
Journal of Machine Learning Research x (2010) x-x Submitted 07/2009; Published x/x

Approximate Riemannian Conjugate Gradient Learning for
Fixed-Form Variational Bayes

Antti Honkela1 antti.honkela@tkk.fi

Tapani Raiko1 tapani.raiko@tkk.fi

Mikael Kuusela mikael.kuusela@tkk.fi

Matti Tornio matti.tornio@tkk.fi

Juha Karhunen juha.karhunen@tkk.fi

Department of Information and Computer Science
Aalto University School of Science and Technology
P.O. Box 15400, FI-00076 AALTO, Finland
http://www.cis.hut.fi/projects/bayes/

Editor: Manfred Opper

Abstract

Variational Bayesian (VB) methods are typically only applied to models in the conjugate-
exponential family using the variational Bayesian expectation maximisation (VB EM) al-
gorithm or one of its variants. In this paper we present an efficient algorithm for applying
VB to more general models. The method is based on specifying the functional form of the
approximation, such as multivariate Gaussian. The parameters of the approximation are
optimised using a conjugate gradient algorithm that utilises the Riemannian geometry of
the space of the approximations. This leads to a very efficient algorithm for suitably struc-
tured approximations. It is shown empirically that the proposed method is comparable or
superior in efficiency to the VB EM in a case where both are applicable. We also apply
the algorithm to learning a nonlinear state-space model and a nonlinear factor analysis
model for which the VB EM is not applicable. For these models, the proposed algorithm
outperforms alternative gradient-based methods by a significant margin.
Keywords: variational inference, approximate Riemannian conjugate gradient, fixed-
form approximation, Gaussian approximation

1. Introduction

Bayesian methods have recently gained popularity in machine learning. This is at least par-
tially due to their robustness against overfitting compared to maximum likelihood and other
methods based on point estimates. Variational Bayesian (VB) methods provide an efficient
and often sufficiently accurate deterministic approximation to Bayesian learning (Bishop,
2006). Mean field type VB also has the benefit that its objective function can be used for
choosing the model structure or model order. Most work on variational methods has focused
on the class of conjugate exponential models for which simple EM-like learning algorithms
can be derived easily (Ghahramani and Beal, 2001; Winn and Bishop, 2005). These models

1. These authors contributed equally to this work.

c©2010 Honkela, Raiko, Kuusela, Tornio, and Karhunen.

Honkela, Raiko, Kuusela, Tornio, and Karhunen

and algorithms are computationally convenient but they rule out many interesting model
types.

Many practically important models are not in the conjugate-exponential family and they
have received far less attention in the VB literature. In this paper we present an efficient
general method for applying VB learning to these more general models. The method could
be used to speed up, for instance, the Gaussian variational approximation method of Opper
and Archambeau (2009), or other previous more specific methods (e.g. Lappalainen and
Honkela, 2000; Valpola and Karhunen, 2002).

Our method is based on first selecting the functional form of the approximation. For
parts of the model that are conjugate-exponential, the corresponding factorised exponential
family distribution is often a good choice, while in general we may use something else such
as a multivariate Gaussian.

After fixing the functional form, we must be able to evaluate the variational free energy
as a function of the variational parameters. The details of this step depend on the model—
often most terms can be evaluated analytically while others may require computing some
bounds (Jordan et al., 1999) or applying some linearisation techniques (see e.g. Honkela
and Valpola, 2005) or other approximations.

Once the free energy is known, we are left with a typically high-dimensional optimisation
problem. Here1 we propose using an approximate conjugate gradient algorithm that utilises
the Riemannian geometry of the space of the approximations to speed up convergence. One
of the main contributions of this paper is to use the geometry of the approximations. This
is in contrast to more common applications of Riemannian geometry in natural gradient
methods using the geometry of the predictive model. The geometry of the approximations
is the natural choice if the variational inference is viewed as an optimisation problem in
the space of approximating distributions. Furthermore, the geometry of the approximation
is often much simpler, leading to more efficient computation and generic algorithms. The
computational complexity of operations with the Fisher information matrix determining the
geometry can be linear if the approximation is fully factorising or if its multivariate Gaussian
blocks have a tree-like dependence structure, for instance. The resulting algorithm can
provide dramatic speedups of potentially several orders of magnitude over state-of-the-art
Euclidean conjugate gradient methods.

In previous machine learning algorithms Riemannian geometry is usually invoked through
the natural gradient of Amari (1998). There, the aim has been to use maximum likelihood
to directly update the model parameters θ taking into account the geometry imposed by the
predictive distribution of the data p(X|θ). The resulting geometry is often quite compli-
cated as the effects of different parameters cannot be separated and the Fisher information
matrix is relatively dense. Recently Girolami and Calderhead (2011) have applied this in a
Bayesian setting as a method to speed up Hamiltonian Monte Carlo samplers. In this paper,
only the simpler geometry of the VB approximating distributions q(θ|ξ) is used. Because
the approximations are often chosen to minimise dependencies between different parameters
θ, the resulting Fisher information matrix with respect to the variational parameters ξ will
be mostly diagonal and hence easy to work with.

1. This paper is an extended version of the earlier conference paper (Honkela et al., 2008).

2

Riemannian Conjugate Gradient for VB

The rest of the paper is organised as follows. Sec. 2 introduces the background in varia-
tional Bayes and information geometry. The proposed approximate Riemannian conjugate
gradient learning algorithm is introduced in Sec. 3. The method is demonstrated in three
case studies: a Gaussian mixture model, a nonlinear state-space model and a nonlinear
factor analysis model in Secs. 4, 5 and 6, respectively. We end with discussion in Sec. 7.

2. Background

The approximate Riemannian conjugate gradient learning algorithm follows very naturally
from an optimisation view of variational Bayes and the Riemannian geometry of probability
distributions in information geometry. We will start with a brief introduction to both of
these techniques separately.

2.1 Variational Bayes

Variational Bayesian (VB) learning (Jordan et al., 1999; Ghahramani and Beal, 2001;
Bishop, 2006) is based on approximating the posterior distribution p(θ|X) with a tractable
approximation q(θ|ξ), where X is the data, θ are the unobserved variables (including both
the parameters of the model and the latent variables), and ξ are the variational parameters
of the approximation (such as the mean and the variance of a Gaussian approximation).
The approximation is fitted by minimising the free energy

F(q(θ|ξ)) = Eq(θ|ξ)

{
log

q(θ|ξ)
p(X,θ)

}
= DKL(q(θ|ξ)‖p(θ|X))− log p(X). (1)

This is equivalent to minimising the Kullback–Leibler (KL) divergence DKL(q‖p) between q
and p (Bishop, 2006). The negative free energy also provides a lower bound on the marginal
log-likelihood, that is, log p(X) ≥ −F(q(θ|ξ)) due to non-negativity of the KL-divergence.

Typical classes of approximations used in VB include factorising approximations, most
often starting from assuming the latent variables and parameters to be independent and
extending to the fully factorising mean-field approximation, and approximations having a
fixed functional form, such as a Gaussian.

In the former case, learning is typically performed using the variational Bayesian ex-
pectation maximisation (VB EM) algorithm which alternates between minimising the free
energy with respect to the distribution of the latent variables (VB-E step) and the distri-
bution of the parameters (VB-M step) (Bishop, 2006).

In the case of approximation with a fixed functional form, EM-like updates are usually
not available and generic gradient-based optimisation methods have to be used (see e.g. Op-
per and Archambeau, 2009). This is often very challenging in practice, as the problems are
quite high dimensional and the lack of specific knowledge of interactions of the parameters
that define the geometry of the problem can seriously hinder generic optimisation tools.
Such methods have nevertheless been applied to a number of models that are not in the
conjugate exponential family, such as multi-layer perceptron (MLP) networks (Barber and
Bishop, 1998), kernel classifiers (Seeger, 2000), nonlinear factor analysis (Lappalainen and
Honkela, 2000; Honkela and Valpola, 2005; Honkela et al., 2007) and nonlinear dynamical
models (Valpola and Karhunen, 2002; Archambeau et al., 2008), non-conjugate variance
models (Valpola et al., 2004; Raiko et al., 2007) as well as Gaussian process latent variable

3

Honkela, Raiko, Kuusela, Tornio, and Karhunen

models (Titsias and Lawrence, 2010). Optimisation methods have included the conjugate
gradient algorithm and heuristic speed-ups, but the use of a Riemannian conjugate gradient
algorithm for VB as proposed in this paper is novel.

In practice, convergence of conjugate gradient algorithms in latent variable models is
often really slow. To get an intuition of why this is the case, let us consider a generic latent
variable model with latent variables that connect to one observation each and parameters
that connect to a number of observations. As we increase the number of observations, the
gradient with respect to the parameters grows linearly, whereas the gradient with respect to
the latent variables stays constant. As a result, with a reasonable number of observations,
conjugate gradient algorithms are forced to take very small steps to avoid overshooting the
parameters, and as a result the latent variables are hardly changed at all. The Riemannian
gradient provides an automatic remedy to this problem by properly scaling the gradient.

2.2 Information geometry and optimisation on Riemannian manifolds

When applying a generic optimisation algorithm to a problem such as optimising the free
energy (1), a lot of background information on the geometry of the problem is lost. The
parameters ξ of q(θ|ξ) can have different roles as location, shape, and scale parameters,
and their effect is influenced by other parameters. This implies that the geometry of the
problem is in most cases not Euclidean.

Riemannian geometry studies smooth manifolds {M|ξ} that are locally diffeomorphic
with Rn. The manifold has an inner product 〈·, ·〉k defined at every point ξk of the manifold.
The inner product is defined for vectors in tangent space Tξk of M at ξk as

〈x,y〉k = xTG(ξk)y =
∑
i,j

xiyjgij(ξk), (2)

where G(ξk) is the Riemannian metric tensor at ξk. Most Riemannian manifolds are curved,
with geodesics as the counterparts of Euclidean straight lines as length-minimising curves
between two points (Murray and Rice, 1993).

