features can be modelled
by explicitly including the interactions as feature variables. In other words, a
kth order interaction can be modelled by merging a subset of k variables into
a new variable whose domain becomes the Cartesian product of the domans of
the merged variables, and including indicator variables for each of the values
in the new domain. High order interactions pose statistical and computational
challenges since the number of interaction terms grows exponentially with the
order, k. Different techniques for dealing with these challenges have been pro-
posed. These include, for instance, forward and backward selection (see e.g. [5])
and more recently, Lasso [15].

We consider situations where the interactions can be expressed as Boolean
formulas, each of which is composed of a subset of the original feature variables
c⃝ Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 316–327, 2016.
DOI: 10.1007/978-3-319-31753-3 26



Sparse Logistic Regression with Logical Features 317

connected by logical operations such as and, or, and xor (exclusive or). For
example, if we have a vector of m binary variables x = {x1, x2, . . . , xm}, the
model may involve terms such as “x1 and x2, or x3” or “x4 and x5 and not x6”.
We define the model formally as a generalized linear model

g(E(y)) = β0 +
t∑

i=1

βiLi(x), (1)

where y is a binary response variable, E(y) = Pr[y = 1 | x] denotes the expec-
tation of y conditional on the regressors x, g is a link function, β0, . . . ,βt are
regression coefficients, and L1, . . . , Lt are Boolean functions of x. The right-
hand side of Eq. (1) is called a linear predictor. Depending on how we define
the link function g, this framework includes a range of different model fam-
ilies, such as linear regression, logistic regression, Poisson regression, etc. In
this study, we focus on the logistic case where the link function is defined as
g(E(y)) = logit(E(y)) = log(E(y)/(1 − E(y))).

For each of the Boolean functions Li, 1 ≤ i ≤ t, in the above model, we
define the order of the function as the minimum number of variables x1, . . . , xm

that are sufficient to determine the value of Li. For example, a function that
depends on only one of the variables is said to be first order, and so on. The
order of the model is defined as the maximum order of all the functions involved.
As mentioned above, the basic logistic regression model is usually defined as
a first order model that includes all the m first order functions Li(x) = xi,
1 ≤ i ≤ t = m.

1.1 Related Work

An important prior work regarding logical features was done by Ruczinski et al.
in [11] who also provide an implementation of their method in the R package
LogicReg.1 It uses a greedy algorithm to search through the space of possi-
ble Boolean functions, with additional simulated annealing step to avoid local
optima. It shows better performance than the tree based or rule based methods
that are used by CART [2] and MARS [4]. However, as the number of covariates
and the order of interactions are increased, the number of possible Boolean func-
tions grows significantly. This makes greedy search heuristics computationally
inefficient and prone to converge to local optima.

On the other hand, Shi et al. [13] proposed a Lasso based method which is
suitable for identifying a large set of interactions. However, they only interactions
defined using the and operator. To allow more types of Boolean operations, the
works in [1,8] incorporate extra information such as the structure of coefficients
to guide the learning process. However, these methods need expert knowledge
that is not always available. They are also unable to handle complex interactions.
Both methods are only suitable for cases when all coefficients inside a group
are either zero or non-zero. Our new Lasso based method can efficiently and

1 Available from CRAN, http://cran.r-project.org.



318 Y. Zou and T. Roos

effectively learn arbitrary logical functions and deal with situations when the
covariates have multiple values.

The least absolute shrinkage and smoothing operator (Lasso) for linear
regressions was proposed by Tibshirani in 1996 [15] and has since then gained a
lot of popularity in subset selection problems. Lasso aims to minimize the sum of
squared errors subject to a bound on the sum of absolute values of the regression
coefficients, i.e., the L1 norm of the coefficient vector β = (β1, . . . ,βt)T :

argmin
β : ∥β∥1<λ

∥Y − Xβ∥22, (2)

where Y = (y(1), . . . , y(n))T is a vector of n responses and X is a matrix whose
rows are n observation vectors x(1), . . . ,x(n), and λ > 0 is a regularization
parameter.

Lasso encourages sparsity in the estimated coefficient vector. As the value of λ
is decreased, more and more coefficients are set to zero. This feature is especially
useful when we need to identify a small set of relevant variables out of a large
collection of candidates. Thus Lasso is suitable for discovering interactions in
regression problems. Furthermore, there are plenty of well-developed tools for
solving Lasso problems efficiently.

