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Variational Learning and Bits-Back Coding:
An Information-Theoretic View to Bayesian Learning

Antti Honkela and Harri Valpola

Abstract—The bits-back coding first introduced by Wallace in
1990 and later by Hinton and van Camp in 1993 provides an inter-
esting link between Bayesian learning and information-theoretic
minimum-description-length (MDL) learning approaches. The
bits-back coding allows interpreting the cost function used in the
variational Bayesian method called ensemble learning as a code
length in addition to the Bayesian view of misfit of the posterior
approximation and a lower bound of model evidence. Combining
these two viewpoints provides interesting insights to the learning
process and the functions of different parts of the model. In this
paper, the problem of variational Bayesian learning of hierarchical
latent variable models is used to demonstrate the benefits of the
two views. The code-length interpretation provides new views to
many parts of the problem such as model comparison and pruning
and helps explain many phenomena occurring in learning.

Index Terms—Bits-back coding, ensemble learning, hierarchical
latent variable models, minimum description length, variational
Bayesian learning.

I. INTRODUCTION

THE problem of learning an optimal model for a given data
set is usually divided into two subtasks: finding optimal

values for parameters of a single model and finding the best
model among a collection of different models. There is a large
number of methods for solving the former problem ranging from
ad hoc algorithms designed to mimic the assumed behavior of
the human brain to others that minimize various cost functions.
The second problem, model selection, is more difficult in gen-
eral and it is consequently also more difficult to design good
heuristics for this task.

Two wholesale solutions that can reliably tackle both
parameter optimization and model selection exist: sta-
tistical Bayesian framework and information-theoretic
minimum-description-length (MDL) principle. While these
techniques are derived from very different starting points, both
lead to very similar results and in some cases to exactly the
same algorithms. It is thus reasonable to regard them as two
viewpoints to the same underlying learning methodology.

Bayesian statistics can be derived from Cox’s axioms stating
that the subject should perform rationally with respect to the
information he has of the world [1]. The beliefs of the subject
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are represented as probabilities. With given costs or utilities for
different possible outcomes the Bayesian procedure provides
the optimal decision based on the available data, thus being able
to learn from the data optimally. MDL and the related minimum-
message-length (MML) principle, on the other hand, are based
on the premise of finding the simplest explanation to adequately
model the available data. This is achieved by looking for the
most compact encoding of the data. The corresponding model
providing the most compact code is then the best model for the
data.

The two frameworks, Bayesian statistics and MDL/MML,
use two different languages, probabilities and code lengths, to
speak of the same things. Both of these views offer unique ben-
efits and using both of them leads to a more complete picture
of the whole. While Bayesian statistics are better grounded, es-
pecially in relation to including utilities and decisions, the code
length interpretation in MDL and MML is sometimes more con-
crete and can be of great help in understanding many of the phe-
nomena occurring while applying the methods.

In this paper, we discuss the insights offered by the two view-
points for practical problems we have encountered. The purpose
of the paper is not to present new algorithms or theorems but to
review and discuss the benefits offered by combining the two ex-
isting frameworks. The paper starts with a general introduction
to Bayesian learning and MDL/MML in Section II. The specific
link between the methods as formed by bits-back coding and
variational Bayesian learning is presented in Section III. Sec-
tion IV introduces the specific model and its learning procedure
used in the examples in Section V. The paper concludes with
discussion in Section VI.

II. BAYESIAN LEARNING AND MDL

Let us consider the problem of finding a model for a given
data set . The model being fitted is parame-
terised with a set of parameters . The traditional so-
lution to the problem is to use maximum-likelihood estimation
to find a single set of values for the model parameters that max-
imizes the data likelihood . This approach is susceptible
to overfitting and does not offer any tools for model comparison
and selection.

In Bayesian statistics, the values of the parameters can have
a distribution too. Probability quantifies the subjective state of
knowledge and all that is known about the parameters is con-
tained in the posterior probability distribution of the
parameters given the data and all the assumptions related to
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using the given model . This distribution can be evaluated by
means of the Bayes rule

(1)

All predictions of the model are then evaluated by using all
possible parameter values and weighting the results by the
corresponding posterior probabilities, an operation known as
marginalization. In this view, the contribution of any single
parameter value to inference is zero as the probability of a
single value under a continuous density is always zero.

