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Abstract. We study the discovery of gene regulatory modules based on
transcription factor (TF) binding data and expression data from gene
knockouts. We invoke the natural assumption that regulatory modules
predominantly operate independently, which makes it possible to ap-
ply a new method for extracting them: the Independent Variable Group
Analysis. We demonstrate that i) the independence assumption helps in
discovering the regulatory modules from TF data, and ii) the indepen-
dent gene modules discovered from TF-data can be found also in expres-
sion data from gene knockouts. This demonstrates that the regulatory
effects by transcription factors are observable in knockout experiments.
It additionally suggests that the difficult interpretation of the knock-
out experiments could be eased by taking into account the independent
regulatory modules.

1 Background

Gene regulatory interactions are one of the main foci in systems biology at the
moment. A regulatory interaction between a gene and a set of other genes is
formed when the protein produced by the gene binds the other genes’ DNA
sequences and affects their expression. These proteins are called transcription
factors (TFs), and genes are known to often be regulated by them as groups
or modules. The knowledge of the regulators and their targets is obviously of
practical significance, for example, in various diseases in humans as well as in
simple organisms like yeasts used in diverse tasks in bioprocess industry.

A direct laboratory technique to study gene regulatory interactions is to
monitor which proteins bind which genes’ DNA sequence with so-called ChIP
on chip technique [1]. It produces data about the binding strength of the chosen
TFs to all genes of the organism, and implicit information about which genes
are regulated by the same TFs (i.e., potentially belong to the same regulatory
module). However, the measurement techniques are imperfect and expensive,
providing only scarce and noisy data about the potential, individual regulatory
relationships. While a single TF-gene relation is not necessarily reliable, the TF
binding data can be used to estimate the groupwise behaviour of the TFs. The



problem here is that the characteristics of the gene regulatory modules in terms
of TF binding are not fully understood yet.

We will define and discover regulatory modules by invoking the assumption
of the statistical independence of the regulatory modules. We apply a recently
proposed method, independent variable group analysis (IVGA) [2, 3] to find inde-
pendently regulated groups of genes from TF binding data. Although it would be
possible to integrate various data sources to discover general regulatory modules,
we focus here specifically on the regulatory modules represented by transcription
factor binding. This has at least three justifications: i) ChIP on chip measure-
ments are one of the most reliable data about the regulatory interactions in the
cell, ii) they directly measure perhaps the most interesting type of regulatory
interaction present in the cell, and iii) the relationship between the ChIP on chip
measurements to other measurement techniques (for example, gene expression)
is still unclear and the results can then be contrasted to these.

We validate the independence of the obtained gene groups by “simulating”
wetlab experiments: we will measure whether the found regulatory modules are
independent in new data from different measurement technique as well. As “new”
data we will use previously published gene expression data from gene knockout
experiments [4]. If the findings are favourable, the conclusion is that suppres-
sion of a gene from one module does not, on average, affect too much on other
regulatory module activities i.e. expression. More importantly, this effect is then
discernible in very commonly used knockout expression measurements.

In the literature, it has been observed previously that TF binding and knock-
out experiments from the same organism are dependent, see for example [5], and
that the genes are regulated as modules, see for example [6,7]. The novelty in
our approach is that we focus on the gene modules discoverable from regulatory
binding information by the independence assumption, and succesfully validate
the modules with an independently measured knockout data. We thus provide
evidence that i) independence assumption helps in discovering the gene regula-
tory modules from TF binding data, and ii) that the knockout experiments are
capable of discovering independent, in terms of TF binding, regulatory modules.

2 Independent variable group analysis (IVGA)

Independent Variable Group Analysis (IVGA) [2,3] is a principle for grouping
variables that are mutually dependent together so that independent or only
weakly dependent variables are placed to different groups. One natural criterion
for solving the IVGA problem is to minimize the mutual information or in general
multi-information, within the grouping evaluated by considering each group a
separate random variable.

In more conventional terms, IVGA can be seen as a clustering method where
samples are taken as random variables and the criterion is to minimize the
mutual information between the groups. A similar criterion has been used for
hierarchical clustering in [8]. Direct evaluation of mutual information within
high dimensional distributions is difficult, but a connection to Bayesian meth-



ods demonstrated in [3] allows an efficient model-based approximation based on
maximising the sum of marginal log-likelihoods of independent models for each
group. This problem can be solved efliciently using variational Bayesian learning.

