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ABSTRACT

Gene regulation is controlled by transcription factor pro-
teins which themselves are encoded as genes. This gives
a network of interacting genes which control the function-
ing of a cell. With the advent of genome wide expression
measurements the targets of given transcription factor have
been sought through techniques such as clustering. In this
paper we consider the harder problem of finding a gene’s
regulator instead of its targets. We use a model-based differ-
ential equation approach combined with a Gaussian process
prior distribution for unobserved continuous-time regulator
expression profile. Candidate regulators can then be ranked
according to model likelihood. This idea, that we refer to as
ranked regulator prediction (RRP), is then applied to finding
the regulators of Gata3, an important developmental tran-
scription factor, in the development of ear hair cells.

1. INTRODUCTION

Gene regulation is at the heart of how cells operate. In tran-
scription genes which are encoded in the DNA are tran-
scribed to messenger RNA. The quantity of RNA tran-
scribed can be measured genome-wide through the well es-
tablished approach of gene expression arrays. The mecha-
nisms by which transcription is controlled are of great im-
portance for medicine and biology. Expression of a gene
is switched on and off mainly by transcription factors (TF),
proteins which bind to the DNA. The TF proteins are pro-
duced by translation of TF mRNA that is also transcribed
from the genome, although additional steps may be required
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to activate the protein. This implies that at the heart of the
cell there is a network of TFs controlling the regulation of
target genes and governing the function of the cell. Unpick-
ing this network is a central aim of computational systems
biology. High throughput gene expression experiments al-
low the expression level of many genes to be assessed si-
multaneously. A typical analysis involves a series of exper-
iments (perhaps a time series) for which gene expression is
obtained. Then cluster analysis can be performed and it is
hypothesized that genes that are members of the same clus-
ter (probably being well correlated to one another) may be
coregulated. Confirmation experiments may then involve
“knocking out” the regulating gene and looking for a result-
ing change in the expression of the hypothesized targets.

1.1. Model-Based Ranking

Recently a model-based approach to ranking of targets was
proposed that extends this idea to include an explicit differ-
ential equation model of gene expression [1]. This allows
ranking of coregulated genes even when the expression pro-
files are not strongly correlated due to different decay rates.
The basic form of the model is as follows

dmi(t)
dt

= bi + sip(t)− dimi(t) (1)

where the mRNA concentration of the ith gene, mi(t) is
assumed to be regulated by the TF of interest, p(t), through
a sensitivity parameter si. The decay rate of the mRNA is
given by di and bi is a basal rate of transcription. Solution
of this equation gives

mi(t) = aie
−dit +

bi
di

+ sie
−dit

∫ t

0

p(u)ediudu (2)

and the initial condition is given by mi(0) = ai + bi
di

.
If coregulated targets have similar decay rates, they will

be strongly correlated, but if decay rates differ then targets



can become more weakly correlated. The idea behind the
model-based approach is to consider that coregulated tar-
gets should conform to the differential equation. Thus we
see a TF activity, p(t), that explains targets simultaneously
through a range of different decay rates. Clearly we are
also making further assumptions here: for example we are
assuming TFs do not act in tandem and that the response
to the TF does not saturate. Other regulatory mechanisms,
such as chromatin remodelling and non-coding RNAs are
also ignored as they are typically unobserved. However,
the model is richer than the standard genome-wide analy-
sis techniques of seeking correlation or clustering the data.
This model-based approach to gene regulation was also con-
sidered in [2]. They used Gaussian process priors over the
unobserved TF activity to create a fully probabilistic model
for the coregulated genes.

Also in [2] this framework was extend by introducing
a simple model of translation. Let us represent the mRNA
governing the transcription factor by m0(t). Let us assume
that this is translated to p(t) through a process that can be
modelled by the following differential equation

dp(t)
dt

= m0(t)− δp(t). (3)

Once again this is a significant simplification. It assumes
that the TF protein is produced from only one mRNA and
ignores potentially important post translational modifica-
tions such as phosphorylation or ubiquitination.

Given observations from the potential target mRNA,
mi(t), and observations from the governing TF’s mRNA
a joint Gaussian process likelihood can be constructed and
maximized with respect to δ, ai, bi, si and di. For a given
TF this likelihood can be measured for all potential target
genes and they can then be ranked as putative targets. This
idea was exploited by [3] who validated their results us-
ing ChIP data and were able to show that model-based ap-
proaches can do considerably better than simple correlation-
based approaches.

