On Sequentially Normalized Maximum Likelihood Models

Teemu Roos and Jorma Rissanen

Complex Systems Computation Group Helsinki Institute for Information Technology HIIT FINLAND

WITMSE-08, Tampere, Finland, August 18, 2008

Universal Models

Given a sequence, $x^n = (x_1, \ldots, x_n)$, the best fitting model in a model class, \mathcal{M} , is the **maximum likelihood** model

$$\sup_{\theta\in\Theta}p(x^n\ ;\ \theta)=p(x^n\ ;\ \hat\theta(x^n))\ .$$

A B M A B M

3

Universal Models

Given a sequence, $x^n = (x_1, \ldots, x_n)$, the best fitting model in a model class, \mathcal{M} , is the **maximum likelihood** model

$$\sup_{\theta\in\Theta}p(x^n\ ;\ \theta)=p(x^n\ ;\ \hat\theta(x^n))\ .$$

A **universal model** $q(\cdot)$ achieves almost as short a code-length as the ML model:

$$\lim_{n\to\infty}\frac{1}{n}\ln\frac{p(x^n\,;\,\hat{\theta}(x^n))}{q(x^n)}=0 \;\;,$$

i.e., the log-likelihood ratio (**'regret'**) is allowed to grow sublinearly.

Universal Models

Given a sequence, $x^n = (x_1, \ldots, x_n)$, the best fitting model in a model class, \mathcal{M} , is the **maximum likelihood** model

$$\sup_{\theta\in\Theta}p(x^n\ ;\ \theta)=p(x^n\ ;\ \hat\theta(x^n))\ .$$

A **universal model** $q(\cdot)$ achieves almost as short a code-length as the ML model:

$$\lim_{n\to\infty}\frac{1}{n}\ln\frac{p(x^n\,;\,\hat{\theta}(x^n))}{q(x^n)}=0$$
,

i.e., the log-likelihood ratio (**'regret'**) is allowed to grow sublinearly.

The minimax optimal (NML) model (Shtarkov, 1987):

$$p_{\text{NML}}(x^n) = \frac{p(x^n ; \hat{\theta}(x^n))}{C_n} , \quad C_n = \sum_{x^n \in \mathcal{X}^n} p(x^n ; \hat{\theta}(x^n)) .$$

• BIC: $\frac{k}{2} \ln n$

.≣ →

Approximations:

• BIC:
$$\frac{k}{2} \ln n$$

• Fisher information: $\frac{k}{2} \ln \frac{n}{2\pi} + \ln \int_{\Theta} \sqrt{\det I(\theta)} d\theta$

∃ ▶ ∢

Approximations:

• BIC:
$$\frac{k}{2} \ln n$$

• Fisher information: $\frac{k}{2} \ln \frac{n}{2\pi} + \ln \int_{\Theta} \sqrt{\det I(\theta)} d\theta$

Ø Monte Carlo methods

-

3 N

Approximations:

• BIC:
$$\frac{k}{2} \ln n$$

• Fisher information: $\frac{k}{2} \ln \frac{n}{2\pi} + \ln \int_{\Theta} \sqrt{\det I(\theta)} d\theta$

- Ø Monte Carlo methods
- Other forms of universal models:
 - two-part

Approximations:

• BIC:
$$\frac{k}{2} \ln n$$

• Fisher information: $\frac{k}{2} \ln \frac{n}{2\pi} + \ln \int_{\Theta} \sqrt{\det I(\theta)} d\theta$

- Ø Monte Carlo methods
- Other forms of universal models:
 - two-part
 - plug-in (predictive least squares (PLS), predictive MDL)

Approximations:

• BIC:
$$\frac{k}{2} \ln n$$

• Fisher information: $\frac{k}{2} \ln \frac{n}{2\pi} + \ln \int_{\Theta} \sqrt{\det I(\theta)} d\theta$

- Ø Monte Carlo methods
- Other forms of universal models:
 - two-part
 - plug-in (predictive least squares (PLS), predictive MDL)
 - mixtures (Bayes)

