On Sequentially Normalized Maximum Likelihood Models

Teemu Roos and Jorma Rissanen
Complex Systems Computation Group Helsinki Institute for Information Technology HIIT FINLAND

WITMSE-08, Tampere, Finland, August 18, 2008

Universal Models

Given a sequence, $x^{n}=\left(x_{1}, \ldots, x_{n}\right)$, the best fitting model in a model class, \mathcal{M}, is the maximum likelihood model

$$
\sup _{\theta \in \Theta} p\left(x^{n} ; \theta\right)=p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)
$$

Universal Models

Given a sequence, $x^{n}=\left(x_{1}, \ldots, x_{n}\right)$, the best fitting model in a model class, \mathcal{M}, is the maximum likelihood model

$$
\sup _{\theta \in \Theta} p\left(x^{n} ; \theta\right)=p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)
$$

A universal model $q(\cdot)$ achieves almost as short a code-length as the ML model:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{q\left(x^{n}\right)}=0
$$

i.e., the log-likelihood ratio ('regret') is allowed to grow sublinearly.

Universal Models

Given a sequence, $x^{n}=\left(x_{1}, \ldots, x_{n}\right)$, the best fitting model in a model class, \mathcal{M}, is the maximum likelihood model

$$
\sup _{\theta \in \Theta} p\left(x^{n} ; \theta\right)=p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)
$$

A universal model $q(\cdot)$ achieves almost as short a code-length as the ML model:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{q\left(x^{n}\right)}=0
$$

i.e., the log-likelihood ratio ('regret') is allowed to grow sublinearly.
The minimax optimal (NML) model (Shtarkov, 1987):

$$
p_{\mathrm{NML}}\left(x^{n}\right)=\frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{C_{n}}, \quad C_{n}=\sum_{x^{n} \in \mathcal{X}^{n}} p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)
$$

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$
- Fisher information: $\frac{k}{2} \ln \frac{n}{2 \pi}+\ln \int_{\Theta} \sqrt{\operatorname{det} I(\theta)} d \theta$

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$
- Fisher information: $\frac{k}{2} \ln \frac{n}{2 \pi}+\ln \int_{\Theta} \sqrt{\operatorname{det} I(\theta)} d \theta$
(2) Monte Carlo methods

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$
- Fisher information: $\frac{k}{2} \ln \frac{n}{2 \pi}+\ln \int_{\Theta} \sqrt{\operatorname{det} I(\theta)} d \theta$
(2) Monte Carlo methods
(3) Other forms of universal models:
- two-part

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$
- Fisher information: $\frac{k}{2} \ln \frac{n}{2 \pi}+\ln \int_{\Theta} \sqrt{\operatorname{det} I(\theta)} d \theta$
(2) Monte Carlo methods
(3) Other forms of universal models:
- two-part
- plug-in (predictive least squares (PLS), predictive MDL)

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$
- Fisher information: $\frac{k}{2} \ln \frac{n}{2 \pi}+\ln \int_{\Theta} \sqrt{\operatorname{det} I(\theta)} d \theta$
(2) Monte Carlo methods
(3) Other forms of universal models:
- two-part
- plug-in (predictive least squares (PLS), predictive MDL)
- mixtures (Bayes)

Approximations and Alternatives to NML

(1) Approximations:

- BIC: $\frac{k}{2} \ln n$
- Fisher information: $\frac{k}{2} \ln \frac{n}{2 \pi}+\ln \int_{\Theta} \sqrt{\operatorname{det} I(\theta)} d \theta$
(2) Monte Carlo methods
(3) Other forms of universal models:
- two-part
- plug-in (predictive least squares (PLS), predictive MDL)
- mixtures (Bayes)
- sequential NML

Sequential NML

Basic Idea

(1) Maximize likelihood (like in NML).
(2) Normalize over current observation, x_{i}.
(3) Combine obtained conditionals.

Sequential NML

Basic Idea

(1) Maximize likelihood (like in NML).
(2) Normalize over current observation, x_{i}.
(3) Combine obtained conditionals.

Always gives a stochastic process (unlike NML).

Sequential NML

Basic Idea

(1) Maximize likelihood (like in NML).
(2) Normalize over current observation, x_{i}.
(3) Combine obtained conditionals.

Always gives a stochastic process (unlike NML).
Each conditional is "locally" minimax optimal.

