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Abstract

In this paper we present a framework for using multi-layer per-
ceptron (MLP) networks in nonlinear generative models trained
by variational Bayesian learning. The nonlinearity is handled by
linearizing it using a Gauss–Hermite quadrature at the hidden neu-
rons. This yields an accurate approximation for cases of large pos-
terior variance. The method can be used to derive nonlinear coun-
terparts for linear algorithms such as factor analysis, independent
component/factor analysis and state-space models. This is demon-
strated with a nonlinear factor analysis experiment in which even
20 sources can be estimated from a real world speech data set.

1 Introduction

Linear latent variable models such as factor analysis, principal component analysis
(PCA) and independent component analysis (ICA) [1] are used in many applications
ranging from engineering to social sciences and psychology. In many of these cases,
the effect of the desired factors or sources to the observed data is, however, not
linear. A nonlinear model could therefore produce better results.

The method presented in this paper can be used as a basis for many nonlinear
latent variable models, such as nonlinear generalizations of the above models. It is
based on the variational Bayesian framework, which provides a solid foundation for
nonlinear modeling that would otherwise be prone to overfitting [2]. It also allows
for easy comparison of different model structures, which is even more important for
flexible nonlinear models than for simpler linear models.

General nonlinear generative models for data x(t) of the type

x(t) = f(s(t),θf ) + n(t) = Bφ(As(t) + a) + b + n(t) (1)

often employ a multi-layer perceptron (MLP) (as in the equation) or a radial basis
function (RBF) network to model the nonlinearity. Here s(t) are the latent variables
of the model, n(t) is noise and θf are the parameters of the nonlinearity, in case
of MLP the weight matrices A,B and bias vectors a,b. In context of variational
Bayesian methods, RBF networks seem more popular of the two because it is easier



to evaluate analytic expressions and bounds for certain key quantities [3]. With
MLP networks such values are not as easily available and one usually has to resort
to numeric approximations. Nevertheless, MLP networks can often, especially for
nearly linear models and in high dimensional spaces, provide an equally good model
with fewer parameters [4]. This is important with generative models whose latent
variables are independent or at least uncorrelated and the intrinsic dimensionality
of the input is large. A reasonable approximate bound for a good model is also
often better than a strict bound for a bad model.

Most existing applications of variational Bayesian methods for nonlinear models
are concerned with the supervised case where the inputs of the network are known
and only the weights have to be learned [3, 5]. This is easier as there are fewer
parameters with related posterior variance above the nonlinear hidden layer and
the distributions thus tend to be easier to handle.

In this paper we present a novel method for evaluating the statistics of the outputs
of an MLP network in context of unsupervised variational Bayesian learning of its
weights and inputs. The method is demonstrated with a nonlinear factor analysis
problem. The new method allows for reliable estimation of a larger number of
factors than before [6, 7].

2 Variational learning of unsupervised MLPs

Let us denote the observed data by X = {x(t)|t}, the latent variables of the model
by S = {s(t)|t} and the model parameters by θ = (θi). The nonlinearity (1) can be
used as a building block of many different models depending on the model assumed
for the sources S. Simple Gaussian prior on S leads to a nonlinear factor analysis
(NFA) model [6,7] that is studied here because of its simplicity. The method could
easily be extended with a mixture-of-Gaussians prior on S [8] to get a nonlinear
independent factor analysis model, but this is omitted here. In many nonlinear
blind source separation (BSS) problems it is enough to apply simple NFA followed
by linear ICA postprocessing to achieve nonlinear BSS [6, 7]. Another possible
extension would be to include dynamics for S as in [9].

In order to deal with the flexible nonlinear models, a powerful learning paradigm
resistant to overfitting is needed. The variational Bayesian method of ensemble
learning [2] has proven useful here. Ensemble learning is based on approximating
the true posterior p(S,θ|X) with a tractable approximation q(S,θ), typically a
multivariate Gaussian with a diagonal covariance. The approximation is fitted to
minimize the cost

C =

〈
log

q(S,θ)

p(S,θ,X)

〉
= D(q(S,θ)||p(S,θ|X)) − log p(X) (2)

where 〈·〉 denotes expectation over q(S,θ) and D(q||p) is the Kullback-Leibler diver-
gence between q and p. As the Kullback-Leibler divergence is always non-negative,
C yields an upper bound for − log p(X) and thus a lower bound for the evidence
p(X). The cost can be evaluated analytically for a large class of mainly linear
models [10,11] leading to simple and efficient learning algorithms.

