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Local overview of the course

» Past two weeks: abstract networks

> Upcoming two weeks: simulating dynamical network models
and network inference
» This week: How to simulate models of interacting entities?
» Next week: How to infer unknown networks from observations?



This ain’t no physics

> Biology does not follow universal laws.

“Nothing in Biology Makes Sense Except in the Light
of Evolution”

—Theodosius Dobzhansky
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» We study biology through models, which are simplifications of
the world.

“Essentially, all models are wrong, but some are
useful.”

—George E. P. Box
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Learning goals for this week

» To understand the reasons for the complexity of gene
regulation.

» To know modelling formalisms used to model gene regulation.
> To be able to simulate gene expression and regulation.

» To understand the effects of system parameters through
simulation.
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Biology of gene regulation



Gene expression
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Image adapted from: National Human Genome Research Institute.



Transcrption regulation
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(Image from: Wasserman & Sandelin. Nat Rev Genet. 5(4):276-87, 2004.)



Facts about gene regulation

» 220,000 genes in human, estimated 2000 of those are
transcription factors (TFs)

» 250,000+ proteins
» Gene expression is highly spatially and temporally regulated

» E.g. nearly half of mouse genes vary by circadian rhythm
somewhere in the body



The process and regulation of gene expression |

1. Recruitment and formation of transcription initiation complex
» DNA accessibility, TF binding, epigenetics
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The process and regulation of gene expression |

[y

. Recruitment and formation of transcription initiation complex
» DNA accessibility, TF binding, epigenetics

2. Transcription initiation

» TF binding, TF post-translational modifications

w

. Elongation
» Pausing, polymerase falling off

o

. Transcription termination
» Termination factors
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The process and regulation of gene expression Il

5. Splicing and other RNA processing
» Splicing factors
6. mRNA transport
» Various RNA-binding proteins
7. Translation
» Ribosome function, tRNA availability
8. mRNA degradation

» Various mechanisms; incl. micro RNAs (miRNAs) and
nonsense-mediated mRNA decay



Example: regulation of development



Example: regulation of development

ANT-C BX-C

lab pb Dfd Scr Antp Ubx Abd-A Abd-B




Outline

Dynamical modelling formalisms



A cell as a dynamical system

The state of the cell as a d-dimensional vector:
x(t) = (xa(t),...,xq(t))" €eC CR?

Questions:
» Which variables should the state include?
» What values are allowed for the variables?

» How to model the evolution of the state over time?

v

What about spatial aspects? (Ignored here)
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An example system

Consider a system with two regulators (transcription factors)

and regulating a target gene TAR:
xanT(t)
X(t) = XBEE(t)

xTAR(t)



Ordinary differential equations: Modelling a deterministic
continuous time / continuous state process

A general form for a differential equation:

dx(t) _
= f(x(t),t)



Ordinary differential equations: Modelling a deterministic
continuous time / continuous state process

A general form for a differential equation:

dx(t) _
= f(x(t),t)

Example of a regulatory model

—AanTXAnT (t)
f(x(t), t) = f(X(t)) = _)\BEEXBEE(t)

c - xant(t)xgee(t) — Atarx7arR(1)



Simulating ordinary differential equations (ODEs)

Consider an initial value problem

Numerical solution in theory (Euler's method):
» Pick a (small) time step §

» Simulate a single discrete step:
x(t+0) =x(t) + - f(x(t),t)

In practice:

» Use a ready ODE solver



Ordinary differential equation models in practice

Pros:

Cons:



Ordinary differential equation models in practice

Pros:
» Powerful framework
» Can define mechanistic models with interpretable parameters
» Efficient solvers widely available
Cons:
» Cannot model discrete variables and discrete transitions

» Deterministic model can be unrealistic



Modelling a stochastic continuous time / continuous state
process

A general form for a stochastic differential equation:

dx(t) = f(x(t), t)dt + £(x(t), t)dB(t)

where dB(t) is a differential Brownian motion satisfying in a
suitable sense (It6 integral)

/dB() N(0, t) cf/dt—t



Simulating a stochastic continuous time / continuous state
process

Consider an initial value problem
dx(t) = f(x(t), t)dt + X(x(t), t)dB(t), x(0)=xo

Numerical solution in theory (Euler-Maruyama method):
» Pick a (small) time step §

» Simulate a single discrete step:
x(t +0) = x(t) + - F(x(¢), t) + X(x(t), t)e,

where
ne ~ N(0, o)
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Stochastic differential equation models in practice

Pros:
» Powerful framework
» Can define mechanistic models with interpretable parameters

» Can provide very realistic stochastic models of continuous
phenomena

Cons:
» Cannot model discrete variables and discrete transitions

> Solvers not as widely available as ODE solvers



Discrete states and Markov property

» Some properties are inherently discrete (e.g. number of
molecules x in a single cell)

» Can have a big impact on modelling small non-negative values

» For discrete states and jumps, duration of a state becomes
important

» Common simplification: Markov property

p(x(t + 0)x(T < t)) = p(x(t + 0)|x(t))



Markov jump processes: Modelling a stochastic continuous
time / discrete state process

p(x(t + dt)x(t)) = f(x(t)), x(0) =xo
Simulation loop:
» Simulate the time until next change (depends on f)
» Simulate the change itself

Try it out in practice in the exercises!
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Markov jump processes in practice

Pros:
» Powerful framework
» Can define mechanistic models with interpretable parameters

» Can provide very realistic stochastic models of discrete
phenomena

Cons:

» General purpose solves usually not available (but not too
difficult to implement)

» Simulation can be really slow if many potential states



How to select the function 7

» Selecting f is a big modelling choice along with selecting the
approach

» Assuming a well-mixed system of discrete entities one can
derive an f for Markov jump process

> The average of this process follows a known ODE
» Stochasticity can be captured better by a SDE

» More about these in the study circle and the exercises
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Learning goals for this week

» To understand the reasons for the complexity of gene
regulation.

» To know modelling formalisms used to model gene regulation.
> To be able to simulate gene expression and regulation.

» To understand the effects of system parameters through
simulation.



Next steps

Thursday:

» Study circle on simulation methods

» Computer exercises on simulation methods
Next week:

» Network inference



Tasks for the study circle on Thursday

Papers:

> Gillespie D. Exact stochastic simulation of coupled chemical
reactions. Journal of physical chemistry 81(25):2340-2361,
1977.

> Gillespie D. The chemical Langevin equation. The journal of
chemical physics 113(1):297-306, 2000.

Tasks for different groups:



Tasks for the study circle on Thursday

Papers:

> Gillespie D. Exact stochastic simulation of coupled chemical
reactions. Journal of physical chemistry 81(25):2340-2361,

1977.

> Gillespie D. The chemical Langevin equation. The journal of
chemical physics 113(1):297-306, 2000.

Tasks for different groups:

Group 1 Read Gillespie (1977)

(Last name starts with A-H) (especially Secs. I, lIB, 111C)
Group 2 Read Gillespie (2000)

(Last name starts with I-L) (especially Secs. I, II, 1lI)
Group 3 Read Gillespie (2000)

(Last name starts with M-Z) (especially Secs. |, I, IV)
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