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Abstract

Independent Variable Group Analysis (IVGA) is a method for grouping dependent
variables together while keeping mutually independent or weakly dependent vari-
ables in separate groups. In this paper two variants of an agglomerative method
for learning a hierarchy of IVGA groupings are presented. The method resembles
hierarchical clustering, but the choice of clusters to merge is based on variational
Bayesian model comparison. This is approximately equivalent to using a distance
measure based on a model-based approximation of mutual information between
groups of variables. The approach also allows determining optimal cutoff points for
the hierarchy. The method is demonstrated to find sensible groupings of variables
that can be used for feature selection and ease construction of a predictive model.

Key words: hierarchical clustering, independent variable group analysis, mutual
information, variable grouping, variational Bayesian learning

1 Introduction

Large data sets often contain subsets of variables that are only weakly de-
pendent or independent. Simple examples of this include, for example, pixels
related to different objects in an image or genes related to different pathways
in a gene expression data set. Automatically discovering such groups can help

∗ Corresponding author.
Email address: antti.honkela@tkk.fi (Antti Honkela).
URL: http://www.cis.hut.fi/projects/ivga/ (Antti Honkela).

Preprint submitted to Elsevier Science 16 November 2007



in understanding the structure of the data set as well as focusing further mod-
elling efforts to smaller and more meaningful subproblems.

Grouping or clustering variables based on their mutual dependence was the
objective of the Independent Variable Group Analysis [13,1] (IVGA) method.
In this paper we extend this approach by considering hierarchical grouping
or clustering of variables. The resulting hierarchy provides even more insight
into the dependence structure of the variables in a data set. Alternatively, the
method can be seen as a systematic search procedure for exploring regular flat
clusterings or groupings.

The method presented in this paper is called Agglomerative Independent Vari-

able Group Analysis (AIVGA). AIVGA is based on the idea of agglomerative
hierarchical clustering of variables [7]. Initially, each variable is placed in a
group of its own. The groups are then combined by greedily selecting the op-
eration that decreases the cost most. The result is a hierarchy of groupings of
different sizes.

The general problem of variable grouping or clustering and some related meth-
ods are studied in Sec. 2. The computational methodologies behind AIVGA
and the algorithm itself are presented in Sec. 3. Sec. 4 presents experimental
results on applying the algorithm to a synthetic data set with known structure
and using it as a preprocessing step in classification and prediction tasks. The
paper concludes with discussion and conclusions in Secs. 5 and 6.

2 Variable Grouping

IVGA is a method of grouping mutually dependent variables together while
keeping mutually independent variables in separate groups [13,1]. This is done
by maximising a bound on the marginal likelihood of a set of models enforcing
the grouping. This is in turn approximately equal to minimising an approx-
imation of the mutual information between the groups. The original IVGA
algorithm [13,1] uses a heuristic combinatorial hill climbing search to find the
optimal grouping [13]. In this method, the size of the resulting grouping is not
predetermined but optimised during the learning process.

Finding the optimal grouping with IVGA can be seen as clustering the vari-
ables based on a distance measure of mutual dependence. A somewhat similar
approach based on direct estimation of mutual information and its multivari-
ate generalisation of multi-information [20] has been proposed in [19].

In the original IVGA [13,1] as well as the AIVGA method presented in this
paper, the mutual information of the data is not estimated directly. Instead,
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a model-based approach is used: probabilistic models are inferred for the vari-
ables separately and grouped together, and the configuration yielding the high-
est estimated marginal likelihood is taken as the best grouping. As shown in [1],
this method is approximately equivalent to minimising the mutual informa-
tion between the groups, except that it takes into account model complexity
as well as finite sample size and thus often prefers a larger number of groups.
In [1], the groups are modelled using finite mixture models, but in principle
other probabilistic models could be used as well.