Sequential NML

The sNML (variant 1) model is defined as

$$
p_{\mathrm{SNML} 1}\left(x^{n}\right)=\prod_{i=1}^{n} \frac{p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)}{K_{i}\left(x^{i-1}\right)}
$$

Sequential NML

The sNML (variant 1) model is defined as

$$
\begin{aligned}
p_{\text {sNML } 1}\left(x^{n}\right) & =\prod_{i=1}^{n} \frac{p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)}{K_{i}\left(x^{i-1}\right)} \\
K_{i}\left(x^{i-1}\right) & =\sum_{x_{i}} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)
\end{aligned}
$$

Sequential NML

The sNML (variant 1) model is defined as

$$
\begin{aligned}
p_{\mathrm{sNML} 1}\left(x^{n}\right) & =\prod_{i=1}^{n} \frac{p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)}{K_{i}\left(x^{i-1}\right)} \\
K_{i}\left(x^{i-1}\right) & =\sum_{x_{i}} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)
\end{aligned}
$$

Compare to the plug-in model:

$$
p_{\text {plug }-\mathrm{in}}\left(x^{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i-1}\right)\right)
$$

Sequential NML

The sNML (variant 1) model is defined as

$$
\begin{aligned}
p_{\text {SNML } 1}\left(x^{n}\right) & =\prod_{i=1}^{n} \frac{p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)}{K_{i}\left(x^{i-1}\right)} \\
K_{i}\left(x^{i-1}\right) & =\sum_{x_{i}} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)
\end{aligned}
$$

Compare to the 'ordinary' NML model:

$$
\begin{aligned}
p_{\mathrm{NML}}\left(x^{n}\right) & =\frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{C_{n}} \\
C_{n} & =\sum_{x^{n} \in \mathcal{X}^{n}} p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)
\end{aligned}
$$

Sequential NML

The sNML (variant 1) model is defined as

$$
\begin{aligned}
p_{\text {SNML } 1}\left(x^{n}\right) & =\prod_{i=1}^{n} \frac{p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)}{K_{i}\left(x^{i-1}\right)} \\
K_{i}\left(x^{i-1}\right) & =\sum_{x_{i}} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{i}\right)\right)
\end{aligned}
$$

The second variant of $s N M L$ is defined as

$$
\begin{aligned}
p_{\text {sNML2 }}\left(x^{n}\right) & =\prod_{i=1}^{n} \frac{p\left(x^{i} ; \hat{\theta}\left(x^{i}\right)\right)}{K_{i}^{\prime}\left(x^{i-1}\right)} \\
K_{i}^{\prime}\left(x^{i-1}\right) & =\sum_{x_{i}} p\left(x^{i} ; \hat{\theta}\left(x^{i}\right)\right)
\end{aligned}
$$

Computational Complexity

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

Computational Complexity

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

- In NML, we have a sum of products:

$$
C_{n}=\sum_{x^{n}} p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)=\sum_{x^{n}} \prod_{i=1}^{n} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{n}\right)\right) .
$$

Computational Complexity

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

- In NML, we have a sum of products:

$$
C_{n}=\sum_{x^{n}} p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)=\sum_{x^{n}} \prod_{i=1}^{n} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{n}\right)\right) .
$$

- In sNML, we have a product of sums:

$$
Z_{n}\left(x^{n}\right)=\prod_{i=1}^{n} K_{i}\left(x^{i-1}\right)=\prod_{i=1}^{n} \sum_{x_{i}^{\prime}} p\left(x_{i}^{\prime} \mid x^{i-1} ; \hat{\theta}\left(x^{i-1}, x_{i}^{\prime}\right)\right)
$$

Computational Complexity

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

- In NML, we have a sum of products:

$$
C_{n}=\sum_{x^{n}} p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)=\sum_{x^{n}} \prod_{i=1}^{n} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{n}\right)\right)
$$

- In sNML, we have a product of sums:

$$
Z_{n}\left(x^{n}\right)=\prod_{i=1}^{n} K_{i}\left(x^{i-1}\right)=\prod_{i=1}^{n} \sum_{x_{i}^{\prime}} p\left(x_{i}^{\prime} \mid x^{i-1} ; \hat{\theta}\left(x^{i-1}, x_{i}^{\prime}\right)\right)
$$

Remarkably, we can evaluate both in $\mathcal{O}(n)$ time (Kontkanen \& Myllymäki, 2007).