The IVGA algorithm is based on a heuristic combinatorial optimization
method for finding an optimal grouping, combined with variational Bayesian
learning to fit Gaussian mixture models for the groups and evaluate the objec-
tive function. The algorithm is initialized by placing each variable in a group of
its own. It proceeds by moving variables, as well as splitting and joining groups,
in such a way that the sum of the approximate marginal log-likelihoods always
increases. More details of the algorithm can be found in [3]. A small change was
made in order to help avoid local minima in the grouping phase by clearing the
cache of mixture models for the groups at fixed intervals and all the models
were refitted from scratch. This improved the training set marginal likelihood
of the attained results significantly. The same IVGA method can also be used
to evaluate the approximate mutual information to compare groupings by only
fitting the Gaussian mixture models and evaluating the approximate marginal
log-likelihood.

The actual objective function for IVGA can be derived by assuming that the
data set X consists of vectors x(¢),t = 1,...,T. The vectors are N-dimensional
with the individual components denoted by z;,7 = 1,..., N, and all observed
zj by X; = (z;(1),...,2;(T)). The aim here is to find a partition of {1,..., N}
to M disjoint sets G = {G;|i = 1,..., M} such that the mutual information
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between the sets is minimised. Here H; denotes the model for the ith group.
In order to avoid evaluation of the constant H(x) and to get more easily inter-
pretable results, only the differences in estimated values of mutual information
will be reported. Such differences are actually logarithms of Bayes factors be-
tween the models, divided by the number of samples.

3 Case study and results

3.1 Estimating the gene groups with TF-data

The TF binding data we used had 355 different combinations of TF and ex-
perimental conditions for 6229 yeast Saccharomyces cerevisae genes [1]. The in-
tensity ratios in the data were log, transformed, the detailed description of the
generation of the data can be found in [1]. IVGA was estimated with TF-data
once, starting from a random initialization. The densities of TFs were modeled
with mixtures of Gaussians with diagonal covariance matrices, and the genes
were grouped with a greedy search algorithm. The gene grouping from the best
model achieved during training, in the sense of the cost function evaluated for
the part of the TF-data consisting of the 215 knocked out genes in the validation
data, was chosen for validation. The grouping consisted of 166 groups. The cost



function of only part of the data was used because optimization of the grouping
is a very difficult problem and the result may occasionally improve other parts
more at the cost of the part actually used for validation.

To get a comparison result, in an analogous fashion to IVGA estimation we
grouped the genes with the standard clustering method K-means. Since the K-
means is computationally less intensive, we fitted K-means 50 times with K =
166 from different initializations. Additionally, we made 50 random groupings
for the genes to get a baseline result.

Additionally we estimated IVGA on the part of the TF-data consisting of the
215 knocked out genes in the validation data. The resulting grouping consisted
of 5 groups. Similarly as before, we also fitted K-means to the smaller data set
50 times with K = 5.

3.2 Validating the groups with knockout data

The knockout expression data that was used to validate the obtained IVGA
grouping consisted of genomewide (6308 genes) microarray expression measure-
ments for 215 different gene knockouts [4]. We used only the knockout mea-
surements made for the yeast strain grown in YPD medium, and in a form of
logarithmic intensity ratios. Since groupings from the TF data were now for all
the yeast genes, the 215 knocked out genes could be mapped to their respec-
tive groups. The experimental setup is illustrated in Fig. 1. The IVGA cost was
then computed for the groupings from IVGA, K-means and random groupings
of knockouts by fitting the mixture model into gene densities. In order to eval-
uate the accuracy of the cost function evaluation, the procedure was repeated
for some test cases by fitting the models 5 times from different mixture model
initializations. The resulting variation was found negligible in comparison to
variation between different methods.

The knocked out genes mapped to 94 different groups in the IVGA grouping
with 166 groups. The IVGA grouping was among the best K-means groupings,
but not significantly better. Both of these were significantly better than random
groupings with the difference between the means of K-means and the random
groupings being 4.2 nats. The difference between the K-means and the random
groupings is statistically significant (two-sample t-test, p < 1.4 -10748).

For the 5 groups the IVGA grouping yielded 0.56 nats better cost than the
best K-means result. Overall, the difference between the methods was clearly
significant (tail probability of the IVGA result for a normal distribution of K-
means results, p < 2.7-107°).