Unfortunately the full posterior is too difficult to handle in
most realistic problems and different ways to summarize it are
required. These approximations range from point estimates such
as maximum a posteriori (MAP) estimate to variational ap-
proximations and stochastic approximations provided by var-
ious Markov chain Monte Carlo (MCMC) methods. Because of
the use of full distributions, exact Bayesian learning is insensi-
tive to overfitting. It also provides a natural means of performing
model comparison by using the same procedure to evaluate the
posterior probabilities of different models. Different approxima-
tion techniques retain these properties to different extents. For a
thorough introduction to Bayesian statistics, see, e.g., [2], [3].

Another interesting view to learning is provided by infor-
mation theory and involves finding a model that can be used
to encode the data in a compact manner. The idea of using
compact coding for inductive inference was first proposed by
Solomonoff in the early 1960s [4]. His approach was based on
universal turing machines which limits its usefulness in practice.
In 1968, Wallace and Boulton proposed the first learning algo-
rithm based on minimum encoding and more classical statistical
models [5]. Their approach, later known as MML inference, was
interpreted as a tractable approximation to exact Bayesian in-
ference. Since then there have been many specific algorithms
based on the idea of finding the most compact representation
for the data, some of which are more closely and some more
distantly related to Bayesian learning [6]–[9]. An introduction
to different approaches to minimum-encoding inference can be
found in [10]–[12].

The fundamental idea behind minimum-encoding learning
was distilled by Rissanen as the MDL principle [6]: choose the
model that gives the shortest description of data. The description
here means a code with which the receiver can reconstruct the
original data. The MDL principle is intuitively appealing but it
is not clear why it should provide a reasonable basis for learning.
After all, the world is not a very simple thing to describe. The
close relation of MDL with Bayesian statistics actually suggests
that it is because of our limited knowledge that simplicity is a
good thing.

The MDL principle leaves open many technical questions on
what is a valid code but as it is not required to construct an
actual code but rather to evaluate its length, Shannon’s coding
theorem [13] can be used to obtain a lower bound for the code
length. Shannon’s theorem states that data following a discrete
distribution cannot, on average, be coded using less than

(2)

bits/sample. Here denotes expectation over the random vari-
able. The discrete entropy defined in (2) can be generalized to
continuous case by replacing the sum by a corresponding inte-
gral to evaluate the expectation over . The differential en-
tropy thus derived is not an absolute quantity such as the dis-
crete entropy but it nevertheless characterizes the length of the
code required to encode the values of a variable. With this op-
timal code a single discrete data element can be coded using

bits. In the continuous case coding arbitrary pre-
cision values with finite code is impossible and therefore the
values are only coded up to a given fine tolerance . The cor-
responding code length of value will then be approximately

bits.
The choice of 2 as the base of the logarithm above rises from

the natural wish to evaluate the information content in bits. In
many, especially continuous applications it is, however, more
convenient to use natural logarithm instead. This amounts to
changing the unit of measure from base-2 bits to base- nats.
In general nats can always be converted to bits by dividing the
value by ln 2. From now on we will use notation log for the
(natural) logarithm without explicitly stating the base .

A simple way to use the MDL principle for learning is to
postulate the following encoding: the data is modeled using a
model with parameters which are encoded first and then
the modeling error is encoded. This way the description length
becomes

(3)

where is the description length of the
parameters using a suitable (prior) distribution and precision
for them, is the description
length of the modeling error up to precision and and
denote the numbers of elements in the sets and , respec-
tively. If the precisions and are ignored, minimizing this
description length is equivalent to finding the MAP estimate for
the parameters.

III. BITS-BACK CODING AND VARIATIONAL METHODS

In 1990, Wallace presented an interesting new coding scheme
to be used together with the MDL/MML learning principle [14].
The same idea has been later developed by numerous authors
[15]–[19]. The name of bits-back coding is due to Hinton and
van Camp [15], [16]. Wallace’s scheme is based on the idea
of using a code with redundant codewords and selecting the
codeword according to some auxiliary information. The receiver
can then later recover the auxiliary information, get his “bits
back”, by running the same learning algorithm and observing
the choices that were made. The recovered bits compensate the
additional cost caused by the redundancy in the codewords and
it turns out that the resulting code length is never greater than
when using nonredundant codes.