Computational Complexity

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

- In NML, we have a sum of products:

$$
C_{n}=\sum_{x^{n}} p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)=\sum_{x^{n}} \prod_{i=1}^{n} p\left(x_{i} \mid x^{i-1} ; \hat{\theta}\left(x^{n}\right)\right) .
$$

- In sNML, we have a product of sums:

$$
Z_{n}\left(x^{n}\right)=\prod_{i=1}^{n} K_{i}\left(x^{i-1}\right)=\prod_{i=1}^{n} \sum_{x_{i}^{\prime}} p\left(x_{i}^{\prime} \mid x^{i-1} ; \hat{\theta}\left(x^{i-1}, x_{i}^{\prime}\right)\right)
$$

Remarkably, we can evaluate both in $\mathcal{O}(n)$ time (Kontkanen \& Myllymäki, 2007). In general, NML is hard but sNML is easy.

Properties of sNML: Bernoulli case

Both variants of sNML are universal:

Properties of sNML: Bernoulli case

Both variants of sNML are universal:

- sNML1 is identical to Laplace's "add one" rule:

$$
P_{\mathrm{SNML} 1}\left(1 \mid x^{n}\right)=P_{\mathrm{Lap}}\left(1 \mid x^{n}\right)=\frac{n_{1}+1}{n+2}
$$

Properties of sNML: Bernoulli case

Both variants of sNML are universal:

- sNML1 is identical to Laplace's "add one" rule:

$$
P_{\text {sNML1 }}\left(1 \mid x^{n}\right)=P_{\text {Lap }}\left(1 \mid x^{n}\right)=\frac{n_{1}+1}{n+2}
$$

- (Takimoto and Warmuth, 2000): The worst-case regret of sNML2 is bounded by

$$
\sup _{x^{n}} \ln \frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{p_{\mathrm{sNML} 2}\left(x^{n}\right)} \leq \frac{1}{2} \ln (n+1)+\frac{1}{2} .
$$

Properties of sNML: Bernoulli case

Both variants of sNML are universal:

- sNML1 is identical to Laplace's "add one" rule:

$$
P_{\mathrm{SNML} 1}\left(1 \mid x^{n}\right)=P_{\mathrm{Lap}}\left(1 \mid x^{n}\right)=\frac{n_{1}+1}{n+2}
$$

- (Takimoto and Warmuth, 2000): The worst-case regret of sNML2 is bounded by

$$
\sup _{x^{n}} \ln \frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{p_{\mathrm{sNML} 2}\left(x^{n}\right)} \leq \frac{1}{2} \ln (n+1)+\frac{1}{2}
$$

Is the sun going to rise? $x^{n}=111 \ldots 1$.

$$
\left(P_{\text {Lap }}\left(1 \mid x^{n}\right)\right)_{n=0}^{\infty}=\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right) .
$$

Properties of sNML: Bernoulli case

Both variants of sNML are universal:

- sNML1 is identical to Laplace's "add one" rule:

$$
P_{\mathrm{SNML} 1}\left(1 \mid x^{n}\right)=P_{\mathrm{Lap}}\left(1 \mid x^{n}\right)=\frac{n_{1}+1}{n+2}
$$

- (Takimoto and Warmuth, 2000): The worst-case regret of sNML2 is bounded by

$$
\sup _{x^{n}} \ln \frac{p\left(x^{n} ; \hat{\theta}\left(x^{n}\right)\right)}{p_{\mathrm{sNML} 2}\left(x^{n}\right)} \leq \frac{1}{2} \ln (n+1)+\frac{1}{2}
$$

Is the sun going to rise? $x^{n}=111 \ldots 1$.

$$
\begin{aligned}
\left(P_{\text {Lap }}\left(1 \mid x^{n}\right)\right)_{n=0}^{\infty} & =\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right) . \\
\left(P_{\text {sNML } 2}\left(1 \mid x^{n}\right)\right)_{n=0}^{\infty} & =\left(\frac{1}{2}, \frac{4}{5}, \frac{27}{31}, \frac{256}{283}, \ldots\right) .
\end{aligned}
$$

Regrets Visualized

Laplace/sNML-1

Regrets Visualized

sNML-2

NML

Linear-Quadratic Models

Linear model $y_{t}=\beta^{\prime} \bar{x}_{t}+\epsilon_{t}$ with Gaussian errors $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Linear-Quadratic Models

Linear model $y_{t}=\beta^{\prime} \bar{x}_{t}+\epsilon_{t}$ with Gaussian errors $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Least squares parameters $b_{t}^{\prime}=\arg \min _{\beta}\left\|\beta^{\prime} X_{t}-y^{t}\right\|^{2}$.