In this paper we want to turn this idea on its head. In-
stead of asking what the targets are of a particular TF we
wish to know what the regulator of a particular gene is. In
other words we are interested in ranked regulator prediction
instead of ranked target prediction. The proposed approach
is otherwise fairly similar with respect to the methods to that
in [3].

The ranked regulator prediction (RRP) problem will
generally be harder than target prediction as there are likely
to be many targets of a particular TF, but only few regu-
lators. However, we can restrict ourselves to known TFs
when searching for regulators and this reduces the number
of genes we have to search through from thousands to hun-
dreds. RRP has the potential to provide biologists with a
new tool for probing their regulatory networks.

In the remainder of this paper we will review the Gaus-
sian process approach to modelling transcriptional regula-
tion and demonstrate our ideas on a real world biological
problem. Despite the simplifying assumptions we make, we
show very promising results.

2. GAUSSIAN PROCESS MODELLING

A Gaussian process (GP) is a probabilistic prior over func-
tions [4]. A GP provides a nonparametric approach to mod-
elling data. The basic idea is that observations of a func-
tion of interest, p(t), given by p = [p1, . . . , pT ]>, where
pi = p(ti) are jointly Gaussian distributed,

p ∼ N (0,K). (4)

where the elements of the covariance matrix are given by
a covariance function. This may be any function that leads
to a positive definite matrix, but a common choice is the
Gaussian covariance,

k(ti, tj) =
σ2

√
2π`2

exp
(
− (ti − tj)2

2`2

)
. (5)

Whilst we usually think of Gaussians as being densities over
finite length vectors, the process perspective allows us to
think of them as distributions over infinite length vectors.
The important idea is that the other possible things that
could be happening are all been marginalized, and we only
deal with the observations p. If we need to query a new ob-
servation time, p∗, we express the joint distribution over the
augmented variable set as[

p
p∗

]
∼ N

(
0,
[

K K:,∗
K∗,: K∗,∗

])
, (6)

where K:,∗ is the covariance function computed between
the training times, t, and the test times, t∗ and K∗,∗ is the
covariance function computed between the test times.

Simple manipulation of this joint Gaussian density,
p(p,p∗|t, t∗), allows us to compute the conditional density
of the test data given the training data,

p(p∗|p, t, t∗) = N (p∗|µ,Σ) (7)

where
µ = K∗,:K−1p (8)

and
Σ = K∗,∗ −K∗,:K−1K:,∗. (9)

The simple translation/transcription model we described
in the last section gives a deterministic relationship between
the TF activity, p(t) and the gene expression levels, m0(t)
and mi(t). This deterministic relationship can be encoded
within a GP by noting that it is given by a linear opera-
tor. The linear operator in question is the convolution of



the function with an exponential (see (2)). A convolution
of a GP with a deterministic function leads to another GP:
this results from two properties, a GP multiplied by a de-
terministic function is also a GP and the integral of a GP
is also a GP. The other effect of (2) is to introduce a new
mean function through the addition of bi

di
and aie−dit. De-

tails are given in [5, 2, 3] but the main result is that the cross
covariances between the TF concentration and the mRNA
concentrations can be computed:

km0,mi(t, t
′) =sie−dit

′
∫ t′

0

e(di−δ)u
∫ u

0

eδvk(t, v) dv du

=
siσ

2e−(di+δ)t
′

√
8(δ − di)

×
(
e

“
di`

2

”2
+dit+δt

′[
erf(di`/2 + t/`)

− erf(di`/2 + (t− t′)/`)
]

− e(
δ`
2 )2

+δt+dit
′[

erf(δ`/2 + t/`)

− erf(δ`/2 + (t− t′)/`)
])
.

where km0,mi(t, t
′) gives the covariance between the

mRNA of the TF and the mRNA associated with the ith
gene at times t and t′. The covariance function between a
target gene and itself is given by

kmj ,mk(t, t
′) =sjske−djt−dkt

′

×
∫ t

0

e(dj−δ)u
∫ t′

0

e(dk−δ)u
′

×
∫ u

0

eδv
∫ u′

0

eδv
′
k(v, v′) dv′ dv du′ du

=
σ2sjsk√

8

(
hjk(t, t′, δ) + hkj(t′, t, δ)

− hjk(t, t′, dj)− hkj(t′, t, dk)
)

where

hjk(t, t′,dx) = e(
dx`
2 )2 e−dxt−dkt

′

(dx + δ)(dj − δ)

×

{(
e(dk−δ)t

′ − 1
dk − δ

+
1

dk + dx

)

×
[
erf
(
dx`

2
− t

`

)
− erf

(
dx`

2

)]
+
e(dk+dx)t

′

dk + dx

×
[
erf
(
dx`

2
+
t′

`
)− erf(

dx`

2
− (t− t′)

`

)]}
.

