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ABSTRACT

In many real world dynamical systems, the inherent noise
levels are not constant but depend on the state. Such as-
pects are often ignored in modelling because they make in-
ference significantly more complicated. In this paper we
propose a variational inference and learning algorithm for
a non-linear state-space model with state-dependent obser-
vation noise. The observation noise level of each sample
depends on additional latent variables with a linear depen-
dence on the latent state. The method yields significant
improvements in predictive performance over regular non-
linear state-space model as well as direct autoregressive pre-
diction using Gaussian processes in a simulated Lorenz sys-
tem with state-dependent noise and in stock price predic-
tion.

1. INTRODUCTION

State-space models or Kalman filter models are a universal
tool in analysis of time series data. The model provides a
flexible description by modelling the dynamics in a latent
state-space, which is usually observed indirectly through
some observation mapping. Because of the importance of
the model, several variational inference and learning meth-
ods have been proposed for linear [1, 2] as well as non-linear
models [3]. A non-linear model based on approximate EM
with Gaussian processes was recently proposed in [4].

All these previous methods assume a simple additive
Gaussian noise model for both the dynamical and the ob-
servation mappings. Yet, in many applications such an as-
sumption is highly restrictive and unrealistic. In this pa-
per we release this assumption by introducing variational
inference for a non-linear state-space model with state-
dependent observation noise. This is accomplished by com-
bining the non-linear state-space model [3] and the variance
modelling techniques of [5]. This kind of modelling frame-
work encompasses, among others, many GARCH stochastic
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volatility type models commonly applied in computational
finance [6, 7, 8].

2. MODEL

2.1. Basic non-linear state-space model

In a general non-linear state-space model as presented in
[3], the observed data vectors X = (x(t)) are modelled
with the help of latent states s(t). The states are assumed to
evolve according to

s(t) = g(s(t− 1),θg) + m(t), (1)

where g is some non-linear mapping with parameters θg ,
and m(t) denotes additive Gaussian noise. Typically the
states cannot be observed directly but only through an ob-
servation mapping

x(t) = f(s(t),θf ) + n(t), (2)

where f is again some non-linear mapping with parameters
θf , and n(t) denotes additive Gaussian noise to accommo-
date the parts of the data not captured by the model.

In [3], the non-linear mappings f and g are modelled
by multi-layer perceptron (MLP) networks [9] having one
hidden layer with hyperbolic tangent non-linearity:

f(s(t)) = B tanh[As(t) + a] + b (3)
g(s(t− 1)) = s(t− 1) + D tanh[Cs(t− 1) + c] + d

(4)

Often the values of sources s(t) do not change much from
their previous values s(t−1). This makes it easier to model
the non-linearities in the difference s(t)− s(t− 1) directly.

For the noise terms n(t) and m(t), we safely can make
some simplifying assumptions without sacrificing too much
generality, because with the help of some auxiliary sources,
non-linearity g is in principle able represent arbitrarily com-
plex noise models, if they are required. We will assume that
n(t) and m(t) are normally distributed with diagonal co-
variance, and independent over different times t.



2.2. State-dependent noise variance

Let us denote the variance of n(t) with exp(2u(t)).1 In the
original model [3] these variances were constant over time
for each component. The purpose of this paper, however,
is to study a variation of this model where the observation
noise level depends on the source signals. For simplicity,
we will use a linear mapping here, instead of the non-linear
kind used for f and g. We consider it unlikely that the data
would contain enough information to justify the additional
complexity caused by using a non-linearity here.

u(t) = Ws(t) + w + o(t) (5)

Here matrix W is used for the linear mapping, vector w is
a constant term, and o(t) is yet again Gaussian noise added
to compensate for modeling imperfections.

For innovation noise m(t) we will assume that each
sources have constant noise variances exp(2vm). Noise
o(t) will also have constant variance exp(2vu) for each
component.

