
ON THE CONSISTENCY OF SEQUENTIALLY NORMALIZED LEAST SQUARES

Daniel F. Schmidt1 and Teemu Roos2

1 Centre for MEGA Epidemiology, The University of Melbourne,
Melbourne, AUSTRALIA, dschmidt@unimelb.edu.au

2Helsinki Institute for Information Technology HIIT, University of Helsinki,
P.O.Box 68, FIN-00014 Helsinki, FINLAND, teemu.roos@cs.helsinki.fi

1. INTRODUCTION

We examine the Sequentially Normalized Least Squares
(SNLS) criterion for linear regression model selection. In
particular, we present: (i) a simplified formula for com-
puting the SNLS score, (ii) an asymptotic representation
of the SNLS score even in the case of model misspecifi-
cation, and (iii) a proof of the consistency of SNLS as a
model selection tool.

Consider a complete design matrixZn = (z1, . . . , zq)
of covariateszi ∈ R

n, and a corresponding set of ob-
served responsesy ∈ R

n. It is common to assume that
the mean of the responses is a linear combination of the
covariates, resulting in the generating model

y = Znβ∗ + ε (1)

whereβ∗ ∈ R
q are the regression coefficients andεi ∼

N(0, σ2) are independently and identically distributed nor-
mal variates. It is often assumed that some (potentially
all) of the components ofβ∗ are exactly zero (i.e., the as-
sociated covariates are unrelated to the response), and the
problem examined in this paper is the selection of covari-
ates which are related to the response.

More formally, letγ ⊂ {1, . . . , q} denote an index
vector determining which of the covariates comprise the
design submatrixXn(γ), and letΓ denote the set of all
candidate subsets. The model indexed byγ describes the
data as being generated by

y = Xn(γ)βγ + ε

whereXn(γ) is the design matrix given by

Xn(γ) = (zγ1
, . . . , zγk

)

andβγ is the corresponding vector of coefficients of size
k = |γ|. The problem examined in this paper can then be
formulated as one of selecting covariates from the full de-
sign matrixZn, i.e. choosing a suitable subsetγ, and con-
structing a predictive distribution for future data arising
from this model. There are a large range of methods avail-
able for performing model selection in the linear regres-
sion setting; we choose to study the recently proposed Se-
quentially Normalized Least Squares criterion (SNLS) [1].

2. SEQUENTIALLY NORMALIZED LEAST
SQUARES

The SNLS criterion is closely related to both the princi-
ple of Predictive Minimum Description Length (PMDL)
[2] and the Sequentially Normalized Maximum Likeli-
hood (SNML) principle [3]. The basic idea is to sequen-
tially define a predictive distributionp(yt | y1:t−1, γ) for
datayt conditioned on all the previously observed data
y1:t−1 = (y1, . . . , yt−1), using the subset of covariates
specified byγ. The SNLS criterion is then defined as the
accumulated negative-log of the predictive density for the
dataym+1, . . . , yn with m ≥ |γ|, i.e.

n
∑

t=m+1

ln 1/p(yt | y1:t−1, γ)

The “optimal” subset of covariates may be selected by
choosing the one fromΓ that yields the smallest SNLS
score. The full details of the derivation of the SNLS cri-
terion are given in [1]; for convenience we summarise the
results here and present a simplification of the final for-
mula given in [1]. For notational simplicity, we drop the
explicit dependence ofXn(γ) on the subsetγ. Let x̄i

denote thei-th row of Xn, and letXt = (x̄′

1, . . . , x̄
′

t)
′

denote the matrix comprised of the firstt ≤ n rows. The
SNLS criterion is given by

SNLS(y, γ) =

(

n−m

2

)

ln(2πeτ̂n)