The result of the AIVGA algorithm can be seen as a hierarchical clustering
of variables, similarly as the solution of an IVGA problem can be seen as a
regular clustering of the variables. For each level in the clustering, there is a
probabilistic model for the data consisting of a varying number of independent
parts, but there is no single generative model for the hierarchy. Graphical
models corresponding to two consecutive stages of the algorithm are illustrated
in Fig. 1. The Bayesian marginal likelihood objective used in AIVGA allows
determining the optimal points to cut the tree similarly as in the Bayesian
hierarchical clustering method [9].

Fig. 1. Two IVGA models from consecutive stages of the AIVGA algorithm as graph-
ical models. The shaded nodes represent observed variables whereas the unshaded
nodes are latent. Each group of observed variables has a separate latent variable,
the mixture index variable zi, explaining the variables within the group.

The AIVGA approach can be contrasted with models such as the hierarchical
latent class model [22] in which the latent variables associated with different
groups are members of higher level groups. This leads to a rooted tree graphical
model with all leaf nodes observed and all other nodes representing latent
variables. The hierarchical latent class model presented in [22] is, however,
limited to categorical data whereas AIVGA can also be applied to continuous
and mixed data. The simpler structure of the separate IVGA models makes
the method computationally more efficient.

AIVGA is closely related to the hierarchical clustering algorithm using mutual
information presented in [11]. The main difference is that AIVGA provides a
generative model for the data at each level of the hierarchy. Also, the Bayesian
cost function allows determining the optimal cutoff point or points for the
hierarchy.

In the context of clustering, the IVGA and AIVGA methods are especially
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interesting as the mixture models used to model the groups yield a secondary
soft clustering of the samples in addition to the hard clustering of the variables.
This relates IVGA to biclustering and makes AIVGA in a sense a hierarchical
alternative of biclustering. However, both IVGA and AIVGA always cluster
all the variables and samples, while standard biclustering methods concentrate
only on interesting subsets of variables and samples.

The IVGA models formed in different stages of the AIVGA algorithm have
several other possible interpretations and therefore many connections to other
related methods as well. These are reviewed in detail in [1].

3 Algorithm

Let us assume that the data set X consists of vectors x(t), t = 1, . . . , T . The
vectors are N -dimensional with the individual components denoted by xj, j =
1, . . . , N , and let Xj = (xj(1), . . . , xj(T )) and XGi

= {Xj|j ∈ Gi}. The
objective of IVGA and AIVGA is to find a partition of {1, . . . , N} to M disjoint
sets G = {Gi|i = 1, . . . ,M} such that the sum of the marginal log-likelihoods
of the models Hi for the different groups is maximised. As shown in [1], this
is approximately equivalent to minimising the mutual information (or multi-
information [20] when M > 2) between the groups. This equivalence is only
approximate as the Bayesian approach takes into account model complexity
as well as finite sample size and often prefers forming multiple groups, whereas
mutual information always decreases as the number of groups is increased. In
some cases, such as when the number of samples is small compared to the
dimensionality, the effect of these factors may be very significant, making the
correspondence between our cost and the mutual information across groupings
of different sizes very weak.

To approximate the marginal log-likelihoods, variational Bayes (VB) approx-
imations qi(θi) are fitted to the posteriors p(θi|XGi

,Hi)) of the models of the
different groups. The models are fitted to minimise the cost function or free
energy C

C(G) =
∑

i

C(XGi
|Hi) =

∑

i

∫

log
qi(θi)

p(XGi
,θi|Hi)

qi(θi)dθi

=
∑

i

[DKL(qi(θi)||p(θi|XGi
,Hi)) − log p(XGi

|Hi)]

≥ −
∑

i

log p(XGi
|Hi),

(1)

where DKL(q||p) is the Kullback–Leibler divergence between q and p.
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The cost is approximately related to the mutual information as

C(G) ≥ −
∑

i

log p(XGi
|Hi) ≈ TIG(x) + TH(x), (2)

where H(x) is the entropy of the random vector x and IG(x) =
∑

i H({xj|j ∈
Gi})−H(x) is the mutual or multi-information related to the grouping G [1].