It also turns out that bits-back coding provides an interesting
connection between information-theoretic MDL principle and
Bayesian learning and especially variational approximation to
it.
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A. Bits-Back Coding

Let us consider the example above leading to the code length
given in (3). Assuming for now that everything is discrete, the
precisions and can be ignored. Instead of choosing only
one or the corresponding code word, bits-back coding uses
multiple alternatives that are chosen according to a distribution

. The distribution introduces redundancy in the coding
and results in the expected code length of

(4)

This length is of course greater than the optimal derived
in (3) but now the code contains additional information in the
choice of that were used in the coding. The amount of this
extra information that can be transmitted is given in (2) by the
entropy of the distribution

(5)

This part can be used to carry other information than the orig-
inal data and should therefore not be included in the total de-
scription length of . This yields the following total expected
bits-back code length of :

(6)

The classical result of (3) is obtained as a special case when
is chosen to give probability of one to a single value which
maximizes and nothing for the rest. In general it
is possible to find a much shorter description by using a better

.
It might not be immediately clear that the receiver can decode

the secondary message hidden in the choice of . This can, how-
ever, be done with the following decoding scheme:

1) decode from the first part of the message using ;
2) decode from the second part of the message using

;
3) run the same algorithm as the sender used for computing

the distribution based on ;
4) decode the secondary message from using .
But what would be the optimal ? The code length in (6)

can be written as

(7)

where is the Kullback–Leibler diver-
gence between the coding distribution and the posterior
distribution of the parameters [20]. In the other
term, is the model evidence which is independent of
the values of and also independent of . Thus, the code
length can be minimized by minimizing the Kullback–Leibler
divergence . This can be done by setting

in which case the divergence will be zero.
Thus, the optimal is equal to the Bayesian posterior
distribution of the parameters. This results in code length

which is optimal according to Shannon’s coding
theorem. This shows that bits-back coding is actually an
optimal coding scheme.

Using the posterior directly is not feasible in most realistic
problems and some simpler alternatives, leading to larger code
lengths, must be used in practice. The typical simpler alterna-
tives are suitably factorized distributions as discussed in Sec-
tion III-C.

The MDL principle can be readily extended to continuous
data. This introduces the term related to the coding
precision of the data in (3), but the term is separable and does
not depend on the model that is used.

In contrast, if some model parameters are continuous, the
MDL framework is complicated by the precision of the pa-
rameters. Selecting too low a value for will increase the code
length of the parameters and selecting too high a value
will lead to suboptimal choices of parameters which increases
the code length . Bits-back coding with its redundant
coding is particularly useful in the continuous case as it is pos-
sible to let to be arbitrarily close to zero without increasing
the code length corresponding to . This is because
appears both in and in but these terms have
opposite signs in (6) and the terms related to the precision
thus cancel out.

The only difference to the discrete case is the additive con-
stant . As it does not depend on the approximation

it can be ignored and the message length in both discrete
and continuous cases can be denoted as

(8)

where denotes expectation over the distribution .

B. Relation to the EM Algorithm

Many existing learning methods can be seen as spe-
cific examples of using the above methodology. The
expectation-maximization (EM) algorithm, for instance,
can be viewed as a specific method to minimize a cost function
of (8) [21]. In this case, the set of unknown variables consists
of some unobserved data and the standard
model parameters . The approximation is chosen to be of
the form with being restricted to a
delta distribution with only one value of parameters having
probability (mass) of one. The learning process then proceeds
by alternating updates of in the E-step and in the
M-step. In the basic algorithm, both of these updates set the
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corresponding part to the optimum of (8) given the current
value of the other part.

C. The Bayesian Interpretation and Variational Learning

From a Bayesian point of view, the bits-back coding suggests
using some kind of approximation to approximate the true
posterior . These kinds of approaches have been used
for some time under the name of variational methods or espe-
cially in statistical mechanics as mean field methods [22]–[25].

Variational methods are used to decrease the number of pos-
terior dependencies in too complex models. This can be done for
instance by decoupling variables from the model with so called
variational transformations until the learning problem of the re-
maining structure can be solved in a tractable manner [24]. This
sequential approach is very flexible but it is difficult to develop
a general theory for it.

An alternative approach is to fix a single structure for the ap-
proximation and then find the optimal solution in that class of
approximating probability distributions. This leads to another
way of deriving an algorithm equivalent to bits-back learning
by considering the minimization of the Kullback–Leibler diver-
gence between the approximation and the true posterior. The
resulting Bayesian-learning algorithm is often called ensemble
learning [17], [26].

The posterior approximation in ensemble learning is
usually chosen to be a product of independent distributions for
some easily separable sets of parameters. In an EM-like situa-
tion with some unobserved data , an approximation of the form

is typically used. The factors and
are often further factored to smaller pieces, sometimes until the
fully factorized form . As these methods can
be seen as generalizations of the EM algorithm, they are some-
times called variational EM methods.