2.3. Probability model and priors

The model so far can be described with these three equa-
tions:

s(t) ∼ N[g(s(t− 1),θg),diag(exp(2vm))] (6)
u(t) ∼ N[Ws(t) + w,diag(exp(2vu))] (7)
x(t) ∼ N[f(s(t),θf ),diag(exp(2u(t)))], (8)

where N[µ,Σ] denotes a multivariate Gaussian distribution
with mean µ and covariance Σ.

Together they describe a model for data x using the un-
observed variables

Θ = (s(t),u(t),A,a,B,b,C, c,D,d,W,w,vm,vu) .
(9)

The priors of the variables are specified to fix the scaling
ambiguity between s and A and to have a hierarchical prior
allowing automatic relevance determination (ARD) [9] like
decisions to inactivate parts of the model:

Aij ∼ N[0, 1] (10)
Φij ∼ N[0, exp(2vΦj

)] (11)
φi ∼ N[mφ, exp(2vφ)] (12)
vui
∼ N[mv, exp(2vv)] (13)

vmi
∼ N[mvm

, exp(2vvm
)] (14)

vΦj
∼ N[mvΦ , exp(2vvΦ)] (15)

where φ ∈ {a, b, c, d, w} and Φ ∈ {B,C,D,W}. All the
hyperparameters have vague priors N[0, 1002].

1In this model unknown variances of normal distributions will be pa-
rameterized as the natural logarithm of the standard deviation. If logarithm
of standard deviation is v, variance will be e2v .

3. VARIATIONAL INFERENCE

In order to perform inference and learning on the model, we
apply mean field type variational inference, also known as
variational Bayes (VB) [1, 9]. In VB, the posterior p(Θ|X)
is approximated with a tractable distribution q(Θ) that is
fitted by minimising the free energy

F(q(Θ)) = Eq(Θ)

{
log

q(Θ)
p(X,Θ)

}
= DKL(q(Θ)‖p(Θ|X))− log p(X),

(16)

where DKL(q‖p) is the Kullback–Leibler (KL) divergence
between q and p. As the KL divergence is non-negative,
the negative free energy provides a lower bound on model
marginal likelihood log p(X).

Because of the non-linearities, the non-linear state-
space model is not in the conjugate-exponential family
and standard variational Bayesian expectation maximisation
(VB EM) [9] is not applicable. Variational inference for the
model basically follows the scheme introduced in [3, 10]:
we derive a deterministic approximation of the free energy
based on a fixed functional form of the posterior approxima-
tion and the apply gradient-based optimisation to minimise
the free energy. The optimisation is made more efficient
through the use of natural conjugate gradient (NCG) opti-
misation [11].

3.1. Posterior approximation

In order to allow efficient learning, the posterior approxima-
tion q(Θ) = N(Θ; µΘ,ΛΘ) is restricted to be Gaussian
with mean µΘ and precision (inverse covariance) ΛΘ. Fur-
thermore, the precision of the approximation is restricted to
be almost diagonal. The only allowed off-diagonal terms
are in the approximation of s(t) which includes a correla-
tion between si(t) and si(t + 1). Different components of
the state vector s(t) are still assumed independent, and the
posterior approximation of the states is a product of inde-
pendent chains.

Following the theory of Gaussian Markov random
fields, this assumption translates to a tridiagonal precision
(inverse covariance) matrix with non-zero elements only on
the main diagonal and on the diagonal corresponding to the
assumed links. The corresponding covariance matrix has
full blocks for each component of the state.

3.2. The free energy

In order to derive the value of the free energy (16), we note
that

F(q(Θ)) = Eq(Θ) {log q(Θ)}+ Eq(Θ) {− log p(X,Θ)} .
(17)



The first term is the negative entropy of a Gaussian

Eq(Θ) {log q(Θ)} =
N

2
log(2πe)− log det ΛΘ, (18)

where N is the dimensionality of Θ.
The second term splits to a sum of a number of terms

according to Eqs. (6)–(15).