If we encode logical features constructed using the original variables as a
new set of regressor variables, we can use Lasso to select the significant ones out
of all possible interactions. However, the number of all possible logical expres-
sions grows too rapidly to be handled efficiently. Furthermore, the redundancy
caused by different combinations of logical formulas expressing the exact same
model may lead to numerical and statistical instability. To restrict the number
of predictors within a manageable size, previous work in [13] confines the logic
expressions to include only two variables and the and operator.

1.2 Contributions

In this paper we introduce a Lasso-based method for learning sparse logistic
regression models with logical features. Technically, the method is implemented
as a transformed Lasso [10] which involves a transformation matrix that multi-
plies the original design matrixX. The transformed Lasso can deal with any type
of logical interactions. Here we also extend it to handle multivalued covariates.
In the following sections, we first propose a transformation of the original data
involving a generalized Walsh-Hadamard matrix. The transformation increases
the dimension of the data but enables the learning of arbitrarily complex logical
dependencies. We demonstrate the power of the proposed method by comparing
its performance to that of the greedy method in LogicReg with different settings
of sample sizes and model complexities. Finally, we propose several possible
future extensions.



Sparse Logistic Regression with Logical Features 319

2 Model Formulation

As is well known, any Boolean formula can be decomposed as a linear combina-
tion of xor functions of the same or lower orders as the formula itself. For exam-
ple, to represent and or or formulas over a subset of indices I0 ⊆ {1, 2, . . . , l},
by using linear combinations of xor formulas, we can write them respectively
as

and(xI0) = 21−|I0|
|I0|∑

l=1

(−1)l−1
∑

I′⊆I0,|I′|=l

xor({xI′}), (3)

or(xI0) = 21−|I0|
|I0|∑

l=1

∑

I′⊆I0,|I′|=l

xor({xI′}). (4)

To map a binary covariate matrix to a design matrix that is composed of xor
functions of subsets of the covariates, it is convenient to use the discrete Walsh-
Hadamard transform, see [10]. To construct the design matrix, we first expand
the original covariate matrix into a larger matrix with columns corresponding
to indicator variables for each possible covariate vector (e.g., in the case of two
binary variables: 00, 10, 01, and 11), and then (pre-)multiply this matrix by the
Walsh-Hadamard matrix. For a more complete explanation including a detailed
example, see [10]. As we explain below, in practice the matrices need not be
explicitly constructed.

The rows of a Walsh-Hadamard matrix of order 2m correspond to all possible
vectors composed of the m covariates. The columns of a such matrix are xor
functions on all subsets of the covariates given by the corresponding row. For
example, the rows of a fourth order Walsh-Hadamard matrix correspond to all
combinations of two binary elements x1 and x2, while the columns are xor(0),
xor(x1), xor(x2), and xor(x1, x2). The fourth order Walsh-Hadamard matrix
is then

W4 =

⎛

⎜⎜⎝

xor(0) xor(x1) xor(x2) xor(x1, x2)
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

⎞

⎟⎟⎠. (5)

When the covariates takes three or more values, we can formulate the design
matrix in the similar way as forming the Walsh-Hadamard matrix. Each column
corresponds to a xor function of a subset of possible sequences while each vari-
able equals to one of its possible values. For instance, if the covariates are ternary
with values {0, 1, 2}, the columns relating to two variables x1 and x2 are xor(0),
xor(x1 = 0), sc xor(x1 = 1), xor(x2 = 0), xor(x2 = 1), xor(x1 = 0, x2 = 0),
xor(x1 = 0, x2 = 1), xor(x1 = 1, x2 = 0), and xor(x1 = 1, x2 = 1). We ignore
the xor functions when x1 or x2 equals 2, because we can represent them as



320 Y. Zou and T. Roos

linear combinations of xor functions when x1 or x2 equals 0 or 1. Such lin-
ear dependencies would significantly complicate the parameter estimation stage.
The design matrix W ′

9 based on the Walsh-Hadamard matrix for two ternary
variables is

W ′
9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 0 1 0 1 0 0 1 1 0
10 0 0 1 1 0 1 0 0 1
01 0 1 0 0 1 1 0 0 1
11 0 0 1 0 1 0 1 1 0
02 0 1 0 0 0 1 1 0 0
20 0 0 0 1 0 1 0 1 0
22 0 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 1 1
21 0 0 0 0 1 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

In practice, when the number of covariates is large, it becomes more likely
that we only observe a small subset of all possible combinations of variables. In
this case we do not need to build the full Walsh-Hadamard matrix. For each
observed combination, we can map it to a vector of the corresponding xor
functions directly.