2.1 Evaluating the cost

Unfortunately, the cost (2) cannot be evaluated analytically for the nonlinear model
(1). Assuming a Gaussian noise model, the likelihood term of C becomes

Cx = 〈− log p(X|S,θ)〉 =
∑

t

〈− log N(x(t); f(s(t),θf ),Σx)〉 . (3)



The term Cx depends on the first and second moments of f(s(t),θf ) over the pos-
terior approximation q(S,θ), and they cannot easily be evaluated analytically. As-
suming the noise covariance is diagonal, the cross terms of the covariance of the
output are not needed, only the scalar variances of the different components.

If the activation functions of the MLP network were linear, the output mean and
variance could be evaluated exactly using only the mean and variance of the inputs
s(t) and θf . Thus a natural first approximation would be to linearize the network
about the input mean using derivatives [6]. Taking the derivative with respect to
s(t), for instance, yields

∂f(s(t),θf )

∂s(t)
= B diag(φ′(y(t))) A, (4)

where diag(v) denotes a diagonal matrix with elements of vector v on the main
diagonal and y(t) = As(t) + a. Due to the local nature of the approximation,
this can lead to severe underestimation of the variance, especially when the hidden
neurons of the MLP network operate in the saturated region. This makes the
nonlinear factor analysis algorithm using this approach unstable with large number
of factors because the posterior variance corresponding to the last factors is typically
large.

To avoid this problem, we propose using a Gauss–Hermite quadrature to evaluate
an effective linearization of the nonlinear activation functions φ(yi(t)). The Gauss–
Hermite quadrature is a method for approximating weighted integrals∫

∞

−∞

f(x) exp(−x2) dx ≈
∑

k

wk f(tk), (5)

where the weights wk and abscissas tk are selected by requiring exact result for
suitable number of low-order polynomials. This allows evaluating the mean and
variance of φ(yi(t)) by quadratures

φ(yi(t))GH =
∑

k

w′

kφ
(
yi(t) + t′k

√
ỹi(t)

)
(6)

φ̃(yi(t))GH =
∑

k

w′

k

[
φ

(
yi(t) + t′k

√
ỹi(t)

)
− φ(yi(t))GH

]2

, (7)

respectively. Here the weights and abscissas have been scaled to take into account
the Gaussian pdf weight instead of exp(−x2), and yi(t) and ỹi(t) are the mean
and variance of yi(t), respectively. We used a three point quadrature that yields
accurate enough results but can be evaluated quickly. Using e.g. five points improves
the accuracy slightly, but slows the computation down significantly. As both of the
quadratures depend on φ at the same points, they can be evaluated together easily.

Using the approximation formula φ̃(yi(t)) = φ′(yi(t))
2ỹi(t), the resulting mean and

variance can be interpreted to yield an effective linearization of φ(yi(t)) through

〈φ(yi(t))〉 := φ(yi(t))GH 〈φ′(yi(t))〉 :=

√
φ̃(yi(t))GH

ỹi(t)
. (8)

The positive square root is used here because the derivative of the logistic sigmoid
used as activation function is always positive. Using these to linearize the MLP as
in Eq. (4), the exact mean and variance of the linearized model can be evaluated in
a relatively straightforward manner. Evaluation of the variance due to the sources
requires propagating matrices through the network to track the correlations between
the hidden units. Hence the computational complexity depends quadratically on
the number of sources. The same problem does not affect the network weights as
each parameter only affects the value of one hidden neuron.



2.2 Details of the approximation

The mean and variance of φ(yi(t)) depend on the distribution of yi(t). The Gauss–
Hermite quadrature assumes that yi(t) is Gaussian. This is not true in our case,
as the product of two independent normally distributed variables aij and sj(t) is
super-Gaussian, although rather close to Gaussian if the mean of one of the variables
is significantly larger in absolute value than the standard deviation. In case of N
sources, the actual input yi(t) is a sum of N of these and a Gaussian variable and
therefore rather close to a Gaussian, at least for larger values of N .

Ignoring the non-Gaussianity, the quadrature depends on the mean and variance of
yi(t). These can be evaluated exactly because of the linearity of the mapping as

ỹi,tot(t) =
∑

j

(
Ãij(sj(t)

2 + s̃j(t)) + A
2

ij s̃j(t)
)

+ ãi, (9)

where θ denotes the mean and θ̃ the variance of θ. Here it is assumed that the
posterior approximations q(S) and q(θf ) have diagonal covariances. Full covariances
can be used instead without too much difficulty, if necessary.

