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Preface

Aims and scope

This book is both an introductory textbook and a researchagmaph on modelling
the statistical structure of natural images. In very sintptens, “natural images” are
photographs of the typical environment where we live. I3 thook, their statistical
structure is described using a number of statistical modélgse parameters are
estimated from image samples.

Our main motivation for exploring natural image statisiesomputational mod-
elling of biological visual systems. A theoretical frameaWwavhich is gaining more
and more support considers the properties of the visua¢sysd be reflections of
the statistical structure of natural images, because diuggoary adaptation pro-
cesses. Another motivation for natural image statistiseaech is in computer sci-
ence and engineering, where it helps in development oftietege processing and
computer vision methods.

While research on natural image statistics has been groveipiglly since the
mid-1990’s, no attempt has been made to cover the field inghesbook, providing
a unified view of the different models and approaches. Thiklattempts to do just
that. Furthermore, our aim is to provide an accessible ¢htotion to the field for
students in related disciplines.

However, not all aspects of such a large field of study can bepbetely covered
in a single book, so we have had to make some choices. Bgsiaallconcentrate
on the neural modelling approaches at the expense of engigegplications. Fur-
thermore, those topics on which the authors themselves e doing research
are, inevitably, given more emphasis.

Xvii



xviii Preface

Targeted audience and prerequisites

The book is targeted for advanced undergraduate studeathjate students and re-
searchers in vision science, computational neuroscieonceputer vision and image
processing. It can also be read as an introduction to thelgrpaople with a back-
ground in mathematical disciplines (mathematics, stesistheoretical physics).

Due to the multidisciplinary nature of the subject, the bbak been written so
as to be accessible to an audience coming from very différ@citgrounds such as
psychology, computer science, electrical engineeringrat@ology, mathematics,
statistics and physics. Therefore, we have attempted tocesthe prerequisites to a
minimum. The main thing needed are basic mathematicabskdltaught in intro-
ductory university-level mathematics courses. In paféicuhe reader is assumed to
know the basics of

e univariate calculus (e.g. one-dimensional derivativasiategrals)

e linear algebra (e.g. inverse matrix, orthogonality)

e probability and statistics (e.g. expectation, probapdiensity function, variance,
covariance)

To help readers with a modest mathematical background,sh @aurse on linear
algebrais offered at Chapter 19, and Chapter 4 reviews pitityaheory and statis-
tics on a rather elementary level.

No previous knowledge of neuroscience or vision scienceé¢gssary for reading
this book. All the necessary background on the visual systegiven in Chapter 3,
and an introduction to some basic image processing metkagigan in Chapter 2.

Structure of the book and its use as a textbook

This book is a hybrid of a monograph and an advanced gradestsook. It starts
with background material which is rather classic, wherbaddtter parts of the book
consider very recent work with many open problems. The medtier the middle is
quite recent but relatively established.

The book is divided into the following parts

Introduction , which explains the basic setting and motivation.

Part I, which consists of background chapters. This is mainlysitamaterial
found in many textbooks in statistics, neuroscience, agwigiprocessing. How-
ever, here it has been carefully selected to ensure thatetaer has the right
background for the main part of the book.

Part 1l starts the main topic, considering the most basic modelsdtural image
statistics. These models are based on the statistics @frlieatures, i.e. linear
combinations of image pixel values.

Part Il considers more sophisticated models of natural imagestatjin which
dependencies (interactions) of linear features are censit] which is related to
computing nonlinear features.
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Part IV applies the models already introduced to new kinds of datauc im-
ages, stereo images, and image sequences (video). Someou&lson the tem-
poral structure of sequences are also introduced.

Part V consists of a concluding chapter. It provides a short oesndf the book
and discusses open questions as well as alternative ap@oéx image mod-
elling.

Part VI consists of mathematical chapters which are provided aschddian ap-
pendix. Chapter 18 is a rather independent chapter on agtion theory. Chap-
ter 19 is background material which the reader is actualppssged to know; it
is provided here as a reminder. Chapters 20 and 21 providestaated supple-
mentary mathematical material for readers with such istsre

Dependencies of the parts are rather simple. When the basleas a textbook,
all readers should start by reading the first 7 chaptersn the order they are given
(i.e. Introduction, Part |, and Part Il except for the lashpter), unless the reader is
already familiar with some of the material. After that, itgessible to jump to later
chapters in almost any order, except for the following:

e Chapter 10 requires Chapter 9, and Chapter 11 requires &iseaind 10.
e Chapter 14 requires Section 13.1.

Some of the sections are marked with an asterisk *, which s#eat they are more
sophisticated material which can be skipped without ingeting the flow of ideas.

An introductory course on natural image statistics can bgbi constructed by
going through the firsh chapters of the book, wherewould typically be between
7 and 17, depending on the amount of time available.

Referencing and Exercises

To keep the text readable and suitable for a textbook, thelfirschapters do not
include references in the main text. References are givensaparate section at
the end of the chapter. In the latter chapters, the naturbeiraterial requires

that references are given in the text, so the style changasriore scholarly one.

Likewise, mathematical exercises and computer assigrsvaatgiven for the first

10 chapters.

Code for reproducing experiments

For pedagogical purposes as well as to ensure the repralityabthe experiments,
the Matlad™ code for producing most of the experiments in the first 11 térap
and some in Chapter 13, is distributed on the Internet at

www. nat ur al i ragestati stics. net
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This web site will also include other related material.
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Chapter 1
Introduction

1.1 What this book is all about

The purpose of this book is to present a general theory of geibn and image pro-
cessing. The theory is normative, i.e. it says what is themgtway of doing these
things. It is based on construction of statistical modelgmdges combined with
Bayesian inference. Bayesian inference shows how we caprigreinformation
on the structure of typical images to greatly improve imagalysis, and statistical
models are used for learning and storing that prior inforamat

The theory predicts what kind of features should be compiuted the incoming
visual stimuli in the visual cortex. The predictions on thénary visual cortex
have been largely confirmed by experiments in visual neigase. The theory also
predicts something about what should happen in higher aeets as V2, which
gives new hints for people doing neuroscientific experiraent

Also, the theory can be applied on engineering problems eldp more effi-
cient methods for denoising, synthesis, reconstructiompression, and other tasks
of image analysis, although we do not go into the details ofispplications in this
book.

The statistical models presented in this book are quiteidfit from classic sta-
tistical models. In fact, they are so sophisticated thatyndthem have been devel-
oped only during the last 10 years, so they are interestitiggim own right. The key
point in these models is the non-gaussianity (non-norgjatiherent in image data.
The basic model presented is independent component asydbysithat is merely a
starting point for more sophisticated models.

A preview of what kind of properties these models learn isiguFe 1.1. The
figure shows a number of linear features learned from nainadies by a statistical
model. Chapters 5—7 will already consider models whichneaich linear features.
In addition to the features themselves, the results in Eigut show another visu-
ally striking phenomenon, which is their spatial arrangatner topography. The
results in the figure actually come from a model called Toppgic ICA, which
is explained in Chapter 11. The spatial arrangement is &llsterd to computation
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of nonlinear, invariant features, which is the topic of Ctead 0. Thus, the result
in this figure combines several of the results we developimtibok. All of these
properties are similar to those observed in the visual systethe brain.
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Fig. 1.1: An example of the results we will obtain in this bo&ach small square in the image
is one image feature, grey-scale coded to that middle gregnmeero, white positive, and black
negative values. The model has learned local, orientedriesatvhich are similar to those computed
by cells in the brain. Furthermore, the model uses the staidependencies of the features to
arrange them on a 2D surface. Such a spatial arrangemenisceesobserved in the visual cortex.
The arrangement is also related to computation of nonljrieaariant features.

In the rest of this introduction, we present the basic pnobtd image analysis,
and an overview of the various ideas discussed in more detils book.
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1.2 What is vision?

We can define vision as the process of acquiring knowledgetanvironmental ob-
jects and events by extracting information from the lighg tbjects emit or reflect.
The first thing we will need to consider is in what form thisarmhation initially is
available.

The light emitted and reflected by objects has to be colleatetthen measured
before any information can be extracted from it. Both biddagand artificial sys-
tems typically perform the first step by projecting light i a two-dimensional
image Although there are, of course, countless differences éetwhe eye and any
camera, the image formation process is essentially the .sarom the image, the
intensity of the light is then measured in a large number afigplocations, or sam-
pled. In the human eye this is performed by the photoreceptanereas artificial
systems employ a variety of technologies. However, allesystshare the funda-
mental idea of converting the light first into a two-dimems&bimage and then into
some kind of signal that represents the intensity of thetlagheach point in the
image.

Although in general the projected images have both tempordichromatic di-
mensions, we will be mostly concerned with static, monootedgrey-scale) im-
ages. Such an image can be defined as a scalar function ovelinheasions| (x,y),
giving the intensity (luminance) value at every locat{ary) in the image. Although
in the general case both quantities (the positialy) and the intensity(x,y)) take
continuous values, we will focus on the typical case wheedrttage has been sam-
pled at discrete points in space. This means that in our sisgnx andy take only
integer values, and the image can be fully described by ay aontaining the inten-
sity values at each sample poinin digital systems, the sampling is typicatgct-
angular, i.e. the points where the intensities are sampled form &mngeilar array.
Although the spatial sampling performed by biological sys$ is not rectangular
or even regular, the effects of the sampling process areergtdifferent.

It is from this kind of image data that vision extracts infation. Information
about the physical environment is contained in such imalgaispnly implicitly.
The visual system must somehow transform this implicitinfation into an explicit
form, for example by recognizing the identities of objectthe environment. This is
not a simple problem, as the demonstration of the next seatiempts to illustrate.

1.3 The magic of your visual system

Vision is an exceptionally difficult computational task.thdugh this is clear to
vision scientists, it might come as a surprise to others.r€ason for this is that we

1 When images are stored on computers, the entries in thesaatsy have to be discretized; thisis,
however, of less importance in the discussion that follaavsl we will assume that this has been
done at a high enough resolution so that this step can bedgnor
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are equipped with a truly amazing visual system that peréahme task effortlessly
and quite reliably in our daily environment. We are simplyt aware of the whole
computational process going on in our brains, rather we r@spee only the result
of that computation.

To illustrate the difficulties in vision, Figure 1.2 dispkagn image in its numer-
ical format (as described in the previous section), wheyet lintensities have been
measured and are shown as a function of spatial locationthar avords, if you
were to colour each square with the shade of grey correspgridithe contained
number you would see the image in the form we are used to, amolild be eas-
ily interpretable. Without looking at the solution just y&ike a minute and try to
decipher what the image portrays. You will probably find txsremely difficult.

Now, have a look at the solution in Figure 1.4. It is immediatdear what the
image represents! Our visual system performs the task afgrazing the image
completely effortlessly. Even though the image at the I@fedur photoreceptors
is represented essentially in the format of Figure 1.2, dgsmal system somehow
manages to make sense of all this data and figure out the mld-abject that
caused the image.

In the discussion thus far, we have made a number of drastipli§ications.
Among other things, the human retina contains photoreceptith varying sensi-
tivity to the different wavelengths of light, and we typilaView the world through
two eyes, not one. Finally, perhaps the mostimportantmiffee is that we normally
perceive dynamic images rather than static ones. Nonatheleese differences do
not change the fact that the optical information is, at thvell@f photoreceptors,
represented in a format analogous to that we showed in Fig@reand that the task
of the visual system is to understand all this data.

Most people would agree that this task initially seems angyihard. But after a
moment of thought it might seem reasonable to think thatggesthe problem is not
so difficult after all? Image intensity edges can be deteliefihding oriented seg-
ments where small numbers border with large numbers. Threcteh of such fea-
tures can be computationally formalized and straightfediyeimplemented. Per-
haps such oriented segments can be grouped together amdjgebty object form
be analyzed? Indeed, such computations can be done, anfbtheyhe basis of
many computer vision algorithms. However, although curoemputer vision sys-
tems work fairly well on synthetic images or on images fromghty restricted en-
vironments, they still perform quite poorly on images fromunrestricted, natural
environment. In fact, perhaps one of the main findings of astevision research
to date has been that the analysis of real-world images isreely difficult! Even
such a basic task as identifying the contours of an objectispticated because
often there is no clear image contour along some part of itsipghl contour, as
illustrated in Figure 1.3.

In light of the difficulties computer vision research has to, the computa-
tional accomplishment of our own visual system seems alhitbee amazing. We
perceive our environment quite accurately almost all theetiand only relatively
rarely make perceptual mistakes. Quite clearly, biology $@lved the task of ev-
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Fig. 1.2: An image displayed in numerical format. The shatlgrey of each square has been
replaced by the corresponding numerical intensity valuka¥oes this mystery image depict?
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Fig. 1.3: Thisimage of a cup demonstrates that physicabcoatand image contours are often very
different. The physical edge of the cup near the lower-lefer of the image yields practically no
image contour (as shown by the magnification). On the othed he shadow casts a clear image
contour where there in fact is no physical edge.

eryday vision in a way that is completely superior to any presday machine vision
system.

This being the case, it is natural that computer vision sisenhave tried to draw
inspiration from biology. Many systems contain image pssieg steps that mimic
the processing that is known to occur in the early parts ofkindogical visual
system. However, beyond the very early stages, little isalgt known about the
representations used in the brain. Thus, there is actuatlgnoch to guide computer
vision research at the present.

On the other hand, it is quite clear that good computatiomabties of vision
would be useful in guiding research on biological vision,dipwing hypothesis-
driven experiments. So it seems that there is a dilemma: atatipnal theory is
needed to guide experimental research, and the resultspefiexents are needed
to guide theoretical investigations. The solution, as weisas to seek synergy by
multidisciplinary research into the computational bagigision.

1.4 Importance of prior information

1.4.1 Ecological adaptation provides prior information

A very promising approach for solving the difficult problemsvision is based on
adaptation to the statistics of the input. An adaptive repnéation is one that does
not attempt to represent all possible kinds of data; instéae&l representation is
adapted to a particular kind of data. The advantage is tleat the representation
can concentrate on those aspects of the data that are usdiiutther analysis. This
is in stark contrast to classic representations (e.g. Eoamalysis) that are fixed
based on some general theoretical criteria, and compligietye what kind of data
is being analyzed.
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Fig. 1.4: The image of Figure 1.2. It is immediately cleart tie image shows a male face. Many
observers will probably even recognize the specific indigidnote that it might help to view the
image from relatively far away).
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Thus, the visual system is not viewed as a general signaepsing machine or
a general problem-solving system. Instead, it is acknogéeldhat it has evolved to
solve some very particular problems that form a small subfatl possible prob-
lems. For example, the biological visual system needs togeize faces under dif-
ferent lighting environments, while the people are spegkpossibly with differ-
ent emotional expressions superimposed; this is defirgielgxtremely demanding
problem. But on the other hand, the visual system cmgseed to recognize a face
when it is given in an unconventional format, as in Figure 1.2

What distinguished these two representations (numbera photographic im-
age) from each other is that the latteeisologically valid i.e. during the evolution
of the human species, our ancestors have encountered thitepr many times,
and it has been important for their survival. The case of aayanf numbers does
definitely not have any of these two characteristics. Mosippewould label it as
“artificial”.

In vision research, more and more emphasis is being laid @intiportance of
the enormous amount of prior information that the brain Hasuathe structure of
the world. A formalization of these concepts has recentlgrbpursued under the
heading “Bayesian perception”, although the principleggoack to the “maximum
likelihood principle” by Helmholtz in the 19th century. Bagian inference is the
natural theory to use when inexact and incomplete inforamais combined with
prior information. Such prior information should presuryabe reflected in the
whole visual system.