Information geometry studies the Riemannian geometric structure of the manifold of
probability distributions (Amari, 1985). It has been applied to derive efficient natural gra-
dient learning rules for maximum likelihood algorithms in independent component analysis
(ICA) and multi-layer perceptron (MLP) networks (Amari, 1998). The approach has been
used in several other problems as well, for example in analysing the properties of an on-line
variational Bayesian EM method (Sato, 2001).

For probability distributions, the most natural metric is given by the Fisher information

gij(ξ) = Iij(ξ) = E

{
∂ log q(θ|ξ)

∂ξi

∂ log q(θ|ξ)
∂ξj

}
= E

{
−∂

2 log q(θ|ξ)
∂ξi∂ξj

}
. (3)

Here the last equality is valid if q(θ|ξ) is twice continuously differentiable (Murray and
Rice, 1993). Fisher information is a unique metric for probability distributions in the sense
that it is the only metric which is invariant with respect to transformations to sufficient
statistics (Amari and Nagaoka, 2000).

In a Riemannian space, the direction of steepest ascent of a function F(ξ) is given by
the Riemannian or natural gradient

∇̃F(ξ) = G−1(ξ)∇F(ξ) (4)

4

Riemannian Conjugate Gradient for VB

p
q
gradient
natural gradient

Figure 1: Gradient and Riemannian gradient directions are shown for the mean of distri-
bution q. VB learning with a diagonal covariance is applied to the posterior
p(x, y) ∝ exp[−9(xy − 1)2 − x2 − y2]. The Riemannian gradient strengthens the
updates in the directions where the uncertainty is large.

instead of the regular gradient ∇F(ξ). This can be verified by finding the maximum of
F(ξ + ∆ξ) subject to the constraint ||∆ξ||2ξ = 〈∆ξ,∆ξ〉ξ = ∆ξT G(ξ) ∆ξ < ε2. The
relation between gradient and Riemannian gradient is illustrated in Fig. 1.

This choice of geometry between Euclidean and Riemannian is, however, independent of
the choice of the optimisation algorithm, and recently several authors have combined con-
jugate gradient methods with the Riemannian or natural gradient (Smith, 1993; González
and Dorronsoro, 2008; Honkela et al., 2008). In principle this can be achieved by replac-
ing all vector space operations in the conjugate gradient algorithm with their Riemannian
counterparts: Riemannian inner products and norms, parallel transport of gradient vec-
tors between different tangent spaces as well as line searches and steps along geodesics
in the Riemannian space. In practical algorithms some of these can be approximated by
their flat-space counterparts. We shall apply the approximate Riemannian conjugate gradi-
ent (RCG) method which implements Riemannian (natural) gradients, inner products and
norms but uses flat-space approximations of the others as our optimisation algorithm of
choice throughout the paper. As shown in Appendix A, these approximations do not affect
the asymptotic convergence properties of the algorithm. The difference between gradient
and conjugate gradient methods is illustrated in Fig. 2.

In this paper we propose using the Riemannian structure of the distributions q(θ|ξ) to
derive more efficient algorithms for approximate inference and especially VB using approx-
imations with a fixed functional form. This differs from the traditional natural gradient
learning by Amari (1998) which uses the Riemannian structure of the predictive distribu-

5

Honkela, Raiko, Kuusela, Tornio, and Karhunen

p
gradient
conjugate gradient

Figure 2: Gradient and conjugate gradient updates are applied to finding the maximum of
the posterior p(x, y) ∝ exp[−9(xy − 1)2 − x2 − y2]. The step sizes that maximise
p are used. Note that the first steps are the same, but following gradient updates
are orthogonal whereas conjugate gradient finds a much better direction.

tion p(X|θ). The proposed method can be used to jointly optimise all the parameters ξ of
the approximation q(θ|ξ), or in conjunction with VB EM for some parameters.

2.3 Information geometry of VB EM

The optimal VB approximation has an information-geometric interpretation as a specific
projection of the true posterior to a manifold of tractable distributions (Tanaka, 2001). This
interpretation is equally valid for all optimisation methods.

Amari (1995) has also presented the geometric interpretation of the EM algorithm as
alternating projections for E- and M-steps. This asymmetric view does not directly gener-
alise to the VB EM method when used to infer distributions over all parameters, because
VB EM is symmetric with respect to different parameters.

By embedding the VB-E step update within the VB-M step with point estimates and
considering the resulting update, the VB EM algorithm for conjugate exponential family
models can be interpreted as a natural gradient method (Sato, 2001). It therefore implicitly
optimally utilises the Riemannian geometric structure of q(θ|ξ) (Amari, 1998). Neverthe-
less, the EM-based methods are prone to slow convergence, especially under low noise, even
though more elaborate optimisation schemes can speed up their convergence somewhat. It is
worth pointing out that this correspondence of VB EM is with the regular natural gradient
algorithm, not Riemannian (natural) conjugate gradients as proposed in this paper.

3. Approximate Riemannian conjugate gradient learning for fixed-form
VB

Given a fixed-form approximation q(θ|ξ) and the free energy F(q(θ|ξ)), it is possible to use
standard gradient-based optimisation techniques to minimise the free energy with respect

6

Riemannian Conjugate Gradient for VB

to ξ. We will use VB EM updates for some variational parameters ξEM and RCG for others
ξRCG.

Instead of a regular Euclidean gradient algorithm, we optimise the free energy using a
conjugate gradient algorithm that is adapted to Riemannian space by using Riemannian
inner products and norms instead of Euclidean ones. Steps are still taken along Euclidean
straight lines and the step length is determined using a line search. We call this the (ap-
proximate) Riemannian conjugate gradient (RCG) algorithm.

Our RCG is an approximation of a true Riemannian conjugate gradient algorithm (Smith,
1993), in which the steps are taken along geodesic curves and tangent vectors evaluated at
different points are transformed to the same tangent space using parallel transport along a
geodesic. For small step sizes and geometries which are locally close to Euclidean, the ap-
proximations that we have made still retain many of the benefits of the exact algorithm while
greatly simplifying the computations. Edelman et al. (1998) showed that near the solution
Riemannian conjugate gradient method differs from the flat space version of conjugate gra-
dient only by third order terms, and therefore both algorithms converge quadratically near
the optimum. This convergence property is demonstrated in detail for our approximation
in Appendix A.

The search direction for the RCG method is given by

pk = −g̃k + βpk−1, (5)

where g̃k = ∇̃F(ξ) is the Riemannian gradient of Eq. (4). The coefficient β is evaluated
using the Polak-Ribiére formula (Nocedal, 1991; Smith, 1993; Edelman et al., 1998)

β =
〈g̃k, g̃k − g̃k−1〉k
||g̃k−1||2k−1

, (6)

where ||g̃k||2k = 〈g̃k, g̃k〉k is the squared Riemannian norm of g̃k in the tangent space where
g̃k is defined, and 〈x,y〉k denotes the Riemannian inner product of Eq. (2) in the same
tangent space.

We also apply a Riemannian version of the Powell–Beale restart method (Powell, 1977):
the search direction is reset to the negative gradient direction if

|〈g̃k−1, g̃k〉k| ≥ 0.2||g̃k||2k. (7)

Compared to the traditional conjugate gradient, the Equations (6) and (7) are similar with
just the dot products of the vectors replaced with Riemannian inner products.

Once the search direction is determined, we use standard line search to find the final
update. Because the evaluation of the objective function is computationally costly, it is
worthwhile to consider line search methods that stop earlier rather than wasting many
function evaluations on fine tuning the parameters.

An example implementation of the algorithm is summarised in Algorithm 1. The inputs
include the probabilistic model p, the form of used posterior approximation q, the initiali-
sations for the variational parameters ξ, and the dataset X which is implicitly used in the
objective function F . The algorithm returns the variational parameters ξ that solve the
learning and inference problem of q(θ|ξ).

7

Honkela, Raiko, Kuusela, Tornio, and Karhunen

Algorithm 1 An outline of an example Riemannian conjugate gradient algorithm for fixed-
form VB. The presented method of integrating VB EM updates is only one of many possible
alternatives.

function VB-RCG(p, q, ξ0 = (ξEM
0 , ξRCG

0),X)
p0 = 0, g̃0 = 1
for k = 1, 2, . . . do . Repeat until convergence

for ξ(i) ∈ ξEM = (ξ(1), . . . , ξ(N)) do
ξ

(i)
k ← arg minξ(i) F(q(θ|ξ(1)

k , . . . , ξ
(i−1)
k , ξ(i), ξ

(i+1)
k−1 , . . . , ξ

(N)
k−1, ξ

RCG
k−1))

. VB EM for some parameters
g̃k ← G−1(ξRCG

k−1)∇ξRCG
k−1
F(q(θ|ξEM

k , ξRCG
k−1)) . Riemannian gradient

β ← 〈g̃k,g̃k−g̃k−1〉k
||g̃k−1||2k−1

. Polak-Ribiére formula

pk ← −g̃k + βpk−1 . Update direction
α← arg minαF(q(θ|ξEM

k , ξRCG
k−1 + αpk)) . Line search

ξRCG
k ← ξRCG

k−1 + αpk

3.1 Computational considerations

The RCG method is efficient as the geometry is defined by the approximation q(θ|ξ) and
not the full model p(X|θ) as in typical natural gradient methods. If the approximation
q(θ|ξ) is chosen such that disjoint groups of variables are independent, that is,

q(θ|ξ) =
∏
i

qi(θi|ξi), (8)

the computation of the Riemannian gradient is simplified as the Fisher information matrix
becomes block-diagonal. The required matrix operations can be performed very efficiently
because

diag(A1, . . . ,An)−1 = diag(A−1
1 , . . . ,A−1

n). (9)

The dimensionality of the problem space is often so high that working with the full matrix
would not be feasible.

