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Warmup for this week

» How to infer gene regulatory relationships?
i.e.

» Given a set of observed variables, how to find ones that are
related?

> ... that are causally related?



Learning goals for this week

» To understand reasons for difference of correlation and causality
» To recognise basic regulatory network inference methods

» To apply simple methods for network inference from data
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What is a gene regulatory network?

» How should the arcs be interpreted?

» Interaction active somewhere?

» Interaction active at a given condition?

» Rate-limiting interaction at a given
condition?
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Correlation and causation
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Figure 1. Correlation between Countries’ Annual Per Capita Choeolate Consumption and the Mumber of Mobel

Laureates per 10 Million Population.

Image from Messerli (2012), doi:10.1056/NEJMon1211064



Correlation and causation examples

» Drownings and ice cream sales in the summer

v

Number of pirates and global average temperature
Diet, health and lifestyle

v



Linear dependence

> As we saw, correlation does not imply causation.

v

Assume two random variables X and Y related by

X=a-Y+e

v

We can equivalently solve

Y =(X—¢)/a

v

Similar reasoning also applies with non-linear dependencies

v

In general not possible to tell which of two variables causes
which



Direct and indirect links

v

In general, we would like to distinguish between direct and
indirect links

v

Assume three random variables X, Y and Z related by

Y=b-Z+¢€y
X:a-Y+eX

v

X will also depend on Z:

X=a-b-Z+aey—+ex

v

Similar reasoning also applies with non-linear dependencies

v

Additional assumptions needed to separate direct and indirect
links



How to infer causality

» Interventions
» Randomisation
» Double blinding

» Clever experimental design
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Drinking and mortality: long-term follow-up of drinking-discordant twin pairs.
Sipila P, Rose RJ?, Kaprio J1%4,

4 Author information

Abstract
AIMS: To determine if iations of alcohol ion with all: mortality replicate in discordant monozygotic twin comparisons that control
for familial and genetic confounds.

DESIGN: A 30-year prospective follow-up.

SETTINGS: Population-based Older Finnish Twin Cohort.

PARTICIPANTS: Same-sex twins, aged 24-60 years at the end of 1981, without overt co-morbidities, completed questionnaires in 1975 and 1981
with response rates of 89% and 84%. 15,607 twins were available for mortality follow-up from the date of returned 1981 questionnaires to December
31, 2011. 14,787 twins with complete information were analysed.

MEASUREMENTS: Self-reported monthly alcohol consumption, heavy drinking occasions (HDO), and alcohol-induced blackouts. Adjustments for
age, gender, marital and smoking status, physical activity, obesity, education and social class.

FINDINGS: Among twins as individuals, high levels of monthly alcohol consumption (2259 grams/month) associated with earlier mortality (HR = 1.63,
95% confidence interval (Cl) = 1.47-1.81). That i in i of all i i drinking-discordant twin pairs (HR =1.91,
95% Cl = 1.49-2.45) and within discordant monozygotic (MZ) twin pairs (HR =2.24, 95% CI = 1.31-3.85), with comparable effect size. Smaller samples
of MZ twins discordant for HDO and blackouts limited power; a significant association with mortality was found for multiple blackouts (HR =2.82, 95%
Cl=1.30-6.08), but not for HDO.

CONCLUSIONS: The associations of high levels of monthly alcohol consumption and alcohol-induced blackouts with increased all-cause mortality
among Finnish twins cannot be explained by familial or genetic confounds; the explanation appears to be causal.

This article is protected by copyright. All rights reserved.

KEYWORDS: Alcohol drinking; alcoholic intoxication; binge drinking; causality; confounding factors; follow-up studies; mortality; twins

PMID: 26359785 [PubMed - as supplied by publisher]
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Two networks producing identical output
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Image from Angulo et al. (2015), arXiv:1508.03559



What can help

v

Combining data sets from different modalities

v

Diverse data, perturbations

v

Prior information, e.g. sparsity
> .7
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Experimental methods for regulatory network inference



Typical data types

1. TF knockouts

2. Expression data

3. TF binding data

4. (Chromatin accessibility data)
5. (Chromatin 3D structure data)

TF = transcription factor (regulator gene)
chromatin = DNA packaging



TF knockout data

» Experimental intervention to disable a gene
» Measure gene expression afterwards

» Challenge: dramatic perturbation

» Example fruit fly genes: eyeless, tinman
» Are we still studying the same network?



Expression data

» Data under diverse conditions
» Time series are very helpful

» Otherwise difficult to identify dynamical parameters that may
confound the network

» Experimental design—measurements are expensive!



TF binding data

» Useful for establishing a mechanism
» But:

» Not all regulators bind directly to DNA (could bind via other
TFs)
» How to map enhancers to genes?