+

n
∑

t=m+1

ln(1 + ct) +
1

2
lnn+O(1),

(2)
where

τ̂n =

(

1

n−m

) n
∑

t=m+1

ê2t

and

et = yt − x̄tβ̂t−1

êt = yt − x̄tβ̂t = (1− dt)et

Jt = X′

tXt

β̂t = J−1
t X′

ty1:t

1− dt = 1/(1 + ct)

ct = x̄′

tJ
−1
t−1x̄t



with the notationy1:t = (y1, . . . , yt). The β̂t are the
least-squares estimates for the firstt data points, and the
complete recurrence relations given in, for instance [4],
offer an efficient way of computing them. Aŝβt is not
unique fort < k the sequential process must start at sam-
plem+ 1 ≥ k + 1, wherek = |γ|.

The SNLS criterion as given by (2) can be simplified
by noting that [5]

1− dt =
|X′

t−1Xt−1|

|X′

tXt|
=

|Jt−1|

|Jt|

Then it is clear that1 + ct = |Jt|/|Jt−1|, and the second
term in (2) can be written as

n
∑

t=m+1

ln(1 + ct) = ln
|Jm+1|

|Jm|
·
|Jm+2|

|Jm+1|
. . .

|Jn|

|Jn−1|

By noting that the terms in the product telescope we arrive
at the following simplification.

Proposition 1 The SNLS criterion (2) allows the simpli-
fied formula

SNLS(y, γ) =

(

n−m

2

)

ln(2πeτ̂n)

+ ln
|Jn|

|Jm|
+

1

2
lnn+O(1).

(3)

Using this form of the criterion, the proof of the large
sample behaviour of SNLS (Theorem 1 from [1]) is trivial.

Theorem 1 (Rissanenet al., [1]) Under the assumption
that

lim
n→∞

{

1

n
Z′

nZn

}

= Λ (4)

with Λ a positive-definite matrix, then

SNLS(y, γ) =

(

n−m

2

)

ln(2πeτ̂n)

+

(

2k + 1

2

)

lnn+O(1)

(5)

Proof. Noting that by (4),|Jn| = O(nk) and |Jm| =
On(1), and using these in (3) completes the proof. �

3. LARGE-SAMPLE BEHAVIOR

We letR be the(q × q) idempotent matrix with entries
ri,i = 1 iff i ∈ γ, and zero otherwise. Again, assume that
limit (4) exists; recalling that the datay is generated by the
linear-normal model (1), withβ∗ denoting the true, under-
lying regression coefficients, this assumption implies that

lim
n→∞

{

1

n
(ZnR)′(ZnR)

}

= RΛR,

lim
n→∞

{

1

n
(ZnR)′(Znβ∗)

}

= RΛβ∗.

Further assume that

sup
n

||x̄n|| < ∞. (6)

We now give a general expression for the large sample
behaviour of the SNLS criterion, even in the case of mis-
specification, i.e., whenγ omits covariates which are re-
lated to the response (with corresponding non-zero entries
in β∗).

Theorem 2 Under assumptions (4) and (6), the SNLS cri-
terion satisfies

SNLS(y, γ) =

(

n−m

2

)

ln(2πeσ̂2
n)

+





2k − k(σ2+ξ)
σ̂2
n

+ 1

2



 lnn+ o(lnn).

(7)

where ξ > 0 is the error due to misspecification, and
σ̂2
n =

(

1
n

)
∑n

i=1(yi − x̄β̂n)
2.

Proof. Note thatR− = R, where(·)− denotes the pseudo-
inverse; using this we may define the quantities

δ = Xnβ∗ −Xn(RΛR)−(Λβ∗)

and

G̃ = lim
n→∞

{

1

n
(XnR)′∆(XnR)

}

where∆ is an(n×n) diagonal matrix with entries∆i,i =
δ2i . Theorem 4.1.1 in [5] gives the asymptotic (a.s.) form
of the sum of squared errors for the predictive least squares
method as:

n
∑

i=m+1

e2i = nσ̂2
n+(lnn)[k(σ2+ξ)](1+o(1)) a.s., (8)

whereξ = Tr((RΛR)−G̃)/k is the per sample squared
error due to misspecification.