Similar ideas are becoming dominant in computer vision aé Wemputer vi-
sion systems have been used on many different kinds of imagesnary” (i.e.
optical) images, satellite images, magnetic resonancges)do name a few. Is it
realistic to assume that the same kind of processing woldduately represent all
these different kinds of data? Could better results be pbthif one uses methods
(e.g. features) that are specific to a given application?

1.4.2 Generative models and latent quantities

The traditional computational approach to vision focusesiow, from the image
datal, one can compute quantities of interest cakgdvhich we group together
in a vectors. These quantities might be, for instance, scalar variafles as the
distances to objects, or binary parameters such as siggiff/an object belongs to
some given categories. In other words, the emphasis is ondidn f that trans-
forms images into world or object information, asse- f(l). This operation might
be called imaganalysis

Several researchers have pointed out that the oppositatipelimagesynthesis
often is simpler. That is, the mappimgthat generates the image given the state of
the world

I =g(s), (1.1)
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is considerably easier to work with, and more intuitive,rttthe mapping. This
operation is often calledynthesisMoreover, the framework based on a fixed ana-
lyzing functionf does not give much room for using prior information. Perhanys
intelligently choosing the functiofy some prior information on the data could be
incorporated.

Generative models use Eq. (1.1) as a starting point. Theynattto explain ob-
served data by some underlying hidden (latent) causes tmr&s; about which we
have only indirect information.

The key point is that the models incorporate a sepridr probabilities for the
latent variables s That is, it is specified how often different combinationdatént
variables occur together. For example, this probabilistribution could describe,
in the case of a cup, thgpical shape of a cup. Thus, this probability distribution
for the latent variables is what formalizes the prior infation on the structure of
the world.

This framework is sufficiently flexible to be able to accomratedmany different
kinds of prior information. It all depends on how we defined tatent variables,
and the synthesis functian

But how does knowingy help us, one may ask. The answer is that one may
then search for the parametérthat produce an image= g(8) which, as well as
possible, matches the observed imagén other words, a combination of latent
variables that is the “most likely”. Under reasonable agstions, this might lead to
a good approximation of the correct parameters

To make all this concrete, consider again the image of theicUggure 1.3.
The traditional approach of vision would propose that ayestage extracts local
edge information in the image, after which some sort of gnogmf these edge
pieces would be done. Finally, the evoked edge pattern woelldompared with
patterns in memory, and recognized as a cup. Meanwhileysisalf other scene
variables, such as lighting direction or scene depth, wputdteed in parallel. The
analysis-by-synthesis framework, on the other hand, weug@gest that our visual
system has an unconscious internal model for image geapr&stimates of object
identity, lighting direction, and scene depth are all agjdsintil a satisfactory match
between the observed image and the internally generategkilmachieved.

1.4.3 Projection onto the retina loses information

One very important reason why it is natural to formulate atises inference of
latent quantities is that the world is three dimensional ighe the retina is only
two-dimensional. Thus, the whole 3D structure of the wasldeemingly lost in the
eye! Our visual system is so good in reconstructing a thieeedsional perception
of the world that we hardly realize that a complicated retsion procedure is
necessary. Information about the depth of objects and theespetween is only
implicit in the retinal image.
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We do benefit from having two eyes which give slightly differeiews of the
outside world. This helps a bit in solving the problem of deperception, but it
is only part of the story. Even if you close one eye, you cdhustiderstand which
object is in front of another. Television is also based ongtieciple that we can
quite well reconstruct the 3D structure of the world from aigiage, especially if
the camera (or the observer) is moving.

1.4.4 Bayesian inference and priors

The fundamental formalism for modelling how prior infornoat can be used in
the visual system is based on what is called Bayesian inferddayesian inference
refers to statistically estimating the hidden variatdegven an observed imade

In most models it is impossible (even in theory) to know thegise values 0§,

so one must be content with a probability dengifg|l ). This is the probability of
the latent variablegiventhe observed image. By Bayes’ rule, which is explained in
Section 4.7, this can be calculated as

_ p(l]s)p(s)
p(sll) = o) (1.2)

To obtain an estimate of the hidden variables, many modeiglgifind the particu-
lar swhich maximize this density,

§= argmsaxp(s|l). (1.3)

Ecological adaptation is now possible by learning the pparbability distri-
bution from a large number of natural images. Learning mefer general, to the
process of constructing a representation of the regudaritif data. The dominant
theoretical approach to learning in neuroscience and ctenguience is the prob-
abilistic approach, in which learning is accomplished Iatistical estimation: the
data is described by a statistical model that contains a euwibparameters, and
learning consists of finding “good” values for those parargtbased on the input
data. In statistical terminology, the input data is a sartipdé¢ contains observations.

The advantage of formulating adaptation in terms of statisestimation is very
much due to the existence of an extensive theory of statlgtieory and inference.
Once the statistical model is formulated, the theory ofigtiaal estimation imme-
diately offers a number of tools to estimate the paramegerd.after estimation of
the parameters, the model can be used in inference accdeding Bayesian theory,
which again offers a number of well-studied tools that candaalily used.
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1.5 Natural images
1.5.1 The image space

How can we apply the concept of prior information about theiremment in early
vision? “Early” vision refers to the initial parts of visupfocessing, which are usu-
ally formalized as the computation of features, i.e. sontegikely simple functions
of the image (features will be defined in Section 1.8 belovayl\Evision does not
yet accomplish such tasks as object recognition. In thikpae@ consider early
vision only.

The central concept we need here is the image space. Eadieleacribed an
image representation in which each image is representeshasarical array con-
taining the intensity values of its picture elementspixels To make the following
discussion concrete, say that we are dealing with imagedigéd size of 256-by-
256 pixels. This gives a total of 65536256 pixels in an image. Each image can
then be considered as a pointin a 65536-dimensional spacea&is of which spec-
ifies the intensity value of one pixel. Conversely, each piirthe space specifies
one particular image. This space is illustrated in Figuge 1.

b 1(1,2) &
4+
\ == ()
\ - — -
. A/ ~
1 = \
\\: /A ,
\\:// \
2 /L 3 N /
1(2,1) - -
Image space Image pixels

Fig. 1.5: The space representation of images. Images arpadap points in the space in a one-to-

one fashion. Each axis of the image space corresponds toigirtess value of one specific pixel
in the image.

Next, consider taking an enormous set of images, and pipéi@ich as the corre-
sponding point in our image space. (Of course, plotting e&865@imensional space
is not very easy to do on a two-dimensional page, so we wilkhawbe content with
making a thought experiment.) An important question is: lwavuld the points be
distributed in this space? In other words, what is the prditadensity function of
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ourimages like? The answer, of course, depends on the seagks chosen. Astro-
nomical images have very different properties from holidagpshots, for example,
and the two sets would yield very different clouds of poimt®ur space.

It is this probability density function of the image set inegtion that we will
model in this book.

1.5.2 Definition of natural images

In this book we will be specifically concerned with a partenet of images called
natural imagesor images ofnatural scenesSome images from our data set are
shown in Figure 1.6. This set is supposed to resemble theat@tput of the visual
system we are investigating. So what is meant by “naturaltif®pThis is actually
not a trivial question at all. The underlying assumptionhistline of research is
that biological visual systems are, through a complex coation of the effects
of evolution and development, adapted to process the kirgep$ory input that
they receive. Natural images is thus some set that we beli@yesimilar statistical
structure to that which the visual system is adapted to.

Fig. 1.6: Three representative examples from our set ofrabitmages.

This poses an obvious problem, at least in the case of hunsamnviThe human
visual system has evolved in an environment that is in manysvaifferent from
the one most of us experience daily today. It is probablyegsife to say that im-
ages of skyscrapers, cars, and other modern entities hawdfaoted our genetic
makeup to any significant degree. On the other hand, few pdoghy experience
nature as omnipresent as it was tens of thousands of year3hags, the input on
the time-scale of evolution has been somewhat differemt fiwat on the time-scale
of the individual. Should we then choose images of natureyagies from a modern,
urban environment to model the “natural input” of our vissgstem? Most work
to date has focused on the former, and this is also our choiteis book. Fortu-
nately, this choice of image set does not have a drastic mflien the results of
the analysis: Most image sets collected for the purposealf/aimg natural images
give quite similar results in statistical modelling, anésk results are usually com-
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pletely different from what you would get using most artiiigirandomly generated
data sets.

Returning to our original question, how wouhdtural imagede distributed in
the image space? The important thing to note is that theydvoat be anything like
uniformly distributed in this space. It is easy for us to diavages from a uniform
distribution, and they do not look anything like our natunahges! Figure 1.7 shows
three images randomly drawn from a uniform distributionrabe image space. As
there is no question that we can easily distinguish thesgesmi&tom natural images
(Figure 1.6) it follows that these are drawn from separagey different, distribu-
tions. In fact, the distribution of natural images is highlgn-uniform. This is the
same as saying that natural images contain a laedfindancyan information-
theoretic term that we turn to now.

Fig. 1.7: Three images drawn randomly from a uniform disttibn in the image space. Each pixel
is drawn independently from a uniform distribution from @#ao white.

1.6 Redundancy and information

1.6.1 Information theory and image coding

At this point, we make a short excursion to a subject that neayrs at first sight, to
be outside of the scope of statistical modelling: informatheory.

The development of the theory of information by Claude Sloainend others is
one of the milestones of science. Shannon considered thentiasion of a message
across a communication channel and developed a mathehtagoay that quan-
tified the variables involved (these will be presented in @8a8). Because of its
generality the theory has found, and continues to find, a gr@wumber of appli-
cations in a variety of disciplines.

One of the key ideas in information theory is that the amofim@mory needed
to store an image is often less than what is needed in a trsjiesentation (code),
where each pixel is stored using a fixed number of bits, sud® @s24. This is
because some of the memory capacity is essentially conshyredundant struc-
turein the image. The more rigid the structure, the less bitsaly@meeded to code
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the image. Thus, the contents of any image, indeed any sigalessentially be
divided into information and redundancy. This is depicteérigure 1.8.

Memory bits in trivial code

Information Redundancy

Bits needed %
for an efficient code

Fig. 1.8: Redundancy in a signal. Some of the memory consumyéite storage of a typical image
is normally unnecessary because of redundancy (strudtutbe image. If the signal is optimally
compressed, stripping it of all redundancy, it can be stoedg much less bits.

To make this more concrete, consider the binary image ofrEi@9. The image
contains a total of 32 22 = 704 pixels. Thus, the trivial representation (where the
colour of each pixel is indicated by a ‘1’ or a ‘0’) for this imga requires 704 bits.
But it is not difficult to imagine that one could compress itoira much smaller
number of bits. For example, one could invent a represamtiiat assumes a white
background on which black squares (with given positions simds) are printed.
In such a representation, our image could be coded by singagifying the top-
left corners of the squares ((5,5) and (19,11)) and the@ss(8 and 6). This could
certainly be coded in less than 704 Hits.

The important thing to understand is that this kind of repreiation is good for
certain kinds of images (those with a small number of blaakasgs) but not oth-
ers (that do not have this structure and thus require a hugeiainof squares to be
completely represented). Hence, if we are dealing mostilly images of the former
kind, and we are using the standard binary coding forman the representation is
highly redundant. By compressing it using our black-sqgstame-white representa-
tion we achieve an efficient representation. Although redtunages are much more
variable than this hypothetical class of images, it is nbelketss true that they also
show structure and can be compressed.

Attneave was the first to explicitly point out the redundaircymages in 1954.
The above argument is essentially the same as originallgnghby Attneave, al-
though he considered a ‘guessing game’ in which subjectssguakethe colour of
pixels in the image. The fact that subjects perform muchebéitan chance proves
that the image is predictable, and information theory esstinat predictability is
essentially the same thing as redundancy.

Making use of this redundancy of images is essential foouisBut the same
statistical structure is in fact also crucial for many otiesks involving images.

2 The specification of each square requires three numbershveigich could be coded in 5 bits,
giving a total of 30 bits for two squares. Additionally, a féits might be needed to indicate how
many squares are coded, assuming that we do not lryaniori that there are exactly two squares.



1.6 Redundancy and information 15

Fig. 1.9: A binary image containing a lot of structure. Imsgjke this can be coded efficiently; see
main text for discussion.

Engineers who seek to find compact digital image formatstéwirgy or transmitting
images also need to understand this structure. Image sisthied noise reduction
are other tasks that optimally would make use of this stmectlihus, the analysis
of the statistical properties of images has widespreadegifuns indeed, although
perhaps understanding vision is the most profound.

1.6.2 Redundancy reduction and neural coding

Following its conception, it did not take long before psyldgists and biologists
understood that information theory was directly relevanthte tasks of biological
systems. Indeed, the sensory input is a signal that camfesmation about the
outside world. This information isommunicatedy sensory neurons by means of
action potentials.

In Attneave’s original article describing the redundandydrent in images, At-
tneave suggested that the visual system recodes the imprgduce redundangy
providing an ‘economical description’ of the sensory sighale likened the task
of the visual system to that of an engineer who seeks to reptgsctures with the
smallest possible number of bits. It is easy to see the imuétppeal of this idea.
Consider again the image of Figure 1.9. Recoding imagesisfkind using our
black-squares-on-white representation, we reduce reahoydand obtain an effi-
cient representation. However, at the same time we bass®vered the structuiie
the signal: we now have the concept of ‘squares’ which didexat in the origi-
nal representation. More generally: to reduce redundaneynoust first identify it.
Thus, redundancy reductisaquiresdiscovering structure.
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Although he was arguably the first to spell it out expliciytneave was certainly
not the only one to have this idea. Around the same time, Bafo1961, provided
similar arguments from a more biological/physiologicawpoint. Barlow has also
pointed out that the idea, in the form of ‘economy of thougistclearly expressed
already in the writings of Mach and Pearson in the 19th cgnNevertheless, with
the writings of Attneave and Barlow, the redundancy redurc{or efficient coding)
hypothesis was born.

1.7 Statistical modelling of the visual system

1.7.1 Connecting information theory and Bayesian inferemc

Earlier we emphasized the importance of prior informatiod Bayesian modelling,
but in the preceding section we talked about informatiomitii@nd coding. This
may seem a bit confusing at first sight, but the reason is lieatwto approaches are
very closely related.

Information theory wants to find an economical represenadf the data for
efficient compression, while Bayesian modelling uses pnifarmation on the data
for such purposes as denoising and recovery of the 3D steica accomplish their
goals, both of these methods fundamentally need the samg: thgood model of
the statistical distribution of the dat& hat is the basic motivation for this book. It
leads to a new approach to normative visual modelling asheilliscussed next.

1.7.2 Normative vs. descriptive modelling of visual system

In visual neuroscience, the classic theories of receptve itructuré can be called
descriptivein the sense that they give us mathematical tools (such aseFaund
Gabor analysis, see Chapter 2) that allow us to describs pathe visual system
in terms of a small number of parameters.

However, the question we really want to answerWhy is the visual system
built the way neuroscientific measurements show? The bagimach to answer
such a question in neuroscience is to assume that the systquestion has been
optimizedby evolution to perform a certain function. (This does noamé¢hat the
system would be completely determined genetically, bexauslution can just have
designed mechanisms for self-organization and learniagehable the system to
find the optimal form.)