D. Bayesian and Bits-Back Model Comparison

From a Bayesian perspective there is no need for any spe-
cial model selection tools. The whole learning problem can be
viewed as finding the joint posterior probability of
the model parameters and the models . This view allows
setting aside strict boundaries between learning model parame-
ters and structures.

The standard approach here is to marginalize over the param-
eters to compare different models. The required posterior prob-
abilities of the models can then be obtained from the Bayes rule
as . In practice, the posterior proba-
bilities are often so different that only one candidate model con-
tributes significantly to the predictions of the combined models.
Thus, it is reasonable to approximate the marginalization by
using only the single best model. Whichever of the alternatives
is chosen, the key quantity to evaluate is the model evidence

[27], [28].
The ensemble learning procedure of minimizing the

Kullback–Leibler divergence between an approximate poste-
rior and the exact can also be applied to
approximate the exact inference. Performing the minimization
yields the approximation [26]

(9)

suggesting the use of in place of model ev-
idence. This approach is actually more practical as it takes into
account the actual parameter values learnt for the model. The
exact evidence ignores the distribution of the probability mass
in the parameter space and may thus favor, for instance, models
with internal symmetries that allow multiple parameterizations
of the same model of which only one is used in practice.

The model evidence relates closely to the code length of
the model in MDL framework. The relation for optimal code

shows that MDL and Bayesian
approaches agree in principle on what is the best model. Be-
cause the construction of the corresponding code in the MDL
case or even evaluation of its length require use of the exact
posterior which is typically intractable, the result has only a
theoretical interest.

The corresponding general result for arbitrary

(10)

is much more interesting in practice, although its deeper mes-
sage is also rather obvious. If an imperfect approximation to
the posterior is used, the resulting code will be longer than the
minimum by the amount of information discrepancy between
the approximation and the true posterior as measured by the
Kullback–Leibler divergence. Evaluating the divergence is usu-
ally not possible as it would again require using the exact pos-
terior. In any case, the actual code length will provide a lower
bound for model evidence as

(11)

implying

(12)

which parallels (9) in an interesting way.

E. Combining the Two Views

The Bayesian and MDL views of ensemble learning and
bits-back coding are two complementary ways of looking at the
same thing that both offer unique benefits for the whole. The
MDL approach provides a nice way to derive the cost function
(8) and offers an interpretation even for the individual terms

(13)

as code lengths of individual parameters.
From a purely Bayesian perspective, the cost function (10)

calls for minimization of a somewhat ad hoc distance measure
between the approximate and true posterior. As an additional
bonus one also gets a convenient lower bound for model
evidence as in (12). The resulting approximation does not
appear to have a simple corresponding loss function [2] so from
the Bayesian perspective it is not clear how the approximate
marginalization using the approximate posterior relates to
results of other methods. The Kullback–Leibler divergence
is widely used for measuring the discrepancy between the
approximate and the true posterior probability but in order to
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minimize the expected loss of natural logarithmic score func-
tion, should be used instead of . Unfortunately,
these are not the same because Kullback–Leibler divergence is
asymmetric and there is no apparent simple relation between
the two forms [2], [19].

IV. BUILDING BLOCKS FOR HIERARCHICAL MODELS

The ensemble learning approach presented above has been
used for a variety of different modeling problems ranging from
learning multilayer neural networks [29] to learning hidden
Markov models [30]. It has recently become very popular
in the field of linear independent component analysis (ICA)
[31]–[35]. The approach also provides suitable regularization
for severely ill-posed nonlinear problems and has been success-
fully applied to nonlinear ICA [36]–[38] as well as nonlinear
and switching state-space models [39], [40], to name a few
examples. It also allows modeling of variance simultaneously
with the mean in a way that would be impossible for methods
based on conventional point estimates [41], [42].

In order to demonstrate the above principles in practice, we
use a collection of “building blocks” called Bayes Blocks pre-
sented in [43]. These blocks allow easy definition and learning
of many linear and nonlinear hierarchical latent variable model
structures.