If we observe a Gaussian noise corrupted version of the true
profiles, where the noise covariance is given by Σ (which
typically would be constrained to be a diagonal or spherical
matrix) this suggests a model for the gene expression which
is jointly Gaussian and has the form[

m0

mi

]
∼ N

([
0
µ

]
,

[
K0,0 K0,i

Ki,0 Ki,i

]
+ Σ

)
, (10)

where the m, nth element of the matrix K0,0 is given by
k(tm, tn), for K0,i it is given by km0,mi(tm, tn) and for
Ki,i it is given by kmi,mi(tm, tn). Here tm and tn are ob-
servation times from the time series data. The mean values
are derived from the mean functions. So we have the jth
element of the mean vector, µj = bi

di
+ aie

−ditj . Since
these covariance functions and mean functions are all de-
pendent on the parameters of the differential equations, σ,
δ, ai, si and di we can fit these parameters by gradient-
based maximization of the log likelihood of a given pairing
of regulator and target gene (using the scaled conjugate gra-
dient algorithm of [6]). This can be done in turn for each
potential regulator of the target gene. The regulator genes
can the be ranked according to which model achieves the
highest likelihood.

3. EXPERIMENTS

Careful experimental validation of the proposed method
is very difficult as practically the only systems where the
ground truth is known as synthetic. These are, however,
unrepresentative as the results are highly dependent on the
details of the experimental setup and the degree of presence
of confounding factors. With these considerations in mind,
we demonstrate the method in preliminary analysis of can-
didate regulators of Gata3 gene in mouse. More careful bio-
logical validation of the results is needed for full evaluation,
but that is beyond the scope of the current work.

Our example gene Gata3 is itself a transcription factor
with several important functions [7]. For example it is crit-
ical in the development of hair cells in the inner ear. Mice
and humans with just one of the usual two copies of the
Gata3 gene disabled are deaf [8]. Gata3 has many roles
causing its regulation to be very complex. The details of this
regulation are currently relatively poorly understood [9].

We considered a gene expression data set consisting of
two time series from a cell line model of mouse inner ear
development [10]. The cell line is derived from sensory ep-
ithelial cells from the ventral part of the otic vesicle at E10.5
and cultured in serum-free media. It was produced from
12 hybridisations to the Affymetrix GeneChip Mg U74Av2.
The cells for both time series are cultured for a period of
14 days to mimic development of the otic vesicle and sam-
pled in 6 time points, at 0, 1, 2, 4, 7 and 14 days after dif-
ferentiation was stimulated (through temperature change).



In one of the time series the cells are untreated while in
the other they are exposed to retinoic acid, which focuses
the differentiation toward one of several possible cell types.
The retinoic acid treatment does not affect the expression
profile of Gata3 so we used these two time series as if they
were two repeated experiments. This should automatically
suppress genes with significant differential expression un-
der the two different conditions. The expression data was
processed using the mmgMOS algorithm from the puma R
package [11, 12] from Bioconductor. The inferred posterior
expression levels from mmgMOS were used to obtain in-
dividual noise variances for each observation as described
in [3] using the tigre Bioconductor package.

We first extracted a set of mouse TFs and probable TFs
from the TFCat database [13]. This yielded a list of 511
genes. Out of these, 365 were mappable on the array used
in the expression measurements. These genes were repre-
sented by 493 independent probe sets on the array.

For some genes the signal from the expression measure-
ments is too weak for reasonable modelling: they can be
described perfectly with a flat profile. Such genes may nev-
ertheless fit the model well, but this is non-informative be-
cause they would fit equally well as regulators of any other
gene. These genes were filtered by z-scores of the expres-
sion data using the cut-off 1.8 as in [3]. This filtering left
268 active probes sets.

Next, we fitted the GP models independently using each
of these 268 TF gene probes as the input and Gata3 as the
output. This was also performed in R/Bioconductor using
the tigre package. We considered the top ranked 50 genes
in this list.

Pathways like Wnt signaling, TGF-beta signaling and
PDGF signaling are involved in pattering of sensory patch,
development and neuronal differentiation as well as modu-
lation of cell fate. All these processes are expected to be
highly represented in this particular cell line, which is de-
rived from a murine sensory epithelial cells at embryonic
age E9.5 [14].

The top ranked 10 potential regulators of Gata3 from
our model were (in order): Prrx2, Tle3, Ctbp2, Smarcd2,
Six1, Runx2, Mtf2, Six4, Arntl and Tbx6.