Models based on the assumption of optimality are oftendallemativebecause
they tell how the systershouldbehave. Of course, there is no justification to assume

3i.e., the way visual neurons respond to stimulation, se&®e8.3
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that evolution has optimized all parts of the organism; nobgiem may be far from
the optimum, and such an optimum may not even be a well-detioedept.

However, in certain cases it can be demonstrated that themsyis not far from
optimal in certain respects. This happens to be the casehdgtbarly cortical visual
processing system (in particular, the primary visual cqrsee Chapter 3 for a brief
description of the visual system). That brain area seemariotion largely based
on principles of statistical modelling, as will be seen iisthook. Thus, there is
convincing proof that parts of the system are optimal fotistiaal inference, and it
is this proof that justifies these normative models.

Previous models of the early visual system did not providsfsetory norma-
tive models, they only provided practical descriptive msd@lthough there were
some attempts to develop a normative theory, the prediti@re too vagué The
statistical approach is the first one to give exact quaitgahodels of visual pro-
cessing, and these have been found to provide a good matechmeiitroscientific
measurements.

1.7.3 Towards predictive theoretical neuroscience

Let us mention one more important application of this frarmdwa mode of mod-
elling where we are able to predict the properties of visuatpssing beyond the
primary visual cortex. Then, we obtain quantitative prédics on what kinds of
visual processing should take place in areas whose funistioat well understood
at this point.

Almost all the experimental results in early visual progegsave concerned
the primary visual cortex, or even earlier areas such asdtiea. Likewise, most
research in this new framework of modelling natural imaggistics has been on
very low-level features. However, the methodology of statal modelling can most
probably be extended to many other areas.

Formulating statistical generative models holds greatnise as a framework
that will give new testable theories for visual neurosceerfor the following rea-
sons:

e This framework is highly constructive. From just a couplesofple theoretical
specifications, natural images lead to the emergence oflexmpenomena, e.g.
the forms of the receptive fields of simple cells and theitigparganization in
Fig. 1.1.

e This framework is, therefore, less subjective than manyeothodelling ap-
proaches. The rigorous theory of statistical estimatiorkesat rather difficult
to insert the theorist’s subjective expectations in the ehodnd therefore the

4 The main theory attempting to do this is the joint spacetfesgpy localization theory leading to
Gabor models, see Section 2.4.2. However, this does noiderpvedictions on how the parameters
in Gabor models should be chosen, and what’s more serioiss)dt really clear why the features
should be jointly localized in space and frequency in the filace.



18 1 Introduction

results are strongly determined by the data, i.e. the abgceality. Thus, the
framework can be called data-driven.

e In fact, in statistical generative models we often see eererg of new kinds of
feature detectors — sometimes very different from what waeeeted when the
model was formulated.

So far, experiments in vision research have been based loer redgue, qualita-
tive predictions. (This is even more true for other domaihseuroscience.) How-
ever, using the methodology described here, visual neigose has the potential of
starting a new mode of operation where theoretical devetopiadirectly give new
quantitativehypotheses to be falsified or confirmed in experimental rete&e-
coming theory-driven would be a real revolution in the wayrscience is done. In
fact, this same development is what gave much of the drivangefto exact natural
sciences in the 19th and 20th centuries.

1.8 Features and statistical models of natural images

1.8.1 Image representations and features

Most statistical models of natural images are based on congfeatures The word
“feature” is used rather loosely for any function of the ireaghich is to be used in
further visual processing. The same word can be used forutpub(value) of the
function, or the computational operation of which comptkes value.

A classic approach to represent an image is a linear weighiadof features.
Let us denote each feature By(x,y),i = 1,...,n. These features are assumed to
be fixed. For each incoming image, the coefficients of eaciufean an image are
denoted bys. Algebraically, we can write:

I (Xa y) = _ilAl (Xa Y)S (14)

If we assume for simplicity that the number of featuregquals the number of
pixels, the system in Eg. (1.4) can be inverted. This meaaisth a given imagé,
we can find the coefficients that fulfill this equation. In fact, they can be computed
linearly as
S = ZVVI(va)I (va) (15)
Xy

for certain inverse weightd/. The terminology is not very fixed here, so eiti#er
W, ors can be called a “feature”. TH& can also be calledf@ature detectar

There are many different sets of features that can be usassiClchoices include
Fourier functions (gratings), wavelets, Gabor functidestures of discrete cosine
transform, and many more. What all these sets have in comsnbiai they attempt
to representall possible images, not just natural imagesway which is “optimal”.
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What we want to do is tbearn these features so that they are adapted to the
properties ofnaturalimages. We do not believe that there could be a single set of
features which would be optimal for all kinds of images. Ala@ want to use the
features to build a statistical model of natural images. Gdss for both of these is
to consider the statistics of the featusgs

1.8.2 Statistics of features

The most fundamental statistical properties of images apuced by the his-
tograms of the outputs of linear feature detectors. Let us denote the output of
a single linear feature detector with weighitgx,y) by s:

s= XzyW(x,y)I (%,Y) (1.6)

Now, the pointis to look at the statistics of the output whasinput of the detector
consists of a large number of natural image patches. Natuegle patches means
small subimages (windows) taken in random locations in eamg selected natural
images. Thus, the featusss a random variable, and for each input patch we get
a realization (observation) of that random variable. (Tgr@cedure is explained in
more detail in Section 4.1).

Now we shall illustrate this with real natural image datat igconsider a couple
of simple feature detectors and the histograms of theindgwifpen the input consists
of natural images. In Fig. 1.10 we show three simple feateteaors. The firstis a
Dirac detector, which means that all the weidiM§x,y) are zero except for one. The
second is a simple one-dimensional grating. The third iss&clidabor edge detector.
All three feature detectors have been normalized to unitpae. ., W(x, y)?=1.

The statistics of the output are contained in the histogrérthe outputs. In
Fig. 1.11, we show the output histograms for the three difiekinds of linear detec-
tors. We can see that the histograms are rather differetddiition to the different
shapes, note that their variances are also quite different €ach other.

Thus, we see that different feature detectors are charaetly different statis-
tics of their outputs for natural image input. This basicetation is the basis for
the theory in this book. We cdaarn featuredrom image data by optimizing some
statistical properties of the featurgs

1.8.3 From features to statistical models

The Bayesian goal of building a statistical (prior) modetld data, and learning
features based on their output statistics are intimatdfted. This is because the
most practical way of building a statistical model procebgsusing features and
building a statistical model for them. The point is that tketistical model for fea-
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I IC)-

Fig. 1.10: Three basic filters) a Dirac feature, i.e. only one pixel is non-zet. a sinusoidal
grating.c) Gabor edge detector.
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Fig. 1.11: The histograms of the outputs of the filters in Bid.0 when the input is natural images
with mean pixel value subtracted) output of Dirac filter, which is the same as the histogram of
the original pixels themselveb) output of grating feature detectar) output of edge detector.
Note that the scales of both axes are different in the threts pl

tures can be much simpler than the corresponding model égpittels, so it makes
sense to first transform the data into a feature space.

In fact, a large class of model buildsdependeninodels for each of the features
s in Equation (1.5). Independence is here to be taken both iimtaitive sense,
and in the technical sense of statistical independencet iMogels in Part Il of this
book are based on this idea. Even if the features are not feddetiependently, the
interactions (dependencies) of the features are usualshraimpler than those of
the original pixels; such models are considered in Partflthis book.

Thus, we will describe most of the models in this book basethenprinciple
of learning features. Another reason for using this appnda¢hat the most inter-
esting neurophysiological results concern usually thenfof the features obtained.
In fact, it is very difficult to interpret or visualize a probiity distribution given
by the model; comparing the distribution with neurophysgtal measurements is
next to impossible. It is the features which give a simple imgditive idea of what
kind of visual processing these normative models dictatd, they allow a direct
comparison with measured properties (receptive fieldh@wisual cortex.
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1.9 The statistical-ecological approach recapitulated

This chapter started with describing the difficulty of visj@and ended up proposing
one particular solution, which can be called the statistcalogical approach. The
two basic ingredients in this approach are

e Ecology: The visual system is only interested in propertied are important
in a real environment. This is related to the concepgitfatedness cognitive
sciences.

e Statistics: Natural images have regularities. The regtearin the ecologically
valid environment could be modelled by different formalfreworks, but statis-
tical modelling seems to be the one that is most relevant.

Thus, we take the following approach to visual modelling:

1. Different sets of features are good for different kindslafa.

2. The images that our eyes receive have certain statigtiopkrties (regularities).

3. The visual system has learned a model of these statipticpérties.

4. The model of the statistical properties enables (closeftimal statistical infer-
ence.

5. The model of the statistical properties is reflected imtieasurable properties of
the visual system (e.g. receptive fields of the neurons)

Most of this book will be concerned on developing differemds of statistical
models for natural images. These statistical models arbasvery few theoretical
assumptions, while they give rise to detailed quantitgtireglictions. We will show
how these normative models are useful in two respects:

1. They provide predictions that are largely validated bgssic neuroscientific
measurements. Thus, they provide concise and theorgtieall-justified ex-
planations of well-known measurements. This is the evidehat justifies our
normative modelling.

2. Moreover, the models lead to new predictions of phenonadmnieh have not yet
been observed, thus enabling theory-driven neuroscidinigis the big promise
of natural image statistics modelling.

Another application of these models is in computer sciermu engineering.
Such applications will not be considered in detail in thimkioWe hope we will
have convinced the reader of the wide applicability of suethuds. See below for
references on this topic.

1.10 References

For textbook accounts of computer vision methods, such ge détection algo-
rithms, see, e.g. (Marr, 1982; Sonka et al, 1998; Gonzalds/oods, 2002); for
information theory, see (Cover and Thomas, 2006). The amtrof generative
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models is presented in, e.g. (Grenander, 1976-1981; Keestd Schrater, 2002;
Mumford, 1994; Hinton and Ghahramani, 1997).

For short reviews on using natural image statistics for aismodelling, see
(Field, 1999; Simoncelli and Olshausen, 2001; Olshauséf320Ishausen and
Field, 2004; Hyvarinen et al, 2005b). For reviews on engiitey applications of
statistical models, see (Simoncelli, 2005).

Historical references include (Mach, 1886; Pearson, 1883mholtz, 1867,
Shannon, 1948; Attneave, 1954; Barlow, 1961). See alsdqBaf001a,b) on a
discussion on the history of redundancy reduction.
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Chapter 2
Linear filters and frequency analysis

This chapter reviews some classical image analysis toimleat filtering, linear
bases, frequency analysis, and space-frequency anaBise of the basic ideas
are illustrated in Figure 2.1. These basic methods need tmberstood before the
results of statistical image models can be fully apprediaiée idea of processing
of different frequencies is central in the reviewed toolsefiefore, a great deal of the
following material is devoted to explaining whafr@aquency-based representation
of images is, and why it is relevant in image analysis.

2.1 Linear filtering

2.1.1 Definition

Linear filtering is a fundamental image-processing methodfich afilter is ap-
plied to an input image to produce an output image.

Figure 2.2 illustrates the way in which the filter and the ihjmage interact to
form an output image: the filter is centered at each imagetilmtdx,y), and the
pixel value of the output imag®(x,y) is given by the linear correlation of the filter
and the filter-size subarea of the image at coordinjatg). (Note that the word
“correlation” is used here in a slightly different way thanthe statistical context.)
LettingW(x,y) denote a filter with sizé€2K + 1) x (2K + 1), I (x,y) the inputimage,
andO(x,y) the output image, linear filtering is given by

K K
o(x,y) = z z W (X, Vi )L (X4 X, Y+ Vi ). (2.1)
XKy 52K

An example of linear filtering is shown in Figure 2.3.
What Equation (2.1) means is that we “slide” the filter overwhole image and
compute a weighted sum of the image pixel values, separatelch pixel location.

25
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d)

Fig. 2.1: The two classical image analysis tools reviewedigchapter are linear filtering b)-c) and
space-frequency analysis d)-a).An inputimageb) An example output of linear filtering of a); in
this case, the filter has retained medium-scaled verticattsires in the image. A more complete
description of what a linear filtering operation does is jued by the frequency representation
(Section 2.2)c) An example of how the outputs of several linear filters candraelmined in image
analysis. In this case, the outputs of four filters have beecgssed nonlinearly and added together
to form an edge image: in the image, lighter areas correspmitdage locations with a luminance
edge. This kind of a result could be used, for example, asréngfgoint to locate objects of a
certain shaped)—e) An example of space-frequency analysis, where the mainiglenanalyze
the magnitude of a frequency d) at different locations. Tiné esult e) reflects the magnitude of
this frequency at different points in the input image a).rfiriie point of view of image analysis,
this result suggests that the upper part of the image is ferdiit texture than the lower part.
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a)

W(-1,-1)|w(-1,0)[w(-1,1)

w(0,-1) | W(0,0) | w(0,1)

w(1,-1) | W(1,0) | w(i,1)

b)
coordinate(x,y)
% y
I(x=1,y—1)|l(x=1y)|l(x=1y+1)
input imagel (x,y) - . Ixy-1) | 1xy) | 1ey+1)
I(x+1,y—21)|I(x+Ly) |l (x+1y+1)
X
c)
y
BT 0 Y) =W(=1,—Dl(x= Ly —1) 4+ +W(L D)l (x+Ly+1)
= Zi:—lz)l/*:—lw(x*vy*)l (X+X*vY+ Y*)
output imaged(x,y)
X

Fig. 2.2: Linear filtering is an operation that involves a€fil{(denoted here bw(x,y)) an input
image (herd (x,y)) and yields an output image (he@Xx,y)). The pixel value of the output im-
age at locatiorix,y), that is,O(x,y), is given by the linear correlation of the filtg¥(x,y) and a
filter-size subarea of the input imagéx,y) centered at coordinate,y). a) A 3 x 3 linear filter
(template)V(x,y). b) Animagel (x,y) and a 3« 3 subarea of the image centered at locatioy).
¢) The output pixel valu®(x,y) is obtained by taking the pixel-wise multiplication of thifi a)
and image subarea b), and summing this product overahdy-dimensions. Mathematically,

O(va) = ZX* Zy*W(X*vy*)|(X+X*7y+y*)~
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Fig. 2.3: An example of linear filtering) An input imageb) A filter. ¢) An output image.

Visual inspection of a filter alone is usually not sufficieotititerpret a filtering
operation. This is also the case in the example in Figurewhat does this filtering
operation actually accomplish? For a complete interpimiatf a filtering opera-
tion a different type of mathematical language is neededs IlBmguage utilizes a
frequency-based representation of images, as explair@eldtion 2.2 below.