To summarise, our aim is to minimise the sum of free energies of a number of
models spanning all the variables. As a byproduct, approximations qi(θi) of
the posterior distributions p(θi|XGi

,Hi) of the parameters θi of the models
Hi for each group are also obtained, such that the approximations minimise
the Kullback–Leibler divergence between the approximation and the exact
posterior.

3.1 Agglomerative Grouping Algorithm

An outline of the AIVGA algorithm is presented as Algorithm 1. The algo-
rithm is a classical agglomerative algorithm for hierarchical clustering [7]. It
is initialised by placing each observed variable in a group of its own. After
that two groups are merged so that the reduction in the cost is as large as
possible. As the cost function of Eq. (1) is additive over the groups, changes
can be evaluated locally by only recomputing models involving variables in
the changed groups.

Algorithm 1 Outline of the AIVGA algorithm.

c ← N,Gi ← {xi}, i = 1, . . . , N
while c > 1 do

c ← c − 1
Find groups Gi and Gj such that C({Gi ∪ Gj}) − C({Gi,Gj}) is minimal
Merge groups Gi and Gj

Save grouping of size c

end while

The AIVGA algorithm requires fitting O(N2) models for the groups. This is
necessary as for the first step all pairs of variables have to be considered for
possible merge. After this, only further merges of the previously merged group
with all the other groups have to be considered again.

The expected results of merging two groups are estimated by learning a new
model for the variables in the union of the two groups. The resulting cost
of the combined model is then compared to the sum of the costs of the two
independent models for the groups.
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3.2 Asymmetric Agglomerative Grouping Algorithm

One potential application of IVGA and consequently of AIVGA is feature
selection for classification or regression [1]. Following the procedure outlined
in [1], AIVGA could be applied to this task by applying it to the full data
set consisting of both the features and classification or regression target or
targets, and noting which features ended up in the same group with the target
or targets.

This approach has, however, several potential drawbacks. First and most im-
portantly, it is possible that the target(s) and features are only merged to the
same group at the last step, in which case no information for the solution of
the feature selection problem is gained. Even if this does not happen, a lot of
effort is wasted in grouping the features before merging them in a large chunk
with the target(s).

In order to avoid these problems, a simple modification of the basic agglomera-
tive grouping algorithm, the asymmetric AIVGA is introduced. The algorithm
is otherwise the same as regular AIVGA, except only merge operations involv-
ing a group with a target variable are allowed. In the basic setting with one
target variable, the features are effectively merged to the group containing the
target one at a time thus producing a ranking of best features.

The computational complexity of asymmetric AIVGA is comparable to that
of regular AIVGA. While the more restricted set of allowed moves reduces
the initialisation step complexity to O(N), the theoretical complexity of the
merge phase remains the same. Additionally, the fact that the change in the
merge phase always involves the largest possible model means that the newly
considered models are all as large as possible, hence inducing the worst-case
complexity for the model fitting in the merge phase.

3.3 Models of the Groups

In [1], the groups were modelled using finite mixture models. These require
significant computational effort to determine a suitable number of mixture
components needed for good results. To avoid this, the individual groups in
AIVGA are modelled with infinite Dirichlet process (DP) mixture models [3],
that avoid having to explicitly determine the number of mixture components.
As a result, the algorithm using DP mixtures is slightly faster than the ap-
proach based on finite mixtures and restarts with different numbers of com-
ponents used earlier.

Using the stick-breaking representation of the Dirichlet process [8,17], the
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mixing proportions πk can be represented as

πk(V ) = vk

k−1
∏

j=1

(1 − vj), k = 1, 2, . . . , (3)

where vj ∼ Beta(1, αv). Thus the model for the vector y = (y1, . . . , yNi
)T of

variables in the group Gi is

p(y|V, η) =
∞
∑

k=1

πk(V )p(y|ηk), (4)

where η = {ηk}
∞
k=1 are the parameters of the mixture components.