To truly validate our predictions biological assays are
required, but we can get a preliminary insight in the va-
lidity of the ranking by a protein analysis using the clas-
sification system known as PANTHER (Protein ANaly-
sis THrough Evolutionary Relationships), http://www.
pantherdb.org/. PANTHER uses hidden Markov
models, knowledge of existing protein families and sub-
families to classify the role of a given protein. PANTHER
then uses a binomial statistics tool to compare classifica-
tions of multiple clusters of lists to a reference list. This
allows it to statistically determine over- or under- represen-
tation of the defined categories. Each list is compared to the

Table 1. Enriched pathways among 50 top-ranking candi-
date regulators.

Pathway p-value
Wnt signaling pathway 4.10× 10−6

TGF-beta signaling pathway 2.22× 10−2

Inflammation mediated by chemokine
and cytokine signaling pathway

4.18× 10−2

reference list. To determine statistical significance p-values
are also calculated using the Benferroni-corrected test. The
p-values are the probabilities that the number of genes ob-
served in a category occurred by chance, as determined by
the reference list. A small p-value indicates that the cate-
gory selected is significant and potentially interesting. We
used as a reference list the NCBI:Mus Musculus genome.
The selected list of genes is compared against this baseline
and for each PANTHER pathway an estimated number of
genes are calculated with their relative p-values. Those hav-
ing p-values that were significant at the 5% level are shown
in Table 1. They are all highly relevant to the development
of the mammalian inner ear.

Looking at the 50 highest ranking TFs as candidate reg-
ulators of Gata3 we find that the list is highly enriched for
genes belonging to the Wnt signaling pathway. From the
top 10 ranked TFs we note that the list includes Six1. Sine
oculis homeobox (SIX) protein family is a group of evolu-
tionarily conserved transcription factors that play a key role
in development. Particularly, Six1 is known to be related
to a defective otic development known as brachio-oto-renal
syndrome. This syndrome is autosomal dominant disorder
characterized by syndromic association of branchial cysts
or fistulae along with external, middle and inner ear malfor-
mations and renal anomalies. Mice without Six1 show sever
malformation of the middle and inner ear with cochleae
completely lacking of hair cells [15]. Further Six1 pro-
motes differentiation and regulation of cell fate in the inner
ear [16, 15]. Gata3 is a key player in the development of
the inner ear, it promotes cell differentiation and patterning
in the inner ear and regulates the development of the otic
neurons. In addition, only one copy of functional Gata3 in
human, causes HDR syndrome (hypoparathyroidism, deaf-
ness, renal dysplasia), a syndrome that presents similar phe-
notype to the brachio-oto-renal syndrome. This evidence
reinforces the possible functional relationship between the
two genes and therefore makes Six1 a very interesting can-
didate for further investigation. Note also that another TF
that is known to act together with Six1 is also ranked very
high in the in the list: Six4. The Wnt signaling related
gene Tbx6 and the notch signaling related gene Tle3 are
also of interest in this context, since modulation of Notch
signaling and Wnt signaling is crucial for normal pattern-
ing during embryogenesis. The inner ear is a very complex



organ in which patterning play a crucial role for ensuring
the mechanotransduction properties of the organ. Both the
T-box and Groucho/Tle gene families are highly conserved
and many studies in fish and flies have revealed their cru-
cial role in development of sensory organ. The connection
of Gata3 with both Wnt and Notch signaling is known in
the literature [17, 18], Tbx6 and Tle3 are potentially two
very interesting modulators of the effect of Gata3 on both
these two key signalling pathways. Based on the known
protein annotation, ontologies and published literature, the
model has identified several interesting candidates as Gata3
regulators. However, more detailed functional assays are
required to properly assess the biological property of these
relationships in this particular biological system, as well as
general effect that these targets can have on the modulation
of Gata3 expression levels.

4. DISCUSSION

While the presented preliminary results seem very promis-
ing, further biological verification is needed to confirm the
predictions. Given only the time series data we have here
it will impossible to predict with certainty a given relation-
ship. For example the profile that will emerge if gene A acti-
vates gene B could be indistinguishable from the profile that
arises if gene B represses gene A. To disambiguate more
data from different perturbations (such as knocking out one
of the genes) of the system is required. However, our ap-
proach makes some preliminary predictions that could be
used to update hypotheses and design new experiments. The
set of candidate regulators is now sufficiently small that they
could be sifted using less expensive low-throughput tech-
niques.
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Fig. 1. Top-ranking models. In each subplot, the left column shows the model for the data from the non-treated experiment
and the right column for the retinoic acid treated experiment.