Linear-Quadratic Models

Linear model $y_{t}=\beta^{\prime} \bar{x}_{t}+\epsilon_{t}$ with Gaussian errors $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Least squares parameters $b_{t}^{\prime}=\arg \min _{\beta}\left\|\beta^{\prime} X_{t}-y^{t}\right\|^{2}$.

Consider the following three representations:

$$
\begin{array}{cl}
y_{t}=b_{t-1}^{\prime} \bar{x}_{t}+e_{t} & \text { (1) "plug-in" } \\
y_{t}=b_{n}^{\prime} \bar{x}_{t}+\hat{\epsilon}_{t}(n) & \text { (2) "least-squares" } \\
y_{t}=b_{t}^{\prime} \bar{x}_{t}+\hat{e}_{t} & \text { (3) "sNML" }
\end{array}
$$

Linear-Quadratic Models

Linear model $y_{t}=\beta^{\prime} \bar{x}_{t}+\epsilon_{t}$ with Gaussian errors $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Least squares parameters $b_{t}^{\prime}=\arg \min _{\beta}\left\|\beta^{\prime} X_{t}-y^{t}\right\|^{2}$.

Consider the following three representations:

$$
\begin{gathered}
y_{t}=b_{t-1}^{\prime} \bar{x}_{t}+e_{t} \\
y_{t}=b_{n}^{\prime} \bar{x}_{t}+\hat{\epsilon}_{t}(n) \\
y_{t}=b_{t}^{\prime} \bar{x}_{t}+\hat{e}_{t}
\end{gathered}
$$

(1) "plug-in"
(2) "least-squares"
(3) "sNML"

Representation (1) corresponds to the predictive least squares (PLS) model selection criterion: $\sum_{i=m+1}^{n} e_{t}^{2}$.

Linear-Quadratic Models

Linear model $y_{t}=\beta^{\prime} \bar{x}_{t}+\epsilon_{t}$ with Gaussian errors $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Least squares parameters $b_{t}^{\prime}=\arg \min _{\beta}\left\|\beta^{\prime} X_{t}-y^{t}\right\|^{2}$.

Consider the following three representations:

$$
\begin{gathered}
y_{t}=b_{t-1}^{\prime} \bar{x}_{t}+e_{t} \\
y_{t}=b_{n}^{\prime} \bar{x}_{t}+\hat{\epsilon}_{t}(n) \\
y_{t}=b_{t}^{\prime} \bar{x}_{t}+\hat{e}_{t}
\end{gathered}
$$

(1) "plug-in"
(2) "least-squares"
(3) "sNML"

Representation (1) corresponds to the predictive least squares (PLS) model selection criterion: $\sum_{i=m+1}^{n} e_{t}^{2}$.

Representation (2) leads to the AIC, BIC, and NML criteria.

Linear-Quadratic Models

Linear model $y_{t}=\beta^{\prime} \bar{x}_{t}+\epsilon_{t}$ with Gaussian errors $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Least squares parameters $b_{t}^{\prime}=\arg \min _{\beta}\left\|\beta^{\prime} X_{t}-y^{t}\right\|^{2}$.

Consider the following three representations:

$$
\begin{gathered}
y_{t}=b_{t-1}^{\prime} \bar{x}_{t}+e_{t} \\
y_{t}=b_{n}^{\prime} \bar{x}_{t}+\hat{\epsilon}_{t}(n) \\
y_{t}=b_{t}^{\prime} \bar{x}_{t}+\hat{e}_{t}
\end{gathered}
$$

(1) "plug-in"
(2) "least-squares"
(3) "sNML"

Representation (1) corresponds to the predictive least squares (PLS) model selection criterion: $\sum_{i=m+1}^{n} e_{t}^{2}$.

