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Abstract. We present new algorithms for time-scaled and time-warped
search from symbolic polyphonic music database. Our algorithm for time-
scaled search works in O(n2m) time and O(m) space, where n denotes
the number of notes in the database and m denotes the number of notes
in the pattern. Our algorithm for time-warped search works in O(n(m+
logn)) time and O(n) space. If the set of possible pitch values is constant,
the time complexity of the latter algorithm is only O(nm). The new
algorithms are more efficient than the earlier algorithms, both in theory
and practice. Moreover, the new algorithms are conceptually simple.
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1 Introduction

In this paper, we consider algorithms for finding occurrences of a given pattern
in a polyphonic music database. Both the database and the pattern are given in
symbolic form as a sequence of notes. Applications for polyphonic music search
include music analysis [1] and query by humming [2].

Let D1, . . . , Dn denote the database notes and P1, . . . , Pm denote the pattern
notes. Each note is a pair (t, p) that consists of two real numbers: onset time t
in seconds and pitch value p in semitones. We use the notation Sk,a to refer to
the ath member in a pair Sk; for example, D3,2 refers to the pitch of the third
note in the database. We assume that the pairs in D and P are in lexicographic
order and that every note in P has a distinct onset time.

The goal is to find all of the note indices in database D from which an
occurrence of pattern P begins. An occurrence is a sequence Dk1 , . . . , Dkm for
which 1 ≤ k1 < k2 < . . . < km ≤ n and there is a constant s such that
Dki,2 = Pi,2+s for every i = 1, . . . ,m. In other words, s denotes the transposition
of the pattern in the occurrence. Let αi denote the scaling factor between pattern
notes i and i + 1 i.e. αi = (Dki+1,1 −Dki,1)/(Pi+1,1 − Pi,1). In exact search [6]
αi = 1 for every i = 1, . . . ,m, in time-scaled search [4] αi = α where α is a
constant, and in time-warped search [5] αi ≥ 0.
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Fig. 1. (a) A theme from Bach’s fugue (BWV 871) in Das Wohltemperierte Klavier.
(b) An exact occurrence of the theme in another key. (c) A time-scaled occurrence of
the theme. (d) A time-warped occurrence of the theme.

For example, consider the opening theme from Bach’s fugue (BWV 871)
in Das Wohltemperierte Klavier in Figure 1(a). The theme appears more than
twenty times throughout the fugue in exact, time-scaled and time-warped form
[1]. Figure 1(b) shows an exact occurrence where the theme is transposed to a
different key. Figure 1(c) shows a time-scaled occurrence where every note has
twice the length. Finally, Figure 1(d) shows a time-warped occurrence where the
rhythm of the theme is a little bit different.

Search Algorithm Time Space

Exact [6] O(nm) O(m)

Time-scaled [4] O(n2m logn) O(n2)∗

this paper O(n2m logn) O(1)
this paper O(n2m) O(m)

Time-warped [5] O(n2m logn) O(n2)∗

[3] O(n2m) O(n)∗

this paper O(n2) O(1)
this paper O(nm logn) O(n)
this paper O(n(m+ logn)) O(n)

Table 1. Summary of the algorithms for exact, time-scaled and time-warped search.
Space complexities marked with ∗ are lower than those in the original publications,
and they can be obtained through a careful implementation of the algorithm.

Several algorithms have been proposed for polyphonic music search. Exact
search is the most straight-forward type of search: it can be solved in O(nm) time
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with a simple algorithm [6]. Both time-scaled and time-warped search can be per-
formed in O(n2m log n) time using database preprocessing and priority queues
[4, 5]. Another approach to time-warped search has been dynamic programming
[3] which leads to an algorithm that works in O(n2m) time. Sometimes a window
w is used to limit the number of database notes between consecutive notes in the
occurrence. When a window is used, the time complexities for time-scaled and
time-warped algorithms are O(nmw log n) and O(nmw), and the algorithms can
be applied to searches from large databases.

In this paper we present new algorithms for time-scaled and time-warped
search. We focus on complete search without a window. For time-scaled search,
we present an algorithm that can be implemented in O(n2m log n) or O(n2m)
time. Our algorithms for time-warped search work in O(n2), O(nm log n) and
O(n(m+log n)) time. Moreover, if the set of possible pitches is constant, we can
perform time-warped search in O(nm) time. The new algorithms have a simple
structure and small constant factors, and they are also efficient in practice. Table
1 presents a summary of both previous and new algorithms.