2.1.2 Impulse response and convolution

The impulse respondg(x,y) is the response of a filter to an impulse

1, ifx=0andy=0
o =< 2.2
(cy) {0, otherwise, (2.2)

that is, to an image in which a single pixel is “on” (equal toahd the others are
“off” (equal to 0). The impulse response characterizes tfsesn just as well as
the original filter coefficient®V(x,y). In fact, in frequency-based analysis of lin-
ear filtering, rather than filtering with a filter, it is custamy to work with im-
pulse responses and an operation catlealvolution This is because the frequency-
modifying properties of the linear filter can be read out dilefrom the frequency-
based representation of the impulse response, as will Incosgew. (In general, this
holds for any linear shift-invariant system, which are defiiin Section 20.1.)
Based on the definition of filtering in Equation (2.1), it istwidficult to see that

H(X7y) :W(_X7 _y) (23)

Thus, the impulse responbKXx,y) is a “mirror image” of the filter weight8V(x,y):

the relationship is simply that of a 18@btation around the center of the filter. This
is due to the change of signsxfandy,; the impulse response is equal to one only if
X+ X, = 0, which implies that only at points. = —x we have one and elsewhere the
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impulse response is zero. For a filter that is symmetric wepect to this rotation,
the impulse response is identical to the filter.
The convolution of two imagelg andl, is defined as

(o) 0

Il(Xay)*IZ(Xay): z Z Il(X_X*ay_y*)IZ(X*vy*) (24)

X =—00 Yy, =—00

The only real difference to the definition of a filtering opira in Eq. (2.1) is that
we have minus signs instead of plus signs. Note that corigolig symmetric in
the sense that we can change the ordég a@indl,, since by making the change in
summation index), = x— x. andy. = y—y, we get the same formula with the roles
of I andl, interchanged (this is left as an exercise).

Therefore, we can express the filtering operation using thjgulse response
(which is considered just another image here) and the catigalsimply as

O(x,y) =1(x,y) * H(X,y) (2.5)

which is a slight modification of the original definition in E2.1). Introduction

of this formula may seem like splitting hairs, but the poistthat convolution is

a well-known mathematical operation with interesting s, and the impulse
response is an important concept as well, so this formularsihaw filtering can be
interpreted using these concepts.

2.2 Frequency-based representation

2.2.1 Motivation

Frequency-based representation is a very useful tool inatheysis of image-
processing systems. In particular, a frequency-base@septation can be used to
interpret what happens during linear filtering: it descsitiaear filtering as modifi-
cation of strengths (amplitudes) and spatial locationagpB) of frequencies (sinu-
soidal components) that form the input image. As an exampiesaeak preview,
Figures 2.8a)—d) on page 36 show how the filtering operatidfigure 2.3 can be
interpreted as attenuation of low and high frequenciescligian be seen in the
output image as disappearance of large- and fine-scaleigtescor, alternatively,
preservation of medium-scale structures. This interpietecan be read out from
Figure 2.8d), which shows the frequency amplification mayts filter: this map,
which is called theamplitude responsef the filter, shows that both low frequen-
cies (in the middle of the figure) and high frequencies (fanfrthe middle) are
attenuated; in the map, higher grey-scale value indicatget amplitude response.

In what follows we will first describe the frequency-basegdresentation, and
then demonstrate its special role in the analysis and dedilimear filters.
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2.2.2 Representation in one and two dimensions

Figure 2.4 illustrates the main idea of the frequency-basprksentation in the case
of one-dimensional data. In the usual (spatial) represienté~igure 2.4a), a signal
is represented by a set of numbers at each po#at0,...,N — 1; in this example,
N = 7. Therefore, to reconstruct the signal in Figure 2.4a), wafegumbers. In the
frequency-based representation of this signal we also useribers to describe the
contents of the signal, but in this case the numbers havabytdifferent meaning:
they are themplitudesandphaseof sinusoidal components, that is, parameters
and y of signals of the formAcogwx+ ), wherew is the frequency parameter,
see Figure 2.4c.

The theory of thediscrete Fourier transforn{treated in detail in Chapter 20)
states thaanysignal of length 7 can be represented by the four amplituddgtze
three phases of the four frequencies; the phase of the carsigmal correspond-
ing to w = 0 is irrelevant because the constant signal does not chahgae Wis
shifted spatially. For a family of signals of given lendth the set of frequencies
wy, u=0,...,U — 1 employed in the representation is fixed; in our example,ghes
frequencies are listed in the second column of the tablegaori2.4b). Overall, the
frequency-based representation is given by the sum

u-1

100= 3 Avcosax ) (2.6)

wherewy, are the frequencies arg, their amplitudes angy, their phases.
Inthe case of images —that is, two-dimensional data — thuseidal components
are of the form
Aco wx+ wy+ ), (2.7)

wherewy is the frequency in the-direction andwy in the y-direction. In order to
grasp the properties of such a component, let us define verter(wy, wy), and
denote the dot-product by). Then, the component (2.7) can be written as

Aco wx+ wy -+ ) = Acod ((x,Y), w) + )
W

= Acog w ((%.y), Hw”>+¢’)7 (2.8)

“frequency”™~———~—"—
projection

which shows that computation of the argument of the cosinetfan can be inter-
preted as a projection of coordinate vecofryy) onto the direction of the vectap,
followed by a scaling with frequendjw|| . Figure 2.5 illustrates this dependency of
the frequency and the direction of the sinusoidal compooeiad, andcw.

Figure 2.5 also illustrates why it is necessary to consid¢h positive and nega-
tive values of eithety or wy,: otherwise it is not possible to represent all directions
in the (x,y)-plane. However, there is a certain redundancy in this sspr&ation. For
example, the frequency paits = (w, wy) and—w = (—wy, —wy) represent sinu-
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Fig. 2.4: In frequency-based representation, a signalpsesented as amplitudes and phases of
sinusoidal components) A signal.b) A table showing how the signal in a) can be constructed
from sinusoidal components. In the table, the number ofsaiidal components runs from 1 to
4 (frequency indexu runs from 0 to 3), and the rightmost column shows the cunmugasum

of the sinusoidal components with frequencigg, having amplitude#\, and phasegy. In the
fifth column, the grey continuous lines show the continuaesdency components from which
the discrete versions have been sampled. Here the frequeneyonents are added in increasing
frequency, that isqy y, > wyy, if U1 > Wp. ) A frequency-based representation for the signal in a):
the signal is represented by the set of frequency amplitAdeshich is also called the amplitude
spectrum (on the left), and the set of frequency phagegon the right) of the corresponding
frequencieswy y, u= 0, ..., 3. Note that the phase of the constant comporeatO corresponding

to frequencyy, o = O is irrelevant; thus 7 numbers are needed in the frequeasgérepresentation
of the signal, just as in the usual representation a).
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soidal components that have the same direction and freguieacauseo and —w
have the same direction and length. So, it can be seen thizdingf the (cwy, wy)-
plane suffices to represent all directions. In practice & ix@come customary to use
a redundant frequency representation which employs thdéewhg, w)-plane, that
is, negative and positive parts lbbbththe - andwy-axis.l

O=(0ewy) || o 1Y)

A
g
g
S
SNy
1%
o
=
D

r

014 — We Q
LN
7
35 ~0.67 7?2 ///
M flel] A

Fig. 2.5: In an equatioh(x,y) = cos(oq(x+ oq/y) of a two-dimensional sinusoidal image, the fre-
quenciesy, andw, determine the direction and the frequency of the compoméatte specifically,

if w= (ax,wy), then the length ofo determines the frequency of the component, and the directio
of w determines the direction of the component. This is illustienere for three differerii, w,)
pairs; the sinusoidal components are of size 2228 pixels. Notice that in the plots in the third
column,w, runs from top to bottom because of the convention that in eBdlyey-axis runs in this
direction. See equation (2.8) on page 30 for details.
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L In fact, because cosine is an even function — that is(-€ag = coga) — the frequency com-
ponents corresponding to these two frequency pairs argiddenvhenAcos| ((x,y), w) + Y] =
Acos[—({(x,y),w) + )] = Acos[{(x,y), (—w)) + (—y)], that is, when their amplitudes are the
same and their phases are negatives or each other. Therefae employing the wholewy, w)-
plane, the amplitude of a frequency component are custonggiit evenly among the frequency
pairsw and—w with phasegp and— .
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Figure 2.6 shows an example of the resulting frequency sgmtation. Again,
the theory of discrete Fourier transform (see Chapter Ziipstthatany image of
size 3x 3 pixels can be represented by five amplitudes and four phadesal of
9 numbers as in the usual spatial representation; the pHabe constant signal
corresponding tao = (0, 0) is irrelevant as before.

Note on terminology The square of the amplitud® is also called théourier
energyor power, and when it is computed for many different frequencies, we g
what is called th@ower spectrumThe power spectrum is a classic way of charac-
terizing which frequencies are present and with which fggtes” in a given signal
or image. If the original amplitudes are used, we talk abbetmplitude spectrum
(Fig. 2.4 c). It should be noted that the terminology of freqay-based analysis is
not very well standardized, so other sources may use difféeeminology.

2.2.3 Frequency-based representation and linear filtering

Sinusoidals also play a special role in the analysis andydesilinear filters. What

makes sinusoidals special is the fact that when a sinus@daput into a linear

filter, the response is a sinusoidaith the same frequenchut possibly different

amplitude and phase. Figure 2.7 illustrates this phenomdrnathermore, both the
amplification factor of the amplitude and the shift in the gdaepend only on the
frequency of the input, and not its amplitude or phase (ses(&h 20 for a detailed
discussion).

For a linear filter with impulse respons&(x,y), let |H (e, w,)| denote the am-
plitude magnification factor of the system for horizont@duencywy and vertical
frequencyawy, andélfl(wx, wy) denote the phase shift of the filter. Then if the input
signal has frequency-based representation

I(X,y) = ZZAQ»(,M/COS(Q&X‘F WY+ Yoray), (2.9)
o @

where the sum ovan, andwy is here and below taken over both positive and nega-
tive frequencies, the response of the linear filter has theviing frequency-based
representation
O(x.y) =H(xy)*1(xy)
=3 > [H (o 0)] Aweay COS(@X+ @y + Yy, + 2H (w0, @)
& oy —————

amplitude phase

(2.10)

The amplitude magnification fact¢ﬂ(a&,~@)| is called theamplitude response
of the linear system, while the phase shiftl (wy, wy) is called thegphase response
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Fig. 2.6: An example of a two-dimensional frequency repnéstgon.a) The grey-scale (left) and
numerical (right) representation of an image of size 3 pixels.b) Amplitude information of
the frequency representation of the image in a): the graleseft) and numerical (right) repre-
sentation of the amplitudes of the different frequenciesti¢é¢ the symmetries/redundancies: the
amplitude of frequencyw is the same as the amplitude of frequenew. c) Phase information of
the frequency representation of the image in a); the axisisfrepresentation are the same as in b).
Notice the symmetries/redundancies: the phase &f the negative of the phase efw. d) Four
examples of the actual sinusoidal components that makeeupnidige in a) in the frequency repre-
sentation. In each column, the first row shows the locatiagh@tomponent in théwy, w,)-plane,
while the second row shows the actual component. The leftowrsponent is the constant com-
ponent corresponding @ = (0,0). The second component is a horizontal frequency component.
Because of the symmetry in the frequency representatierthiid and the fourth components are
identical. Notice that the second component (the horizdregquency component) is stronger than
the other components, which can also be seen in the ampligpresentation in b).
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Fig. 2.7: Sinusoidal components play a special role in trayais and design of linear systems,
because if a sinusoidal is input into a linear filter, the atitp a sinusoidal with the same frequency
but possibly different amplitude and phasg Two examples of this phenomenon are shown here
in the one-dimensional case, one on each row. The left colsims the input signal, which is
here assumed to be a sinusoidal of infinite duration. The micllumn shows a randomly selected
impulse response, and the column on the right the resportbésdinear system to the sinusoidal.
Notice the different scale in the output signals, which iatedl to the amplitude change taking
place in the filteringb) An illustration of the two-dimensional case, with a:6464 -pixel input on
the left, a random 1% 11 -pixel impulse response in the middle, and the output emight.

The way these quantities are determined for a linear filtdegcribed shortly below;
for now, let us just assume that they are available.

Figure 2.8 shows an example of the insight offered by theueegy representa-
tion of linear filtering (equation (2.10)). The example sisdwow a linear filter can
be analyzed or designed by its amplitude response (the pbagense is zero for
all frequencies in this example). Notice that while relgtthe forms of the filters
themselves (Figures 2.8b and f) to the end result of theifiljeis very difficult,
describing what the filter does is straightforward once tegdiency-based repre-
sentation (Figures 2.8d and e) is available.

How can the amplitude and phase responses of a linear systetetermined?
Consider a situation where we feed into the system a signah/dontains a mixture
of all frequencies with unit amplitudes and zero phases:
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d)

Fig. 2.8: An example of the usefulness of frequency-baspesentation in the analysis and design
of linear filters.a) An input imageb) A filter of size 17x 17 pixels.c) The output of linear filtering

of image a) with filter b)d) The amplitude response of the filter in b); in this represgoedark
pixels indicate amplitude response values close to zerd&ght pixels values close to one. The
amplitude response shows that the filtenuates low and high frequenci¢bat is, frequencies
which are either close to the origiia,, w,) = (0,0) or far away from it. This can be verified in
c¢), where medium-scaled structures have been preservetk inmage, while details and large-
scale grey-scale variations are no longer visible. The @hasponse of the filter is zero for all
frequenciese) Assume that we want to design a filter that has a reverse efffentthe filter shown

in b): our new filter attenuates medium frequencies. Therfdé be designed by specifying its
amplitude and phase response. The amplitude responsewvis $tawe, the phase response is zero
for all frequenciesf) The filter corresponding to the frequency-based representa).g) The
result obtained when the filter f) is applied to the image inTdke results is as expected: the filter
preserves details and large-scale grey-scale variatidmnge medium-scale variations are no longer
visible. Notice that just by examining the filters themsslye and ) it is difficult to say what the
filters do, while this becomes straightforward once thedergy-based representations (d and e)
are available.

lxy)=3% ZCOS(OJXX—I— wy). (2.11)
oo

Then, applying equation (2.10), the frequency-based semtation of the output is

OY) = Hxy) «100y) = 3 5 |A( )| cos@oct ayy + /A (@ ).

amplitude phase

(2.12)
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kO 1 2 3 4 5 6 7 8

cos( W X+ wykY)

3 ocos( WX+ Wy y)

Fig. 2.9: An image containing all frequencies with unit aifyales and zero phases is an impulse.
Here, the different frequency components are being adaed Feft to right; the right-most image
is an impulse response.

In other words, the amplitude and phase responses of ther laystem can be read
from the frequency-based representation of the oufiiuty). What remains to be
determined is what kind of a signal the sigh@, y) in Equation (2.11) is. The theory
of the Fourier transform states that the image obtained vatieinequencies with
identical amplitudes and zero phases are added togetherispailse. Figure 2.9
illustrates this when image size isx33 pixels. To summarize, when we feed an
impulse into a linear filter,

e from the point of view of frequency-based description, we @giving the system
an input with equal amplitudes of all frequencies at phase ze

e the linear system modifies the amplitudes and phases of frexpeencies ac-
cording to the amplitude and phase response of the system

e the amplitude and phase response properties can be easilpue from the im-
pulse response, since the amplitudes of the input were eqdabhases were all
zero.

In other words, themplitude and phase responses of a linear filter are obtained
from the frequency-based representation of the impulsgorese: the amplitude
responses are the amplitudes of the frequencies, and theepleaponses are the
phases of the frequenciesn example of this principle is shown in Figure 2.8: the
amplitude response images d) and e) are in fact the ampéitofithe frequency-
based representations of the impulse responses b) and f).