医下子 医

Approximations:

• BIC:
$$\frac{k}{2} \ln n$$

• Fisher information: $\frac{k}{2} \ln \frac{n}{2\pi} + \ln \int_{\Theta} \sqrt{\det I(\theta)} d\theta$

- Ø Monte Carlo methods
- Other forms of universal models:
 - two-part
 - plug-in (predictive least squares (PLS), predictive MDL)
 - mixtures (Bayes)
 - sequential NML

Basic Idea

- Maximize likelihood (like in NML).
- **2** Normalize over current observation, x_i .
- Ombine obtained conditionals.

Image: Image:

Basic Idea

- Maximize likelihood (like in NML).
- **2** Normalize over current observation, x_i .
- Ombine obtained conditionals.

Always gives a stochastic process (unlike NML).

4 E b

Basic Idea

- Maximize likelihood (like in NML).
- **2** Normalize over current observation, x_i .
- Ombine obtained conditionals.

Always gives a stochastic process (unlike NML).

Each conditional is "locally" minimax optimal.

Sequential NML

The sNML (variant 1) model is defined as

$$p_{\text{sNML1}}(x^n) = \prod_{i=1}^n \frac{p(x_i \mid x^{i-1} ; \ \hat{ heta}(x^i))}{K_i(x^{i-1})}$$

3

/□ ▶ < 글 ▶ < 글

Sequential NML

The sNML (variant 1) model is defined as

$$p_{ ext{sNML1}}(x^n) = \prod_{i=1}^n rac{p(x_i \mid x^{i-1} ; \hat{ heta}(x^i))}{K_i(x^{i-1})}
onumber \ K_i(x^{i-1}) = \sum_{x_i} p(x_i \mid x^{i-1} ; \hat{ heta}(x^i))$$

3

/□ ▶ < 글 ▶ < 글

The sNML (variant 1) model is defined as

$$p_{ ext{sNML1}}(x^n) = \prod_{i=1}^n rac{p(x_i \mid x^{i-1} ; \hat{ heta}(x^i))}{K_i(x^{i-1})}
onumber \ K_i(x^{i-1}) = \sum_{x_i} p(x_i \mid x^{i-1} ; \hat{ heta}(x^i))$$

Compare to the plug-in model:

$$p_{\text{plug-in}}(x^n) = \prod_{i=1}^n p(x_i \mid x^{i-1}; \ \hat{\theta}(x^{i-1}))$$

Image: Image:

The sNML (variant 1) model is defined as

$$p_{ ext{sNML1}}(x^n) = \prod_{i=1}^n rac{p(x_i \mid x^{i-1} ; \hat{ heta}(x^i))}{K_i(x^{i-1})}
onumber \ K_i(x^{i-1}) = \sum_{x_i} p(x_i \mid x^{i-1} ; \hat{ heta}(x^i))$$

Compare to the 'ordinary' NML model:

$$p_{\text{NML}}(x^n) = \frac{p(x^n ; \hat{\theta}(x^n))}{C_n}$$
$$C_n = \sum_{x^n \in \mathcal{X}^n} p(x^n ; \hat{\theta}(x^n))$$

(*) *) *) *)

The sNML (variant 1) model is defined as

$$egin{split} p_{ ext{sNML1}}(x^n) &= \prod_{i=1}^n rac{p(x_i \mid x^{i-1} \;;\; \hat{ heta}(x^i))}{\mathcal{K}_i(x^{i-1})} \ \mathcal{K}_i(x^{i-1}) &= \sum_{x_i} p(x_i \mid x^{i-1} \;;\; \hat{ heta}(x^i)) \end{split}$$

The second variant of sNML is defined as

$$p_{\text{sNML2}}(x^n) = \prod_{i=1}^n \frac{p(x^i ; \hat{\theta}(x^i))}{K'_i(x^{i-1})}$$
$$K'_i(x^{i-1}) = \sum_{x_i} p(x^i ; \hat{\theta}(x^i))$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