All vector operations needed in the RCG algorithm are of the form

〈g̃k, g̃l〉m = 〈G−1
k gk,G−1

l gl〉m = gTk G−Tk GmG−1
l gl (10)

for some iterate indices k, l,m. This is further simplified in case m = k where G−Tk Gm = I
and in case m = l where GmG−1

l = I. Depending on the structure of the Fisher information
matrix, the operations can be performed as a series of solving linear systems and matrix
products to exploit the sparsity. A practical example of this in the case of a Gaussian
approximation is presented in Sec. 3.2.1.

Finally, it is worth to note that when updating only a subset of variational parameters ξ
at a time, many terms in F are constant and can be disregarded when finding a minimum.

8

Riemannian Conjugate Gradient for VB

3.2 Gaussian approximation

Most obvious applications of the Riemannian gradient method are with a Gaussian approx-
imation. In that case, it is most convenient to use a simple fixed-point update rule for the
covariance and a Riemannian conjugate gradient update only for the mean.

Let us consider the optimisation of the free energy (1) when the approximation q(θ|ξ)
is a multivariate Gaussian. The free energy can be decomposed as

F(q(θ|ξ)) = Eq(θ|ξ)

{
log

q(θ|ξ)
p(X,θ)

}
= Eq(θ|ξ) {log q(θ|ξ)}+ Eq(θ|ξ) {− log p(X,θ)} . (11)

The former term is the negative entropy of the approximation, which in the case of a
multivariate Gaussian q(θ|µ,Σ) with mean vector µ and covariance matrix Σ is

Eq(θ|ξ) {log q(θ|ξ)} = −1
2

log det(2πeΣ). (12)

Straightforward differentiation yields a fixed point update rule for the covariance (Lap-
palainen and Miskin, 2000; Opper and Archambeau, 2009):

Σ−1 = −2∇ΣEq(θ|ξ) {log p(X,θ)} , (13)

where ∇Σ denotes the gradient with respect to Σ. If the covariance matrix is assumed
(block) diagonal, the same update rule applies for the (block) diagonal terms.

3.2.1 Computing the Riemannian metric tensor

For the univariate Gaussian distribution parametrised by mean and variance q(θ|µ, v) =
N (θ|µ, v), we have

log q(θ|µ, v) = − 1
2v

(θ − µ)2 − 1
2

log(v)− 1
2

log(2π). (14)

Furthermore,

E

{
−∂

2 log q(θ|µ, v)
∂µ2

}
=

1
v
, (15)

E

{
−∂

2 log q(θ|µ, v)
∂v∂µ

}
= 0, and (16)

E

{
−∂

2 log q(θ|µ, v)
∂v2

}
=

1
2v2

. (17)

The vanishing of the cross term between the mean and the variance further supports using
the simpler fixed point rule (13) to update the variances.

In the case of univariate Gaussian distribution, the Riemannian gradient has a rather
straightforward intuitive interpretation, which is illustrated in Figure 3. Compared to
conventional gradient, Riemannian gradient compensates for the fact that changing the
parameters of a Gaussian with small variance has much more pronounced effects than when
the variance is large.

9

Honkela, Raiko, Kuusela, Tornio, and Karhunen

(a) (b) (c) (d)

Figure 3: The absolute change in the mean of the Gaussian in figures (a) and (b) and the
absolute change in the variance of the Gaussian in figures (c) and (d) is the same.
However, the relative effect is much larger when the variance is small as in figures
(a) and (c) compared to the case when the variance is high as in figures (b) and
(d) (Valpola, 2000).

In case of multivariate Gaussian distribution parametrised by mean and covariance
q(θ|µ,Σ) = N (θ|µ,Σ), the elements of the Fisher information matrix corresponding to the
mean are simply

E

{
−∂

2 log q(θ|µ,Σ)
∂µT∂µ

}
= Σ−1. (18)

The Fisher information matrix is thus equal to the precision matrix Gk = Λk = Σ−1
k .

Typically the covariance matrix Σ is assumed to have a simple structure that makes
working with it very efficient. Possible structures for a covariance matrix include full,
diagonal, block diagonal, a Gaussian Markov random field with a specific structure, and a
factor analysis covariance Σ = D +

∑k
i=1 vvT , where D is a diagonal matrix, or Σ−1 =

K−1+diag(v) with a fixed K and only N parameters in v for an N -variate Gaussian (Opper
and Archambeau, 2009). It is also possible to derive the geometry for the covariance of a
multivariate Gaussian. The result does, however, depend on the specific structure of the
covariance.

Assuming a structured Gaussian Markov random field approximation with a tree or
blocked tree structure, the precision matrix will be sparse with a simple structure. This
allows efficient computation of the operations needed in Eq. (10). Λ−1

l gl (and correspond-
ingly for k) can be computed by solving the linear system Λlx = gl, which can be done in
O(N) time for N variables using a propagation algorithm in the tree. For a blocked tree
formed of N/n blocks of size n, the complexity is O(n2N). Examples of such algorithms for
chains are given in (Golub and Loan, 1996), but a general tree can be handled analogously.
The complexity of multiplication by Λ is similar.

Examples of Gaussian Markov random fields with this structure can be easily found in
time series models, where the approximation for the state sequence S = (s(1), . . . , s(T)) is
typically either a single “blocked” chain

q(S) =
T∏
t=2

q(s(t)|s(t− 1))q(s(1)) (19)

10

Riemannian Conjugate Gradient for VB

or a product of independent chains

q(S) =
∏
i

[
q(si(1))

T∏
t=2

q(si(t)|si(t− 1))

]
. (20)

In a d dimensional model of length T , the time complexity of the Riemannian vector oper-
ations in RCG is O(d3T) for the former and O(dT) for the latter.

4. Case study: Mixture of Gaussians

As the first case study, we consider the mixture-of-Gaussians (MoG) model as was done
by Kuusela et al. (2009). In this case, we applied the RCG also for variables with a non-
Gaussian approximation. Furthermore, the conjugate-exponential nature of the MoG model
allows direct comparison with VB EM.

4.1 The mixture-of-Gaussians model

The model p(X|Z,µ,Λ) =
∏N
n=1

∏K
k=1N (xn|µk,Λ−1

k)znk

p(Z|π) =
∏N
n=1

∏K
k=1 π

znk
k

Key variables Z = (znk) ,θ = (µk,Λk,π)
The approximation q(Z,θ) = q(Z)q(θ)
The update algorithm Joint RCG updates for Z and means of µk, fixed point updates

for variances of µk, VB EM updates for the rest

Table 1: Summary of the mixture-of-Gaussians model

We consider a finite mixture of K Gaussians (Attias, 2000; Bishop, 2006)

p(x|π,µ,Λ) =
K∑
k=1

πkN (x|µk,Λk), (21)

where x is a D-dimensional random vector, π = [π1 · · ·πK]T are the mixing coefficients, and
µk and Λk are the mean vector and the precision matrix of the kth Gaussian component,
respectively.

In the case of the MoG model, the binary latent variables Z denote which one of the K
Gaussian components has generated a particular observation xn with znk = 1 denoting the
component responsible for generating the observed data point xn. Let N denote the total
number of observed data points.

Given the mixing coefficients π, the probability distribution over the latent variables is
given by

p(Z|π) =
N∏
n=1

K∏
k=1

πznkk . (22)

The mixing coefficients have a conjugate Dirichlet prior

p(π) = Dir(π|α0) (23)

11

Honkela, Raiko, Kuusela, Tornio, and Karhunen

Figure 4: A graphical model representing the MoG model (Attias, 2000; Bishop, 2006),
where the hyperparameters have been omitted for clarity. The observed data X
are marked with a shaded circle. The rectangular plates denote the repetition
of N observations xn along with corresponding latent variables zn, and of the
parameters of K mixture components.

where α0 = [α0, . . . , α0]T .
Similarly, the likelihood can be written as

p(X|Z,µ,Λ) =
N∏
n=1

K∏
k=1

N (xn|µk,Λ−1
k)znk . (24)

In this case, the conjugate prior for the component parameters µ and Λ is given by the
Gaussian-Wishart distribution

p(µ,Λ) = p(µ|Λ)p(Λ) =
K∏
k=1

N (µk|m0, (β0Λk)−1)W(Λk|W0, ν0), (25)

where the Wishart distribution is defined up to a normalising constant by the equation

W(Λ|W, ν) ∝ |Λ|(ν−D−1)/2 exp
(
−1

2
Tr(W−1Λ)

)
. (26)

The joint distribution over all the random variables of the model is then given by

p(X,Z,π,µ,Λ) = p(X|Z,µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ). (27)

This resulting model can be illustrated with the graphical model shown in Figure 4.
We now make the factorising approximation

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ) (28)

which leads to an update rule for q(Z) (VB-E step) and subsequently an update rule for
q(π,µ,Λ) (VB-M step). The resulting approximate posterior distributions are

q(Z) =
N∏
n=1

K∏
k=1

rznknk (29)

12

Riemannian Conjugate Gradient for VB

and

q(π,µ,Λ) = q(π)q(µ,Λ) = q(π)
K∏
k=1

q(µk,Λk) (30)

where

q(π) = Dir(π|α) (31)

q(µk,Λk) = N (µk|mk, (βkΛk)−1)W(Λk|Wk, νk). (32)

The derivations of the VB EM and RCG learning algorithms for the MoG model are
presented in Appendix B.

4.2 Experiments

The hyperparameters are set to the following values for all the experiments: α0 = 1, β0 =
1, ν0 = D, W0 = 4

D I and m0 = 0. These values can be interpreted to describe our prior
beliefs of the model when we anticipate having Gaussian components near the origin but
are fairly uncertain about the number of the components.