For example, assume that we have five binary variables {x1, x2, . . . , x5}, and
the linear predictor only depends on the first three variables: g(E(y)) = β0 +
β1x1+β2 and(x2, x3). If we restrict the maximum order of the interactions to be
three, the design matrix has

(5
0

)
+

(5
1

)
+

(5
2

)
+

(5
3

)
= 1+5+10+10 = 26 columns

corresponding to the xor functions with at most third order interactions. If the
sample size is sufficiently large, by using Lasso, only the coefficients for the five
predictors: xor(0), xor(x1), xor(x2), xor(x3), and xor(x2, x3) will be non-
zero. Then we can apply the xor functions with non-zero coefficients in new
data sets for prediction. In the following experiments on simulated data sets,
we show that even when the number of xor functions is relatively large, the
learned models quickly converge toward the generating model as the sample size
is increased.

3 Experiments

We compare the greedy search method in the R package LogicReg with trans-
formed Lasso for different models and sizes of training data in three experiments.
For Lasso regression, we use the popular R package glmnet. For each model and
size of training data, we generated 100 different training data sets based on the
true model. Later we compare the log-losses of learned models by LogicReg and
transformed Lasso by evaluating them on another 100 new data sets with sample
sizes 1024. We ran all the experiments on computers with 32 GB RAM and 2.53
GHz CPUs using only a single core at a time.



Sparse Logistic Regression with Logical Features 321

3 terms

5 terms

7 terms

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

128

30

128

40

256

30

256

40

512

30

512

40

Sample size
1024

Number of variables
30

1024

40

2048

30

2048

40

4096

30

4096

40

8192

30

8192

40

Lo
g L

oss
 (b

its)
transformed Lasso LogicReg

(a)

3 terms

5 terms

7 terms

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

128

30

128

40

256

30

256

40

512

30

512

40

Sample size
1024

Number of variables
30

1024

40

2048

30

2048

40

4096

30

4096

40

8192

30

8192

40

Lo
g L

oss
 (b

its)

transformed Lasso LogicReg

(b)

Fig. 1. (a) Box plot of log-losses for independent test data by LogicReg and trans-
formed Lasso when data is simulated from Eq. 7(a) (3 terms)–(c) (7 terms), respectively.
Sample sizes increase along the x-axis, and for each sample size, the total number of
regressor variables is either 30 or 40 as indicated in the x-axis label. Upper and lower
whiskers show the maximum and minimum values of log-losses respectively. To empha-
size the differences between the log-losses of the two methods, the outliers (mainly the
results by LogicReg) that lie above the upper limit are not shown. (b) Data simulated
from Eq. 8(a)–(c) that include xor operators. (c) Box plot of log-losses of inferred logic
functions by LogicReg and transformed Lasso for models in Eq. 9(a)–(c).



322 Y. Zou and T. Roos

3 terms

5 terms

7 terms

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

128

30

128

40

256

30

256

40

512

30

512

40

Sample size
1024

Number of variables
30

1024

40

2048

30

2048

40

4096

30

4096

40

8192

30

8192

40

Lo
g L

oss
 (b

its)
transformed Lasso LogicReg

(c)

Fig. 1. (continued)

3.1 Experiment 1

First, we use the true models:

logit(E(Y )) = 0.5 − 1.3or[and(¬x1,¬x2), x3]
+ 1.5or(¬x4,¬x5,¬x6) − 1.7and(x7, x8, x9), (7a)

logit(E(Y )) = 0.5 − 1.3or[and(¬x1,¬x2), x3]
+ 1.5or(¬x4,¬x5,¬x6) − 1.7and(x7, x8, x9)
+ 1.1and(¬x10,¬x11,¬x12) − 0.9or(x13, x14, x15), (7b)

logit(E(Y )) = 0.5 − 1.3or[and(¬x1,¬x2), x3]
+ 1.5or(¬x4,¬x5,¬x6) − 1.7and(x7, x8, x9)
+ 1.1and(¬x10,¬x11,¬x12) − 0.9or(x13, x14, x15)
+ 0.7or[and(x16, x17), x18] − 0.5and(x19, x20, x21). (7c)

The linear predictors contain three, five or seven separate terms (not includ-
ing intercepts) that have no xor operators. The terms included in the simpler
linear predictors (three and five terms) are subsets of the terms in the more com-
plex linear predictors. Each term in the linear predictor involves three covariates.
The covariates are independent from each other and generated with equal prob-
abilities for 1s and 0s.