The organisation of the rest of the paper is as follows. In Sections 2 and 3
we present our new algorithms for time-scaled and time-warped search. Then, in
Section 4 we compare the practical performance of previous search algorithms
to the new algorithms. Finally, in Section 5 we present our conclusions.

2 Time-Scaled Search

In this section, we present a new algorithm for time-scaled search. To start with,
the algorithm fixes the first and last database note of a potential occurrence
and then checks to see if an occurrence actually exists between these notes. The
efficiency of the algorithm depends on how the existence of an occurrence is
checked for. We use two methods for this: the first works in O(n2m log n) time
and O(1) space, and the second works in O(n2m) time and O(m) space.

The previous time-scaled search algorithm [4] differs considerably from our
approach. For each pattern note pair (k, k + 1), the previous algorithm first
precomputes a sorted list of all database note pairs that have the same interval
as pattern notes k and k + 1. After this, the algorithm uses priority queues to
track pattern occurrences that have a constant scaling factor. The algorithm
works in O(n2m log n) time and O(n2) space.

Listing 1 shows the structure of our algorithm. Variables i and j point to the
first and last database note of a potential occurrence. After fixing these variables,
the algorithm calculates the scaling factor α. Then the algorithm goes through
all pattern notes and checks to see if each note actually appears in the database.
Variables β and p contain the onset time and pitch of the required pattern note,
and they can be directly calculated when the first note and scaling factor of
the occurrence are known. Variable c maintains the number of matched pattern
notes, and if all notes are matched, the algorithm reports an occurrence.

The time complexity of the algorithm depends on how the check at line
8 is implemented. One solution is to search for (β, p) directly from D using
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1: for i← 1, . . . , n do
2: for j ← i+ 1, . . . , n do
3: α← (Dj,1 −Di,1)/(Pm,1 − P1,1)
4: c← 0
5: for k ← 1, . . . ,m do
6: β ← Di,1 + α(Pk,1 − P1,1)
7: p← Di,2 + Pk,2 − P1,2

8: if D contains (β, p) then
9: c← c+ 1

10: end if
11: end for
12: if c = m then
13: Report an occurrence at i.
14: end if
15: end for
16: end for

Listing 1. Time-scaled search

binary search in O(log n) time. This is possible because the notes in D are
lexicographically sorted. The use of binary search leads to an algorithm that
works in O(n2m log n) time and O(1) space. However, we achieve a lower time
complexity O(n2m) by using the fact that j and α only increase for a fixed i.

To make the algorithm more efficient, we use a technique similar to the exact
search algorithm in [6]. For each pattern note k, we maintain a pointer Qk to the
database. After fixing i, we set Qk = i for each k. Then, when j increases, we
always increase each Qk until we reach the last database note that is not larger
than (β, p). The pair (β, p) is calculated separately for each k, as in Listing 1.
Using this technique, the amortized time complexity of the algorithm is O(n2m).
This is true because each pointer Qk is increased at most n times for a fixed i.
The space complexity is O(m), because there are m pointers.

3 Time-Warped Search

In this section, we present new algorithms for time-warped search. The first
method resembles our time-scaled algorithm: the algorithm initially fixes the
first database note of the occurrence and then checks to see if all subsequent
pattern notes exist in the database. A simple implementation works in O(n2)
time and O(1) space. However, we can use an auxiliary array and binary search
to create an algorithm that works in O(nm log n) time and O(n) space. Finally
we present another more sophisticated algorithm that works in O(n(m+ log n))
time and O(n) space. Its time complexity is further reduced to O(nm) if the set
of pitches is constant.

Two earlier algorithms have been proposed for time-warped search: The al-
gorithm presented in [5] is a modification of the time-scaled search algorithm [4]
that uses database preprocessing and priority queues. As with its predecessor,
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the algorithm works in O(n2m log n) time and O(n2) space. Another approach
[3] uses dynamic programming to calculate partial occurrences of the pattern.
This algorithm is easy to implement and works in O(n2m) time and O(n) space.