The maximum number of components is set to K = 8 unless otherwise mentioned with
each component having a randomly generated initial mean mk drawn from a Gaussian dis-
tribution with zero mean and covariance 0.16I. Other distribution parameters are initially
set to the following values: αk = 1, βk = 10, νk = D and Wk = 4

D I for all k. The
Powell–Beale restart scheme of Eq. (7) is not used. Instead, the search direction is reset to
the negative gradient direction after

√
n iterations, where n is the number of parameters

updated with the gradient method. The optimisation is assumed to have converged when
the improvement in free energy |F t −F t−1| < ε for two consecutive iterations with ε being
separately specified for each of the experiments below.

It should be noted that this convergence criterion favours methods such as VB EM which
typically takes more of cheaper and smaller steps, while the Riemannian gradient algorithm
takes fewer larger steps that are computationally more demanding and take longer to reach
the preset improvement threshold.

Because different initial means can produce significantly different results in terms of the
required CPU time and achieved final free energy, all the experiments are repeated 30 times
with different initialisations.

The artificial data set used to compare the different algorithms in learning the MoG
model was drawn from a mixture of 5 spherical two-dimensional Gaussians with equal
weights. The mean of the first component is at the origin while the means of the others are
(±R,±R). The constant R = 0.3 unless otherwise mentioned and the covariance of all the
components is 0.03I.

When different gradient-based algorithms are compared using the artificial data contain-
ing N = 500 data points, the results shown in Figure 5 are obtained. It can be seen that the
standard gradient descent and conjugate gradient (CG) algorithms have problems locating
even a decent optimum within a reasonable time. Clearly the convergence criterion, which
was set to ε = 10−7N , is too lax for these algorithms as the simulations are terminated
before convergence to a good solution. Using the Riemannian gradient (RG) and further
RCG radically improves the performance. Based on the curves, even the standard CG al-
gorithm is more than 10 times slower than RCG. This experiment was conducted using a

13

Honkela, Raiko, Kuusela, Tornio, and Karhunen

100 101 102 103 104

290

295

300

305

310

315

320

325

330

335

CPU time (s)

Fr
ee

 e
ne

rg
y

Gradient
CG
RG
RCG
L BFGS

Figure 5: Convergence curves of gradient-based algorithms using the MoG model for arti-
ficial data with R = 0.3. The algorithms compared are the standard gradient
descent, the conjugate gradient (CG), the Riemannian gradient (RG) and the
Riemannian conjugate gradient (RCG) methods as well as the limited-memory
BFGS (L-BFGS) algorithm. The curves shown are medians of 30 simulations
drawn up to the median termination time. The smaller marks denote 25% and
75% quantiles of the termination time in the horizontal direction and the cor-
responding quantiles of the free energy at the median termination time in the
vertical direction. Note that the time scale is logarithmic.

14

Riemannian Conjugate Gradient for VB

fairly small number of observations, a lax convergence criterion and the maximum number
of components K = 5 in order to allow the standard gradient to finish in a reasonable time.

We also considered the L-BFGS algorithm (Byrd et al., 1995; Carbonetto, 2007) as a
higher order Euclidean algorithm. L-BFGS is a limited-memory version of the popular
quasi-Newton BFGS algorithm. It can be seen as a compromise between the fast converg-
ing but memory-intensive quasi-Newton methods and the less efficient conjugate gradient
methods better suited for medium- to large-scale problems. The degree of this compro-
mise is controlled by the memory length parameter m which was set to m = 20 in Figure
5. It was found out that, regardless of the value of m, the performance of L-BFGS was
very similar to CG with the small deviations explained by the differences in the line search
methods employed by the algorithms. It also turned out that the line search subroutine of
the L-BFGS implementation had a tendency to converge prematurely to a poor solution.
In order to circumvent this, the convergence criterion of the L-BFGS had to be tightened
by a factor of 10−9 compared to the gradient-based algorithms.

We next compare RCG, RG and VB EM using different values of R. The number of
observations was increased toN = 1000 and the convergence criterion was set to ε = 10−12N
in order to maximise the quality of the optima found. Figure 6 shows the median CPU time
required for convergence for the different algorithms in 30 repeated experiments. It can be
seen that with small values of R, RCG outperforms VB EM, while with large values of R,
VB EM performs slightly better. This means that, at least in terms of this experiment,
RCG performs better than VB EM when the latent variables are difficult to infer from the
data.

Given the discussion of Section 2.3, it is not surprising to note that both VB EM and RG
perform qualitatively in a fairly similar manner in the experiment of Figure 6. It should
especially be noted that both methods suffer from significant slowdowns near the values
of R = 0.2 and R = 0.325. On the other hand, the use of conjugate directions in the
Riemannian space seems to result in a fairly uniform performance across all values of R.

There is some variation in the quality of the optima the different methods converge
to. This is illustrated in Figure 7 for RCG and VB EM. There is no evidence for either
algorithm consistently producing better results than the other. The only outlier in this data
is with R = 0.225 where VB EM is the only algorithm to discover the global optimum. This
is by no means typical, and with other data sets we have seen RCG sometimes consistently
finding better optima. Based on the figure, RCG seems slightly more sensitive to local
optima, but the result is not qualitatively different from VB EM which, to some extent,
also suffers from the same problem.

Although the time complexity of one step of each of the compared algorithms is linear
in the number of samples, the algorithms nevertheless perform differently as the number
of samples increases. To see this, we set ε = 10−8N and probed a wide range of values of
N . The results are illustrated in Figure 8 which shows that VB EM slows down faster than
linearly as the number of samples increases. The most likely reason for this behaviour is
that the posterior will be more peaked when the number of observations is large and this
slows down the alternating VB EM iteration. The same phenomenon also affects RCG, but
the effect is much stronger in VB EM. The results suggest that especially for large data
sets, it can be worthwhile to consider alternatives to basic batch VB EM, such as on-line
algorithms (Sato, 2001) or gradient-based methods.

15

Honkela, Raiko, Kuusela, Tornio, and Karhunen

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

R

C
P

U
 t
im

e
 (

s)

VB EM

RCG

RG

Figure 6: Comparison of VB EM with the Riemannian gradient (RG) and the Riemannian
conjugate gradient (RCG) methods using the MoG model with the artificial data.
The curves show the median CPU time required for convergence as a function of
R. VB EM slows down significantly at the critical overlap of R ≈ 0.2, while RCG
is almost unaffected. A similar slowdown also affects RG implying that the use
of conjugate directions contributes to the nearly uniform running time of RCG.

16

Riemannian Conjugate Gradient for VB

0 200 400
10

20

30

40

50
R=0.175

F
in

al
 fr

ee
 e

ne
rg

y

0 500 1000
135

140

145

150

155

160

165
R=0.200

0 500 1000
260

270

280

290

300
R=0.225

0 200 400
385

390

395

400
R=0.250

0 200 400
492

494

496

498

500

502
R=0.275

F
in

al
 fr

ee
 e

ne
rg

y

0 200 400
585

590

595

600

605

610
R=0.300

0 200 400
665

670

675

680

685
R=0.325

0 100 200
740

745

750

755
R=0.350

0 100 200
808

810

812

814

816

818
R=0.375

F
in

al
 fr

ee
 e

ne
rg

y

0 100 200
866

867

868

869

870
R=0.400

0 50 100
914

916

918

920

922
R=0.425

0 50
950

955

960

965

970

975

980
R=0.450

0 20 40
980

990

1000

1010

1020
R=0.475

Convergence time (s)

F
in

al
 fr

ee
 e

ne
rg

y

0 20 40
1010

1020

1030

1040

1050

1060
R=0.500

Convergence time (s)
10 20 30

1030

1040

1050

1060

1070

1080

1090
R=0.525

Convergence time (s)

RCG
VB EM

Figure 7: Final free energy value as a function of running time in the critical parameter
range in the MoG experiment with varying R. Both RCG and VB EM some-
times fail to converge to the global optimum. Interestingly, there usually is no
correlation between the quality of the solution and convergence time.

17

Honkela, Raiko, Kuusela, Tornio, and Karhunen

2000 4000 6000 8000 10000 12000 14000
0

0.05

0.1

0.15

0.2

0.25

N

C
P

U
 t

im
e

 (
s)

 /
 N

VB EM

RCG

Figure 8: Median convergence times of 30 simulations of the MoG model on artificial data
as a function of the number of observations N with VB EM and the Riemannian
conjugate gradient (RCG) algorithms. The smaller marks indicate 25% and 75%
quantiles.

5. Case study: Nonlinear state-space models

The model x(t) = f(s(t),θf) + n(t)
s(t) = s(t− 1) + g(s(t− 1),θg) + m(t)

Key variables θS = (s(t)) ,θθ = (θf ,θg,vm,vn)
The approximation q(θS ,θθ) = q(θS)q(θθ), where q(θθ) is Gaussian with diagonal

covariance and q(θS) Gaussian with tridiagonal precision (see
text)

The update algorithm Joint RCG updates for the means of θS ,θf ,θg, fixed point up-
dates for their covariances, VB EM updates for the rest

Table 2: Summary of the nonlinear state-space model

18

Riemannian Conjugate Gradient for VB

As the second case study, we consider the nonlinear state-space model (NSSM) intro-
duced by Valpola and Karhunen (2002). The model is specified by the generative model

x(t) = f(s(t),θf) + n(t) (33)
s(t) = s(t− 1) + g(s(t− 1),θg) + m(t), (34)

where t is time, x(t) are the observations, and s(t) are the hidden states. The observation
mapping f and the dynamical mapping g are nonlinear and they are modelled with multi-
layer perceptron (MLP) networks whose weight matrices are included in θf and θg. The
observation noise vector n and process noise vector m are assumed Gaussian with zero mean
and covariances diag(exp(2vn)) and diag(exp(2vm)). The latent states s(t) are commonly
denoted by θS . The model parameters include both the weights of the MLP networks and a
number of hyperparameters. The posterior approximation of these parameters is a Gaussian
with a diagonal covariance matrix. The posterior approximation of the states q(θS |ξS) is
a Gaussian Markov random field with a correlation between the corresponding components
of subsequent state vectors sj(t) and sj(t− 1), as in Eq. (20). This is a realistic minimum
assumption for modelling the dependence of the state vectors s(t) and s(t − 1) (Valpola
and Karhunen, 2002). Omitted details of the model are presented in Appendix C and a
summary is given in Table 2.