The mixture components p(y|ηk) are products of individual distributions for
every variable. These distributions are Gaussian for continuous variables and
multinomial for categorical variables. For purely continuous data, the resulting
model is thus a mixture of diagonal covariance Gaussians. Variances of the
Gaussians can be different for different variables and for different mixture
components. The component model is the same that was used in [1], except
that hyperparameter adaptation is not used.

The mixture is learned using the variational Dirichlet process (VDP) mixture
algorithm [12]. In order to perform inference over DP mixtures in practice,
the model has to be reduced to one with a finite number of distinct parame-
ters. In the VDP method the infinite mixture is approximated with an infinite
variational approximation which is such that only finitely many mixture com-
ponents K actually differ from their prior values. As the approximations are
nested over K, learning can be performed efficiently by increasing K and thus
releasing new components from the prior until there are no more significant re-
ductions in the free energy. The new components are constructed by splitting
the highest responsibility component randomly, not using the bisector of its
principal component as in [12]. This is because the definition of principal com-
ponents is more difficult for mixed continuous and categorical data. Detailed
learning rules used for updating the mixture are presented in Appendix A.

4 Experiments

In this section we present the results of three experiments with AIVGA. In the
first experiment, AIVGA was applied to a synthetic data set with somewhat
complicated dependence structure. Then, AIVGA and asymmetric AIVGA
were applied to feature selection for classification using four example data
sets. Finally, an example of splitting a large association rule based predictive
model into a set of smaller and lighter models is considered.
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4.1 Synthetic Toy Example

In the first experiment, a set of 200 data points generated according to the
graphical model in Fig. 2 was used to test the AIVGA method. All the dis-
crete variables had 8 states and their conditional probabilities were drawn
from Dirichlet(2, . . . , 2). The continuous variables were Gaussian with their
conditional means drawn from N(0, 1) and their conditional precisions from
Gamma(10, 1

10
), where Gamma(α, β) has shape α and inverse scale β.

AIVGA was run 10 times on this data. Each run took around 18 seconds on a
single core AMD Opteron processor. The results of the run yielding the lowest
average cost over the whole tree of groupings are shown in Fig. 3. The best
grouping found was {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10, 11, 12}}, this was the
same for all 10 simulations and this was also the configuration confirming with
the tree structure in Fig. 2, that yielded the lowest cost. Placing some depen-
dent variables into separate groups is understandable given the small sample
and the weakness of the dependence between different groups. For instance the
mutual-information estimation technique presented in [18] gave negative or es-
sentially zero estimates for mutual information between dependent variables
such as x1 and x8. In the results of the mutual-information based hierarchical
clustering method [11] shown in Fig. 4, the groups are also more confused.

Fig. 2. A graphical model representation of the model used in the toy example.
Square nodes represent discrete variables and round nodes continuous variables.
The latent variables ci are not observed, only the variables xi (shaded nodes).

4.2 Feature Selection for Classification

In this experiment, AIVGA and asymmetric AIVGA were applied to feature
selection for classification using nearest-neighbour (1NN) classifier and several
data sets from the UCI repository [5]. The tested data sets were ’image’,
’ionosphere’, ’sonar’, and ’waveform’. The properties of these data sets are
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Fig. 3. Results of the toy experiment. Left: Dendrogram of the groupings with the
optimal cutting point marked by dashed line. Right: Cost function values at different
stages.
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Fig. 4. Results of the toy experiment using the mutual-information based hierarchi-
cal clustering method [11].

presented in Table 1. All the features in all the data sets were continuous and
they were normalised to zero mean and unit variance.