Eq(Θ) {− log p(X,Θ)} =
∑
t,i

Eq(Θ) {− log p(xi(t)|Θ)}

+
∑
γ∈Θ

Eq(Θ)

{
− log p(γ|Θ\γ)

}
, (19)

where Θ\γ denotes the parameters γ depends on.
The terms in the sum are expectations for parameters γ

following a normal model N(m, e2v). The negative loga-
rithm of the pdf is

− log p(γ|Θ\γ) =
1
2

ln(2π) + v +
1
2

(γ −m)2 exp(−2v).
(20)

Assuming independent Gaussian approximations for γ, m
and v with means γ̄, m̄, v̄ and variances γ̃, m̃, ṽ2, the expec-
tation is

Eq(Θ)

{
− log p(γ|Θ\γ)

}
=

1
2

ln(2π) + v̄

+
1
2

[(γ̄ − m̄)2 + γ̃ + m̃] exp(2ṽ − 2v̄). (21)

For the observations xi(t) we obtain similarly

Eq(Θ) {− log p(xi(t)|Θ)} =
1
2

ln(2π) + ūi(t)

+
1
2

[(x− f̄i(t))2 + f̃i(t)] exp(2ũi(t)− 2ūi(t)), (22)

where the means f̄i(t) and variances f̃i(t) of f(t) are eval-
uated as explained in [10, 12].

Let us define an augmented version of sources s and the
matrix W by setting

Ŵ · ŝ(t) = (W w) ·
(

s(t)
1

)
= Ws(t) + w. (23)

For the variance sources

ui(t) ∼ N(ŵiŝ(t), exp(2vui
)), (24)

where ŵi is the ith row vector of Ŵ, we now obtain

Eq(Θ)

{
− log p(ui(t)|Θ\U)

}
=

1
2

ln(2π) + v̄ui
(t)

+
1
2

[(ūi(t)−h̄i(t))2+ũi(t)+h̃i(t)] exp(2ṽui
(t)−2v̄ui

(t)),

(25)

2We will use the notation γ̄ for the mean and γ̃ for the variance of γ in
the approximation for all variables.

where h(t) = Ŵŝ(t) and its mean and variance are

h̄i(t) = ¯̂wi
¯̂s(t) (26)

h̃i(t) =
∑
j

[
˜̂wij(˜̂sj(t) + ¯̂sj(t)2) + ¯̂w2

ij
˜̂sj(t)

]
. (27)

For the states si(t) we can similarly derive [3]

Eq(Θ)

{
− log p(si(t)|Θ\s(t))

}
=

1
2

ln(2π) + v̄mi(t)

+
1
2

[
(s̄i(t)− ḡi(t))2 + s̃i(t) + g̃i(t)

−2s̆i(t, t−1)
gi(t)

si(t− 1)
s̃i(t−1)

]
exp(2ṽmi

(t)−2v̄mi
(t)),

(28)

where ḡi(t) and g̃i(t) are the mean and variance of g(s(t−
1)) evaluated similarly as those of f(s(t)) with the partial
derivative arising as a byproduct of those, and s̆i(t, t − 1)
is the linear correlation between si(t − 1) and si(t) as ex-
plained in [3].

3.3. Update rules

The hyperparameters in Eqs. (13)–(15) are updated using a
VB EM type scheme to find a global optimum, given current
values of the other parameters [13].

For the states and the weights of the MLP networks, we
apply a natural-conjugate-gradient-based (NCG) minimisa-
tion of the free energy, as described in [11, 3]. The update
algorithm is summarised in Algorithm 1.

Algorithm 1 An overview of the learning algorithm
initialize s using PCA with embedded data
initialize MLP network weights θf ,θg randomly
repeat

apply VB EM type update for u(t)
update the parameters (including W, w) with VB EM
calculate F for the current iteration
calculate the gradient of F
update s(t) and the weights θf ,θg using NCG

until F decreases less than ε on one iteration

3.3.1. Updating the linear noise mapping

When we update the means ¯̂wij , we must consider the each
row vector ŵi as one unit. The free energy terms depending
on vector ŵi over the whole duration are∑
t

C(ui(t), ŵi ŝ(t), vui
) +

∑
j

C(ŵij ,mj , zj) + E(ŵij).