Representation (2) leads to the AIC, BIC, and NML criteria.
Representation (3) is new. \Rightarrow sequentially normalized least squares (SNLS)

Sequentially Normalized Least Squares

$\underline{\text { Fixed variance } \hat{\sigma}_{t}^{2}=\sigma^{2} \text { case: }}$
Non-normalized conditional:

$$
f\left(y_{t} \mid y^{t-1}, X_{t} ; \sigma^{2}, b_{t}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-\hat{y}_{t}\right)^{2}}{2 \sigma^{2}}\right)
$$

where $\hat{y}_{t}=b_{t}^{\prime} \bar{x}_{t}$.

Sequentially Normalized Least Squares

Fixed variance $\hat{\sigma}_{t}^{2}=\sigma^{2}$ case:
Non-normalized conditional:

$$
f\left(y_{t} \mid y^{t-1}, x_{t} ; \sigma^{2}, b_{t}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-\hat{y}_{t}\right)^{2}}{2 \sigma^{2}}\right)
$$

where $\hat{y}_{t}=b_{t}^{\prime} \bar{x}_{t}$.
Normalized conditional:

$$
f_{\mathrm{SNLS}}\left(y_{t} \mid y^{t-1}, x_{t} ; \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \tau}} \exp \left(-\frac{\left(y_{t}-b_{t-1}^{\prime} \bar{x}_{t}\right)^{2}}{2 \tau}\right)
$$

where $\tau=\left(1+c_{t}\right)^{2} \sigma^{2}, c_{t}=\bar{x}_{t}^{\prime}\left(X_{t} X_{t}^{\prime}\right)^{-1} \bar{x}_{t}=\mathcal{O}(1 / t)$.

Sequentially Normalized Least Squares

Fixed variance $\hat{\sigma}_{t}^{2}=\sigma^{2}$ case:
Non-normalized conditional:

$$
f\left(y_{t} \mid y^{t-1}, x_{t} ; \sigma^{2}, b_{t}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-\hat{y}_{t}\right)^{2}}{2 \sigma^{2}}\right)
$$

where $\hat{y}_{t}=b_{t}^{\prime} \bar{x}_{t}$.
Normalized conditional:

$$
f_{\mathrm{SNLS}}\left(y_{t} \mid y^{t-1}, x_{t} ; \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \tau}} \exp \left(-\frac{\left(y_{t}-b_{t-1}^{\prime} \bar{x}_{t}\right)^{2}}{2 \tau}\right)
$$

where $\tau=\left(1+c_{t}\right)^{2} \sigma^{2}, c_{t}=\bar{x}_{t}^{\prime}\left(X_{t} X_{t}^{\prime}\right)^{-1} \bar{x}_{t}=\mathcal{O}(1 / t)$.

Sequentially Normalized Least Squares

Fixed variance $\hat{\sigma}_{t}^{2}=\sigma^{2}$ case:
Non-normalized conditional:

$$
f\left(y_{t} \mid y^{t-1}, X_{t} ; \sigma^{2}, b_{t}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-\hat{y}_{t}\right)^{2}}{2 \sigma^{2}}\right)
$$

where $\hat{y}_{t}=b_{t}^{\prime} \bar{x}_{t}$.
Normalized conditional:

$$
f_{\mathrm{SNLS}}\left(y_{t} \mid y^{t-1}, X_{t} ; \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \tau}} \exp \left(-\frac{\left(y_{t}-b_{t-1}^{\prime} \bar{x}_{t}\right)^{2}}{2 \tau}\right)
$$

where $\tau=\left(1+c_{t}\right)^{2} \sigma^{2}, c_{t}=\bar{x}_{t}^{\prime}\left(X_{t} X_{t}^{\prime}\right)^{-1} \bar{x}_{t}=\mathcal{O}(1 / t)$.

Sequentially Normalized Least Squares

Free variance case:
Consider the maximization problem

$$
\sup _{\sigma^{2}} \prod_{t=m+1}^{n} f\left(y_{t} \mid y^{t-1}, X_{t} ; \sigma^{2}, b_{t}\right)
$$

Sequentially Normalized Least Squares

Free variance case:
Consider the maximization problem

$$
\sup _{\sigma^{2}} \prod_{t=m+1}^{n} f\left(y_{t} \mid y^{t-1}, X_{t} ; \sigma^{2}, b_{t}\right)
$$