• In NML, we have a sum of products:

$$C_n = \sum_{x^n} p(x^n ; \hat{\theta}(x^n)) = \sum_{x^n} \prod_{i=1}^n p(x_i \mid x^{i-1} ; \hat{\theta}(x^n)).$$

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

• In NML, we have a sum of products:

$$C_n = \sum_{x^n} p(x^n; \hat{\theta}(x^n)) = \sum_{x^n} \prod_{i=1}^n p(x_i \mid x^{i-1}; \hat{\theta}(x^n)).$$

• In sNML, we have a product of sums:

$$Z_n(x^n) = \prod_{i=1}^n K_i(x^{i-1}) = \prod_{i=1}^n \sum_{x'_i} p(x'_i \mid x^{i-1} ; \hat{\theta}(x^{i-1}, x'_i)).$$

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

• In NML, we have a sum of products:

$$C_n = \sum_{x^n} p(x^n; \hat{\theta}(x^n)) = \sum_{x^n} \prod_{i=1}^n p(x_i \mid x^{i-1}; \hat{\theta}(x^n)).$$

• In sNML, we have a product of sums:

$$Z_n(x^n) = \prod_{i=1}^n K_i(x^{i-1}) = \prod_{i=1}^n \sum_{x'_i} p(x'_i \mid x^{i-1} ; \hat{\theta}(x^{i-1}, x'_i)).$$

Remarkably, we can evaluate both in O(n) time (Kontkanen & Myllymäki, 2007).

The only computational issue in applying NML/sNML in the discrete (multinomial) case is the normalization factor.

• In NML, we have a sum of products:

$$C_n = \sum_{x^n} p(x^n; \hat{\theta}(x^n)) = \sum_{x^n} \prod_{i=1}^n p(x_i \mid x^{i-1}; \hat{\theta}(x^n)).$$

• In sNML, we have a product of sums:

$$Z_n(x^n) = \prod_{i=1}^n K_i(x^{i-1}) = \prod_{i=1}^n \sum_{x'_i} p(x'_i \mid x^{i-1} ; \hat{\theta}(x^{i-1}, x'_i)).$$

Remarkably, we can evaluate both in $\mathcal{O}(n)$ time (Kontkanen & Myllymäki, 2007). In general, **NML is hard** but **sNML is easy**.

Both variants of sNML are universal:

∃ >

Both variants of sNML are universal:

• sNML1 is identical to Laplace's "add one" rule:

$$\mathsf{P}_{\mathrm{sNML1}}(1\mid x^n) = \mathsf{P}_{\mathrm{Lap}}(1\mid x^n) = rac{n_1+1}{n+2}.$$

Both variants of sNML are universal:

• sNML1 is identical to Laplace's "add one" rule:

$$P_{ ext{sNML1}}(1 \mid x^n) = P_{ ext{Lap}}(1 \mid x^n) = rac{n_1+1}{n+2}.$$

• (Takimoto and Warmuth, 2000): The worst-case regret of sNML2 is bounded by

$$\sup_{x^n} \ln \frac{p(x^n \ ; \ \hat{\theta}(x^n))}{p_{\mathrm{sNML2}}(x^n)} \leq \frac{1}{2} \ln(n+1) + \frac{1}{2}.$$

Both variants of sNML are universal:

• sNML1 is identical to Laplace's "add one" rule:

$$P_{ ext{sNML1}}(1 \mid x^n) = P_{ ext{Lap}}(1 \mid x^n) = rac{n_1+1}{n+2}.$$

• (Takimoto and Warmuth, 2000): The worst-case regret of sNML2 is bounded by

$$\sup_{x^n} \ln \frac{p(x^n \ ; \ \hat{\theta}(x^n))}{p_{\mathrm{sNML2}}(x^n)} \leq \frac{1}{2} \ln(n+1) + \frac{1}{2}.$$

Is the sun going to rise? $x^n = 111...1$.

$$(P_{\text{Lap}}(1 \mid x^n))_{n=0}^{\infty} = \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right).$$