(29)



Mean of ŵi ŝ(t) is simply ¯̂wi
¯̂s(t) and its variance is

Var(ŵiŝ(t)) =
∑
j

˜̂wij ·(˜̂sj(t)+¯̂sj(t)2)+ ¯̂w2
ij · ˜̂sj(t). (30)

Now the free energy as a function of ¯̂wi can be written as

1
2

¯̂wiA ¯̂wT
i − ¯̂wib + c (31)

where A is the symmetric positive-definite matrix

A =
∑
t

[
¯̂s(t) · ¯̂s(t)T + diag(˜̂s(t))

]
exp(2ṽi − 2v̄i)

+ diag [exp(2z̃− 2z̄)]
(32)

and b is the vector

b =
∑
t

[¯̂s(t) ūi(t)
]

exp(2ṽ−2v̄)+[mj exp(2z̃j − 2z̄j)]j .

(33)
Exact value of the constant c isn’t relevant; the free energy
is minimized by setting

¯̂wi = (A−1b)T. (34)

Variance updates can be calculated separately for each
component ŵij . The free energy as a function of ˜̂wij can be
written as

1
2
a ˜̂wij −

1
2

ln ˜̂wij + d (35)

where

a =
∑
t

[
˜̂sj(t) + ¯̂sj(t)2

]
exp(2ṽi−2v̄i)+exp(2z̃j−2z̄j).

(36)
Again, exact value of d isn’t relevant; (36) is minimized by
setting

˜̂wij = 1/a. (37)

3.3.2. Updating u(t)

Other variance parameters in the model, for example vm
and vu have a simple Gaussian prior mean. The free energy
associated with these parameters is minimized by Newton’s
iteration [3]. The free energy terms associated with the vari-
ance nodes u(t) in Eq. (25) and from the prior have the same
form as the other variance parameters and are updated sim-
ilarly.

3.4. Predictions

Predictions from the model can be obtained by sampling.
Possible values for all variables Θ in (9) are drawn di-
rectly from the posterior approximation q(Θ). For s(t),
only the latest time step is needed. Given these values, it
is straightforward to simulate one sequence of predictions

of the model. We repeat this for new values of Θ to get as
many samples as required.

The quantiles needed for plotting can be directly cal-
culated from these samples. The most important metric
used for evaluating the quality of the predictions was sim-
ple loglikelihood of the test data under the predictive pos-
terior distribution for future observations. The predictions
obtained by sampling were often multimodal, so the pre-
dictive distributions needed for log-likelihood computation
were estimated by using a Dirichlet process Gaussian mix-
ture model [14].

4. EXPERIMENTS

The method was tested on two data sets: a synthetic data
set based on Lorenz processes and a stock market data set.
On both data sets, the method was compared to the original
NSSM, which has constant variance observation noise.

Additionally on the synthetic data set, the method was
compared against a direct non-linear auto-regressive predic-
tion using Gaussian Processes (GP) [15]. The values of x(t)
were estimated directly from the values of x(t − 1),x(t −
2), . . . ,x(t − k) for some chosen history length k. Several
values of k were tested and k = 12 was selected, because
it resulted in the best predictions in the test set. This selec-
tion method gives GP a slight advantage, as normally this
would need to be selected using a separate test set. Squared
Exponential covariance function with Automatic Relevance
Determination (ARD) distance measure was used for the
GP [16].

4.1. Lorenz data set

The Lorenz data set was generated by using two inde-
pendent Lorenz processes and a harmonic oscillator. The
(σ, ρ, β) parameter vectors for the Lorenz processes were
(3, 26.5, 1) and (4, 30, 1). The harmonic oscillator had an
angular velocity of 1/3. 1600 time steps were used for learn-
ing and 50 for evaluation.