The AIVGA algorithms were used for feature selection by running them on
the training part of the data set consisting of both the features and the target
labels and noting which features were in the same group as the target in
the grouping with the lowest cost. The features were treated as continuous
variables with a Gaussian model in the mixture while the class was considered
discrete with a multinomial model in the mixture. A k-nearest neighbour (k-
NN) classifier with k = 1 was trained using the selected features of the same
training set and it was tested on a separate test set. The whole procedure was
repeated over 100 different splits to training and test sets.
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Data set Features Samples
Training
samples

Validation
samples

Notes

image 18 2310 310 100 1

ionosphere 33 351 251 100

sonar 60 208 150 50 2

waveform 21 5000 400 100

Table 1
Properties of the data sets used in the experiment. The number of features is
reported after removing ones that were constant in the whole data set. The
number of samples is the total number of samples in the data set with the
numbers used for training in all the methods and validation in sequential
floating forward selection (SFFS) and Mann–Whitney (M–W) test based
methods indicated separately. The validation set in these methods is split
out of the training set.

1 Obtained by concatenating the training and testing sets available in the
UCI repository.

2 Found in the UCI repository under undocumented/

connectionist-bench.

The AIVGA algorithms were compared to using all features without any se-
lection procedure, the Mann–Whitney (M–W) test (which is equivalent to
Wilcoxon rank sum test) [14], and the sequential floating forward selection
(SFFS) method [16].

There are many feature selection methods based on mutual information, start-
ing from [4], that were not included in the comparison. The methods were
omitted because the great multitude of alternatives would have made a mean-
ingful comparison difficult, so some of the most relevant general methods were
selected for the comparison instead. Original IVGA [1] was not included in
the comparison because it would have required a much more sophisticated
experimental setting combining the results of multiple runs as in [1] to yield
good results.

In the M–W method, the features were ranked according to the p-value given
by the test for the class-conditional distributions of the features being differ-
ent. The optimal number of features was then found by further splitting the
training set 10 times to a new training set and a separate validation set and
finding which number gave the best classifier performance in this context. As
the description shows, the method is very fast and easy to implement.

The SFFS method is a wrapper method that uses the employed classifier inter-
nally on a number of splits of the training set to new training and validation
sets to find the optimal set of features. As the original specification in [16]
specifies no end condition for the algorithm, it was run until it ended into
a loop or a fixed timer expired. The timer was set to allow a slightly longer
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runtime than AIVGA used.

Given this setting, both M–W and SFFS methods used the 1NN classifier
internally to select the optimal set of features whereas the AIVGA methods
were completely agnostic of the classifier to be employed in testing.

The average classification accuracies attained in 100 repetitions are presented
in Table 2. The associated average runtimes needed by the methods are listed
in Table 3. Overall none of the methods is clearly superior to others in the
attained accuracy with each being at least indistinguishable from the best
method for at least one data set. Asymmetric AIVGA is the most accurate
on average over all data sets, but the margin over M–W is tiny. Symmetric
AIVGA is clearly worse than the rest on average because of the catastrophic
failure on the ’sonar’ data set, even though it yields the best results on ’im-
age’ and ’waveform’ data sets. The running times of the AIVGA algorithms
are comparable to those of SFFS, while M–W is significantly faster. The exper-
iment was also repeated using k-NN classifier with k = 5 (results not shown).
The rankings of the methods for different data sets were in this case practically
always the same as with k = 1.

AIVGA Asymm. AIVGA M–W SFFS No selection

Image 93.1 % 92.7 % 92.5 % 92.6 % 90.0 %

Ionosphere 84.0 % 86.4 % 88.3 % 88.5 % 86.9 %

Sonar 68.1 % 83.8 % 83.1 % 79.5 % 84.8 %

Waveform 76.4 % 76.1 % 74.9 % 73.2 % 74.8 %

Table 2
Average classification accuracies achieved in the feature selection experiment. The
best result on each data set along with those that do not statistically significantly
deviate from it have been emphasised, as determined by the Mann–Whitney test
using 0.05 significance level.