Because of the nonlinearities the model is not in the conjugate exponential family, and
the standard VB learning methods are only applicable to hyperparameters but not to the
latent states or weights of the MLPs. The free energy (1) can nevertheless be evaluated by
linearising the MLP networks f and g (Honkela and Valpola, 2005; Honkela et al., 2007).
This allows evaluating the gradient with respect to ξS , ξf , and ξg and using a gradient
based optimiser to adapt the parameters. Combining Eqs. (4) and (18), the Riemannian
gradient for the mean elements is given by

∇̃µqF(ξ) = Σq∇µqF(ξ), (35)

where µq is the mean of the variational approximation q(θ|ξ) and Σq is the corresponding
covariance. The covariance matrix of the model parameters is diagonal while the inverse
covariance matrix of the latent states s(t) is block-diagonal with tridiagonal blocks. This
implies that all computations with these can be done in linear time with respect to the
number of the parameters. The covariances are updated separately using a fixed-point
update rule similar to (13) as described by Valpola and Karhunen (2002). A complete
derivation of the free energy of the model is presented in Appendix C.

Experiments We applied the method for learning nonlinear state-space models presented
above to real world speech data. Experiments were conducted with different data sizes
to study the performance differences between the algorithms. The data consisted of 21
dimensional mel-frequency log power speech spectra of continuous human speech. This is a
detailed representation of speech signals similar to those often used in speech recognition.
A segment of 100 samples corresponds to approximately 0.8 seconds of speech. The task is
to learn a nonlinear dynamical model for this data.

To study the performance differences between the Riemannian conjugate gradient (RCG)
method, standard Riemannian gradient (RG) method, standard conjugate gradient (CG)

19

Honkela, Raiko, Kuusela, Tornio, and Karhunen

method and the heuristic algorithm from Valpola and Karhunen (2002), the algorithms
were applied to different sized parts of the speech data set. Unfortunately a reasonable
comparison with a VB EM algorithm was impossible because an extended-Kalman-filter-
based VB EM algorithm failed with the nonlinear model.

The size of the data subsets varied between 200 and 500 samples. A five-dimensional
state-space was used. The MLP networks for the observation and dynamical mappings
had 20 hidden nodes. Four different initialisations and two different segments of data of
each size were used, resulting in eight repetitions for each algorithm and data size. The
results for different data segments of the same size were pooled together as the convergence
times were in general very similar. An algorithm was assumed to have converged when
|F t − F t−1| < ε = (10−5N/80) for 5 consecutive iterations, where F t is the free energy at
iteration t and N is the size of the data set. Alternatively, the iteration was stopped after
24 hours even if it had not converged.

The MLP network is notoriously prone to local optima. Practically all our simulations
converged to local optima with different parameter estimates, but there were no statisti-
cally significant differences in the free energies corresponding to these optima attained by
different algorithms (Wilcoxon rank-sum test, 5 % significance level). In practice, the free
energy values tend to have a very strong correlation with predictive performance of the
model (Honkela et al., 2007). There were still some differences, and especially the RG algo-
rithm with smaller data sizes often appeared to converge very early to an extremely poor
solution. These were filtered by removing results where the attained free energy that was
more than two RCG standard deviations worse than RCG average for the particular data
set. Thus all the used results are from runs converging to a roughly equally good solution.
The results of one run where the heuristic algorithm diverged were also discarded from the
analysis.

The results can be seen in Figure 9. The plain CG and RG methods were clearly slower
than others and the maximum runtime was reached by most CG and some RG runs. RCG
was clearly the fastest algorithm with the heuristic method of Valpola and Karhunen (2002)
between these extremes. The observed differences are, save for a few exceptions mostly with
smaller data sets, statistically significant (Wilcoxon rank-sum test, 5 % significance level).

As a more realistic example, a larger data set of 1000 samples was used to train a seven-
dimensional state-space model. In this experiment both MLP networks of the NSSM had
30 hidden nodes. The convergence criterion was ε = 10−6 and the maximum runtime was
72 hours. The performances of the RCG, RG, CG methods and the heuristic algorithm
were compared. The results can be seen in Figure 10. The results show the convergence
for five different initialisations with markers at the end showing when the convergence was
reached. It should be noted that the scale of the CPU time axis is logarithmic.

RCG clearly outperformed the other algorithms in this experiment as well. In particular,
both RG and CG hit the maximum runtime in every run, and especially CG was nowhere
near convergence at this time. RCG also outperformed the heuristic algorithm (Valpola
and Karhunen, 2002) by a factor of more than 10.

20

Riemannian Conjugate Gradient for VB

200 300 400 500
0

5

10

15

20

of samples

C
PU

 ti
m

e
(h

)

CG
RG
Old
RCG

Figure 9: Convergence speed of the Riemannian conjugate gradient (RCG), the Riemannian
gradient (RG) and the conjugate gradient (CG) methods as well as the heuristic
algorithm (Old) with different data sizes of the speech data set and the nonlinear
state-space model. The lines show median times with 25 % and 75 % quantiles
shown by the smaller marks. The times were limited to at most 24 hours, which
was reached by a number of simulations.

The model x(t) = f(s(t),θf) + n(t)
s(t) = N (0,diag(exp(2vs)))

Key variables S = (s(t)) ,θ = (θf ,vs,vn)
The approximation q(S,θ) = q(S)q(θ), where both q(θ) and q(S) are Gaussian

with diagonal covariances
The update algorithm Joint RCG updates for means of S,θf , fixed point update for

their covariances, VB EM updates for the rest

Table 3: Summary of the nonlinear factor analysis model

6. Case study: Nonlinear factor analysis

As the final case study, the RCG and RG methods were implemented as extensions to the
VB nonlinear factor analysis (NFA) method (Lappalainen and Honkela, 2000; Honkela and
Valpola, 2005; Honkela et al., 2007). NFA models the mapping between latent factors s(t)
and observations x(t) with an MLP as in Eq. (33):

x(t) = f(s(t),θf) + n(t). (36)

21

Honkela, Raiko, Kuusela, Tornio, and Karhunen

0.1 1 10 72
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

CPU time (h)

Fr
ee

 e
ne

rg
y RCG

Old
RG
CG

Figure 10: Comparison of the performance of the Riemannian conjugate gradient (RCG),
the Riemannian gradient (RG), the conjugate gradient (CG) methods and the
heuristic algorithm with the full speech data set of 1000 samples using the non-
linear state-space model. The free energy F is plotted against computation time
using a logarithmic time scale. The tick marks show when simulations either
converged or were terminated after 72 hours.

Instead of the dynamical model of Eq. (34), s(t) has independent Gaussian priors with a
unit covariance. As NFA can be seen as a special case of NSSM with no dynamic mapping,
the implementation is straightforward. The model is summarised in Table 3. Complete
derivation of the model and a learning algorithm based on conjugate gradients is presented
by Honkela et al. (2007). The generalisation for Riemannian gradient is straightforward as
the Fisher information matrix is diagonal.

The RCG, RG and CG methods were applied for learning an NFA model for parts of
the speech data set, a different part of which was also used in the NSSM experiments. As
the NFA model cannot capture the dynamics of speech, the experiment aimed at finding a
nonlinear embedding of speech on a lower dimensional manifold. To stimulate this, we drew
a suitable subset of samples randomly from the full data set of 7860 samples, excluding any
dynamical relations in the data. Silent segments were excluded from the data.

We tested each algorithm for data sets ranging in size from 300 to 1000 samples, running
10 simulations with different random initialisations for every setting. The results are shown
in Fig. 11. RCG is again clearly superior to both RG and CG, but CG is now faster than

22

Riemannian Conjugate Gradient for VB

RG. The observed differences are statistically significant (Wilcoxon rank-sum test, 5 %
significance level), except between CG and RG for 300 samples.

300 400 500 600 800 1000
0

0.5

1

1.5

2

2.5

3

of samples

C
PU

 ti
m

e
(h

)

CG
RG
RCG

Figure 11: Convergence speed of the Riemannian conjugate gradient (RCG), the Rieman-
nian gradient (RG) and the conjugate gradient (CG) methods with different data
sizes of the speech dimensionality reduction data set with the nonlinear factor
analysis model. The lines show median times with 25 % and 75 % quantiles
shown by the smaller marks.

7. Discussion

The proposed RCG algorithm combines two improvements over plain gradient optimisa-
tion: use of Riemannian gradient and conjugate gradients. One interesting feature in the
experimental results is the relative performance of the conjugate gradient and Riemannian
gradient algorithms that implement only one of these. Conjugate gradient is faster than
Riemannian gradient for NFA, but the opposite is true for NSSM and MoG. Especially the
latter differences are quite significant and consistent across several different data sets. One
obvious difference between the models is that for NFA the Fisher information matrix is
diagonal while for NSSM and MoG this is not the case. This suggests that the Riemannian
gradient approach may be the most useful when the metric is more complex, although more
careful analysis would be needed to properly understand the effects of different improve-
ments.

As illustrated by the MoG example, the RCG algorithm can also be applied to conjugate-
exponential models to replace the more common VB EM algorithm. In practice, simpler

23

Honkela, Raiko, Kuusela, Tornio, and Karhunen

and more straightforward EM acceleration methods based on e.g. pattern search or adap-
tive over-relaxation (see e.g. Honkela et al., 2003; Salakhutdinov and Roweis, 2003) may
still provide comparable or better results with less human effort. These methods are only
applicable when EM itself is applicable, though.