Most probabilistic models can be represented as graphical
models. A graphical model is a directed acyclic graph (DAG)
representation of the joint probability density of the model.
The nodes of the graph correspond to different variables of
the model and the edges between them represent dependence
relations. The joint probability density of the model represented
by a graph is a product of terms of the form (node parents
of node in the graph), where parents of node are the nodes
from which there are incoming edges to . The intuitive
interpretation of the graph is, thus, that the value of a variable
represented by a node is directly dependent only on the
variables represented by the immediate parents of , i.e., the
distribution of the values of is perfectly determined once the
values of its parents are known [44], [45].

Let us assume that we are using a fully factorial posterior
approximation

(14)

The case of a general (not necessarily fully) factorial approxi-
mation is similar with joint densities of groups of variables ap-
pearing as factors in (14) instead of densities of individual
variables.

The part of the cost function affected by variable of a graph-
ical model can, up to an additive constant, be written as

(15)
where denotes the parents, the children and

the co-parents (other parents with at least one
common child) of .

If a conjugate prior is used for , the optimal approximation
can typically be solved exactly assuming the distributions

of all the other parameters are kept fixed. This leads to
an alternating optimization algorithm where each parameter is
updated in turn while all the others are kept fixed.

The restriction of using only conjugate priors severely limits
the range of possible model structures as it is not possible to find
reasonable conjugates for all distributions. This places restric-
tions on possible hierarchical models that can be handled.

A. Hierarchical Models of Variance

Let us consider for example the possible hierarchical priors
for the parameters of a Gaussian distribution

(16)

The conjugate prior for the mean is Gaussian so it is easy
to build a hierarchy for the means. The variances are, however,
more difficult to handle. The conjugate prior of the variance
of a univariate Gaussian is the inverse gamma distribution

(17)
Unfortunately, there is no simple conjugate prior for the param-
eter of the inverse gamma distribution so it is not possible to
handle a more complicated hierarchical model for the variance
of a Gaussian using only conjugate priors.

The problem of building a hierarchical model for variance
can be handled by using a nonconjugate log-normal prior for
the variance. Thus, (16) can be written instead as

(18)

where both and have Gaussian priors and can thus be han-
dled in a similar manner as . Thus, the parameterization allows
construction of arbitrary hierarchies. As the prior of is not con-
jugate, solving the approximate posterior is more difficult.
If is restricted to be Gaussian it is nevertheless relatively
easy to find the best approximation in this class of distributions
as shown in [41]–[43].

Gaussian variables based on the model (18) form a good
basis for building many different hierarchical-latent variable
models. When combined with addition and multiplication
which both transform Gaussian inputs to a Gaussian output,
they allow for a wide class of linear and some nonlinear models.
The nonlinearities here arise from the fact that a linear model
for the variance of a variable results in a nonlinear model for
the variable itself. More details on the exact implementation of
the different blocks can be found in [41]–[43].

B. Variance Model for Independent Component Analysis

The hierarchical variance model described above can easily
be used for performing ICA. The generative model for the ob-
servations in (noisy) ICA is

(19)

where are the independent sources, is the mixing matrix
and is Gaussian observation noise. In order to be able to
separate the sources, must have a non-Gaussian prior. This
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is achieved by using variance neurons to model the variance of
each sample of separately as in

(20)

The resulting Gaussian distribution with varying variance corre-
sponds to a super-Gaussian prior distribution [41], [42]. Evalua-
tion of the code length for this model is a lengthy but straightfor-
ward operation. For details on the evaluation of the cost function
and the rest of the method, see [42].

C. Hierarchical Nonlinear Factor Analysis

Another application of the Bayes Blocks framework used
in this paper is the hierarchical nonlinear factor analysis
(HNFA) model presented in [38]. The generative model for
nonlinear factor analysis is basically
with MLP-like structure and
activation function applied componentwise.
In order to avoid problems caused by propagation of variance
of the sources through multiple paths as explained in [36], the
values of the hidden neurons are taken as latent variables
so that

(21)

and

(22)

where is the (diagonal) covariance matrix of the first-level
sources and is the noise covariance matrix.

D. Parameter Estimation

The basic learning procedure for models of the above form is
straightforward; process the variables one at a time and update
the corresponding factors of the approximation, while the others
are kept fixed. The factors of the approximation are always up-
dated to minimize the corresponding cost as presented in (15).
This is usually not the most efficient way to perform the mini-
mization, however, and the convergence of the learning process
can be accelerated with a simple procedure as presented in [46].
This speedup was used in all the experiments.

E. Model Selection and Pruning

The above procedure works well for a single fixed model
structure. However, as the flexibility of the building-block
framework makes it easy to use many different kinds of
models, it is often desirable to use and compare different model
structures.