2.2.4 Computation and mathematical details

Above we have outlined the nature of the frequency-basadseptation in the one-
and two-dimensional case, and the usefulness of this rept@son in the design
and analysis of linear systems. The material presentedrshéald therefore pro-
vide the reader with the knowledge needed to understandtwbditequency-based
representation is, and why it is used.
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However, a number of questions have been left unanswerdtkitekt above,
including the following:

e What exactly are the values of the frequendiesised in the frequency-based
representation?

e How is the frequency-based representation computed?

e What guarantees that a frequency-based representatsis 2xi

The set of mathematical tools used to define and analyzedraydbased rep-
resentations are part of mathematics caltedrier analysis In particular,Fourier
transformsare used to convert data and impulse responses to and frounefney-
based representation. There are different types of Fotraesforms for different
purposes: continuous/discrete and finite/infinite dataekMiaorking with digital im-
ages, the most important Fourier transform isdiserete Fourier transform (DFT)
which is particularly suited for representation of diserahd finite data in comput-
ers. The basics of DFT are described in Chapter 20. The catipoal implementa-
tion of DFT is usually through a particular algorithm calledst Fourier Transform,
or FFT.

The DFT has fairly abstract mathematical properties, beg@omplex numbers
are employed in the transform. The results of the DFT are dvew quite easily un-
derstood in terms of the frequency-based representatiorxdiample, Figure 2.8d)
was computed by taking the DFT of the filter in Figure 2.8b}Y #rven showing the
magnitudes of the complex numbers of the result of the DFT.

A working knowledge of the frequency-based representasomot needed in
reading this book: it is sufficient to understand what the@i@ency-based represen-
tation is and why it is used. If you are interested in workinghwrequency-based
representations, then studying the DFT is critical, beedlis DFT has some coun-
terintuitive properties that must be known when workingwigsults of transforms;
for example, the DFT assumes that the data (signal or imagegriodic, which
causes periodicity effects when filtering is done in the Giexucy-based representa-
tion.

2.3 Representation using linear basis

Now we consider a general and widely-used framework for ien&gpresentation: a
linear basis. We will also see how frequency-based reptagen can be seen as a
special case in this framework.

2.3.1 Basic idea

A traditional way to represent grey-scale images is thelgiased representation,
where the value of each pixel denotes the grey-scale valtteaparticular loca-
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a) b)

Fig. 2.10: Three different & 2 images consisting of vertical lines) f1 b) f, c) Is. Here black
denotes a grey-scale value of zero, light grey a grey-sallgevof 4, and the darker grey a grey-
scale value of 2.

tion in the image. For many different purposes, more coremmepresentations of
images can be devised.

Consider the three 8 2 imagesfy, f, andlz shown in Figure 2.10. The tradi-
tional pixel-based representations of the images are

f_'4od
1= 400
f_'ooi
27 |o04]
I_'2oZ
*7 1202

These images consist of vertical lines with different gsegle values. A com-
pact way to describe a set of images containing only verlicak is to define the
following basis images

[100]
B1=1100]

[010]
B2=1010]

[001]
B:=1001]"

and then represent each image asgghted sumf these basis images. For example,
f1 = 4Bs, fo = 4B3 andl3 = 2B; + 2B3. Such a representation could convey more
information about the inherent structure in these imagdso Af we had a very
large set of such images, consisting of only vertical lirers] were interested in
compressing our data, we could store the basis images, anddheach image just
save the three coefficients of the basis images.

This simple example utilized a special property of the insafje f, andls, that
is, the fact that in this case each image contains only \&tiites. Note that not
every possible X 2 image can be represented as a weighted sum of the basis im-
agesBs1, B, andB3 (one example is an image with a single non-zero pixel at any
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image location). This kind of a basis is called amdercompletdasis. Usually the
word basisis used to refer to @omplete basjsa basis which — when used in the
form of a weighted sum — can be used to represent any imageh&aet of 3x 2
images, one example of a complete basis is the set of 6 imatfea wingle one at
exactly one image locatiofx,y). This basis is typically associated with the tradi-
tional pixel-based image representation: each pixel vd&reotes the coefficient of
the corresponding basis image.

A particularly important case is arthogonalbasis. Then, the coefficients in the
basis simply equal the dot-products with the basis vectysmore on bases and
orthogonality, see Section 19.6.

The use of different bases in the representation of imageséeseral important
areas of application in image processing. Two of these wengtioned already: the
description and analysis of the structure of images, andj@t@mpression. Other
important applications are in the domain of image processystems: different
image representations are central in the analysis of thesteras (including the
analysis of the visual system), design of such systems,ratiteir efficient imple-
mentation.

2.3.2 Frequency-based representation as a basis

Now we consider how frequency-based representation caagigased as finding
the coefficients in a basis. Consider the situation where astwo analyze, in a
given signal, the amplitud& and phase) of a sinusoidal component

Acog wx+ ). (2.13)

The key point here is that instead of determinfkandy directly, we can determine
the coefficient€ andS of a cosine and sine signal with (centered) phase zero:

Ccog wx) + Ssin(wx). (2.14)

To show this we will demonstrate that there is a one-to-omespondence between
signals of the form (2.13) and of the form (2.14). First, aegivwsinusoidal of the
form (2.13) can be represented in form (2.14) as follows:

Acog wx+ ) = A(cog wx) cosy — sin(wx) siny)
= Acosl cog wX) + A(—siny) sin(wx)
H:E:_/ T (2.15)

= Ccogwx) + Ssin(wx).

Conversely, if we are given a signal in form (2.14), the dation (2.15) can be
reversed (this is left as an exercise), so that we get
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A=C2+F (2.16)
S
Y=- atanE. (2.17)

Thus, to analyze the amplitude and phase of frequenicya given signal, it suffices
to find coefficient€ andSin equatiorC cog wx) + Ssin(wx); after the coefficients
have been computed, equations (2.16) and (2.17) can be aisedpute the am-
plitude and phase. In particular, the square of the amgit{iBourier power” or
“Fourier energy”) is obtained as the sum of squares of théficants.

The formula in Equation (2.16) is also very interesting frameural modelling
viewpoint because it shows how to compute the amplitudeguginte simple op-
erations, since computation of the coefficients in a linemidis a linear operation
(at least if the basis is complete). Computation of Fouriegrgy in a given fre-
quency thus requires two linear operations, followed byasiqg, and summing of
the squares. As we will see in Chapter 3, something simildingar Fourier op-
erators seems to be computed in the early parts of visuakpsitg, which makes
computation of Fourier energy rather straightforward.

How are the coefficient§ andSthen computed? The key is orthogonality. The
signals coéwx) and sir{wx) are orthogonal, at least approximately. So, the coeffi-
cientsC andS are simply obtained as the dot-products of the signal wighithsis
vectors given by the cos and sin functions.

In fact, Discrete Fourier Transform can be viewed as defimitogisis with such
cos and sin functions with many different frequencies, drab¢ frequencies are
carefully chosen so that the sinusoidals are exactly odhaly Then, the coefficients
for all the sin and cos functions, in the different frequencies bmoomputed as the
dot-products

z I (x) coq wx) and z [ (x) sin(wx) (2.18)
X X

The idea generalizes to two dimensions (images) in the saayeaws frequency-
based analysis was shown to generalize above. More detailseoDFT can be
found in Chapter 20.

2.4 Space-frequency analysis

2.4.1 Introduction

The frequency representation utilizes global sinusoidatiggs, that is, components
which span the whole image (see, e.g., Figure 2.5). Thisrigcpéarly useful for the
analysis and design of linear filters. However, becauseeftbbal nature of sinu-
soidals, the frequency representation tells us nothingiathe spatial relationship
of different frequencies in an image. This is illustratedFigures 2.11a) and b),
which show an image and the amplitudes of its frequency sgmtation. The upper
part of the image contains grass, which tends to have a matiealeorientation
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c)

e)

f

Fig. 2.11: The main idea in space-frequency analysis isttsider the amplitudes/phases of differ-
ent frequencieat different locations in an imag@) An image. Notice how different areas of the
image differ in their frequency contents) The standard frequency representation: the amplitudes
of the different frequencies that make up the frequencyesgmtation of the image in a). Note that
while this representation suggests that fairly high hartabfrequencies are present in the image,
it does not convey information about the spatial locatiodiierent frequencies. For purposes of
visibility, the amplitudes of different frequencies haween transformed with logarithmic mapping
before displayc) A spatially localized non-negative windowing functiah). A localized area of
the image can be obtained by multiplying the image a) withwilrelowing function c).€) In this
example the amplitude (strength) of this horizontal fretpyeis analyzed at each point in the im-
age.f) Applying the weighting scheme c)-d) at each point in the iemajy and then analyzing the
amplitude of the frequency e) at each of these points resultss spatial map of the amplitude of
the frequency. As can be seen, the frequency tends to hayer amplitudes in the upper part of
the image, as can be expected.

and sharper structure than the lower part of the image. Thaiames of the fre-
quency representation (Figures 2.11b) show that many dwté@t or near-horizontal
frequencies — that is, frequencies in the vicinity of asds= 0 — have a relatively
large amplitude, even at fairly high frequencies. (Notlat tstructures with vertical
lines correspond thorizontalfrequencies.) From the amplitude spectrum there is,
however, no way to tell the spatial location of these frequen

The spatial locations of different frequencies can conitaiportant information
about the image. In this example, if we are able to locateetlansas which tend to
have more horizontal frequencies, we can use that infoomaitbr example, to facil-
itate the identification of the grass area in the image. Howtha spatial locations
of these frequencies be found? A straightforward way to @oistto analyze the fre-
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quency contents dimited spatial areasFigures 2.11c)—f) illustrate this idea. The
original image (Figure 2.11a) is multiplied with a non-ntgawindowing function
(Figure 2.11c) to examine the frequency contents of a dpalti@alized image area
(Figure 2.11d). For example, for the horizontal frequertayven in Figure 2.11e), a
spatial map of the amplitude of this frequency is shown iuFég2.11f); the map has
been obtained by applying the weighting scheme (Figureczahdl d) aevery point
of the image, and analyzing the amplitude of the frequendiénlocalized image
area. Now, we see that in Figure 2.11f) that the differenasi{grass vs. water) are
clearly separated by this space-frequency analysis.

In the case of space-frequency analysis, the computatipeahtions underlying
the analysis are of great interest to us. This is because sopwrtant results ob-
tained with statistical modelling of natural images canriierpreted as performing
space-frequency analysis, so the way the analysis is caameeds to be under-
stood to appreciate these results. Because of this connegte need to delve a
little deeper into the mathematics.

Before going into the details, we first state the main resplice-frequency anal-
ysis can be done by the method illustrated in Figure 2.12: Itsrifig the image
with two different localized sinusoidal filters, and comipgtthe amplitudes and
phases (in this example only the amplitudes) from the ostpfithese two filters.
The following section explains the mathematics behindrinéshod.

2.4.2 Space-frequency analysis and Gabor filters

Consider a situation where we want to analyze the local #aqu contents of an
image: we want to compute the amplitude and phase for eaatidogXo, yo). Al-
ternatively, we could compute a set of coefficieGtso, yo) andS(xo, Yo) as in Sec-
tion 2.3.2, which now are functions of the location. The gs&lis made local by
applying a weighting function, sai/(x,y), centered afxo, yo) before the analysis.

We can simply modify the analysis in Section 2.3.2 by centgthe signalf
around the pointxo, o) and weighting it byw before the analysis. Thus, we get a
formula for the coefficienC at a given point:

C(x0,Y0) = 3 3 1% Y)W(X—X0,y —Yo) CO ak(X —Xo) + wy(y —Yo))-  (2.19)
Xy

and similarly forS(xo, Yo). Note that the order in which we multiply the three images
(imagef, weighting imagew, sinusoidal cos) inside the sum is irrelevant. Therefore
it does not make any difference whether we apply the weightrthe imagé (x,y)

or to the sinusoidal cdsx(x — Xg) + wy(y — Yo)). If we define a new weighting
function

Wo(x,y) = W(X,y) cog WX+ wy), (2.20)
equation (2.19) becomes



44 2 Linear filters and frequency analysis

C(x0,¥Y0) = 3 3 1 (% Y)Wa(X—X0,Y —Yo)- (2.21)
Xy

Equations (2.20) and (2.21) show that computation of caefftsC(xg,Yo) can be
approximated by filtering the image with a filter that is theghuict of a sinusoidal
cogwX+ wyy) and the weighting window. Similar analysis applies to ce@ffits
S(x0,Y0), except that in that case the sinusoidal ig&ixx+ wyy). Because the mag-
nitude of the weighting functiow (x, y) typically falls off quite fast from the origin
(x,y) = (0,0), computational savings can be obtained by truncating ttes fd zero
for (x,y) far away from the origin.

To summarize the result in an example, Figure 2.12 shows t@vampli-
tude map of Figure 2.11f on page 42 was compu@dy,yo) and S(xo,Yo) were
computed by filtering the image with weighted versions of(cg% + wyy) and
sin(axx + wyy), respectively, and the amplitude magxo,yo) was obtained by
A(X0,Y0) = /C(X0,¥0)? + S(X0,Y0)?.

The two filters used in the computation®©fxo, o) andS(xo, yo) are often called
aquadrature-phase paifThis is because s{r+ J) = cogx), so the two filters are
W(x,y) cog wx+ ayy) andW(x,y) co axx+ wy+ 3), that is, they are otherwise
identical expect for a a phase difference of one quarter dﬁalwcycle:%" =1

When the weighting function is a gaussian window, which e&ghe-dimensional
case is of the form

1.2
Ws (X) = ae*?, (2.22)
the resulting filter is called &abor filter; parametero determines the width of

the window, and the scaling constahis typically chosen so thaf, Wy (x) = 1.
Overall, a one-dimensional Gabor function

Wo, o, (X) = Wy (X) cog X+ ) (2.23)

has three parameters, width frequencyw and phasey. One-dimensional Gabor
functions are illustrated in Fig. 2.13.

In the two-dimensional case, a Gabor filter has a few additiparameters that
control the two-dimensional shape and orientation of therfiwWhen the sinusoidal
in the filter has vertical orientation the filter is given byetfollowing equation

2 ¥

1 -5+
Woy a00(X.Y) = 5@ (5°59) coseocs (2.24)

hereoy anday control the width of the weighting window in the andy-directions,
respectively. A Gabor-filter with orientatiom can be obtained by rotating the orig-
inal (x,y) coordinate system by a to yield a new coordinate systefn.,y.) (this
rotation is equivalent to the rotation of the filter itself lm). The equations that
relate the two coordinate systems are

X = X, COSa + Y, Sina (2.25)
y = —X,Sina + Yy, cosa. (2.26)
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Fig. 2.12: An example showing how the spatial map of ampdtudf Figure 2.11 f) on page 42
was computeda) The analyzed imaged) The spatial filter (called a Gabor filter) obtained by
multiplying cogwx + ayy) with the weighting windown/(x,y); the filter has been truncated to
a size of 33x 33 pixels.c) The spatial filter obtained by multiplying simx+ wyy) with the
weighting windowW (x,y). d) CoefficientsC(xo, Yo), obtained by filtering image a) with filter b).
e) CoefficientsS(xo, yo), obtained by filtering image a) with filter cf) The spatial amplitude map

A(X0,Y0) = /C(X0,Y0)? + S(X0, Y0)?.
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a)

b)

Fig. 2.13: lllustration of one-dimensional Gabor funcgoa) Construction of the function by
multiplication of the envelope with a sinusoidal functidr). Two Gabor functions in quadrature
phase.

Substituting equations (2.25) and (2.26) into equatio24Pgives the final form
(not shown here).

Examples of two-dimensional Gabor functions were alreadsrgin Fig. 2.12b)-
c); two more will be given in the next section, Fig. 2.15.