The experiments in this paper show that using even a greatly simplified variant of the
Riemannian conjugate gradient method for some variables is enough to acquire a large
speedup. Considering univariate Gaussian distributions, the regular gradient is prone to
overemphasise changes to model variables with small posterior variance and underemphasise
variables with large posterior variance, as seen from Eqs. (15)–(17). The posterior variance
of latent variables is often much larger than the posterior variance of model parameters and
the Riemannian gradient takes this into account in a very natural manner.

The Riemannian conjugate gradient method differs from Euclidean superlinear optimi-
sation methods such as quasi-Newton methods in that it uses higher-order information of
the geometry of the parameter space, but not of the function being optimised. These are
essentially two independent avenues for improvement: it would be possible, although com-
plicated, to derive a Riemannian quasi-Newton method. Our experiments clearly show that
in these problems, a proper model of the geometry appears significantly more important
than using higher-order information of the objective function.

In this paper, we have presented a Riemannian conjugate gradient learning algorithm
for fixed-form variational Bayes. The RCG algorithm provides an efficient method for VB
learning in models that do not belong to the conjugate-exponential family as required by
the standard variational EM algorithm. For suitably structured approximations, the com-
putational overhead from using Riemannian gradients instead of conventional gradients is
negligible. In practical examples, the Riemannian gradient approach provided several orders
of magnitude speedups over conventional gradient algorithms, thus making VB learning of
these models practical on a much larger scale.

Matlab code for all the models used in the case studies is available at http://www.cis.
hut.fi/projects/bayes/software/ncg/.

Acknowledgements

This work was supported in part by the Academy of Finland under its Centres of Ex-
cellence in Research Program, and the IST Program of the European Community, under
the PASCAL2 Network of Excellence, IST-2007-216886. AH and TR were supported by
Postdoctoral Researchers’ projects of the Academy of Finland (No 121179, 133145). TR
was also supported by the Academy of Finland project “Unsupervised machine learning in
latent variable models” (No 121802). This publication only reflects the authors’ views.

Appendix A. Convergence of the Riemannian conjugate gradient
algorithm

The Riemannian conjugate gradient algorithm has similar superlinear convergence proper-
ties to the Euclidean space conjugate gradient algorithm. Assuming the objective F(ξ) has
continuous third order derivatives and that there exist m > 0,M such that the Hessian
H(ξ) satisfies

mxTx ≤ xTH(ξ)x ≤MxTx (37)

24

Riemannian Conjugate Gradient for VB

for all ξ and x, the error decreases quadratically over N steps in an N -dimensional problem.
Thus, denoting the optimum by α and the iterates by ξi, we have (Edelman et al., 1998;
Cohen, 1972)

||α− ξi+N || ≤ C||α− ξi||2 (38)

in some neighbourhood of α.
We now show that the approximations in the RCG algorithm, namely ignoring the

parallel transports and performing line searches along straight lines instead of geodesics, do
not effect the convergence rate of Eq. (38).

Theorem 1 Assuming the objective F(ξ) has bounded derivatives for up to third order and
that the Fisher information G(ξ) is smooth in a neighbourhood of the solution, the RCG
algorithm performing a line search along a straight line in the direction

pk = −g̃k + βpk−1, (39)

where g̃k is the Riemannian gradient and

β =
〈g̃k, g̃k − g̃k−1〉k
||g̃k−1||2k−1

(40)

to find the sequence of iterates ξk shares the same convergence property of Eq. (38) in some
ε-neighbourhood of the solution as the Riemannian conjugate gradient algorithm performing
a line search along a geodesic in the direction

p∗k = −g̃∗k + β∗τp∗k−1, (41)

where g̃k is the Riemannian gradient, τp∗k−1 is the vector p∗k−1 after parallel transport to
the starting point of the new search and

β∗ =
〈g̃∗k, g̃∗k − τ g̃∗k−1〉k∗
||g̃∗k−1||2(k−1)∗

, (42)

where 〈·, ·〉k∗ is the inner product at ξ∗k, to find the sequence of iterates ξ∗k.

Proof Let us assume that the two algorithms are started at ξk = ξ∗k and ||ξk−α|| < ε for
some ε > 0. We show by induction on i that pi−1 = p∗i−1 +O(ε2) and ξi = ξ∗i +O(ε2) for
i ≥ k which is sufficient to prove the theorem.

The base case is trivial as ξk = ξ∗k and pk−1 = p∗k−1 = 0 at the start of the algorithm.
Assume now that the claim is valid for i = k, . . . ,K, and let us prove it for i = K + 1.

From Edelman et al. (1998) we know that

ξ(ε) = ξ(0) + ε∆/||∆||+O(ε3) (43)

τ g̃(ε) = g̃ +O(ε2), (44)

where ξ(ε) is a geodesic in direction ∆, τ g̃(ε) is the parallel transport of g̃ to ξ(ε). The
norms of g̃ and p are also of the order O(ε).

25

Honkela, Raiko, Kuusela, Tornio, and Karhunen

The assumption ξK = ξ∗K +O(ε2) implies that the gradients evaluated at these points
satisfy g̃K = g̃∗K +O(ε2). Furthermore,

〈x, y〉K∗ = xTG(ξ∗K)y = xT (G(ξK) + O(ε2))y = 〈x, y〉K + O(ε2||x||K ||y||K). (45)

Using the above asymptotics,

β∗ =
〈g̃∗K , g̃∗K − τ g̃∗K−1〉K∗
||g̃∗K−1||2(K−1)∗

=
〈g̃K +O(ε2), g̃K − g̃K−1 +O(ε2)〉K∗

||g̃K−1 +O(ε2)||2(K−1)∗

= (1 +O(ε))
〈g̃K , g̃K − g̃K−1〉K∗ +O(ε3)

||g̃K−1||2(K−1)∗
= (1 +O(ε))

〈g̃K , g̃K − g̃K−1〉K +O(ε3)
||g̃K−1||2(K−1) +O(ε3)

= (1 +O(ε))

(
〈g̃K , g̃K − g̃K−1〉K
||g̃K−1||2(K−1)

+O(ε)

)
= β +O(ε).

(46)

Similarly we can find the difference in the search direction,

p∗K = −g̃∗K + β∗τp∗K−1 = −g̃K + β∗p∗K−1 +O(ε2) = −g̃K + βpK−1 +O(ε2)

= pK +O(ε2)
(47)

which completes the first part of the induction step.
The corresponding step lengths, t∗ and t also differ by O(ε). To show this, let us use

the Taylor expansion of f about the optimum α:

F(ξ) = F(α) +
1
2

(ξ −α)TH(α)(ξ −α) +O(ε3) (48)

∇F(ξ) = H(α)(ξ −α) +O(ε2). (49)

The line search finds the zero of pK ·∇F(ξ) along the line ξ = ξK−1 + tpK , which yields

pTKH(α)
[
(ξK−1 + tpK −α) +O(ε2)

]
= 0 (50)

which can be solved to obtain

t = −
pTKH(α)(ξK−1 −α)

pTKH(α)pK
+O(ε), (51)

where we have used the fact that pTKH(α)pK ≥ m||pK ||2.
Correspondingly, the exact algorithm finds the zero along the geodesic from ξ∗K−1 in the

direction p∗K of (τp∗K)T∇F(ξ)

(τp∗K(t∗||p∗K ||))TH(α)[ξ∗K−1(t∗||p∗K ||)−α+O(ε2)] =

(p∗K +O(ε2))TH(α)[ξ∗K−1 + t∗p∗K −α+O(ε2)] +O(ε3) = 0, (52)

26

Riemannian Conjugate Gradient for VB

where ξK−1(t∗||p∗K ||) is the geodesic starting from ξ∗K−1 in the direction p∗K , and τp∗K(t∗||p∗K ||)
is the parallel transport of p∗K along this geodesic. The solution of this equation yields

t∗ = −
(p∗K +O(ε2))TH(α)[ξ∗K−1 −α+O(ε3)]

(p∗K +O(ε2))TH(α)p∗K
+O(ε)

= −
(pK +O(ε2))TH(α)[ξK−1 −α+O(ε2)]

(pK +O(ε2))TH(α)[pK +O(ε2)]
+O(ε)

= −(1 +O(ε))
pTKH(α)[ξK−1 −α] +O(ε3)

pTKH(α)pK
+O(ε) = t+O(ε).

(53)

Now

ξ∗K = ξ∗K−1(t∗||p∗K ||) = ξ∗K−1 + t∗p∗K +O(ε3)

= ξK−1 +O(ε2) + [t+O(ε)][pK +O(ε2)] +O(ε3) = ξK +O(ε2),
(54)

which completes the proof.

Appendix B. Derivations of the mixture-of-Gaussians model

B.1 VB EM for the mixture-of-Gaussians model

This section is completely based on the variational treatment of the MoG model of Attias
(2000); Bishop (2006). Because of this, some details of the derivation of the VB EM
algorithm for the MoG model will be omitted here and we will concentrate only on the
most important results.