For the LogicReg method, we restrict the search space by no more than
three variables in a term and no more than five separate terms.2 Model selection
2 We found that the implementation of LogicReg provided in the package cannot
handle more than five terms in the same formula.



Sparse Logistic Regression with Logical Features 323

is performed by 10-fold cross validation. For the method based on the Lasso
framework, we also consider only up to third order interactions. The best tuning
parameter λ in Lasso is also determined by 10-fold cross validation. The sam-
ple size ranges from 64 to 8192. The total number of covariates is 30 or 40 of
which all but the ones appearing in Eq. 7(a)–(c) have no effect on the response.
For example, the response of model in Eq. (7a) only depends on nine variables,
x1, . . . , x9, while covariates x10, . . . , xm (m = 30 or 40) are irrelevant. We repeat
the experiment on 100 different training sets for each combination of sample
size and number of covariates. The log-likelihoods achieved by both methods
are compared to the log-likelihoods under the true model on 100 independently
generated samples of size 1024.

We show how the log-loss changes under different conditions in Fig. 1a. We
can see that when the sample size reaches 8192, both methods have almost
converged to the same estimated models with small log-loss. The Lasso’s ability
to shrink most of the unimportant coefficients plays a key role in achieving
a similar level of performance already from the small samples sizes, unlike the
LogicReg method. For instance, with 40 covariates, selecting the required number
of covariates (under 100) out of the 10 701 candidates seems to be very hard for
LogicReg up until sample size 1024.

When the sample size grows, both methods have increasingly better results in
the sense of both smaller average log-losses and smaller variance between the rep-
etitions. But when the sample size is relatively small, the greedy search method
is very unstable. This is because it needs to pick the right Boolean terms out
of a much larger number of possible terms — recall that the number of features
considered in the LogicReg method is significantly greater than in transformed
Lasso because LogicReg includes all possible Boolean operators while the latter
method only includes xor operators. Moreover, the Lasso method has no local
optima unlike the greedy search applied in LogicReg.

The performance of the two methods also depends on the number of irrelevant
covariates. This is because the number of terms to be considered in both methods
grows with the number of covariates. For example, the number of xor terms
included in the design matrix in transformed Lasso for 30 variables is 4526 and
for 40 variables 10 701. On the other hand, the (negative) effect of increasing the
number of covariates is not very significant compared to the (positive) effect of
increasing the sample size except in the sense that as the number of variables is
increased, the computational cost of both methods increases sharply.

3.2 Experiment 2

In the second experiment, we replace the and and or operators in Eq. (7) by the
xor operator while keeping the coefficients unchanged. The new data generating
models are

logit(E(Y )) = 0.5 − 1.3xor(¬x1,¬x2, x3)
+ 1.5xor(¬x4,¬x5,¬x6) − 1.7xor(x7, x8, x9), (8a)



324 Y. Zou and T. Roos

logit(E(Y )) = 0.5 − 1.3xor(¬x1,¬x2, x3)
+ 1.5xor(¬x4,¬x5,¬x6) − 1.7xor(x7, x8, x9)
+ 1.1xor(¬x10,¬x11,¬x12) − 0.9xor(x13, x14, x15), (8b)

logit(E(Y )) = 0.5 − 1.3xor(¬x1,¬x2, x3)
+ 1.5xor(¬x4,¬x5,¬x6) − 1.7xor(x7, x8, x9)
+ 1.1xor(¬x10,¬x11,¬x12) − 0.9xor(x13, x14, x15)
+ 0.7xor(x16, x17, x18) − 0.5xor(x19, x20, x21). (8c)

All other experiment settings are the same as in the first experiment. Comparing
the results of the second experiment as illustrated in Fig. 1b with the first exper-
iment, we find that for small sample sizes, the transformed Lasso method has
difficulty in fitting the true models if they contain many xor operators. How-
ever, it performs better for sample sizes larger than 1024. On the other hand, the
greedy search method fails to find acceptable models in the second experiment
even when the sample size is 8196.

For the models in the second experiment, we need less non-zero coefficients
in the transformed Lasso method, because it contains only xor functions. For
instance, if we have three input terms, we only need three predictors with non-
zero coefficients to represent the whole linear predictor. But for the linear predic-
tor of three terms in the first experiment, we need to decompose it into fifteen
xor functions. There are less correct xor terms in the second experiment, thus
each xor term is comparatively more important. For small sample sizes, when
there is not enough information, it becomes much harder to identify the correct
xor functions. For the linear predictors in the second experiment, any incorrect
choice of xor term decreases the accuracy much more significantly than in the
first experiment. Therefore, transformed Lasso performs worse when the sample
size is small in the second experiment than in the first experiment. On the other
hand, a smaller set of non-zero coefficients result in stronger effects of the relevant
coefficients on responses. When we have enough training data, it becomes easier
for transformed Lasso to identify the right terms in the second experiment.