2.4.3 Spatial localization vs. spectral accuracy

Above we have outlined a scheme where the frequency contéiats image at a
certain point is analyzed by first multiplying the image wéthocalized weighting
window, and then analyzing the frequency contents of theyiated image. How
accurate is this procedure, that is, how well can it captoecldcalized frequency
structure?

The answer is that there is a trade-off between spatial ikatgdn and spectral
(frequency) accuracy, because the use of a weighting wirdt@mges the spectral
contents. Figure 2.14 illustrates this phenomenon by sigwibw the results of
space-frequency analysis of a pure sinusoli¢tgl = cos(%x) depend on the degree
of spatial localization. The mathematical theory behirid gfhenomenon goes un-
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Fig. 2.14: In space-frequency analysis, there is a traflbativeen spatial localization and spectral
accuracy. This example shows how the use of a weighting winl¢x) (second column) changes
the spectral (frequency) contents of a pure sinusdigal= cos(%x) ,Xx=0,...,127. The rightmost
column shows the amplitude spectrum of the localized sigW@)l (x), which in turn is plotted
in the third column. With no spatial localization (windowdth o = «; top row), the amplitude
spectrumA(w) shows a clear peak at the locatian= % As window widtho decreases, spatial
localization increases, but accuracy in the spectral dometreases: the two peakstifw) spread
out and eventually fuse so thatw) is a unimodal function whea = 1.

der the naméime-bandwidth product theorem signal processing , amncertainty

principle in physics. These theories state that there is a lower bonrnkeproduct
of the spread of the energy in the spatial domain and the éregudomain. See
References at the end of this chapter for more details.

With images, the extra dimensions introduce another factocertainty about
orientation. This parameter behaves just like frequenay lanation in the sense
that if we want to have a filter which is very localized in ottiation, we have to give
up localization in the other parameters. This is illustdateFig. 2.15, in which we
see that a basic Gabor which is very localized in space apreito a wider range
of different orientations than the Gabor in b). The Gabor)ihds has been designed
to respond only to a small range of orientations, which wdg possible by making
it more extended in space.
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Fig. 2.15: Uncertainty in two dimensions. Compared with asie” Gabor function ina), the
Gabor inb) is very localized in orientation, that is, it responds toyoalsmall range of different
orientations. The thin black lines show the orientationshaf lines which still fall on the white
(positive) area of the function: a line which is more obliquiél partly fall on the black (negative)
areas and thus the response of the filter will the reduced. &esee that in b), the range of
orientations producing very large responses (falling @white area only) is much smaller than in
a). This illustrates that in order to make the basic Gaboction in @) more localized in orientation,
it is necessary to make it longer, and thus to reduce itsapatalization.

2.5 References

Most of the material covered in this chapter can be found istritoage-processing
textbooks. A classic choice is (Gonzales and Woods, 2002wdoes not, how-
ever, consider space-frequency analysis. A large numhtextfooks explain time-
frequency analysis, which is the one-dimensional couarmf space-frequency
analysis, for example (Cohen, 1995). Related material ¢tsmlze found in text-
books on wavelets, which are a closely related method (set@8€d.7.3.2 for a very
short introduction), for example (Vetterli and Kovadevi995; Strang and Nguyen,
1996).

2.6 Exercices

Mathematical exercises

1. Show that convolution is a symmetric operation.

2. Show Eg. (2.3).

3. Prove Equation (2.17). Hint: Find two different values %aso that you get the
two equations

Acosy =C (2.27)
—Asing =S (2.28)

Now, solve forA andy as follows. First, take the squares of both sides of both
equations (2.27) and (2.28) and sum the two resulting egustRecall the sum
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of squares of a sine and a cosine function. Second, dividedidés of the equa-
tions (2.27) and (2.28) with each other.

Computer assignments

The computer assignments in this book are designed to be migtidlatlab™.
Most of them will work on Matlab clones such as Octave. We agume that you
know the basics of Matlab.

1. The commandneshgrid is very useful for image processing. It creates two-
dimensional coordinates, just like a command sucfba®1:5] creates a one-
dimensional coordinate. Give the commapdY]=meshgrid([-5:0.1:5]); and
plot the matriceX andY usingimagesc.

2. Create Fourier gratings ®in(X), sin(Y), sin(X+Y). Plot the gratings.

3. Create a gabor function using thesandY, simply by plugging in those matri-
ces in the formula in Eq. 2.24. Try out different values foe frarameters until
you get a function which looks like the one in Fig. 2.12b).

4. Change the roles of andY to get a Gabor filter in a different orientation.

5. Try outa Gabor function of a different orientation by piilgg in X+Y instead of
X andX-Y instead ofy.

6. Linear filtering is easily done with the functi@monv2 (the “2” means two-
dimensional convolution, i.e. images). Take any image ornj to Matlab, and
convolve it with the three Gabor functions obtained above.






Chapter 3
Outline of the visual system

In this chapter, we review very briefly the structure of therfaun visual system. This
exposition contains a large number of terms which are liltelige new for readers
who are not familiar with neuroscience. Only a few of themrageded later in this
book; they are given in italics for emphasis.

3.1 Neurons and firing rates

Neurons The main information processing workload of the brain isriear by
nerve cells, omeurons Estimates of the number of neurons in the brain typically
vary between 1¥ and 13*. What distinguishes neurons from other cells are their
special information-processing capabilities. A neurocerees signals from other
neurons, processes them, and sends the result of that pirgés other neurons. A
schematic diagram of a neuron is shown in Fig. 3.1, while eemealistic picture is
given in Fig. 3.2.

Axons How can such tiny cells send signals to other cells which neafabaway?

Each neuron has one very long formation callecaaanwhich connects it to other
cells. Axons can be many centimeters or even a couple of mikeing, so they can
reach from one place in the brain to almost any other. Axong laasophisticated
biochemical machinery to transmit signals over such nedétilong distances. The
machinery is based on a phenomenon cadletibn potential

Action potentials An action potential is a very short (1 ms) electrical impulse
travelling via the axon of the neuron. Action potentials #lkestrated in Fig. 3.3.
Due to their typical shape, action potential are also caif@lles Action potentials
are fundamental to the information processing in neurdney; tonstitute the signals
by which the brain receives, analyzes, and conveys infaomat

51
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Fig. 3.1: A schematic diagram of information-processing imeuron. Flow of information is from
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Fig. 3.2: Neurons (thick bodies, some lettered), each withaxon (thicker line going up) for send-
ing out the signal, and many dendrites (thinner lines) foeiéng signals. Drawing by Santiago

Ramon y Cajal in 1900.
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Action potentials are all-or-none, in the sense that theyagé have the same
strength (a potential of about 100mV) and shape. Thus, a kiegiple in brain
function is that the meaning of a spike is not determined bgtwhe spike is like
(because they are all the same), but rativbereit is, i.e. which axon is it travelling
along, or equivalently, which neuron sent it. (Of course, theaning also depends
onwhenthe spike was fired.)

B R

Time

Electric potential

Fig. 3.3: An action potential is a wave of electrical potahtvhich travels along the axon. It travels
quite fast, and is very short both in time and its spatial ter{glong the axon). The figure shows
the potentials in different parts of the axon soon after #gran has emitted two action potentials.

Signal reception and processing At the receiving end, action potentials are input
to neurons via shorter formations called dendrites. Tyigican axon has many
branches, and each of them connects to a dendrite of anaheym Thus, the axon
could be thought of as output wires along which the outputaigf the neuron is
sent to other neurons; dendrites are input wires which vedéie signal from other
neurons. The site where an axon meets a dendrite is calletb@sy. The main cell
body, or soma, is often thought of as the main “processorciiioes the actual
computation. However, an important part of the computaaaiready done in the
dendrites.

Firing rate The output of the neuron consists of a sequence of spikedeemit
(a “spike train”). To fully describe such a sequence, oneukhoecord the time
intervals between each successive spike. To simplify tli@tsdn, most research in
visual neuroscience has concentrated on the neufioingf rates i.e. the number of
spikes “fired” (emitted) by a neuron per second. This giveimgls scalar quantity
which characterizes the activity of the cell. Since it issl@ction potentials which
are transmitted to other cells, the firing rate can also beeftkas the “result” of the
computation performed by the neuron, in other words, itpout

Actually, most visual neurons are emitting spikes all timeetj but with a rela-
tively low frequency (of the order of 1 Hz). The “normal” figrrate of the neuron
when there is no specific stimulation is called §p@ntaneous firing rat&Vhen the
firing rate is increased from the spontaneous one, the neasigaid to be active or
activated.
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Computation by the neuron How is information processed, i.e. how are the in-
coming signals integrated in the soma to form the outcomigiged? This question
is extremely complex and we can only give an extremely sifigpliexposition here.

A fundamental principle of neural computation is that theeqgtion of a spike at a
dendrite can either excite (increase the firing rate) of #oeiving neuron, or inhibit
it (decrease the firing rate), depending on the neuron fronctwtine signal came.
Furthermore, depending on the dendrite and the synapses Bwoming signals
have a stronger tendency to excite or inhibit the neuron.sTluneuron can be
thought of as an elementary pattern-matching device: itgffirates is large when
it receives input from those neurons which excite it (stighcand no input from
those neurons which inhibit it. A basic mathematical modekiuch an action is to
consider the firing rate as a linear combination of incomiggals; we will consider
linear models below.

Thinking in terms of the original visual stimuli, it is oftehought that a neuron
is active when the input contains a feature for which the oris specialized — but
this is a very gross simplification. Thus, for example, a Hiptical “grandmother
cell” is one that only fires when the brain perceives, or ppsithinks of, the grand-
mother. Next we will consider what are the actual responspgties of neurons in
the visual system.

3.2 From the eye to the cortex

Figure 3.4 illustrates the earliest stages of the main Vipathway. Light enters
the eye, reaching theetina. The retina is a curved, thin sheet of brain tissue that
grows out into the eye to provide the starting point for népracessing of visual
signals. The retina is covered by a more than a hundred miflootoreceptors,
which convert the light into an electric signal, i.e. nelaalivity.

From the photoreceptors, the signal is transmitted thrcugiouple of neural
layers. The last of the retinal processing layer consistgasfglion cells, which
send the output of the retina (in form of action potentiais®a from the eye using
their very long axons. The axons of the ganglion cells fore diptic nerve. The
optic nerve transmits the visual signals to the lateral ggate nucleus (LGN) of
the thalamus. The thalamus is a structure in the middle obthi through which
most sensory signals pass on their way from the sensory stgahe main sensory
processing areas in the brain.

From the LGN the signal goes to various other destinatidresptost important
being the visual cortex at the back of the head, where mosisofisual processing
is performed. Cortex, or cerebral cortex to be more precis=sns here the surface
of the two cerebral hemispheres, also called the “grey niat#ost of the neurons
associated with sensory or cognitive processing are lddatihe cortex. The rest of
the cerebral cortex consists mainly of axons connectingcameurons with each
other, or the “white matter”.
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The visual cortex contains some 1/5 of the total corticahanehumans, which
reflects the importance of visual processing to us. It cesmisisa number of distinct
areas. Therimary visual cortexor V1 for short, is the area to which most of the
retinal output first arrives. It is the most widely-studiedual area, and also the
main focus in this book.

Fig. 3.4: The main visual pathway in the human brain.

3.3 Linear models of visual neurons

3.3.1 Responses to visual stimulation

How to make sense of the bewildering network of neurons msiog visual infor-
mation in the brain? Much of visual neuroscience has beeosrord with measur-
ing the firing rates of cells as a function of some propertiea wvisual input. For
example, an experiment might run as follows: Animage is satidprojected onto a
(previously blank) screen that an animal is watching, aedilmber of spikes fired
by some recorded cell in the next second are counted. Byragsiwally changing
some properties of the stimulus and monitoring the eliciesghonse, one can make
a quantitative model of the response of the neuron. An examghown in Fig. 3.5.
Such a model mathematically describes the response (faitedy; of a neuron as a
function of the stimulus(x,y).

In the early visual system, the response of a typical neuepedds only on
the intensity pattern of a very small part of the visual fielthis area, where light
increments or decrements can elicit increased firing ragesalled the (classical)
receptive field RF) of the neuron. More generally, the concept also refershé
particular light pattern that yields the maximum response.
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Fig. 3.5: A caricature of a typical experiment. A dark bar owlsite background is flashed onto
the screen, and action potentials are recorded from a nelMeowing the orientation of the bar
yields varying responses. Counting the number of spikestedi within a fixed time window fol-
lowing the stimulus, and plotting these counts as a funaiifdwar orientation, one can construct a
mathematical model of the response of the neuron.

So, what kind of light patterns actually elicit the strongessponses? This of
course varies from neuron to neuron. One thing that moss$ belve in common is
that they don't respond to a static image which consists afiform surface. They
respond to stimuli in which there is some change, either teally or spatially;
such change is callezbntrastin vision science.

The retinal ganglion cells as well as cells in the lateraligglate nucleus typi-
cally have circular center-surround receptive field stuuet Some neurons are ex-
cited by light in a small circular area of the visual field, [nitibited by light in a
surrounding annulus. Other cells show the opposite effesgonding maximally to
light that fills the surround but not the center. This is degrldn Figure 3.6a).

3.3.2 Simple cells and linear models

The cells that we are modelling are mainly in the primary slszortex (V1). Cells
in V1 have more interesting receptive fields than those indkina or LGN. The so-
calledsimple cellgypically have adjacent elongated (instead of concentrititar)
regions of excitation and inhibition. This means that theslés respond maximally
to orientedimage structure. This is illustrated in Figure 3.6b).
Linear models are the ubiquitous workhorses of science agtheering. They
are also the simplest successful neuron models of the \8ygt#m. A linear model
for a visual neurohmeans that the response of a neuron is modelled by a weighted

1 Note that there are two different kinds of models one coultetig for a visual neuron. First,
one can model the output (firing rate) as a function ofitipeit stimuluswhich is what we do here.
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Fig. 3.6: Typical classical receptive fields of neurons\earlthe visual pathway. Plus signs de-
note regions of the visual field where light causes excitatininuses regions where light inhibits
responsesa) Retinal ganglion and LGN neurons typically exhibit cerdarround receptive field
organization, in one of two arrangemerti$.The majority of simple cells in V1, on the other hand,
have oriented receptive fields.

simple cells

sum of the image intensities, as in

rj= XZyVVj(X’y)l(x,y)Ho, (3.1)

whereW;(x,y) contains the pattern of excitation and inhibition for ligbi the neu-
ron j in question. The constang is the spontaneous firing rate. We can define the
spontaneous firing rate to be the baseline (zero) by subtgatfrom the firing rate:

fj=rj—ro, (3.2)

which will be done in all that follows.

Linear receptive-field models can be estimated from viseakans by employ-
ing a method called reverse correlation. In this methodnedi receptive field is
estimated so that the mean square error between the estimateequation (3.1),
and the actual firing rate is minimized, where the mean isrtakeer a large set of
visual stimuli. The name “reverse correlation” comes frdma tact that the general
solution to this problem involves the computation of thedigorrelation of stimu-
lus and firing rate. However, the solution is simplified whemporally and spatially
uncorrelated (“white noise”, see Section 4.6.4) sequeacesised as visual stim-
uli — in this case, the optimal; is obtained by computing an average stimulus
over those stimuli which elicited a spike. Examples of eatid receptive fields are
shown in Fig. 3.7.