In an experiment investigating the approximation accuracy with a random
MLP [12], the Taylor approximation was found to underestimate the output vari-
ance by a factor of 400, at worst. The worst case result of the above approximation
was underestimation by a factor of 40, which is a great improvement over the Tay-
lor approximation, but still far from perfect. The worst case behavior could be
improved to underestimation by a factor of 5 by introducing another quadrature
evaluated with a different variance for yi(t). This change cannot be easily justified
except by the fact that it produces better results. The difference in behavior of
the two methods in more realistic cases is less drastic, but the version with two
quadratures seems to provide more accurate approximations.

The more accurate approximation is implemented by evaluating another quadrature
using the variance of yi(t) originating mainly from θf ,

ỹi,weight(t) =
∑

j

Ãij(sj(t)
2 + s̃j(t)) + ãi, (10)

and using the implied 〈φ′(yi(t))〉 in the evaluation of the effects of these variances.
The total variance (9) is still used in evaluation of the means and the evaluation of
the effects of the variance of s(t).

2.3 Learning algorithm for nonlinear factor analysis

The nonlinear factor analysis (NFA) model [6] is learned by numerically minimizing
the cost C evaluated above. The minimization algorithm is a combination of conju-
gate gradient for the means of S and θf , fixed point iteration for the variances of
S and θf , and EM like updates for other parameters and hyperparameters.

The fixed point update algorithm for the variances follows from writing the cost
function as a sum

C = Cq + Cp = 〈log q(S,θ)〉 + 〈− log p(S,θ,X)〉 . (11)

A parameter θi that is assumed independent of others under q and has a Gaussian

posterior approximation q(θi) = N(θi; θi, θ̃i), only affects the corresponding negen-

tropy term −1/2 log(2πeθ̃i) in Cq. Differentiating this with respect to θ̃i and setting

the result to zero leads to a fixed point update rule θ̃i =
(
2∂Cp/∂θ̃i

)
−1

. In order to



get a stable update algorithm for the variances, dampening by halving the step on
log scale until the cost function does not increase must be added to the fixed point
updates. The variance is increased at most by 10 % on one iteration and not set to
a negative value even if the gradient is negative.

The required partial derivatives can be evaluated analytically with simple back-
propagation like computations with the MLP network. The quadratures used at
hidden nodes lead to analytical expressions for the means and variances of the hid-
den nodes and the corresponding feedback gradients are easy to derive. Along with
the derivatives with respect to variances, it is easy to evaluate them with respect to
means of the same parameters. These derivatives can then be used in a conjugate
gradient algorithm to update the means of S and θf .

Due to the flexibility of the MLP network and the gradient based learning algorithm,
the nonlinear factor analysis method is sensitive to the initialization. We have used
linear PCA for initialization of the means of the sources S. The means of the
weights θf are initialized randomly while all the variances are initialized to small
constant values. After this, the sources are kept fixed for 20 iterations while only the
network weights are updated. The hyperparameters governing noise and parameter
distributions are only updated after 80 more iterations to update the sources and the
MLP. By that time, a reasonable model of the data has been learned and the method
is not likely to prune away all the sources and other parameters as unnecessary.

2.4 Other approximation methods

Another way to get a more robust approximation for the statistics of f would be
to use the deterministic sampling approach used in unscented transform [13] and
consecutively in different unscented algorithms. Unfortunately this approach does
not work very well in high dimensional cases. The unscented transform also ignores
all the prior information on the form of the nonlinearity. In case of the MLP
network, everything except the scalar activation functions is known to be linear.
All information on the correlations of variables is also ignored, which leads to loss
of accuracy when the output depends on products of input variables like in our case.
In an experiment of mean and log-variance approximation accuracy with a relatively
large random MLP [12], the unscented transform needed over 100 % more time to
achieve results with 10 times the mean squared error of the proposed approach.

Part of our problem was also faced by Barber and Bishop in their work on ensemble
learning for supervised learning of MLP networks [5]. In their work the inputs s(t)
of the network are part of the data and thus have no associated variance. This
makes the problem easier as the inputs y(t) of the hidden neurons are Gaussian.
By using the cumulative Gaussian distribution or the error function erf as the
activation function, the mean of the outputs of the hidden neurons and thus of the
outputs of the whole network can be evaluated analytically. The covariances still
need to be evaluated numerically, and that is done by evaluating all the correlations
of the hidden neurons separately. In a network with H hidden neurons, this requires
O(H2) quadrature evaluations.

In our case the inputs of the hidden neurons are not Gaussian and hence even the
error function as the activation function would not allow for exact evaluation of the
means. This is why we have decided to use the standard logistic sigmoid activation
function in form of tanh which is more common and faster to evaluate numerically.
In our approach all the required means and variances can be evaluated with O(H)
quadratures.