On the other hand, the greedy search method in LogicReg represents Boolean
functions only by and, or or negation operators. Thus, it needs to construct
much more complex expressions in the second experiment. For example, the
term xor(x1, x2, x3) needs to be expressed by interactions between ten variables
with the repeating use of x1, x2 and x3. It requires exploring an extremely
large model space. Moreover, the greedy search method starts by picking up the
most significant variables. However, a single variable in a xor function has a
much weaker effect in responses, which makes it very hard for the greedy search
method to find a good starting point. Furthermore, in the following process, it
can only modify a current model by adjusting one variable or one operator at
each step. Although the simulated annealing method are incorporated to avoid
local optima, an updated model should be reachable by a single move from the
previous one. Therefore, a proper starting point is crucial for the greedy search
method, which is difficult to find in the second experiment. Even when the



Sparse Logistic Regression with Logical Features 325

sample size is as large as 8192, the learned models by the greedy search method
are far from close to the true ones.

3.3 Experiment 3

For the last experiment, we show how the two methods work when variables
have multiple values. We use the similar data generating models as in the first
experiment, but allow the variables to take one of the three values: {0, 1, 2}. The
true models are:

logit(E(Y )) = 0.5 − 1.3 or[and(x1 ̸= 0, x2 ̸= 1), x3 = 2]

+ 1.5 or(x4 ̸= 0, x5 ̸= 1, x6 ̸= 2) − 1.7 and(x7 = 0, x8 = 1, x9 = 2), (9a)
logit(E(Y )) = 0.5 − 1.3 or[and(x1 ̸= 0, x2 ̸= 1), x3 = 2]

+ 1.5 or(x4 ̸= 0, x5 ̸= 1, x6 ̸= 2) − 1.7 and(x7 = 0, x8 = 1, x9 = 2)

+ 1.1 and(x10 ̸= 0, x11 ̸= 1, x12 ̸= 2) − 0.9 or(x13 = 0, x14 = 1, x15 = 2), (9b)
logit(E(Y )) = 0.5 − 1.3 or[and(x1 ̸= 0, x2 ̸= 1), x3 = 2]

+ 1.5 or(x4 ̸= 0, x5 ̸= 1, x6 ̸= 2) − 1.7 and(x7 = 0, x8 = 1, x9 = 2)

+ 1.1 and(x10 ̸= 0, x11 ̸= 1, x12 ̸= 2) − 0.9 or(x13 = 0, x14 = 1, x15 = 2)

+ 0.7 or[and(x16 = 0, x17 = 1), x18 = 2] − 0.5 and(x19 = 0, x20 = 1, x21 = 2). (9c)

To build the design matrix for the transformed Lasso method, we code inter-
actions between ternary covariates as described in Sect. 2. On the other hand,
because the method used by LogicReg requires binary input, we add dummy
variables to indicate when a covariate takes one of the three values.

Figure 1c shows that for ternary covariates, transformed Lasso works better
than the greedy search method under all sample sizes and numbers of covariates.
The ternary case is more difficult for both methods than the binary case because
it has much larger search spaces for both methods. However, both methods still
show their power to learn good model if there are enough data. When the sample
size reaches 4096, both methods converge to true models for ternary covariates
as well as for binary covariates.

Based on the previous experiments, we can see that transformed Lasso per-
forms better than the greedy search method in all the cases with models of differ-
ent complexities and training sample sizes. The greedy search method achieves
reasonable results only when there is a decent number of samples and input
functions are simple. However, it has very large log-losses as well as large vari-
ances when the sample size is less than 512 in all different settings in the three
experiments. But in real life studies, a relative small number of training samples
is very common. Moreover, the greedy search method fails when the interaction
includes complex operators like xor, which makes the responses less affected by
any single covariate involved in the interaction.

Another factor that we need to consider is computational cost. For the sim-
ple case with three terms in the linear predictor, a total of 30 covariates and
sample size 128 in the first experiment, we need on average 373 s to perform
model learning by the greedy search method in LogicReg, but only 6.0 s for



326 Y. Zou and T. Roos

the transformed Lasso method. For the more complex model with seven terms
including xor operators, a total of 40 covariates and sample size 8196 in the
second experiment, LogicReg uses on average 15 920 s, whereas the Lasso based
method needs only 1 580 s.