To make the problem more challenging, these 8 signals
were first projected to a 5 dimensions using a random linear
mapping. This means that the method has to reconstruct the
original state-space indirectly, because there are no direct
observations of all the states. Finally, the 10 dimensional
data vectors were generated from the 5 reduced signals by a
random MLP network with sinh−1 non-linearity. Gaussian
noise was added, and its noise level (logarithm of the stan-
dard deviation) was generated by a random linear mapping
from the 5 reduced signals. Apart from the noise, the data
set is similar to the one used in [3].

Some predictions on the Lorenz data using the HNSSM
method are illustrated in Fig. 1. The figure shows the
chaotic nature of the data: short-term prediction is possi-



Fig. 1. Lorenz data predictions using the HNSSM method.
The dotted vertical line denotes the end of training data. The
shaded region denotes 95% posterior credible region of the
predictions, and the thin white line in the middle the poste-
rior mean prediction.

ble, but detailed long-term prediction is not. This is also
reflected in the results of cumulative root mean squared
prediction errors in Fig. 2 and predictive log-likelihood
in Fig. 3. All these comparisons show that both NSSM
and HNSSM are clearly superior to the GP method, with
HNSSM being slightly better than regular NSSM.

4.2. Stock market data

The stock market data set consists of daily closing prices
for 33 large and widely held public companies in the United
States during years 1992–2008. The prices are adjusted for
splits and dividends. The selected companies were the ones
that had been used to calculate the Dow Jones Industrial
Average (DJIA) during that period. For simplicity in im-
plementation of the algorithm and also in interpretation of
the results, the companies that did not have data for the full
period were not included in the data set.

Before using the algorithm, a logarithm was taken of the
prices. No other preprocessing was used. For both HNSSM
and NSSM, the number of hidden sources used was 50, and
the number of hidden neurons in both the observation and
temporal MLP was 70. The GP method was not applicable,
because the data set has trends making it non-stationary.

When the length of the training data was chosen to be
1000, the linear observation variance was effectively pruned
out, and HNSSM and NSSM produced identical results.
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Fig. 2. Cumulative root mean squared prediction errors in
the Lorenz data using different tested methods.
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Fig. 3. Predictive log-likelihoods in the Lorenz data using
different tested methods.

However, when using a training data of length 2000 or 3000,
some variance sources were found.

The results of the stock market prediction are shown in
Fig. 4. The HNSSM method yields a significantly lower
free energy (-238714 vs. -222612), but the the prediction
performance is only slightly superior to the regular NSSM
method.

5. DISCUSSION

Our proposed method would be easily applicable to
continuous-time models following [17].

Our comparison results are qualitatively quite different
from those presented in [4], where auto-regressive GP simi-
lar to one used in our comparison was very close to the best.
Most likely this is due to the use of a scalar time series in [4].



0 10 20 30 40
−50

0

50

100

Prediction length

Lo
gl

ik
el

ih
oo

d

HNSSM
NSSM

Fig. 4. Predictive log-likelihoods in the stock market data
using different tested methods on a training set of 3000 sam-
ples.

The NSSM and HNSSM methods are much better suited for
higher dimensional problems where the state-space can be
utilised to model correlations between observed variables.

It might seem tempting to obtain long-term predictions
using the same propagation rules with the VB posterior that
are used in learning. Unfortunately this leads to incorrect
predictions, as the parameters would incorrectly be assumed
independent at each step.

The applied standard VB method may not be optimal
for long-term prediction performance. The method is essen-
tially based on balancing short-term training set prediction
accuracy with the complexity of the model. In this one can
sometimes observe that the lowest free energy is attained by
a simple model that attains a reasonable short-term predic-
tion performance, but not as good performance as a more
complex model. When evaluating long-term prediction per-
formance, it might be optimal to make a slightly different
trade-off between these aspects. Finding ways to correct
this is an important item for future research.

We have presented a method for incorporating a model
of varying variance into our non-linear state-space model
framework. The relatively straightforward extension leads
to significant improvements in predictive performance in
situations where the observation noise level is not constant.
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