3 Experiments

The proposed nonlinear factor analysis method was tested on natural speech data
set consisting of spectrograms of 24 individual words of Finnish speech, spoken by
20 different speakers. The spectra were modified to mimic the reception abilities of
the human ear. This is a standard preprocessing procedure for speech recognition.
No speaker or word information was used in learning, the spectrograms of different
words were simply blindly concatenated. The preprocessed data consisted of 2547
30-dimensional spectrogram vectors.

The data set was tested with two different learning algorithms for the NFA model,
one based on the Taylor approximation introduced in [6] and another based on the
proposed approximation. Contrary to [6], the algorithm based on Taylor approxi-
mation used the same conjugate gradient based optimization algorithm as the new
approximation. This helped greatly in stabilizing the algorithm that used to be
rather unstable with high source dimensionalities due to sensitivity of the Taylor
approximation in regions where it is not really valid. Both algorithms were tested
using 1 to 20 sources, each number with four different random initializations for the
MLP network weights. The number of hidden neurons in the MLP network was 40.
The learning algorithm was run for 2000 iterations.1
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Figure 1: The attained values of C in different simulations as evaluated by the dif-
ferent approximations plotted against reference values evaluated by sampling. The
left subfigure shows the values from experiments using the proposed approximation
and the right subfigure from experiments using the Taylor approximation.

Fig. 1 shows a comparison of the cost function values evaluated by the different ap-
proximations and a reference value evaluated by sampling. The reference cost values
were evaluated by sampling 400 points from the distribution q(S,θf ), evaluating
f(s,θf ) at those points, and using the mean and variance of the output points in the
cost function evaluation. The accuracy of the procedure was checked by performing
the evaluation 100 times for one of the simulations. The standard deviation of the
values was 5 ·10−3 nats per sample which should not show at all in the figures. The
unit nat here signifies the use of natural logarithm in Eq. (2).

The results in Fig. 1 show that the proposed approximation yields consistently very

1The Matlab code used in the experiments is available at http://www.cis.hut.fi/
projects/bayes/software/.
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Figure 2: The attained value of C in simulations with different numbers of sources.
The values shown are the means of 4 simulations with different random initializa-
tions. The left subfigure shows the values from experiments using the proposed
approximation and the right subfigure from experiments using the Taylor approxi-
mation. Both values are compared to reference values evaluated by sampling.

reliable estimates of the true cost, although it has a slight tendency to underestimate
it. The older Taylor approximation [6] breaks down completely in some cases and
reports very small costs even though the true value can be significantly larger.

The situations where the Taylor approximation fails are illustrated in Fig. 2, which
shows the attained cost as a function of number of sources used. The Taylor approx-
imation shows a decrease in cost as the number of the sources increases even though
the true cost is increasing rapidly. The behavior of the proposed approximation is
much more consistent and qualitatively correct.

4 Discussion

The problem of estimating the statistics of a nonlinear transform of a probability
distribution is also encountered in nonlinear extensions of Kalman filtering. The
Taylor approximation corresponds to extended Kalman filter and the new approxi-
mation can be seen as a modification of it with a more accurate linearization. This
opens up many new potential applications in time series analysis and elsewhere.
The proposed method is somewhat similar to unscented Kalman filtering based on
the unscented transform [13], but much better suited for high dimensional MLP-like
nonlinearities. This is not very surprising, as worst case complexity of general Gaus-
sian integration is exponential with respect to the dimensionality of the input [14]
and unscented transform as a general method with linear complexity is bound to
be less accurate in high dimensional problems. In case of the MLP, the complexity
of the unscented transform depends on the number of all weights, which in our case
with 20 sources can be more than 2000.

5 Conclusions

In this paper we have proposed a novel approximation method for unsupervised
MLP networks in variational Bayesian learning. The approximation is based on
using numerical Gauss–Hermite quadratures to evaluate the global effect of the
nonlinear activation function of the network to produce an effective linearization of
the MLP. The statistics of the outputs of the linearized network can be evaluated



exactly to get accurate and reliable estimates of the statistics of the MLP outputs.
These can be used to evaluate the standard variational Bayesian ensemble learning
cost function C and numerically minimize it using a hybrid fixed point / conjugate
gradient algorithm.

We have demonstrated the method with a nonlinear factor analysis model and a
real world speech data set. It was able to reliably estimate all the 20 factors we
attempted from the 30-dimensional data set. The presented method can be used
together with linear ICA for nonlinear BSS [7], and the approximation can be easily
applied to more complex models such as nonlinear independent factor analysis [6]
and nonlinear state-space models [9].
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