In expressing the update rules for the distribution parameters in Equations (29), (31)
and (32), we will find the following definitions useful:

Nk =
N∑
n=1

rnk (55)

xk =
1
Nk

N∑
n=1

rnkxn (56)

Sk =
1
Nk

N∑
n=1

rnk(xn − xk)(xn − xk)T (57)

log Λ̃k =
D∑
i=1

ψ

(
νk + 1− i

2

)
+D log 2 + log |Wk| (58)

log π̃k = ψ(αk)− ψ

(
K∑
k′=1

αk′

)
(59)

where D is the dimensionality of the data and ψ(·) is the digamma function which is defined
as the derivative of the logarithmic gamma function, that is

ψ(x) =
d

dx
log Γ(x). (60)

27

Honkela, Raiko, Kuusela, Tornio, and Karhunen

Using these definitions, the parameters rnk of the approximate posterior over latent
variables q(Z) which are updated in the E-step are given by

rnk =
ρnk∑K
l=1 ρnl

(61)

where

ρnk = π̃kΛ̃
1/2
k exp

(
− D

2βk
− νk

2
(xn −mk)TWk(xn −mk)

)
. (62)

The parameters rnk are called responsibilities because they represent the responsibility the
kth component takes in explaining the nth observation. The responsibilities can be arranged
into a matrix R = (rnk) and will have to satisfy the following conditions

0 ≤ rnk ≤ 1 (63)
K∑
k=1

rnk = 1. (64)

The parameter update equations for the M-step are then given by

αk = α0 +Nk (65)
βk = β0 +Nk (66)
νk = ν0 +Nk + 1 (67)

mk =
1

β0 +Nk
(β0m0 +Nkxk) (68)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk
(xk −m0)(xk −m0)T . (69)

B.2 The free energy

The free energy of Eq. (1) is

F =
∑
Z

∫
π

∫
µ

∫
Λ
q(Z,π,µ,Λ) log

q(Z,π,µ,Λ)
p(X,Z,π,µ,Λ)

dπdµdΛ

=Eq {log q(Z,π,µ,Λ)} − Eq {log p(X,Z,π,µ,Λ)}
=Eq {log q(Z)}+ Eq {log q(π)}+ Eq {log q(µ,Λ)}
− Eq {log p(X|Z,µ,Λ)} − Eq {log p(Z|π)}
− Eq {log p(π)} − Eq {log p(µ,Λ)} . (70)

28

Riemannian Conjugate Gradient for VB

These expectations can be evaluated to give (Bishop, 2006)

Eq {log q(Z)} =
N∑
n=1

K∑
k=1

rnk log rnk (71)

Eq {log q(π)} =
K∑
k=1

(αk − 1) log π̃k + logC(α) (72)

Eq {log q(µ,Λ)} =
K∑
k=1

{
1
2

log Λ̃k +
D

2
log

βk
2π
− D

2
−Hq{Λk}

}
(73)

Eq {log p(Z|π)} =
N∑
n=1

K∑
k=1

rnk log π̃k (74)

Eq {log p(π)} = logC(α0) + (α0 − 1)
K∑
k=1

log π̃k (75)

Eq {log p(X|Z,µ,Λ)} =

1
2

K∑
k=1

Nk

{
log Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)TWk(xk −mk)−D log 2π

}
(76)

Eq {log p(µ,Λ)} =
1
2

K∑
k=1

{
D log

β0

2π
+ log Λ̃k −

Dβ0

βk
− β0νk(mk −m0)TWk(mk −m0)

}

+K logB(W0, ν0) +
ν0 −D − 1

2

K∑
k=1

log Λ̃k −
1
2

K∑
k=1

νk Tr(W−1
0 Wk) (77)

where Tr(A) denotes the trace of matrix A and Hq{Λk} is the entropy of the distribution
q(Λk). The functions C and B are defined by the following two equations:

C(α) = Γ

(
K∑
k=1

αk

)(
K∏
k=1

Γ(αk)

)−1

(78)

B(W, ν) = |W|−ν/2
(

2νD/2πD(D−1)/4
D∏
i=1

Γ
(
ν + 1− i

2

))−1

. (79)

B.3 Riemannian conjugate gradient for the mixture-of-Gaussians model

To be able to compare the VB EM and RCG algorithms, we assume that the approximate
posterior distribution q(Z,π,µ,Λ) takes the same functional form as in the case of the
VB EM algorithm. Thus, the fixed form posterior distributions are given by Equations
(29), (31) and (32) and the free energy which is to be minimised by the RCG algorithm
is given Equation (70). In this work, we will only be optimising the responsibilities rnk

29

Honkela, Raiko, Kuusela, Tornio, and Karhunen

and the means mk using gradient-based methods. All other model parameters, namely the
parameters αk of the Dirichlet distribution, the parameters βk controlling the covariance
of the component means as well as the parameters Wk and νk of the Wishart distribution,
are updated using the VB EM update Equations (65), (66), (67) and (69).

There are a few things that have to be taken into account when deriving gradient-based
algorithms for the MoG model. Firstly, the responsibilities have to satisfy the constraints
given by Equations (63) and (64). This can be enforced by using the softmax parametrisa-
tion

rnk =
eγnk∑K
l=1 e

γnl
. (80)

It can be easily seen that by using this parametrisation the responsibilities are always
positive and

∑K
k=1 rnk = 1. As a results it holds that 0 ≤ rnk ≤ 1 and we can conduct

unconstrained optimisation in the γ space.
Secondly, if we set the responsibilities rnk, n = 1 . . . N, k = 1 . . .K − 1 to some values,

the values of rnK , n = 1 . . . N are given by condition (64), that is rnK = 1−
∑K−1

k=1 rnk. As a
result, the number of degrees of freedom in the responsibilities of the model is not the number
of responsibilities NK but instead N(K− 1). When we are using the parametrisation (80),
this means that we can regard the parameters γnK as constants and only optimise the
free energy with respect to parameters γnk, n = 1 . . . N, k = 1 . . .K − 1. This is especially
important when using the Riemannian gradient.

The gradient of the free energy (70) with respect to mk is given by

∇mk
F = νkWk(Nk(mk − xk) + β0(mk −m0)) (81)

and the derivative with respect to γnk is given by

∂F
∂γnk

= Enk − rnkFn, (82)

where

Enk = rnk

(
log rnk − log π̃k −

1
2

(
log Λ̃k −

D

βk
−D log 2π − νk(xn −mk)TWk(xn −mk)

))
(83)

and

Fn =
K∑
k=1

Enk. (84)

We can update the responsibilities rnk without having to evaluate and store the param-
eters γnk by noting that

r′nk =
eγnk+∆γnk∑K
l=1 e

γnl+∆γnl

=
∑K

l=1 e
γnl∑K

l=1 e
γnl+∆γnl

eγnk∑K
l=1 e

γnl
e∆γnk = cnrnke

∆γnk (85)

where r′nk is the new responsibility, ∆γnk is the change in parameter γnk determined by a
line search in the search direction and cn is a normalising constant which makes sure that

30

Riemannian Conjugate Gradient for VB

∑K
k=1 r

′
nk = 1. Thus cn can also be expressed in the form cn = (

∑K
k=1 rnke

∆γnk)−1 and we
can update the responsibilities using the formula

r′nk =
rnke

∆γnk∑K
l=1 rnle

∆γnl
. (86)

In order to use the Riemannian gradient, we need to know the Riemannian metric
tensor G of the parameter space (m,γ) which is given by Equation (3). The resulting
matrix is a block diagonal matrix with blocks Ak = βkνkWk for each mk and blocks
Bn = −rTnrn + diag(rn) for each sample, where rn is the nth row of the responsibility
matrix R except for element rnK , that is rn = [rn1 · · · rnK−1]. diag(a) is used here to
denote a square matrix which has the elements of vector a on its main diagonal. This
block-diagonal structure of the matrix makes the Riemannian vector operations easy and
efficient to implement.

Since the EM updates of parameters are computationally efficient compared to the
evaluation of the objective function, it is more efficient to do them also within the line
search of the RCG update rather than as a separate step as in Algorithm 1.

Appendix C. Derivation of the nonlinear state-space model

C.1 Probability model and priors

The nonlinear state-space model of Valpola and Karhunen (2002) can be described with
these two equations:

s(t) ∼ N (s(t− 1) + g(s(t− 1),θg),diag(exp(2vm))) (87)
x(t) ∼ N (f(s(t),θf), diag(exp(2vn))), (88)

where N (µ,Σ) denotes a multivariate Gaussian distribution with mean µ and covariance
Σ. The nonlinear mappings are modelled with MLP networks:

g(s(t− 1),θg) = D tanh[Cs(t− 1) + c] + d (89)
f(s(t),θf) = B tanh[As(t) + a] + b. (90)

The model for data X is thus described using unobserved variables

θ = (s(t),A,a,B,b,C, c,D,d,vm,vn) . (91)

The priors of the variables are specified to fix the scaling ambiguity between s and A
and to have a hierarchical prior allowing automatic relevance determination (ARD) (Bishop,
2006) like decisions to inactivate parts of the model:

Aij ∼ N (0, 1) (92)
Φij ∼ N (0, exp(2vΦj)) (93)

φi ∼ N (mφ, exp(2vφ)) (94)
vνi ∼ N (mvν , exp(2vvν)) (95)
vΦj ∼ N (mvΦ , exp(2vvΦ)), (96)

where ν ∈ {m,n}, φ ∈ {a, b, c, d} and Φ ∈ {B,C,D}. All the hyperparameters have vague
priors N (0, 1002).

31

Honkela, Raiko, Kuusela, Tornio, and Karhunen

C.2 Posterior approximation

In order to allow efficient learning, the posterior approximation q(θ) = N (θ|µθ,Λ−1
θ) is

restricted to be Gaussian with mean µθ and precision (inverse covariance) Λθ. Furthermore,
the precision of the approximation is restricted to be almost diagonal. The only allowed off-
diagonal terms are in the approximation of s(t) which includes a correlation between si(t)
and si(t+ 1). Different components of the state vector s(t) are still assumed independent,
and the posterior approximation of the states is a product of independent chains.

Following the theory of Gaussian Markov random fields, this assumption translates
to a tridiagonal precision (inverse covariance) matrix with non-zero elements only on the
main diagonal and on the diagonal corresponding to the assumed links. The corresponding
covariance matrix has full blocks for each component of the state.

C.3 The free energy

In order to derive the value of the free energy (1), we note that

F(q(θ)) = Eq(θ) {log q(θ)}+ Eq(θ) {− log p(X,θ)} . (97)

The first term is the negative entropy of a Gaussian

Eq(θ) {log q(θ)} = −N
2

log(2πe)− 1
2

log det Λθ, (98)

where N is the dimensionality of θ. The second term splits to a sum of a number of terms
according to Eqs. (87)–(88).