3.3 Interpreting the independence with Gene Ontology (GO)

The gene groups were also validated by studying the enrichments of the known
Gene Ontology classes to the clusters, and the overlaps of the GO classes between
different clusters. If statistically significantly many genes belong to the same
GO class in a cluster, the cluster is then likely to have a meaningful biological
interpretation. The other side of the coin is whether the same GO classes are
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Fig. 1. A schematic illustration of the procedure of estimating the independence of
gene regulatory modeles with IVGA applied on TF data, and the validation of the
modules by applying IVGA with the fixed grouping to gene knockout expression data.
The boxes with bold borders are data matrices, the thin lines represent the IVGA
group borders.

represented in several clusters: if different clusters have different GO enrichments,
the clusters are more likely to be independent in a biological sense.

The enrichments were tested for most independent groupings from both
IVGA and K-means with the simple Fisher’s exact test, revealing that in both
the 159 out of 166 clusters in the bigger cluster set had statistically significant
enrichments (p < 0.01). Moreover, out of 13695 possible cluster pairs, in both
methods only around 400 pairs had an overlap in GO class enrichments.

In the smaller cluster set from both methods all 5 clusters had significant
GO class enrichments (p < 0.01), and none of the GO classes were present in
more than one cluster.

All cluster sets thus show clear evidence for independence also on the biolog-
ical level.

4 Discussion

We presented a method for searching for the gene regulatory modules in yeast
from TF-binding data based on their mutual indepedences. We showed that the
found modules generalized to independently measured expression data from gene
knockout experiments.

The results provide evidence that at least some regulatory modules can be
assumed to function independently and, more importantly, this independence
can be observed also in the expression data from knockout experiments. While
some groups can be discovered using conventional clustering (here K-means) the



explicit minimization of their mutual information (IVGA) seems to improve the
generalizability of the results.

The independence and meaningfulness of the groups in a biological sense was
supported by strong enrichments of GO classes in clusters, and relatively small
overlaps of the classes between the clusters. This result also suggests that the
set of independent regulatory modules could be useful in interpreting regulatory
effects in the knockout experiments. One of the usual problems in the interpre-
tation of the knockout expression data is that the knockout often induces also
secondary effects resulting from, for instance, the cell trying to compensate the
missing gene, or being driven to another metabolic state.

IVGA shows promise in exploring the independences between gene groups.
Future improvements on optimization and alternative choices for the probabilis-
tic models should still improve the results. Note that reason for using IVGA
cost function to evaluate groupings is that it measures precisely what we are
interested in, i.e. mutual information between the groups.

References

1. Harbison, C., Gordon, D., Lee, T., Rinaldi, N., Macisaac, K., Danford, T., Hannett,
N., Tagne, J., Reynolds, D., Yoo, J., Jennings, E., Zeitlinger, J., Pokholok, D.,
Kellis, M., Rolfe, P., Takusagawa, K., Lander, E., Gifford, D., Fraenkel, E., Young,
R.: Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004)
(2004) 99-104

2. Lagus, K., Alhoniemi, E., Valpola, H.: Independent variable group analysis. In
G.Dorffner, H., K.Horenik, eds.: International Conference on Artificial Neural Net-
works - ICANN 2001. (2001) 203-210

3. Alhoniemi, E., Honkela, A., Lagus, K., Seppd, J., Wagner, P., Valpola, H.: Compact
modeling of data using independent variable group analysis. Technical Report E3,
Helsinki University of Technology, Publications in Computer and Information Sci-
ence, Espoo, Finland (2006)

4. Mnaimneh, S., Davierwalak, A.P., Haynes, J., Moffat, J., Peng, W.T., Zhang, W.,
Yang, X., Pootoolaland, J., Chua, G., Lopez, A., Trochesset, M., Morse, D., Krogan,
N.J., Hiley, S.L., Li, Z., Morris, Q., Grigull, J., Mitsakakis, N., Roberts, J., Green-
blatt, J.F., Boone, C., Kaiser, C.A., Andrews, B.J., Hughes, T.R.: Exploration of
essential gene functions via titratable allels. Cell 118 (2004) 31-44

5. Kaski, S., Nikkild, J., Sinkkonen, J., Lahti, L., Knuuttila, J., Roos, C.: Associa-
tive clustering for exploring dependencies between functional genomics data sets.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Special
Issue on Machine Learning for Bioinformatics — Part 2 2(3) (2005) 203-216

6. Slonim, N., Elemento, O., Tavazoie, S.: Ab initio genotype-phenotype association
reveals intrinsic modularity in genetic networks. Molecular Systems Biology 2 (2006)

7. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman,
N.: Module networks: identifying regulatory modules and their condition-specific
regulators from gene expression data. Nature genetics 34 (2003) 166-176

8. Kraskov, A., Stogbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical cluster-
ing using mutual information. Europhysics Letters 70(2) (2005) 278-284