ъ

3.5

Both variants of sNML are universal:

• sNML1 is identical to Laplace's "add one" rule:

$$P_{ ext{sNML1}}(1 \mid x^n) = P_{ ext{Lap}}(1 \mid x^n) = rac{n_1+1}{n+2}.$$

• (Takimoto and Warmuth, 2000): The worst-case regret of sNML2 is bounded by

$$\sup_{x^n} \ln \frac{p(x^n \ ; \ \hat{\theta}(x^n))}{p_{\mathrm{sNML2}}(x^n)} \leq \frac{1}{2} \ln(n+1) + \frac{1}{2}.$$

Is the sun going to rise? $x^n = 111...1$.

$$(P_{ ext{Lap}}(1 \mid x^n))_{n=0}^{\infty} = \left(rac{1}{2}, rac{2}{3}, rac{3}{4}, rac{4}{5}, \ldots
ight).
onumber \ (P_{ ext{sNML2}}(1 \mid x^n))_{n=0}^{\infty} = \left(rac{1}{2}, rac{4}{5}, rac{27}{31}, rac{256}{283}, \ldots
ight).$$

ъ

Regrets Visualized

з

sNML-2

NML

< ∃ →

з

Linear model $y_t = \beta' \bar{x}_t + \epsilon_t$ with Gaussian errors $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

3

Linear model $y_t = \beta' \bar{x}_t + \epsilon_t$ with Gaussian errors $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Least squares parameters $b'_t = \arg \min_{\beta} \|\beta' X_t - y^t\|^2$.

Linear model $y_t = \beta' \bar{x}_t + \epsilon_t$ with Gaussian errors $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Least squares parameters $b'_t = \arg \min_{\beta} \|\beta' X_t - y^t\|^2$.

Consider the following three representations:

$$y_t = b'_{t-1}\bar{x}_t + e_t$$
(1) "plug-in"

$$y_t = b'_n\bar{x}_t + \hat{\epsilon}_t(n)$$
(2) "least-squares"

$$y_t = b'_t\bar{x}_t + \hat{e}_t$$
(3) "sNML"

Linear model $y_t = \beta' \bar{x}_t + \epsilon_t$ with Gaussian errors $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Least squares parameters $b'_t = \arg \min_{\beta} \|\beta' X_t - y^t\|^2$.

Consider the following three representations:

$$y_t = b'_{t-1}\bar{x}_t + e_t$$
(1) "plug-in"

$$y_t = b'_n \bar{x}_t + \hat{\epsilon}_t(n)$$
(2) "least-squares"

$$y_t = b'_t \bar{x}_t + \hat{e}_t$$
(3) "sNML"

Representation (1) corresponds to the **predictive least squares** (PLS) model selection criterion: $\sum_{i=m+1}^{n} e_t^2$.

Linear model $y_t = \beta' \bar{x}_t + \epsilon_t$ with Gaussian errors $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Least squares parameters $b'_t = \arg \min_{\beta} \|\beta' X_t - y^t\|^2$.

Consider the following three representations:

$$y_t = b'_{t-1}\bar{x}_t + e_t$$
(1) "plug-in"

$$y_t = b'_n \bar{x}_t + \hat{\epsilon}_t(n)$$
(2) "least-squares"

$$y_t = b'_t \bar{x}_t + \hat{e}_t$$
(3) "sNML"

Representation (1) corresponds to the **predictive least squares** (PLS) model selection criterion: $\sum_{i=m+1}^{n} e_t^2$.

Representation (2) leads to the AIC, BIC, and NML criteria.

Linear model $y_t = \beta' \bar{x}_t + \epsilon_t$ with Gaussian errors $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Least squares parameters $b'_t = \arg \min_{\beta} \|\beta' X_t - y^t\|^2$.