Eq(θ) {− log p(X,θ)} =
∑
t,i

Eq(θ) {− log p(xi(t)|θ)} +
∑
γ∈θ

Eq(θ)

{
− log p(γ|θ\γ)

}
, (99)

where θ\γ denotes the parameters γ depends on.
The terms in the sum are expectations for parameters γ following a normal model

N (m, e2v). The negative logarithm of the pdf is

− log p(γ|θ\γ) =
1
2

log(2π) + v +
1
2

(γ −m)2 exp(−2v). (100)

Assuming independent Gaussian approximations2 for γ, m and v with means γ̄, m̄, v̄ and
variances γ̃, m̃, ṽ, respectively, the expectation is

Eq(θ)

{
− log p(γ|θ\γ)

}
=

1
2

log(2π) + v̄ +
1
2

[(γ̄ − m̄)2 + γ̃ + m̃] exp(2ṽ − 2v̄). (101)

For the observations xi(t) we obtain similarly

Eq(θ) {− log p(xi(t)|θ)} =
1
2

log(2π) + v̄ni +
1
2

[(x− f̄i(t))2 + f̃i(t)] exp(2ṽni − 2v̄ni), (102)

where the means f̄i(t) and variances f̃i(t) of f(s(t)) are evaluated as explained in (Honkela
and Valpola, 2005; Honkela et al., 2007).

2. We will use the notation γ̄ for the mean and γ̃ for the variance of γ in the approximation for all variables.

32

Riemannian Conjugate Gradient for VB

For the states si(t) we can similarly derive (Valpola and Karhunen, 2002)

Eq(θ)

{
− log p(si(t)|θ\s(t))

}
=

1
2

log(2π) + v̄mi

+
1
2

[
(s̄i(t)− ḡi(t))2 + s̃i(t) + g̃i(t)− 2s̆i(t, t− 1)

gi(t)
si(t− 1)

s̃i(t− 1)
]

exp(2ṽmi − 2v̄mi),

(103)

where ḡi(t) and g̃i(t) are the mean and variance of g(s(t− 1)) evaluated similarly as those
of f(s(t)), and s̆i(t, t − 1) is the linear correlation between si(t − 1) and si(t) as explained
in (Valpola and Karhunen, 2002). The partial derivative gi(t)

si(t−1) is evaluated naturally as
a by-product of evaluation of g̃i(t) as explained previously (Honkela and Valpola, 2005;
Honkela et al., 2007).

C.4 Update rules

The hyperparameters vΦj ,mφ, vφ, vνi ,mvν , vvν , vΦj ,mvΦ , vvΦ are updated using a VB EM
type scheme to find a global optimum, given current values of the other parameters (Lap-
palainen and Miskin, 2000). The variances of the states and the weights of the MLP
networks are updated using the fixed-point rule and the means by the RCG algorithm, as
described in Sec. 5.

References

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, 1998. doi: 10.1162/089976698300017746.

S. Amari. Differential-Geometrical Methods in Statistics, volume 28 of Lecture Notes in
Statistics. Springer-Verlag, 1985.

S. Amari. Information geometry of the EM and em algorithms for neural networks. Neural
Networks, 8(9):1379–1408, 1995.

S. Amari and H. Nagaoka. Methods of Information Geometry, volume 191 of Translations of
Mathematical Monographs. American Mathematical Society, Providence, RI, USA, 2000.

C. Archambeau, M. Opper, Y. Shen, D. Cornford, and J. Shawe-Taylor. Variational in-
ference for diffusion processes. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 17–24. MIT Press, Cam-
bridge, MA, USA, 2008.

H. Attias. A variational Bayesian framework for graphical models. In S. Solla, T. Leen,
and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages
209–215. MIT Press, Cambridge, MA, USA, 2000.

D. Barber and C. Bishop. Ensemble learning for multi-layer networks. In M. Jordan,
M. Kearns, and S. Solla, editors, Advances in Neural Information Processing Systems 10,
pages 395–401. The MIT Press, Cambridge, MA, USA, 1998.

33

Honkela, Raiko, Kuusela, Tornio, and Karhunen

C. Bishop. Pattern Recognition and Machince Learning. Springer, New York, 2006.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.
doi: 10.1137/0916069.

P. Carbonetto. A MATLAB interface for L-BFGS-B. http://people.cs.ubc.ca/~pcarbo/
lbfgsb-for-matlab.html, March 2007.

A. I. Cohen. Rate of convergence of several conjugate gradient algorithms. SIAM Journal
of Numerical Analysis, 9(2):248–259, 1972. doi: 10.1137/0709024.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.
doi: 10.1137/S0895479895290954.

Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. In
T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 507–513. The MIT Press, Cambridge, MA, USA, 2001.

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo
methods. J. of the Royal Statistical Society, Series B (Methodological), 2011. In press.

G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, USA, 3rd edition, 1996.

A. González and J. R. Dorronsoro. Natural conjugate gradient training of multilayer percep-
trons. Neurocomputing, 71(13–15):2499–2506, 2008. doi: 10.1016/j.neucom.2007.11.035.

A. Honkela and H. Valpola. Unsupervised variational Bayesian learning of nonlinear models.
In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing
Systems 17, pages 593–600. MIT Press, Cambridge, MA, USA, 2005.

A. Honkela, H. Valpola, and J. Karhunen. Accelerating cyclic update algorithms for pa-
rameter estimation by pattern searches. Neural Processing Letters, 17(2):191–203, 2003.
doi: 10.1023/A:1023655202546.

A. Honkela, H. Valpola, A. Ilin, and J. Karhunen. Blind separation of nonlinear mixtures
by variational Bayesian learning. Digital Signal Processing, 17(5):914–934, 2007. doi:
10.1016/j.dsp.2007.02.009.

A. Honkela, M. Tornio, T. Raiko, and J. Karhunen. Natural conjugate gradient in
variational inference. In Proceedings of the 14th International Conference on Neu-
ral Information Processing (ICONIP 2007), volume 4985 of Lecture Notes in Com-
puter Science, pages 305–314, Kitakyushu, Japan, 2008. Springer-Verlag, Berlin. doi:
10.1007/978-3-540-69162-4\ 32.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational
methods for graphical models. In M. Jordan, editor, Learning in Graphical Models, pages
105–161. The MIT Press, Cambridge, MA, USA, 1999.

34

Riemannian Conjugate Gradient for VB

M. Kuusela, T. Raiko, A. Honkela, and J. Karhunen. A gradient-based algorithm com-
petitive with variational Bayesian EM for mixture of Gaussians. In Proceedings of the
International Joint Conference on Neural Networks, IJCNN 2009, pages 1688–1695, At-
lanta, Georgia, June 2009.

H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by
multi-layer perceptrons. In M. Girolami, editor, Advances in Independent Component
Analysis, pages 93–121. Springer-Verlag, Berlin, 2000.

H. Lappalainen and J. Miskin. Ensemble learning. In M. Girolami, editor, Advances in
Independent Component Analysis, pages 75–92. Springer-Verlag, Berlin, 2000.

M. K. Murray and J. W. Rice. Differential Geometry and Statistics. Chapman & Hall,
1993.

J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Numerica, 1:199–
242, 1991. doi: 10.1017/S0962492900002270.

M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural
Computation, 21(3):786–792, 2009. doi: 10.1162/neco.2008.08-07-592.

M. J. D. Powell. Restart procedures for the conjugate gradient method. Mathematical
Programming, 12(1):241–254, 1977. doi: 10.1007/BF01593790.

T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building blocks for variational Bayesian
learning of latent variable models. Journal of Machine Learning Research, 8(Jan):155–
201, January 2007.

R. Salakhutdinov and S. T. Roweis. Adaptive overrelaxed bound optimization methods. In
Proc. 20th International Conference on Machine Learning (ICML 2003), pages 664–671.
AAAI Press, 2003.

M. Sato. Online model selection based on the variational Bayes. Neural Computation, 13
(7):1649–1681, 2001. doi: 10.1162/089976601750265045.

M. Seeger. Bayesian model selection for support vector machines, Gaussian processes and
other kernel classifiers. In S. Solla, T. Leen, and K.-R. Müller, editors, Advances in Neural
Information Processing Systems 12, pages 603–609. MIT Press, Cambridge, MA, USA,
2000.

S. T. Smith. Geometric Optimization Methods for Adaptive Filtering. PhD thesis, Harvard
University, Cambridge, MA, USA, 1993.

T. Tanaka. Information geometry of mean-field approximation. In M. Opper and D. Saad,
editors, Advanced Mean Field Methods: Theory and Practice, pages 259–273. The MIT
Press, Cambridge, MA, USA, 2001.

M. K. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In
Y. W. Teh and D. M. Titterington, editors, Proceedings of the Thirteenth International
Workshop on Artificial Intelligence and Statistics, volume 9, pages 844–851, Chia Laguna
Resort, Sardinia, Italy, 2010. JMLR W&CP 9.

35

Honkela, Raiko, Kuusela, Tornio, and Karhunen

H. Valpola. Bayesian Ensemble Learning for Nonlinear Factor Analysis. PhD thesis,
Helsinki University of Technology, Espoo, Finland, 2000. Published in Acta Polytechnica
Scandinavica, Mathematics and Computing Series No. 108.

H. Valpola and J. Karhunen. An unsupervised ensemble learning method for nonlinear
dynamic state-space models. Neural Computation, 14(11):2647–2692, 2002. doi: 10.
1162/089976602760408017.

H. Valpola, M. Harva, and J. Karhunen. Hierarchical models of variance sources. Signal
Processing, 84(2):267–282, 2004. doi: 10.1016/j.sigpro.2003.10.014.

J. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning
Research, 6:661–694, April 2005.

36