Outline

Computational methods for regulatory network inference
Modelling dynamical systems
Modelling static interactions



Regulatory network inference methods

> Modelling various data sets

» Modelling knockouts
» Dynamical models of time series
» Prior knowledge from TF binding

» Regression methods

» Correlation and mutual information based approaches



Modelling knockouts

» Typical workflow: compare the expression of a gene before and
after knockout or other perturbation

» Can also check the sign of change

» Combine data from multiple experiments to work out the
network



Outline

Computational methods for regulatory network inference
Modelling dynamical systems
Modelling static interactions



Linear dynamical systems

dX(t)
dt

= AX(t)

» Here A is a matrix of regulatory links
> Why:

» Simple representation

» Efficient inference algorithms
» Why not:

» Unrealistic



Two regulators

0+0=0
1+0=1
O+1=1

1+1=2



Limit behaviour

» Consider a 1D linear differential equation:

dx(t) _
= ax(t)

» This has a solution (check!):

x(t) = Ce™



Limit behaviour

» Consider a 1D linear differential equation:

dx(t
Xd(t ) — ax(t)
» This has a solution (check!):
x(t) = Ce™

» Assume x(0) > 0. As t — oo, either

x(t) 00 Ifa>0
x(t)—=0 Ifa<O



Limit behaviour

dX(t)
dt

= AX(t)

> In higher dimensions possibilities are only slightly more
complex:
> [X(t)| = o0
> [X(t)] =0
» X(t) approaches a harmonic oscillator (sine curve)

» The behaviour depends on the eigenvalues of A



Non-linear dynamical systems

» More complex models
> Why:

> Realistic model
» Why not:

» More difficult to learn: more choices, more parameters
> Less efficient algorithms



Granger causality

» Assume a linear discrete-time dynamical model between two
variables xi(t) and xx(t):

:Zalljxl (t—J +2312JX2 (t—J

p

P
x(t) = 2322JX2(t— +2321JX1 t—J)
1

J=1 J=

> If a model with aj» # 0 explains x; better, it is said that xo
Granger-causes xj.
» This provides evidence that xo may cause xj

» But: Granger causality # causality
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Correlation and covariance matrices

» For two random variables X and Y we define
Cov(X,Y)=E[(X — ux)(Y —uy)] (covariance)

Cov(X,Y)
v/ Cov(X, X)Cov(Y,Y)

» For more variables we can collect these to a matrix such as

pxy = Corr(X,Y) = (correlation)

COV[()(l7 XQ, X3)] =
COV(Xl, X1) COV(Xl, X2) COV(X;[7 X3)
> = (COV(X2, Xl) COV(X2, X2) COV(XQ, X3))
COV(X3, X1) COV(X3, X2) COV(X3, X3)



Gaussian Markov random field

» Undirected graphical model, edges denote dependence

» Gaussian marginals = multivariate Gaussian joint distribution
N(p, X)

» Theorem: {i,j} ¢ E = (X71);;=0

» In words: the precision matrix £~! is sparse with non-zero
elements corresponding exactly to edges in the dependency
graph



Graphical lasso

v

Previous sparsity property suggests model structure learning
algorithms that promote such sparsity

v

Given observations X, we aim to estimate the precision matrix
© = X! by minimising

—log p(X|©) + o - pen(O®),

where the first term is negative log-likelihood and the second
term is penalty that encourages sparsity

Ideally pen(@) = #{(i,/)|0; # 0} but computationally difficult
Graphical Lasso: pen(@®) =3, . 0]

» Efficient convex optimisation + sparsity
» May not be suitable for gene expression data

v

v



Limitations of static interaction models

» Self-interactions?
> Loops resolved through time?

» Directionality difficult or impossible to resolve



Putting it all together

Four step plan to network inference:
1. Using structural assumptions like sparsity that effect global
network properties
2. Generating and using informative priors on network structure
that effect single edges
3. TF activity estimation, and

4. Using guided/intelligent TF-TF interaction terms

Source: Richard Bonneau and Tarmo Aijt')
Biophysically motivated regulatory network inference: progress and

prospects
bioRxiv 051847; doi: http://dx.doi.org/10.1101/051847
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Learning goals for this week

» To understand reasons for difference of correlation and causality
» To recognise basic regulatory network inference methods

» To apply simple methods for network inference from data



Tasks for the study circle on Thursday

Paper:

» O. Heinavaara, J. Leppa-aho, J. Corander and A. Honkela.
On the inconsistency of /1-penalised sparse precision matrix
estimation.
arXiv:1603.02532 [cs.LG]

Task for all:
» Read the paper to form an overview of the topic.

» You will not need to understand all the mathematical details.



Next week: guest lectures

See the course website for details!
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