Consider the following three representations:

$$y_t = b'_{t-1}\bar{x}_t + e_t \qquad (1) \quad \text{``plug-in''}$$

$$y_t = b'_n\bar{x}_t + \hat{\epsilon}_t(n) \qquad (2) \quad \text{``least-squares''}$$

$$y_t = b'_t\bar{x}_t + \hat{e}_t \qquad (3) \quad \text{``sNML''}$$

Representation (1) corresponds to the **predictive least squares** (PLS) model selection criterion: $\sum_{i=m+1}^{n} e_t^2$.

Representation (2) leads to the AIC, BIC, and NML criteria.

Representation (3) is new. \Rightarrow sequentially normalized least squares (SNLS)

Fixed variance $\hat{\sigma}_t^2 = \sigma^2$ case:

Non-normalized conditional:

$$f(y_t \mid y^{t-1}, X_t; \sigma^2, b_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_t - \hat{y}_t)^2}{2\sigma^2}\right),$$

where $\hat{y}_t = b'_t \bar{x}_t$.

.

Fixed variance $\hat{\sigma}_t^2 = \sigma^2$ case:

Non-normalized conditional:

$$f(y_t \mid y^{t-1}, X_t; \sigma^2, b_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_t - \hat{y}_t)^2}{2\sigma^2}\right),$$

where $\hat{y}_t = b'_t \bar{x}_t$.

Normalized conditional:

$$f_{\text{SNLS}}(y_t \mid y^{t-1}, X_t; \sigma^2) = \frac{1}{\sqrt{2\pi\tau}} \exp\left(-\frac{(y_t - b'_{t-1}\bar{x}_t)^2}{2\tau}\right),$$

where $\tau = (1 + c_t)^2 \sigma^2$, $c_t = \bar{x}'_t (X_t X'_t)^{-1} \bar{x}_t = \mathcal{O}(1/t)$.

Fixed variance $\hat{\sigma}_t^2 = \sigma^2$ case:

Non-normalized conditional:

$$f(y_t \mid y^{t-1}, X_t; \sigma^2, b_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_t - \hat{y}_t)^2}{2\sigma^2}\right),$$

where $\hat{y}_t = b'_t \bar{x}_t$.

Normalized conditional:

$$f_{\text{SNLS}}(y_t \mid y^{t-1}, X_t; \sigma^2) = \frac{1}{\sqrt{2\pi\tau}} \exp\left(-\frac{(y_t - b'_{t-1}\bar{x}_t)^2}{2\tau}\right),$$

where $\tau = (1 + c_t)^2 \sigma^2$, $c_t = \bar{x}'_t (X_t X'_t)^{-1} \bar{x}_t = \mathcal{O}(1/t)$.

Fixed variance $\hat{\sigma}_t^2 = \sigma^2$ case:

Non-normalized conditional:

$$f(y_t \mid y^{t-1}, X_t; \sigma^2, b_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_t - \hat{y}_t)^2}{2\sigma^2}\right),$$

where $\hat{y}_t = b'_t \bar{x}_t$.

Normalized conditional:

$$f_{\text{SNLS}}(y_t \mid y^{t-1}, X_t; \sigma^2) = \frac{1}{\sqrt{2\pi\tau}} \exp\left(-\frac{(y_t - b'_{t-1}\bar{x}_t)^2}{2\tau}\right),$$

where $\tau = (1 + c_t)^2 \sigma^2$, $c_t = \bar{x}'_t (X_t X'_t)^{-1} \bar{x}_t = \mathcal{O}(1/t)$.

Free variance case:

Consider the maximization problem

$$\sup_{\sigma^2} \prod_{t=m+1}^n f(y_t \mid y^{t-1}, X_t; \sigma^2, b_t).$$

3 N

Free variance case:

Consider the maximization problem

$$\sup_{\sigma^2} \prod_{t=m+1}^n f(y_t \mid y^{t-1}, X_t; \sigma^2, b_t).$$

The maximizing variance is given by $\hat{\tau}_n = \frac{1}{n-m} \sum_{t=m+1}^n (y_t - \hat{y}_t)^2$, and the resulting non-normalized joint density is

$$(2\pi e \hat{\tau}_n)^{-(n-m)/2}$$

The SNLS criterion is given by

SNLS(n, k)
=
$$\frac{n-m}{2} \ln \hat{\tau}_n - \frac{1}{2} \ln \hat{e}_{m+1} - \ln \frac{\Gamma\left(\frac{n-m}{2}\right)}{\Gamma(1/2)} + \ln \prod_{t=m+2}^n \frac{\sqrt{\pi}}{1-d_t}$$