1: for i← 1, . . . , n do
2: j ← i, c← 0
3: for k ← 1, . . . ,m do
4: p← Di,2 + Pk,2 − P1,2

5: if next(j, p) <∞ then
6: c← c+ 1
7: end if
8: j ← next(j, p) + 1
9: end for

10: if c = m then
11: Report an occurrence at i.
12: end if
13: end for

Listing 2. Time-warped search, first approach

Listing 2 shows the structure of our first algorithm. The variable i fixes the
first database note of the occurrence. After this, the algorithm checks to see
if all pattern notes can be found in the remaining part of the database in the
correct order. The variable j maintains the current database note, the variable
c counts the number of matched pattern notes, and the function next is defined
as follows:

next(j, p) = min{a : a ≥ j, Da,2 = p} ∪ {∞}

The most simple way to calculate next(j, p) is to increase j until a database
note with pitch p is found, or when all of the remaining notes have been checked.
This yields an algorithm that works in O(n2) time and O(1) space. However,
once again, a more efficient implementation is possible using binary search. We
build an array E that allows us to efficiently search for database notes with a
given pitch. The array E contains a pair (Di,2, i) for each i = 1, . . . , n and is
sorted lexicographically. After this, we can find next(j, p) in O(log n) time using
binary search in E. The time complexity for constructing E is O(n log n) and
O(nm log n) for the rest of the algorithm, so the algorithm works in O(nm log n)
time. The space complexity is O(n) because of E.

In fact, we can use E to construct an even more efficient algorithm, shown in
Listing 3. The idea is to track the pattern occurrences simultaneously. First, all
database notes are potential beginning notes for an occurrence. Then, we extend
each occurrence one note at a time as long as it is possible. If an occurrence
cannot be extended, it is removed from the set of possible occurrences. It turns
out that we can implement the extension of all occurrences efficiently when the
database notes are sorted by their pitches.
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1: Set Ei ← (Di,2, i) for each i = 1, 2, . . . , n.
2: Sort E lexicographically.
3: Set Fi ← (Ei,2, Ei,2) for each i = 1, 2, . . . , n.
4: u← n
5: for k ← 2, . . . ,m do
6: j ← a← 1
7: for i← 1, . . . , u do
8: p← DFi,1,2 + Pk,2 − P1,2

9: Increase a while Ea ≤ (p, Fi,2).
10: if Ea,1 = p and Ea,2 > Fi,2 then
11: if k = m then
12: Report an occurrence at Fi,1.
13: end if
14: Fj ← (Fi,1, Ea,2)
15: j ← j + 1
16: end if
17: end for
18: u← j
19: end for

Listing 3. Time-warped search, second approach

The algorithm in Listing 3 uses two arrays: E is initialized like in the previous
algorithm, and initially Fi = (Ei,2, Ei,2) for each i = 1, . . . , n. The algorithm
maintains information about partial pattern occurrences in F . Each pair in F
consists of two indices for D: the first and the current note in an occurrence. For
each pattern note k we use a merge-like technique to extend the occurrences in
F . This is possible because the pairs in F are sorted according to the pitch of
the first note in the occurrence. The variable u contains the number of active
occurrences, and the variable j is used to determine new indices for occurrences
that can be extended. Note that the indices of pairs inside F change during the
algorithm and the last n− u indices are not used anymore.

For example, consider a situation where D = {(1, 3), (2, 2), (3, 7), (4, 6)}
and P = {(1, 1), (2, 5), (3, 4)}. At the beginning of the algorithm, all the
database notes are potential beginning notes for an occurrence. Therefore, F =
{(2, 2), (1, 1), (4, 4), (3, 3)}. When k = 2, the algorithm tries to extend each
occurrence by the second note. The pairs (2, 2) and (1, 1) can be extended and
they become (2, 4) and (1, 3). After this, F = {(2, 4), (1, 3), −, −} where −
denotes indices that are not used anymore. Finally, when k = 3, the algorithm
tries to extend each occurrence by the third note. Now (1, 3) becomes (1, 4) and
F = {(1, 4), −, −, −}. This corresponds to the only time-warped occurrence of
the pattern that consists of database notes D1, D3 and D4.

The time complexity of the algorithm consists of two phases. First, the arrays
E and F are constructed in O(n log n) time. After this, the search is performed
in O(nm) time. This results in a time complexity of O(n(m+log n)). However, if
the set of possible pitches is constant, we can use a linear-time sorting algorithm
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such as counting sort to construct E, which leads to an overall time complexity
of O(nm). The space complexity of the algorithm is O(n).

4 Experiment

In this section, we present some results concerning the practical performance of
the algorithms. We compared our new algorithms with the previous ones by using
random note databases of different sizes. The performance of our algorithms
seems to be superior to the previous algorithms, which is as expected because
our algorithms have lower complexities and constant factors.