AIVGA Asymm. AIVGA M–W SFFS No selection

Image 103.6 s 71.0 s 1.2 s 361.7 s 0.2 s

Ionosphere 878.8 s 613.9 s 1.8 s 404.5 s 0.0 s

Sonar 3265.0 s 1669.7 s 1.6 s 1706.0 s 0.0 s

Waveform 123.9 s 92.6 s 1.9 s 441.7 s 0.5 s

Table 3
Average runtimes of different methods in the feature selection experiment, including
the time needed for performing the final classification.
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4.3 Simplifying a Predictive Model

In this experiment, we considered a system to support and speed up user input
of component data of a printed circuit board assembly robot. The system is
based on a predictive model which models the redundancy of the existing data
records using association rules. The application is described in detail in [2].

Our goal was to find out if a set of small models would work better than a large
monolithic model – and if so, how we could determine a set of such models.
We divided the data of an operational assembly robot (5 016 components, 22
nominal attributes) into a training set (80 % of the whole data) and a testing
set (the remaining 20 %). AIVGA was run seven times for the training data
set. The results of all runs were quite similar to each other. In Fig. 5, the
grouping tree (dendrogram) that contains the grouping with the lowest cost
is shown.
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Fig. 5. A grouping (left) and cost history graph (right) for the component data. The
model with the lowest cost consists of two groups.

After the groupings were found, association rules were used for modelling of the
dependencies of (i) the whole data and (ii) variable groups of the 21 different
variable groupings. The association rules are based on so-called frequent sets,
which in our case contain the attribute value combinations that are common
in the data. Support of a set is defined as the proportion of entries of the
whole data in which the attribute values of the set are present.

There exists various algorithms for computation of the frequent sets which dif-
fer in computational aspects but which all give identical results. We computed
the sets using a freely available implementation of the Eclat algorithm [21] 1 .
For the whole data, the minimum support dictating the size of the model was
set to 5 %, which was the smallest computationally feasible value in terms of

1 See http://www.adrem.ua.ac.be/~goethals/software/
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memory consumption. For the group models the minimum support was set to
0.1 %, which always gave clearly smaller models than the one for the whole
data. Minimum confidence (the “accuracy” of the rules) was set to 90 %, which
is a typical value in many applictions.
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Fig. 6. Prediction results when the data have been divided into 1 . . . 22 group(s).
For each grouping, the results are sums of results of all the models corresponding
to the grouping. The right panel indicates the prediction results when the missing
predictions of the first variable of each group are ignored. In the left panel, these
are taken into account. The legend shown in the left panel is the same for both
illustrations.

The rules were used for one-step prediction of the attribute values of the
testing data. In Fig. 6, the proportion of the correct, incorrect, and missing
predictions (that is, the cases when the confidence of the best rule was below
90 %) are shown for the whole data and grouped data. For the first variable of
any group, previous input does not exist, so the prediction is always missing.

Fig. 6 reveals two different aspects of the results. The left panel shows the total
prediction results. The right panel shows the performance of the predictive
scheme for the values for which it was even possible to try to compute a
prediction. In terms of correct predictions, the total results are best using
2 groups, but the predictive scheme performs slightly better when there are
3 groups. However, the left panel indicates that if the data are grouped in
2–4 groups, the number of the correct predictions is higher than using the
monolithic model. The models are also clearly lighter to compute and consume
less memory. For a detailed comparison between the monolithic model and
two separate models for the two optimal groups determined by AIVGA, see
Table 4. For comparison, the table also includes results for non-agglomerative
IVGA.

The two groups and prediction results were almost identical to the ones re-
ported in our earlier study [1] with the same data using non-agglomerative
IVGA. However, in that work we had to run IVGA 100 times and manually
combine the results in order to make sure that an appropriate and useful
grouping was found: There were significant variations in the final costs—as
well as in the number of groups and groupings. A clear advantage of AIVGA
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1 group 2 groups 2 groups

(AIVGA) (IVGA)