= $\frac{n-m}{2} \ln(2\pi e \hat{\tau}_n) + \sum_{t=m+1}^n \ln(1+c_t) + R_n,$

where the remainder term R_n is insignificant.

Theorem: If the data is generated by a k-parameter linear-quadratic model (either non-random X_n , or AR model), then we have

$$\mathrm{SNLS}(n,k) = \frac{n-m}{2} \ln(2\pi e \hat{\tau}_n) + \frac{2k+1}{2} \ln n + o(\ln n),$$

化氯化 化氯

Theorem: If the data is generated by a k-parameter linear-quadratic model (either non-random X_n , or AR model), then we have

$$\mathrm{SNLS}(n,k) = \frac{n-m}{2} \ln(2\pi e \hat{\tau}_n) + \frac{2k+1}{2} \ln n + o(\ln n),$$

and

$$\mathrm{SNLS}(n,k) = \frac{n-m}{2} \ln(2\pi e \hat{\sigma}_n^2) + \frac{k+1}{2} \ln n + o(\ln n)$$

almost surely for almost all β and σ^2 .

Theorem: If the data is generated by a k-parameter linear-quadratic model (either non-random X_n , or AR model), then we have

$$\operatorname{SNLS}(n,k) = \frac{n-m}{2} \ln(2\pi e \hat{\tau}_n) + \frac{2k+1}{2} \ln n + o(\ln n),$$

and

$$\mathrm{SNLS}(n,k) = \frac{n-m}{2} \ln(2\pi e\hat{\sigma}_n^2) + \frac{k+1}{2} \ln n + o(\ln n)$$

almost surely for almost all β and σ^2 .

Note that the effective number of parameters is doubled.

Experiment: AR Model Order Estimation

		sample size, <i>n</i>						
		50	100	200	400	800	1600	3200
k = 1	AIC	70.5	71.3	72.0	70.0	71.4	70.8	70.9
	BIC	93.5	96.9	97.9	98.0	99.4	99.5	99.4
	PLS	75.8	86.3	91.1	93.5	96.7	97.8	98.1
	NML	82.5	88.3	89.7	91.5	94.3	95.9	96.6
	SNLS	78.5	87.5	92.2	93.9	97.0	98.1	98.3
k = 4	AIC	42.8	52.5	60.1	63.3	65.4	66.5	67.5
	BIC	45.7	59.6	67.8	76.5	82.6	88.3	91.4
	PLS	42.1	58.3	68.5	77.0	82.5	88.3	91.9
	NML	45.0	60.2	68.0	76.7	82.5	88.0	91.6
	SNLS	42.4	59.2	69.4	77.0	82.4	88.5	92.0
<i>k</i> = 7	AIC	33.7	45.4	55.3	59.6	63.6	65.7	67.3
	BIC	29.2	43.4	59.1	69.5	77.9	82.8	88.6
	PLS	30.0	44.7	60.5	70.0	78.5	82.9	88.6
	NML	28.8	44.2	59.8	69.8	78.3	83.0	88.4
	SNLS	30.1	46.5	61.2	70.6	79.4	83.2	88.9
k = 10	AIC	28.5	43.9	51.5	59.3	64.2	67.1	67.7
	BIC	20.6	35.7	51.0	66.1	74.4	81.4	85.5
	PLS	20.1	35.7	50.7	65.0	73.4	80.8	84.8
	NML	20.2	37.1	51.9	66.8	74.6	81.4	85.8
	SNLS	21.4	37.9	52.3	66.5	74.8	81.8	85.6

з

→ 3 → < 3</p>