Alternatively, one could model the output as a function @fdhect inputsto the cell, i.e. the rates
of action potentials received in its dendrites. This laipproach is more general, because it can
be applied to any neuron in the brain. However, it is not Ugugded in vision research because it
does not tell us much about the function of the visual systeless we already know the response
properties of those neurons whose firing rates are inpuga¢uron via dendrites, and just finding
those cells whose axons connect to a given neuron is tedlynieay difficult.
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Fig. 3.7: Receptive fields of simple cells estimated by rewerorrelation based on single-cell
recordings in a macaque monkey. Courtesy of Dario Ringa€i,AJ

3.3.3 Gabor models and selectivities of simple cells

How can we describe the receptive field of simple cells in rathtical terms? Typ-
ically, this is based on modelling the receptive fields by @dbnctions, reviewed in
Section 2.4.2. A Gabor function consists of an oscillatamysoidal function which
generates the alternation between the excitatory anditohyl(“white/black”) ar-
eas, and a gaussian “envelope” function which determinesplatial size of the
receptive field. In fact, when comparing the receptive fielerig. 3.7 with the Ga-
bor functions in Fig. 2.12b)-c), it seems obvious that Gafmictions provide a
reasonable model for the receptive fields.

Using a Gabor function, the receptive field is reduced to allsmanber of pa-
rameters:

Orientation of the oscillation

Frequency of oscillation

Phase of the oscillation

Width of the envelope (in the direction of the oscillation)

Length of the envelope (in the direction orthogonal to theltaion). The ratio
of the length to the width is called the aspect ratio.

e The location in the image (on the retina)
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These parameters are enough to describe the basic sdleptivperties of simple
cells: a simple cell typically gives a strong response whenihput consists of a
Gabor function with approximately the right (“preferred/alues for all, or at least
most, of these parameters (the width and the length of thelepe are not criti-
cal for all simple cells). Thus, we say that simple cells aledtive for frequency,
orientation, phase, and location.

In principle, one could simply try to find a Gabor function whigives the best
fit to the receptive field estimated by reverse correlatiarpriactice, however, more
direct methods are often used since reverse correlatioatliger laborious. Typi-
cally, what is computed areining curvedor some of these parameters. This was
illustrated in Fig. 3.5. Typical stimuli include two-dimsional Fourier gratings (see
Fig. 2.5) and simple, possibly short, lines or bars. Examplesuch analyses will
be seen in Chapters 6 and 10.

3.3.4 Frequency channels

The selectivity of simple cells (as well as many other celisjrequency is related
to the concept of “frequency channels” which is widely use#ision science. The
idea is that in the early visual processing (something li&g, Vhformation of differ-
ent frequencies is processed independently. Justific&tiotalking about different
channelsis abundantin research on V1. In fact, the ventpousing Gabor models
is to model the selectivity of simple cells to a particuladuency range.

Furthermore, a number of psychological experiments pardich a division
of early processing. For example, in Figure 3.8, the infdiomain the high- and
low-frequency parts are quite different, yet observes havdifficulty in process-
ing (reading) them separately. This figure also illustratespractical meaning of
frequency selectivity: some of the cells in V1 respond to ‘§es” letters but do
not respond to the “no” letters, while for other cells, thepenses are the other
way round. (The responses depend, however, on viewingngistastimuli which
are low-frequency when viewed from a close distance will ighirequency when
viewed from far away.)

3.4 Nonlinear models of visual neurons

3.4.1 Nonlinearities in simple-cell responses

Linear models are widely used in modelling visual neuronsthey are definitely a
rough approximation of the reality. Real neurons exhilffedent kinds of nonlinear
behaviour. The most basic nonlinearities can be handleditding a simple scalar
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b) c)

Yyes yes yes yes yes yes yes yes yes yes
yes yes yes yes yes yes yes yes yes yes
YeS yes Yyes yes yes yes ves yes yes yes
Yes yes Yyes yes yes yes yes yes yes yes
Yyes yes Yyes yes yes yes yes yes yes yes
Yyes yes yes yes yes yes yes yes yes yes
Yes yes yes yes yes yes yes yes yes yes
YeS yes Yyes yes yes yes yes yes yes yes
Yes yes Yyes yes yes yes yes yes yes yes
Yyes yes yes yes yes yes yes yes yes yes

Fig. 3.8: Afigure with independent (contradictory?) infation in different frequency channeks).
the original figureb) low-frequency part of figure in a), obtained by taking the fr@utransform
and setting to zero all high-frequency components (whostewce from zero is larger than a certain
threshold) ¢) high-frequency part of figure in a). The sum of the figures iam) c) equals a).
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nonlinearity to the model, which leads to what is simply edlalinear-nonlinear
model.

In the linear-nonlinear model, a linear stage is followedabstatic nonlinearity
f:

Fj=f (ZV\/j(x,y)l (x,y)> : (3.3)
Xy
A special case of the linear-nonlinear modehéf-wave rectificationdefined by
f(a) =max{0,a}. (3.4)

One reason for using this model is that if a neuron has a velgtiow spontaneous
firing rate, the firing rates predicted by the linear model riegn tend to be negative.
The firing rate, by definition, cannot be negative.

We must distinguish here between two cases. Negative fiatggare, of course,
impossible by definition. In contrast, it is possible to haesitive firing rates that
are smaller than the spontaneous firing rate; they give aivegain Equation (3.2).
Such firing rates correspond to the sum term in Eq. (3.1) beégative, but not so
large that the; becomes negative. However, in V1, the spontaneous firiegeats
to be rather low, and the models easily predict negativefirates for cortical cells.
(This is less of a problem for ganglion and LGN cells, sinagrthpontaneous firing
rates are relatively high.)

Thus, half-wave rectification offers one way to interpreg gurely linear model
in Eqg. (3.1) in a more physiologically plausible way: thesiam model combines the
outputs of two half-wave rectified (non-negative) cellshaiéversed polarities into
a single output; — one cell corresponds to linear R¥ and the other to RFW,.

The linear-nonlinear model is flexible and can accommodatenaber of other
properties of simple cell responses as well. First, whenlittear model predicts
small outputs, i.e., the stimulus is weak, no output (inseda firing rate) is actually
observed in simple cells. In other words, it seems therettsresholdwhich the
stimulus must attain to elicit any response. This phenomgoambined with half-
wave rectification, could be modelled by using a nonlingagitch as

f(a) =max0,a —c) (3.5)

wherec is a constant that gives the threshold.

Second, due to biological properties, neurons have a manifiting rate. When
the stimulus intensity is increased above a certain linétchange in the cell re-
sponse is observed, a phenomenon cadkgdration This is in contradiction with
the linear model, which has no maximum response: if you iplylthe input stimu-
lus by, say, 1,000,000, the output of the neuron increaséisdogame factor. To take
this property into account, we need to use a nonlinearityshturates as well, i.e.
has a maximum value. Combining the three nonlinear progelited here leads us
to a linear-nonlinear model with the nonlinearity

f(a) =min(d,max0,a —c)) (3.6)
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whered is the maximum response. Figure 3.9 shows the form of thistian.
Alternatively, we could use a smooth function with the sarmellof behaviour,

such as
a2
f =d—.
(@) ¢ +a?

wherec is another constant that is related to the thresleold

(3.7)

-

Fig. 3.9: The nonlinear function in (3.6).

3.4.2 Complex cells and energy models

Although linear-nonlinear models are useful in modellingm cells, there are also
neurons in V1 calleddomplex celldor which these models are completely inade-
quate. These cells do not show any clear spatial zones diaérci or inhibition.
Complex cells respond, just like simple cells, selectitelpars and edges at a par-
ticular location and of a particular orientation; they drewever, relatively invariant
to the spatial phase of the stimulus. An example of this isrinaersing the contrast
polarity (e.g. from white bar to black bar) of the stimulusedanot markedly alter
the response of a typical complex cell.

The responses of complex cells have often been modelledmldksical ‘energy
model’. (The term ‘energy’ simply denotes the squaring afien.) In such a model
(see Figure 3.10) we have

2

2
= (zvvjl(x,y)l(x,y)> + (ZV\/jz(x,y)l(x,y)>
Xy Xy

whereW,, (x,y) andWj, (x,y) are quadrature-phase Gabor functions, i.e., they have
a phase-shift of 90 degrees, one being odd-symmetric andthier being even-
symmetric. It is often assumed that V1 complex cells poolrésponses of simple
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cells, in which case the linear responses in the above eguartée outputs of simple
cells.

The justification for this model is that since the two line#tefs are Gabors in
quadrature-phase, the model is computing the local Foterergy” in a particular
range of frequencies and orientations, see Equation (ZTh& provides a model of
a cell which is selective for frequency and orientation, eralso spatially localized,
but does not care about the phase of the input. In other worglphase-invariant
(This will be discussed in more detail in Chapter 10.)

The problem of negative responses considered earlier stgygesimple modifi-
cation of the model, where each linear RF again correspantisd simple cells.
The output of a linear RF is divided to the positive and neggtiarts and half-wave
rectified. In this case, the half-wave rectified outputs arther squared so that they
compute the squaring operation of the energy model. In mxditomplex cells sat-
urate just as simple cells, so it makes sense to add a samrainlinearity to the
model as well.

\l/ S
\l/

Fig. 3.10: The classic energy model for complex cells. Tispoase of a complex cell is modelled
by linearly filtering with quadrature-phase Gabor filtersaf®r functions whose sinusoidal com-
ponents have a 90 degrees phase difference), taking sqaatesumming. Note that this is purely
a mathematical description of the response and should ndirdetly interpreted as a hierarchical
model summing simple cell responses.

STIMULUS

|

|

|

3.5 Interactions between visual neurons

In the preceding models, V1 cells are considered complételgpendent units:
each of them just takes its input and computes its output.ddew different kinds
interactions between the cells have been observed.

The principal kind of interaction seems to lhibition: when a cellj is active,
the responses of another ceié reduced from what they would be without that cell
j being active. To be more precise, let us consider two simglle whose receptive
fieldsW andW, are orthogonal (for more on orthogonality see Chapter 18keT
for example, two cells in the same location, one with vettarad the other with
horizontal orientation). Take any stimullgswhich excites the cellv;. For example,
we could take a stimulus which is equal to the receptive Wliself. Now, we add
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another stimulus pattern, s&y to lg. This simply means that we add the intensities
pixel-by-pixel, showing the following stimulus to the ned:

I(va) = IO(va)+I1(X7y) (38)

The added stimulul is often called a mask or a pedestal.

The point is that by choosinhy suitably, we can demonstrate a phenomenon
which is probably due to interaction between the two cellsefically, let us
choose a stimulus which is equal to the receptive field oficdl = W. This is
maximally excitatory for the cell, but it is orthogonal to the receptive field of cell
j. With this kind of stimuli, the typical empirical observati is that the celf has a
lower firing rate for the compound stimuluis= Ig+ 1; than forly alone. This inhibi-
tion cannot be explained by the linear models (or the limeartinear models). The
maskl; should have no effect on the linear filter stage, because #sk s orthog-
onal to the receptive field;. So, to incorporate this phenomenon in our models,
we must include some interaction between the linear filt€he outputs of some
model cells must reduce the outputs of others. (It is not detaly clear whether
this empirical phenomenon is really due to interaction lesmithe cells, but that is
a widely-held view, so it makes sense to adopt it in our moylels

a) b) C)

Fig. 3.11: Interaction between different simple ceflsOriginal stimulusly of a simple cell, cho-
sen here as equal the receptive field\gf b) Masking patterr; which is orthogonal tdo. c)
Compound stimulus. The response tb is smaller than the response fipalthough the linear
models predicts that the responses should be equal.

This phenomenon is typically called “contrast gain coritrdhe idea is that
when there is more contrast in the image (due to the additfahe mask), the
system adjusts its responses to be generally weaker. loigytit to be necessary
because of the saturating nonlinearity in the cells and thstid changes in illumi-
nation conditions observed in the real world. For examgie, dells would be re-
sponding with the maximum value most of the time in brightlagdy (or a brightly
lit part of the visual scene), and they would be respondingllgaat all in a dim
environment (or a dimly lit part of the scene). Gain contr@ahanisms alleviate
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this problem by normalizing the variation of luminance owdéferent scenes, or
different parts of the same scene. For more on this pointSse&on 9.5

This leads us to one of the most accurate currently knownlshogll models, in
terms of predictive power, the divisive normalization mbdet W, ..., Wk denote
the receptive fields of those cells whose receptive fieldsapproximately in the
same location, and a scalar parameter. In the divisive normalization moded, th
output of the cell corresponding to R is given by

r = f (ZXNVVJ' (Xa y)l (X7 y))
L SR T (S WOV (,Y)) + 02

wheref is again a static nonlinearity, such as the half-wave reaetifon followed
by squaring. This divisive normalization model providesragge account of con-
trast gain control mechanisms. In addition, it also autéra#ly accounts for such
simple-cell nonlinearities as response saturation arestiold. In fact, if the input
stimulus is such that it only excites cglland the linear responses in the denomi-
nator are all zero expect for the one corresponding to jcathe model reduces to
the linear-nonlinear model in Section 3.4.1. If we furthefide f to be the square
function, we get the nonlinearity in Equation 3.7.

(3.9)

3.6 Topographic organization

A further interesting point is how the receptive fields ofgtdyouring cells are re-
lated. In the retina, the receptive fields of retinal gangtiells are necessarily linked
to the physical position of the cells. This is due to the féattthe visual field
is mapped in an orderly fashion to the retina. Thus, neighhguetinal ganglion
cells respond to neighbouring areas of the visual field. H@wnehere is nothing to
guarantee the existence of a similar organization furtipghe visual pathway.

But the fact of the matter is that, just like in the retina,gidiouring neurons in
the LGN and in V1 tend to have receptive fields covering neagining areas of the
visual field. This phenomenon is calleetinotopy Yet this is only one of several
types of organization. In V1, the orientation of receptivadds also tends to shift
gradually along the surface of the cortex. In fact, neuraesodten approximately
organized according to several functional parametersh(sisdocation, frequency,
orientation) simultaneously. This kind ¢dpographic organizatioralso exists in
many other visual areas.

Topographical representations are not restricted to cartireas devoted to vi-
sion, but are present in various forms throughout the biaikamples include the

2 |n fact, different kinds of gain control mechanisms seem écoperating in different parts of
the visual system. In the retina, such mechanisms normtizeeneral luminance level of the
inputs, hence the name “luminance gain control”. Contrast gontrol seems to be done after that
initial gain control. The removal of the mean grey-scalarea]DC component) that we do in later
chapters can be thought to represent a simple luminancecgatrol mechanism.
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tonotopic map (frequency-based organization) in the piynaaiditory cortex and
the complete body map for the sense of touch. In fact, one trhiglpressed to find
a brain area that would not exhibit any sort of topography.

3.7 Processing after the primary visual cortex

From V1, the visual signals are sent to other areas, such a¥4/2and V5, called
extrastriateas another name for V1 is the “striate cortex”. The functidrs@me
of these areas (mainly V5, which analyzes motion) is reddyiwell understood,
but the function of most of them is not really understood &t Febr example, it
is assumed that V2 is the next stage in the visual procesBirighe differences
in the features computed in V1 and V2 are not really known. \4¢ heen vari-
ously described as being selective to long contours, ceyensses, circles, “non-
Cartesian” gratings, colour, or temporal changes (seedfegances section below).
Another problem is that the extrastriate cortex may be qdifierent in humans
and monkeys (not to mention other experimental animalsjesolts from animal
experiments may not generalize to humans.