According to the MDL principle, the best model for the data
is the one that yields the shortest code length for the data. Even
though the absolute values of the cost function are, especially
in the continuous case, more difficult to interpret, the differ-
ences tell directly how much more likely one model is than an-
other. With typical differences of more than 100 nats leading to
exp(100)-fold difference in likelihoods, it is easy to justify using
only the most likely model as suggested in Section III-D.

Even though the code length allows easy comparison of dif-
ferent models it is not very efficient to run the learning algo-
rithm separately for each possible candidate model structure. In-
stead, it would be desirable to adjust the model structure during
learning. These adjustments can be roughly broken into two dif-
ferent kinds of operations; adding new structures and pruning
old ones away.

With the cost function as a guide, pruning could be imple-
mented by trying to remove a part, iterating the algorithm for a
while, and see if the change shortened the code and return the
removed part back if not. In order to make this more simple,
the additional iterations are skipped and instead of actually re-
moving a part its value is set equal to constant zero and the
change of the code length is observed. This is slightly biased to-
ward keeping existing structure because other parts of the model
could often make up for the removed part if given the chance
via iterating the learning algorithm for a while. This bias can be
countered by making the removal even if it would seem to result
in only a small enough increase in the code length.

With working method for pruning, addition is easy to handle
by adding the candidate structure, iterating the algorithm for a
while to get the values of the new variables updated, and then
apply the above check whether they should be pruned away.

The HNFA method presented in [38] is a good example of
learning the structure of the model. The model starts with a
linear mapping from sources to the data and gradu-
ally builds the nonlinearity by adding the hidden nodes .
The incoming weights of the added nodes are initialized ran-
domly. In the beginning, all the generated candidates are added
but later only the best looking ones are selected because the
probability that a random candidate will survive is low. After
adding new hidden nodes the learning algorithm is run for 30
iterations before applying pruning to remove unsuccessful addi-
tions and other redundant parts. In addition to complete hidden
nodes, the individual weights of the weight matrices are also
pruned and added in a similar manner. For more details on the
procedure, see [38].

V. EXPERIMENTS

To illustrate the presented method, we performed a set of
experiments using different hierarchical latent variable model
structures.1 The purpose of these experiments is not to present
the best performance these methods can achieve in modeling
the data used here, but rather to demonstrate how the informa-
tion-theoretic viewpoint helps in understanding the results and
sometimes provides insights that suggest improvements in the
models and learning algorithms.

A. Hierarchical Nonlinear Factor Analysis

As the first example, we shall review the development of the
learning algorithm of the HNFA method which is based on the
previously developed nonlinear factor analysis (NFA) method
[36]. The main difference is that in HNFA, the hidden nodes

are latent variables with a noise model, while in NFA they
are deterministic.

1The source code for the Bayes Blocks library used in most of the simulations
is available at http://www.cis.hut.fi/projects/bayes/software/
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Fig. 1. The attained SNR of the separated sources as a function of mean code
length of the hidden node values in the HNFA experiments with and without
evidence nodes.

Originally, HNFA performed unexpectedly poorly compared
to NFA. The terms of the cost function shown in (13) have an in-
formation-theoretic interpretation as coding lengths of different
parameters and this view proved invaluable in analysing the per-
formance. It turned out that the coding length of several hidden
nodes was comparable to that of the sources . In other
words, the hidden nodes which were supposed to be auxiliary
variables for computing the nonlinear mapping from sources

to the observations had taken over and acted as sources.
The mapping from hidden nodes to observations is linear and
the model was thus effectively more linear than it should have
been.

The analysis lead to a significant improvement in the learning
procedure. As explained in [38], the method now relies on so
called evidence nodes to restrict the hidden nodes from
acting as additional sources. During learning, the influence of
the evidence nodes decays to zero after which they are removed.
However, their influence on the hidden nodes during the early
phases of learning is enough to give the sources a competi-
tive advantage in representing the data. This lead to significantly
better solutions both in terms of signal-to-noise ratio (SNR) of
the extracted source components and value of the cost function.

The plot in Fig. 1 shows the attained SNRs as a function of the
mean code length of the hidden node variables in exper-
iments with and without evidence nodes. The 20-dimensional
data set and the method for measuring the SNR are the same as
in [38]. The figure shows that evidence nodes decrease the av-
erage code lengths of the hidden nodes and increase the SNRs.
Consistent with the view that the main reason for the impoved
performance is the reduced tendency for hidden neurons to rep-
resent the data, there is a significant correlation between the av-
erage code length and the SNR within the experiments of each
individual type.