We now need a similar result for the SNLS errors (in-
stead of the PLS errors), namely for the sum

n
∑

i=m+1

ê2i =

n
∑

i=m+1

(e2i − 2die
2
i + d2i e

2
i ). (9)

The first term inside the parentheses, involving the PLS
errors,e2i is given by (8) above. The middle term appears
in Thm. 2.1 in [5]:

n
∑

i=m+1

e2i = nσ̂2
n −mσ̂2

m +

n
∑

i=m+1

die
2
i , (10)

where the last term on the RHS is the one we need (just
negated and multiplied by two).

Rissanenet al.present a bound on the third term in (9);
[1, Eq. (34)]

n
∑

i=m+1

d2t e
2
t = o(lnn),



showing that the third term is negligible.
By (8), (9), and (10), the sum of SNLS errors is given

by

n
∑

i=m+1

ê2t = nσ̂2
n − (lnn)[k(σ2 + ξ)](1 + o(1)).

Dividing by nσ̂2
n and taking the log gives

ln
1

nσ̂2
n

n
∑

i=m+1

ê2i = ln

(

1−

(

lnn

n

)[

k(σ2 + ξ)

σ̂2
n

]

(1 + o(1))

)

.

Applying the Taylor approximationln(1+x) = x+O(x2)
to the right-hand side yields

ln

n
∑

i=m+1

ê2i = lnnσ̂2
n−

(

lnn

n

)[

k(σ2 + ξ)

σ̂2
n

]

(1+o(1)).

Subtractingln(n −m) = lnn + On(1/n) from both
sides, and recalling the definition

τ̂n =

(

1

n−m

) n
∑

i=m+1

ê2i

we arrive at the formula:

ln τ̂n = ln σ̂2
n −

(

lnn

n

)[

k(σ2 + ξ)

σ̂2
n

]

(1 + o(1)). (11)

Combining (11) with (5) yields the asymptotic formula (7)
and completes the proof. �

4. CONSISTENCY OF SNLS

In terms of model selection, consistency, or the guarantee
that a criterion will discover the truth as the sample size
grows is an important property. Formally, letγ∗ denote
the index of the components ofβ∗ that are non-zero; we
shall call the associated covariates the “relevant covari-
ates”. Define the SNLS estimate of the true model index
as

γ̂ = argmin
γ∈Γ

{SNLS(y, γ)}

that is, the chosen subset is the one that minimises the
SNLS criterion. The asymptotic formula (7) provides a
simple basis to prove the consistency of the SNLS esti-
mate ofγ.

Corrolary 1. Assuming (4) and (6), and assuming that the
data is generated by the linear-quadratic model (1) with
γ∗ ∈ Γ, then

Pr(γ̂ = γ∗) → 1 asn → ∞

Proof. To complete this proof we use the result that the
maximum likelihood estimate ofσ2 using the restricted
least squares (RLS) estimates ofβ, restricted to the sub-
space defined byγ, can be expressed as

σ̂2
n = σ2 + ξ + o(1). (12)

This is a result of the consistency of the RLS estimates in
estimating the parameter vector in the restricted subspace
defined byγ that is closest in a weighted quadratic sense
to the true parameter vectorβ∗, i.e., it minimises the error
due to misspecification. Using (12) in (7) yields

SNLS(y, γ) =

(

n−m

2

)

ln(2πeσ̂2
n)

+





2k − k(σ2+ξ)
σ2+ξ+o(1) + 1

2



 lnn+ o(lnn).

(13)
wherek = |γ| is the number of regression parameters
being estimated. It is clear that asymptotically, the sec-
ond term in the right hand side of (13) reduces to(k +
1)/2 logn, and the entire SNLS criterion is asymptotically
equivalent to BIC. Using the results from [6] regarding the
consistency of BIC completes the proof.
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