We implemented all the algorithms using C++ and STL. We call the time-
scaled search algorithms S1–S3 and the time-warped search algorithms W1–W5.
The algorithms for time-scaled search were:

– S1: the algorithm described in [4]
– S2: our O(n2m log n) time algorithm
– S3: our O(n2m) time algorithm

The algorithms for time-warped search were:

– W1: the algorithm described in [5]
– W2: the algorithm described in [3]
– W3: our O(n2) time algorithm
– W4: our O(nm log n) time algorithm
– W5: our O(n(m+ log n)) time algorithm

We implemented algorithms S1, W1 and W2 as described in the original
publications, yet we made the following modifications. We implemented S1 and
W1 in O(n2) space instead of O(n2m) by using the fact that we can calculate
the K tables for each pattern note k separately. Furthermore, we only stored the
information needed for retrieving the first notes of the occurrences. Finally, we
implemented the dynamic programming in W2 iteratively in O(n) space, while
the original implementation uses a recursive function and memoization, i.e. the
calculated values of the function are stored in a look-up array.

For experiment material, we used three collections (C1, C2 and C3), each
consisting of twenty databases and patterns. We constructed all databases and
patterns randomly. All onset times and pitches were integers. We chose onset
times for the database and pattern notes randomly from the ranges [1, n/10] and
[1, 10m], respectively. Finally, we chose pitch values randomly from the range
[1, 50]. We required that all notes in each database and all onset times in each
pattern were distinct. Thus, the databases are highly polyphonic, and this kind
of material could originate from modern orchestral music.

The parameters for the collections were:

– C1: n = 5000, 10000, . . . , 50000; m = 5
– C2: n = 5000, 10000, . . . , 50000; m = 10
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– C3: n = 200000, 400000, . . . , 2000000; m = 100

We used C1 in time-scaled search and C2 and C3 in time-warped search. In
time-scaled search, we only used small databases because all the algorithms are
quadratic with respect to n. In time-warped search, we used both small and
large databases; algorithms W4 and W5 were efficient enough to process large
databases. We used shorter patterns in time-scaled search because time-scaled
occurrences are rare in random material.
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Fig. 2. Running times of time-scaled search in C1.

Figure 2 shows the running times of time-scaled search using C1. Interest-
ingly, while algorithms S1 and S2 have the same time complexity O(n2m log n),
S2 seems to be much faster in practice. The probable reason for this is that
the structure of S2 is simple and thus it has lower constant factors. When n
was small, the performance of S2 and S3 was about equal, but for the largest
databases, S3 used about the half the time compared to S2.
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Fig. 3. Running times of time-warped search in C2.
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Figure 3 shows the running times of time-warped search using C2. In an ear-
lier experiment [3], W1 performed better than W2, but this time our results were
the opposite. A possible reason for this is that we implemented W2 iteratively
which is more efficient than using memoization. W3 was relatively efficient de-
spite the quadratic time complexity. This is because of its simple structure and
the fact that usually not all database note pairs need to be examined. W4 and
W5 were superior to the other algorithms and we further compared them using
larger databases.
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Fig. 4. Running times of time-warped search in C3.

Figure 4 shows the running times of time-warped search using C3. We only
compared algorithms W4 and W5 because they were efficient enough to process
databases of this size. The algorithms were usable even when there were millions
of notes in the database. For the largest databases, the running time of W5 was
about the half compared to that of W4.

5 Conclusions

We presented new algorithms for time-scaled and time-warped search from sym-
bolic polyphonic music. Our algorithms are efficient both in theory and prac-
tice: in comparison with earlier algorithms, they have lower complexities and
constant factors. Our best algorithm for time-scaled search works in O(n2m)
time and O(m) space, and our best algorithm for time-warped search works in
O(n(m+ log n)) time and O(n) space. If the set of pitches is constant, which is
usually the case, the latter algorithm works in O(nm) time.

In this paper we concentrated on the general situation where the onset time
difference between two consecutive database notes in an occurrence is unlimited.
However, in practice, there should be a limit: for example, if the onset time
difference of two database notes is 30 seconds, they cannot be two consecutive
notes in a real-world melody occurrence. On the other hand, it is difficult to
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determine how long the windows should be. Furthermore, algorithms that are
efficient in the general situation are also efficient in a more restricted situation.

Using the algorithms presented in this paper, we can perform efficient time-
warped search even if the database consists of millions of notes. However, time-
scaled search seems to be a more difficult type of search because partial pattern
occurrences with different scaling factors cannot be combined. The current al-
gorithms for time-scaled search cannot be used if the database is large. Another
problem arises when both the database and the pattern are long. In this case,
even an algorithm with a time complexity of O(nm) may be inefficient. However,
even with exact search, no algorithm that works in o(nm) time is known. Thus,
there are still several interesting unsolved problems with polyphonic symbolic
music search.
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