Note that the experiments without evidence nodes shown here
were not the ones whose analysis lead to the introduction of
the evidence nodes. The original experiments had even worse
performance but since then there have been several refinements
in the learning procedure. In order to isolate the effect of the

Fig. 2. The three original sources in the spike experiment. The source samples
are actually i.i.d. but they have been sorted to show some structure in them.

evidence nodes, the learning schemes used in the experiments
shown in the figure differ only in their use of the evidence nodes.

B. Spikes in ICA

Using standard ICA with unsuitable data set can cause two
related types of artifacts: spikes and bumps [47]–[49]. We shall
next discuss how the conditions in which they occur differ and
how this behavior can be easily understood from an information-
theoretic point of view.

Spikes are components whose energy is concentrated to a
single observation with values at all other time instants being
very close to zero. Spike-like signals maximize the kurtosis [50]
of the signal as well as many contrast functions. If the dimen-
sionality of the data is high compared to the number of sam-
ples, spikes can be found relatively easily and thus, algorithms
attempting to maximize the kurtosis will yield such results un-
less care is taken to restrict the model in a suitable way.

ICA approaches based on MDL framework are not suscep-
tible to such overfitting as using a source to model only one
sample of the data is not very economical. Anything that can be
gained in shorter description for the data at that sample will be
lost in the description length needed for the corresponding pa-
rameters.

The emergence of spikes was tested with an example using
artificial data. The data set consisted of 400 samples of 300 di-
mensional observations. The data was generated by mixing the
three super-Gaussian sources shown in Fig. 2 along with two
Gaussian white-noise sources using an orthogonal mixing ma-
trix to five dimensions of the observations. The remaining 295
dimensions of the data contained only Gaussian white noise.
This way the data set was already white and no reduction of
dimensionality was possible.

The data set was tested using FastICA [50] and our bits-back
ICA. Due to the extreme difficulty of the problem, both methods
were initialized to the correct solution. This showed whether
the optimization criterion was reasonable in that there was an
optimum corresponding to the correct solution. If the model can
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Fig. 3. Three sources recovered by FastICA in the spike experiment.

Fig. 4. Three sources recovered by bits-back ICA in the spike experiment.

stick to the correct solution, it should be able to find it with a
good optimization algorithm but if it does not, there is no hope
of it ever finding the solution.

The results of the different methods are illustrated in Fig. 3
for FastICA and Fig. 4 for bits-back ICA. Even though FastICA
was initialized to the correct solution, it drifted away from
it to a more spiky solution. The linear correlations of the
sources recovered by FastICA with the original sources were

0.19, 0.27, and 0.24. Corresponding correlations between
the sources recovered by bits-back ICA and the original
sources were 0.86, 0.66, and 0.94. If the number of samples
was decreased to be equal to the dimensionality of the data,
FastICA found perfect spikes with only one essentially nonzero
component. When the number of the added noise dimensions
was decreased to a small enough value, FastICA recovered
the original sources easily. The results attained with bits-back
ICA varied only little depending on the dimensionality of the
observations.

When the number of samples was increased from 400 to 4000,
FastICA could retain the correct solution when initialized to it

Fig. 5. Six-example time series of the 122 channels in the MEG data set.

and could find two of the components even without the correct
initialization. This shows that the results obtained with FastICA
do not stay the same when the amount of data is increased and
the results obtained with a small number of samples are just
artifacts.

C. Bumps in MEG Data

Bumps are the counterpart of spikes for temporally correlated
data. Unlike spikes discussed in the previous section, bumps
cannot be dismissed as overlearning results since they arise from
the fact that the model cannot properly represent the temporal
dependencies and persist even when large amounts of data is
used.

The energy of a bump signal is concentrated over a few con-
secutive samples in the temporal direction. Like spikes, they
too have a very high kurtosis. Using a learning algorithm based
on the MDL framework will not help against bumps, however,
because they present real savings in the description length. A
bumpy solution for a static ICA model with temporally corre-
lated data is actually a temporal model where the time series has
been segmented and each component is used to model a single
segment of the data. As each source can be used to model sev-
eral observations, the model is able to attain a shorter descrip-
tion for the original data. Bumps can be best avoided by using
a temporal model suitable for the data but there are also other
methods that can be used to suppress them [48], [49].