The maximizing variance is given by $\hat{\tau}_{n}=\frac{1}{n-m} \sum_{t=m+1}^{n}\left(y_{t}-\hat{y}_{t}\right)^{2}$, and the resulting non-normalized joint density is

$$
\left(2 \pi e \hat{\tau}_{n}\right)^{-(n-m) / 2}
$$

Sequentially Normalized Least Squares

The SNLS criterion is given by
$\operatorname{SNLS}(n, k)$

$$
\begin{aligned}
& =\frac{n-m}{2} \ln \hat{\tau}_{n}-\frac{1}{2} \ln \hat{e}_{m+1}-\ln \frac{\Gamma\left(\frac{n-m}{2}\right)}{\Gamma(1 / 2)}+\ln \prod_{t=m+2}^{n} \frac{\sqrt{\pi}}{1-d_{t}} \\
& =\frac{n-m}{2} \ln \left(2 \pi e \hat{\tau}_{n}\right)+\sum_{t=m+1}^{n} \ln \left(1+c_{t}\right)+R_{n}
\end{aligned}
$$

where the remainder term R_{n} is insignificant.

Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter linear-quadratic model (either non-random X_{n}, or AR model), then we have

$$
\operatorname{SNLS}(n, k)=\frac{n-m}{2} \ln \left(2 \pi e \hat{\tau}_{n}\right)+\frac{2 k+1}{2} \ln n+o(\ln n),
$$

Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter linear-quadratic model (either non-random X_{n}, or AR model), then we have

$$
\operatorname{SNLS}(n, k)=\frac{n-m}{2} \ln \left(2 \pi e \hat{\tau}_{n}\right)+\frac{2 k+1}{2} \ln n+o(\ln n),
$$

and

$$
\operatorname{SNLS}(n, k)=\frac{n-m}{2} \ln \left(2 \pi e \hat{\sigma}_{n}^{2}\right)+\frac{k+1}{2} \ln n+o(\ln n)
$$

almost surely for almost all β and σ^{2}.

Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter linear-quadratic model (either non-random X_{n}, or AR model), then we have

$$
\operatorname{SNLS}(n, k)=\frac{n-m}{2} \ln \left(2 \pi e \hat{\tau}_{n}\right)+\frac{2 k+1}{2} \ln n+o(\ln n),
$$

and

$$
\operatorname{SNLS}(n, k)=\frac{n-m}{2} \ln \left(2 \pi e \hat{\sigma}_{n}^{2}\right)+\frac{k+1}{2} \ln n+o(\ln n)
$$

almost surely for almost all β and σ^{2}.
Note that the effective number of parameters is doubled.

Experiment: AR Model Order Estimation
sample size, n

		50	100	200	400	800	1600	3200
$k=1$	AIC	70.5	71.3	72.0	70.0	71.4	70.8	70.9
	BIC	93.5	96.9	97.9	$\mathbf{9 8 . 0}$	99.4	99.5	99.4
	PLS	75.8	86.3	91.1	93.5	96.7	97.8	98.1
	NML	82.5	88.3	89.7	91.5	94.3	95.9	96.6
	SNLS	78.5	87.5	92.2	93.9	97.0	98.1	98.3
$k=4$	AIC	42.8	52.5	60.1	63.3	65.4	66.5	67.5
	BIC	45.7	59.6	67.8	76.5	82.6	88.3	91.4
	PLS	42.1	58.3	68.5	77.0	82.5	88.3	91.9
	NML	45.0	60.2	68.0	76.7	82.5	88.0	91.6
	SNLS	42.4	59.2	69.4	77.0	82.4	88.5	92.0
$k=7$	AIC	33.7	45.4	55.3	59.6	63.6	65.7	67.3
	BIC	29.2	43.4	59.1	69.5	77.9	82.8	88.6
	PLS	30.0	44.7	60.5	70.0	78.5	82.9	88.6
	NML	28.8	44.2	59.8	69.8	78.3	83.0	88.4
	SNLS	30.1	46.5	61.2	70.6	79.4	83.2	88.9
$k=10$	AIC	28.5	43.9	51.5	59.3	64.2	67.1	67.7
	BIC	20.6	35.7	51.0	66.1	74.4	81.4	85.5
	PLS	20.1	35.7	50.7	65.0	73.4	80.8	84.8
	NML	20.2	37.1	51.9	66.8	74.6	81.4	85.8
	SNLS	21.4	37.9	52.3	66.5	74.8	81.8	85.6