4 Discussion

In this study, we propose on approach to learning sparse logistic models with
logical features of multivalued inputs. The same approach can also be applied in
other types of regression models such as Poisson regression and Cox proportional
hazards models. In our experiments with simulated data, our Lasso based method
was able to estimate different models based on and, or, and xor features and
their combinations more effectively than the earlier LogicReg method. More
extensive experiments, including a comparison to other types of state-of-the-
art classification techniques will provide more detailed information about the
performance of the proposed method.

In future work, the proposed approach can be extended in several directions.
Firstly, for handling a large number of variables, we can use the LIBLINEAR [3]
library that scales better for large sparse data. Even then, a very large number
of covariates will necessarily pose problems to methods that include high order
interactions. For example, most genome wide studies may include hundreds of
thousands genomic covariates. Many existing approaches include a screening
stage to narrow down the set of candidate covariates to a manageable number.
This can be done either by exploiting expert knowledge or by other statistical
methods, see, e.g. [6,12]. Exploring suitable screening methods for the trans-
formed Lasso with very high dimensional data is an interesting research direction
that is necessary for many genomics applications.

Moreover, it can be helpful to integrate additional assumptions concerning
the model structure to guide the learning process in the spirit of [1,8]. This can
be achieved by modifying the Lasso penalization in various ways. For instance,
it may be reasonable to assume that if a given high order coefficient takes a non-
zero value, the lower order interactions among the variables that are included
in the higher order interactions are more likely to be non-zero as well. Different
group Lasso techniques are available for achieving this [9]. Furthermore, Lasso
tends to select most significant variables out of a group of correlated variables.
Integrating the structure of predictors can also be beneficial in the case when
the covariates are highly correlated.

Acknowledgments. We thank Mr. Jussi Määttä for checking optimization results
and the anonymous reviewers for useful comments. This work was supported in part
by the Academy of Finland (Centre-of-Excellence COIN) and by the DoCS graduate
school of the Department of Computer Science at the University of Helsinki.



Sparse Logistic Regression with Logical Features 327

References

1. Bien, J., Taylor, J., Tibshirani, R.: A lasso for hierarchical interactions. Ann. Appl.
Stat. 41(3), 1111–1141 (2013)

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
3. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR:

A library for large linear classification. J Mach. Learn. Res. 9, 1871–1874 (2008)
4. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67

(1991)
5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data

Mining, Inference and Prediction. Springer, New York (2009)
6. Holger, S., Ickstadt, K.: Identification of SNP interactions using logic regression.

Biostat. 9(1), 187–198 (2008)
7. Keleş, S., van der Laan, M.J., Vulpe, C.: Regulatory motif finding by logic regres-

sion. Bioinform. 20(16), 2799–2811 (2004)
8. Kim, S., Xing, E.P.: Tree-guided group lasso for multi-response regression with

structured sparsity, with an application to eQTL mapping. Ann. Appl. Stat. 6(3),
1095–1117 (2012)

9. Meier, L., van de Geer, S., Bühlmann, P.: The group lasso for logistic regression.
J. Roy. Stat. Soc B. 70(1), 53–71 (2008)

10. Roos, T., Yu, B.: Estimating sparse models from multivariate discrete data via
transformed Lasso. In: Proceedings of Information Theory and Applications Work-
shop, pp. 290–294. IEEE Press (2009)

11. Ruczinski, I., Kooperberg, C., LeBlanc, M.: Logic regression. J. Comp. Graph Stat.
12(3), 475–511 (2003)

12. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioin-
formatics. Bioinform. 23(19), 2507–2517 (2007)

13. Shi, W., Wahba, G., Wright, S., Lee, K., Klein, R., Klein, B.: LASSO-Patternsearch
algorithm with application to ophthalmology and genomic data. Stat Interface.
1(1), 137–153 (2008)

14. Suehiro, Y., Wong, C.W., Chirieac, L.R., Kondo, Y., Shen, L., Webb, C.R., et al.:
Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways
in colorectal carcinoma. Clin. Cancer Res. 14(9), 2560–2569 (2008)

15. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc
B. 58(1), 267–288 (1996)

16. Zhao, J., Li, J., Xiong, M.: Test for interaction between two unlinked loci. Am. J.
Hum. Gen. 79(5), 831–845 (2006)