Correct (%) 57.5 63.1 63.8

Missing (%) 3.7 3.0 2.9

Incorrect (%) 38.8 33.9 33.3

Model size (nodes) 9 863 698 1 364 358 2 707 168

Model computation (s) 48.2 4.5 9.1

Grouping time (1 run / total) (h) 0 / 0 3.06 / 21.4 0.521 / 52.1

Table 4
Comparison between one large monolithic model, two separate models for the two
groups which were discovered by non-agglomerative IVGA (the results are adopted
from [1]), and AIVGA. The quantities for the 2 groups are sums over the quantities
of the two models. Also note that the variables were grouped 7 times using AIVGA
and 100 times using IVGA.

over non-agglomerative IVGA was that it both gave more stable results and
provided a systematic way for determination of the two groups by simply using
the configuration yielding the lowest cost.

5 Discussion

To complement the variable grouping or clustering method of IVGA [1], we
have presented a corresponding agglomerative algorithm AIVGA for learn-
ing a hierarchical grouping of variables. Like with any hierarchical clustering
method, this approach has two potential major benefits depending on the
application: the returned hierarchical grouping can be used as such, or the
method can be seen as a systematic search algorithm for finding a single
grouping.

This systematic search can in some cases be very useful as there is often
a significant variation in the results of regular IVGA caused by strong local
optima. This is especially clear when contrasting the results of the experiments
in Sec. 4.2 and Sec. 4.3 with those reported in [1]: AIVGA yields good results
already when using the minimal cost configuration from a single run whereas
with IVGA one needs to somehow combine the results of multiple independent
runs, and furthermore the Bayesian averaging using the posterior probabilities
evaluated from the VB costs as pi ∝ exp(−Ci) is not sufficient getting good
results.

The AIVGA algorithm is well-suited for parallel implementation. Parallelising
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testing of different candidates for next merge is trivial, and with this optimi-
sation the time complexity in terms of mixture model fittings can be reduced
to O(N) using O(N) processors.

In general, the AIVGA method seems best suited for problems with at most
a moderate number of variables, typically less than a hundred. In larger prob-
lems, the computation time grows rapidly while the choices made in the early
stages of the greedy algorithm may focus the effort to a highly suboptimal
part of the grouping space. In this case even the best grouping in the tree may
yield significantly higher cost than the grouping found e.g. by regular IVGA
in equal time.

In addition to the agglomerative grouping method, the presented algorithm
differs from the regular IVGA [1] in that DP mixture models are used instead
of finite mixtures. In our earlier work [10] we used finite mixtures with the
agglomerative grouping algorithm. Based on these experiences, it seems that
the difference between these different mixture modelling approaches is mainly
in convenience of determining the suitable number of mixture components,
which may in some cases translate to a modest speedup in computation time
when using DP mixtures. Otherwise the grouping results are usually very
similar with either finite mixtures or DP mixtures.

The number of samples is not that critical for the performance of AIVGA, es-
pecially if the accelerated VDP mixture algorithm [12] is applied. Still, AIVGA
will actually most likely perform better relative to other mutual-information
based clustering methods on small samples. Taking the example of Sec. 4.1 as
an example, the results of AIVGA would not change much even if the num-
ber of samples were increased to 2000 while the methods based on classical
mutual-information estimation [18,11] perform a lot better. Clearly the clas-
sical methods based on binning the data require quite a lot of samples to get
a reliable estimate of the density while the model-based AIVGA works well
even with relatively small data sets.

While AIVGA can be used for feature selection with reasonably good results
as outlined in Sec. 4.2, the results and the exact procedure are only meant for
illustration. For real applications it is most likely better to combine the pure
filter approach used here with a wrapper like was done in [6] in order to take
into account the specific characteristics of the applied classifier or regression
model.

When applying regular AIVGA to problems like feature selection, full mod-
elling of the group densities can be overly expensive especially when there are
a lot of samples. The potentially poor performance of the symmetric AIVGA
in problems with many variables is, however, nicely offset by the asymmetric
algorithm focusing on the problem of interest, as illustrated by the results on
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the ’sonar’ data set in the experiment.