To illustrate the formation of bumps with real data, we per-
formed some experiments using biomedical magnetoencephalo-
gram (MEG) measurements used in [51]. The MEG data con-
sists of signals originating from brain activity measured with
an array of magnetic sensors. The data has 122 channels cor-
responding to magnetic fields measured in two directions in 61
locations around the head of the subject. The signals are con-
taminated by external artifacts such as a digital watch and heart
beat as well as eye movements and blinks. A set of 2500 sam-
ples of the original data set was used. A part of the data set is
illustrated in Fig. 5.

The MEG measurements were studied using linear ICA based
on the bits-back methodology as described in Section IV-B.
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Fig. 6. The total code length in the MEG experiment with ICA model as a
function of the number of sources.

The model is only able to represent super-Gaussian sources
but that is sufficient for demonstrating the formation of bumps.
In the variational Bayesian framework it is straightforward to
use mixtures of Gaussians model for the source distribution if
sub-Gaussian sources need to be extracted [31]–[35].

The attained code lengths using models with different num-
bers of sources are illustrated in Fig. 6. The figure shows a min-
imum around 55 sources, although the absolutely shortest code
length was attained with a model initialized with 70 sources.
However, 17 out of the 70 sources had been pruned in the best
model leaving 53 active sources in the end. In general, having
too few sources seems to be more harmful than having too many
of them.

As the data has strong temporal correlations but the sources
lack any dynamics in the model, some of the extracted sources
correspond to bumps as illustrated in Fig. 7. Practically all ICA
methods are susceptible to the same problem as illustrated by the
findings of FastICA in Fig. 8. The difference in appearance of
the bumps can easily be explained in that FastICA is essentially
looking for spikes that happen to have temporal correlations,
whereas bits-back ICA is trying to find a compact description
of the data and therefore prefers wider bumps that describe a
longer segment of the data.

The emergence of bumps can, of course, be avoided with ad-
ditional care. One solution is high-pass filtering, which elim-
inates the strongest temporal dependencies. This was used in
[51], but it risks losing important information as well. A safer
solution is to use a temporal model for the sources [49].

VI. DISCUSSION

In this paper, we have presented a review of the benefits
offered by combining the views offered by Bayesian statistics
and information theory. The bits-back coding scheme and
the resulting expression for code length in (7) and its conse-
quences suggest interesting connections between Bayesian and
minimum-encoding learning approaches. First, it provides an
alternative justification for using exact Bayesian inference with
full posterior instead of different point estimates such as MAP.

Fig. 7. Nine sources extracted from the MEG data set by bits-back ICA. The
four topmost sources are bumps. The fifth looks like a bump but is really part
of the signal associated with the beginning of a biting artifact at that point. The
four lowermost sources are examples of desired artifact signals.

Fig. 8. Five bumpy sources extracted from the MEG data set by FastICA.

If the full posterior happens to be intractable, the best way to
tackle the problem is to use an approximation that makes the
problem tractable while being as close to the true posterior as
possible, as measured by the Kullback–Leibler divergence.

Second, while similar methods have been used before as
mean field approximations motivated by statistical mechanics,
the information-theoretic viewpoint allows interpreting parts of
the cost function as the code lengths of different parameters.
This can help distinguish the most important parameters from
the less important ones. Finally, the information-theoretic
view also provides intuitive explanations of many phenomena
through simple consideration of what can and cannot help in
producing a shorter code for the data. This makes it easy to
understand why it is sometimes not reasonable to build a higher
level model for some parameters if their description length
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is already so low that it is not possible to justify adding new
parameters to model them.

One of the specific problems explained by the code length
interpretation are the overfitting phenomena studied in Sec-
tion V-B. The approach also saves bits-back ICA from spikes
that are found by most cumulant and contrast function based
methods. The emergence of bumps with temporally correlated
data is intuitively understandable as well.

Methods based on careful application of the MDL principle
are generally very resistant to overfitting. If they are used in a
proper way, it is very difficult to make them go wrong. There
are some exceptions related to the method being able to de-
scribe two real numbers to an arbitrary precision using only one
number to describe them but these are usually easy to identify
and avoid.

Bayesian statistics and MDL principle provide two alterna-
tive views to the problem of learning from data. As both methods
can be used to derive the same practical algorithms, it is easy to
combine the two complementary approaches. Using both princi-
ples together allows new explanations and solutions to be found
for many practical problems encountered in constructing and
training models.
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