6 Conclusion

In this paper, we presented AIVGA, an agglomerative algorithm for learning
hierarchical groupings of variables according to the IVGA principle. AIVGA
helps the use of IVGA when further use of the results makes the optimal num-
ber of groups difficult to determine. The computation time of a single AIVGA
run is usually comparable to a single run of the regular IVGA algorithm [1],
so the additional information in the tree of groupings comes essentially for
free. If the single best grouping is sought for, the output of AIVGA can be
used to initialise the regular IVGA algorithm [1], which can then relatively
quickly find if there are better solutions that are nearly but not exactly tree
conforming.

In order to help others try the method out, a free MATLAB package imple-
menting the presented AIVGA algorithms is available at http://www.cis.

hut.fi/projects/ivga/.

The cost function of IVGA and the probabilistic modelling framework can
in some cases provide more meaningful clustering results than existing algo-
rithms, as illustrated, for instance, by the clustering of gene expression profiles
in [15]. AIVGA effectively complements this by providing a structured solution
mechanism as well as a richer set of potential solutions.
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A Learning of the Mixture Models

The learning of the mixture models mostly follows the algorithm VDP pre-
sented in [12]. The only differences arise from the specific form of the mixture
components p(x|ηi) employed in our model, which are handled mostly as in [1].
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The correspondence of relevant parts of the notation between these two papers
is presented in Table A.1.

Notation
in [12]

Notation in [1] Explanation

{πi}
∞
i=1 πc Mixing proportions

qzt
(zt = i) wi(t) Posterior responsibilities

ηi {µi,j , ρi,j , πi,j} Mixture component parameters

λ {µµj
, ρµj

, αρj
, βρj

,uj} Mixture component hyperparame-
ters

φ
η
i {µ̂µi,j

, ρ̂µi,j
, α̂ρi,j

, β̂ρi,j
, ûi,j} Mixture component posterior pa-

rameters

Table A.1
Correspondence of notation between [12] and [1].

Expressions for the free energy terms 〈log px(x(t)|ηi)〉 and
〈

log q(ηi)
p(ηi|λ)

〉

are

identical to the ones given in Appendix A of [1] (Eqs. (27)–(30) in the paper).

Contrary to [1], the mixture component hyperparameters λ were fixed and
not updated. Their values were µµj

= 0; ρµj
= 1; αρj

= 0.01; βρj
= 0.01;uj =

(0.5, . . . , 0.5). The meaningfulness of the hyperparameters for continuous di-
mensions was ensured by always pre-normalising the data to zero mean and
unit variance. The parameter αv in the DP prior was fixed to αv = 1.

The only difference in the update rules to [1] is for the update of the continuous
dimensions of the mixture components (Eqs. (34)–(37) in [1]), which have
been made independent of previous values of the parameters by repeating the
update for the mean first using the prior of the variance and then the newly
update posterior. The new updates are thus

α̂ρi,j
← αρj

, β̂ρi,j
← βρj

(A.1)

ρ̂µi,j
← ρµj

+
α̂ρi,j

β̂ρi,j

T
∑

t=1

wi(t) (A.2)

µ̂µi,j
← ρ̂−1

µi,j



ρµj
µµj

+
α̂ρi,j

β̂ρi,j

T
∑

t=1

wi(t)xj(t)



 (A.3)

α̂ρi,j
← αρj

+
1

2

T
∑

t=1

wi(t) (A.4)

β̂ρi,j
← βρj

+
1

2

T
∑

t=1

wi(t)
[

ρ̂−1
µi,j

+ (µ̂µi,j
− xj(t))

2
]

(A.5)

Repeat update (A.2) (A.6)

Repeat update (A.3). (A.7)

All the other updates except for hyperparameter adaptation are performed as
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presented in [1].
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[18] N. Slonim, G. S. Atwal, G. Tkačik, W. Bialek, Estimating mutual information
and multi–information in large networks, http://arxiv.org/abs/cs/0502017
(2005).
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