3.8 References

Among general introductions to the visual system, see, @glmer, 1999). A most
interesting review of the state of modelling of the visuatter, with extensive ref-
erences to experiments, is in (Carandini et al, 2005).

For a textbook account of reverse correlation, see e.g.gdPayd Abbott, 2001);
reviews are (Ringach and Shapley, 2004; Simoncelli et &142lassic application
of reverse correlation for estimating simple cell recepfields is (Jones and Palmer,
1987b; Jones et al, 1987; Jones and Palmer, 1987a). Footgpagioral extensions
see (DeAngelis et al, 1993a,b). LGN responses are estimatgd in (Cai et al,
1997), and retinal ones, e.g. in (Davis and Naka, 1980).

The nonlinearities in neuron responses are measured inajAgizal, 1999b;
Ringach and Malone, 2007); theoretical studies includenfidband van Vreeswijk,
2002; Miller and Troyer, 2002). These studies concentratéhe “thresholding”
part of the nonlinearity, ignoring saturation. Reverserelation in the presence of
nonlinearities is considered in (Nykamp and Ringach, 2002)

A review on contrast gain control can be found in (Carand@@04). The divisive
normalization model is considered in (Heeger, 1992; Cararmd al, 1997, 1999).
More on the interactions can be found in (Albright and Sto2602). For review
of the topographic organization in different parts of theten, see (Mountcastle,
1997).

A discussion on our ignorance of V2 function can be found iny@on and
Hedgé, 2004). Proposed selectivities in V4 include longtaors (Pollen et al,
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2002), corners and related features (Pasupathy and Col®@®, 2001), crosses,
circles, and other non-Cartesian gratings (Gallant et2831 Wilkinson et al, 2000),
as well as temporal changes (Gardner et al, 2005). An alieeng@ewpoint is that
the processing might be quite similar in most extrastriaéas, the main difference
being the spatial scale (Hegdé and Essen, 2007). A modebaf \proposed in
(Simoncelli and Heeger, 1998).

Basic historical references on the visual cortex includel{&l and Wiesel, 1962,
1963, 1968, 1977).

3.9 Exercices

Mathematical exercises

1. Show that the addition of a mask which is orthogonal to doeptive field, as in
Section 3.5 should not change the output of the cell in trealirmodel

2. What is the justification for using the same lettiefor the constants in Equa-
tions (3.6) and (3.7)?

Computer assignments

1. Plot function in Equation (3.7) and compare with the fiorcin (3.6).
2. Receptive fields in the ganglion cells and the LGN are ofteadelled as a
“difference-of-gaussians” model in whit(x,y) is defined as

L x-%0)+ (y—y0)?) (3.10)

X~ 550X 70+ (y-y0)%) - aexH 5

Plot the receptive fields for some choices of the paramedterd.some parameter
values that reproduce a center-surround receptive field.






Chapter 4
Multivariate probability and statistics

This chapter provides the theoretical background in prdipaltheory and statis-

tical estimation needed in this book. This is not meant assa ifitroduction to

probability, however, and the reader is supposed to be if@amilith the basics of
probability theory. The main emphasis here is on the ex¢ensf the basic notions
to multidimensionadata.

4.1 Natural images patches as random vectors

To put the theory on a concrete basis, we shall first discustutidamental idea on
how natural image patches can be considered as a randonn.vecto

A random vector is a vector whose elements are random vasaBlandomness
can be defined in different ways. In probability theory, iusually formalized by
assuming that the value of the random variable or vector mdpen some other
variable (“state of the world”) whose value we do not know, ®@ randomness is
due to our ignorance.

In this book, an image patdhis typically modelled as a random vector, whose
obtained values (called “observations”) are the numeguoay-scale values of pixels
in a patch (window) of a natural image. A patch simply meansiallssub-image,
such as the two depicted in Fig. 1.3. We use small patchesibeaghole images
have too large dimensions for existing computers (we mustieto perform com-
plicated computations on a large number of such images ohps}. A typical patch
size we use in this book is 3232 pixels.

To get one observation of the random vector in question, wdarnly select one
of the images in the image set we have, and then randomlyt $keéelocation of the
image patch. The randomness of the values in the vector stemsthe fact that
the patch is taken in some “random” position in a “randomigtested image from
our database. The “random” position and image selectiorbased on a random
number generator implemented in a computer.

69
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It may be weird to call an image patch a “vector” as it is twadnsional and
could also be called a matrix. However, for the purposes o$tnob this book, a
two-dimensional image patch has to be treated like a onelional vector, or a
point in the image space, as was illustrated in Fig. 1.5. (Atpand a vector are
basically the same thing in this context.) This is becausenied data are typically
considered to be such vectors in statistics, and matrieassaad for something quite
different (that is, to represent linear transformatiore Section 19.3 for details).
In practical calculations, one often has to transform thagepatches into one-
dimensional vectors, i.e. “vectorize” them. Such a tramsftion can be done in
many different ways, for example by scanning the numeriafles in the matrix
row-by-row; the statistical analysis of the vector is nalainfluenced by the choice
of that transformation. In most of the chapters in this babis assumed that such
a transformation has been made.

On a more theoretical level, the random vector can also sepit¢he whole set of
naturalimages, i.e. each observation is one natural iniagénich case the database
is infinitely large and does not exist in reality.

4.2 Multivariate probability distributions

4.2.1 Notation and motivation

In this chapter, we will denote random variablesqyz, ...,z ands;, S, ..., S
for some numben. Taken together, the random variablgsz, . .. ,z, form ann-
dimensional random vector which we denotezby

Ysr}
z=| . (4.2)

Zy
Likewise, the variables;, s, ..., s, can be collected to a random vector, denoted by
S.

Although we will be considering general random vectors,rihen to make things
concrete, you can think of eaghas the grey-scale value of a pixel in the image
patch. In the simple case of two variablesandz,, this means that you take samples
of two adjacent pixels (say, one just to the right of the oth&rscatter plot of such
a pixel pair is given in Fig. 4.1. However, this is by no meams only thing the
variables can represent; in most chapters of this book, Welsd consider various
kinds of features which are random variables as well.

The fundamental goal of the models in this book is to desdtileeprobability

distribution of the random vector of natural image patct&s,. we need to next
consider the concept of a probability density function.
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_i14 -2 0 2 4 6

Fig. 4.1: Scatter plot of the grey-scale values of two netghiimg pixels. The horizontal axis gives
the value of the pixel on the left, and the vertical axis githesvalue of the pixel on the right. Each
dot corresponds to one observed pair of pixels.

4.2.2 Probability density function

A probability distribution of a random vector such as usually represented using
aprobability density functiofpdf). The pdf at a point in the-dimensional space is
denoted byp,.

The definition of the pdf of a multidimensional random vedtoa simple gen-
eralization of the definition of the pdf of a random varialbieoine dimension. Let
us first recall that definition. Denote kzya random variable. The idea is that we
take a small numbar, and look at the probability thattakes a value in the interval
[a,a+ V] for any givena. Then we divide that probability by, and that is the value
of the probability density function at the poiat That is

P(zisin[a,a+V])

V (4.2)

pz(a) =

This principle is illustrated in Fig. 4.2. Rigorously sp&al we should take the
limit of an infinitely smallv in this definition.

This principle is simple to generalize to the case ofredimensional random
vector. The value of the pdf function at a point, say (ai,ay,...,an), gives the
probability that an observation afbelongs to a small neighbourhood of the point
a, divided by the volume of the neighbourhood. Computing trebpbility that the
values of eaclz are between the values afanda; + v, we obtain

0s(a) = P(z isin [a;,j]ntv] forall i) 4.3)

whereV" is the volume of then-dimensional cube whose edges all have length
Again, rigorously speaking, this equation is true only ia timit of infinitely small
V.

A most important property of a pdf is that it is normalized:iiitegral is equal to
one

/ pz(a)da=1 (4.4)
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a atv
Fig. 4.2: The pdf of a random variable at a poaéngives the probability that the random variable
takes a value in a small intervéd, a+ V|, divided by the length of that interval, i.g. In other

words, the shaded area, equap(@)v, gives the probability that that the variable takes a vafue i
that interval.

This constraint means that you cannot just take any nontivedganction and say
that it is a pdf: you have to normalize the function by diviglih by its integral.
(Calculating such an integral can actually be quite diffiamd sometimes leads to
serious problems, as discussed in Chapter 21).

For notational simplicity, we often omit the subscriptie often also writg(z)
which means the value @ at the pointz. This simplified notation is rather ambigu-
ous because nowis used as an ordinary vector (likeabove) instead of a random
vector. However, often it can be used without any confusion.

Example 1 The most classic probability density function for two véiies is the
gaussian, or normal, distribution. Let us first recall thee-@limensional gaussian
distribution, which in the basic case is given by

1 1

P(2) = = exl 57) (4.5)
It is plotted in Fig. 4.3 b). This is the “standardized” versi(mean is zero and
variance is one), as explained below. The most basic casetwb-@imensional
gaussian distribution is obtained by taking this one-disi@mal pdf separately for
each variables, and multiplying them together. (The meagafrsuch multiplication
is that the variables are independent, as will be explairdob) Thus, the pdf is
given by

P(21,22) = 5-exp(—5(Z+ ) (@6)

A scatter plot of the distribution is shown in Fig. 4.3 a). Tia®-dimensional pdf
itself is plotted in Fig. 4.3 c).

Example 2 Let us next consider the following two-dimensional pdf:
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1, if |21|+|Zz| <1

. 4.7)
0, otherwise

p(z1,22) = {

This means that the data is uniformly distributed inside aasg which has been
rotated 45 degrees. A scatter plot of data from this distigloLis shown in Figure 4.4
a).
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Fig. 4.3:a) scatter plot of the two-dimensional gaussian distribufiofiEquation (4.6).b) The
one-dimensional standardized gaussian pdf. As explaimesection 4.3, it is also the marginal
distribution of one of the variables in a), and furthermdrens out to be equal to the conditional
distribution of one variable given the other variabég. The probability density function of the
two-dimensional gaussian distribution.

4.3 Marginal and joint probabilities

Consider the random vectarwhose pdf is denoted by,. It is important to make
a clear distinction between theint pdf and themarginal pdf’s. The joint pdf is
just what we called pdf above. The marginal pdf's are what yaght call the
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Fig. 4.4:a) scatter plot of data obtained from the pdf in Eq. (4&).marginal pdf of one of the
variables in a)c) conditional pdf ofz, givenz; = 0. d) conditional pdf ofz; givenz; = .75

“individual” pdf’s of z, i.e. the pdf’s of those variablegy, (1), Pz, (22),... when
we just consider one of the variables and ignore the existehthe other variables.

There is actually a simple connection between marginal aimd pdf’s. We can
obtain a marginal pdf by integrating the joint pdf over ondlad variables. This is
sometimes called “integrating out”. Consider for simgiidhe case where we only
have two variables; andz. Then, the marginal pdf of is obtained by

Py (21) = / P21, 22)d2 (4.8)

This is a continuous-space version of the intuitive idea fihiaa given value of;,
we “count” how many observations we have with that valuengdhrough all the
possible values ab.! (In this continuous-valued case, no observed values afe

1 Note again that the notation in Eq. (4.8) is sloppy, becausez in the parentheses, both on
the left and the right-hand side, stands for any vaiumight obtain, although the same notation is
used for the random quantity itself. A more rigorous notatiwuld be something like:

Py (V1) = [ Pa(vs,v2)dv, (4.9
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likely to be exactly equal to the specified value, but we canths idea of a small
interval centred around that value as in the definition ofgtieabove.)

Example 3 In the case of the gaussian distribution in Equation (4.€)have

p(z1) = /p 71,2)dz = / exp(—— (Z2+2))dz

\/ﬁexm 2 l)/ \/ZT
Here, we used the fact that the pdf is factorizable sincéaexb) = exp(a) exp(b).
In the last integral, we recognize the pdf of the one-dimameli gaussian distribu-
tion of zero mean and unit variance given in Equation (4.5ugl, that integral is
one, because the integral of any pdf is equal to one. This snéwat the marginal
distributionp(z) is just the the classic one-dimensional standardized gaupsf.

exp(—%z%)dzz (4.10)

Example 4 Going back to our example in Eq. (4.7), we can calculate thegimal

pdf of z; to equal
2|, i |z2] <1
4.11
Pa(21) = {0 otherwise (4.11)

which is plotted in Fig. 4.4 b), and shows the fact that therenore “stuff” near
the origin, and no observation can have an absolute valgerhnan one. Due to
symmetry, the marginal pdf @ has exactly the same form.

4.4 Conditional probabilities

Another important concept is tlenditionalpdf of z, givenz;. This means the pdf

of zo when we have observed the valuezpflLet us denote the observed valuezpf

by a. Then conditional pdf is basically obtained by just fixing tralue ofz; to ain

the pdf, which give;(a, z,). However, this is not enough because a pdf must have
an integral equal to one. Therefore, we must normatiz@, z;) by dividing it by

its integral. Thus, we obtain the conditional pdf, denotgglw, |z = a) as

pz(a,22)

7f (2,220 (4.12)

P(z|zn=2a)=

Note that the integral in the denominator equals the makgifeof z; at pointa, so
we can also write

where we have used two new variableg,to denote the point where we want to evaluate the
marginal density, angl, which is the integration variable. However, in practice e do not
want to introduce new variable names in order to keep thimggle, so we use the notation in

Eq. (4.8).
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pz(a, ZZ)
Zlzn=a)= ——= 4.13
Pleln =8 =" @ @19
Again, for notational simplicity, we can omit the subscsiphd just write
p(a,z)
nizn=a)= 4.14
p(z2]|zn =a) o(@) (4.14)
or, we can even avoid introducing the new quandignd write
p(z1,22)
|z = 4.15
P(z2]21) o(z1) (4.15)

Example 5 For the gaussian density in Equation (4.6), the computatidine con-
ditional pdf is quite simple, if we use the same factorizatis in Equation (4.10):

1 1,2y 1 1
_ pz,22) ﬁexﬂ—zﬁ)ﬁexﬂ—zé 1 1

which turns out to be the same as the marginal distributian.dfT his kind of situ-
ation wherep(z|z1) = p(2) is related to independence as discussed in Section 4.5
below.)

Example 6 In our example pdfin Eq. (4.7), the conditional pdf changeisecg lot
as a function of the valua of z;. If z is zero (i.e.a= 0), the conditional pdf ok,

is the uniform density in the intervg1,1]. In contrast, ifz is close to 1 (or -1),
the values that can be taken byare quite small. Simply fixing; = a in the pdf,

we have
1if |z <1-]a
a,z) = _ 4.17
P(a,22) {0 otherwise ( )

which can be easily integrated:

[ paz)dz—2(1-a) (4.18)

(This is just the length of the segment in whizhis allowed to take values.) So, we
get
1 .
=, If |Z2| <1—|z
p(22|21) — ) 2-2/z] | 2| | l| (4.19)

0 otherwise
where we have replacealby z;. This pdf is plotted forzy = 0 andz; = 0.75 in
Fig. 4.4 a) and b), respectively.

Generalization to many dimensions The concepts of marginal and conditional
pdf’s extend naturally to the case where we havandom variables instead of just
two. The point is that instead of two random variablesandz,, we can have two
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random vectors, say; andz,, and use exactly the same formulas as for the two
random variables. So, starting with a random veziave take some of its variables
and put them in the vectas, and leave the rest in the vector

72— (2) (4.20)

Now, the marginal pdf of; is obtained by the same integral formula as above:

Pz, (21) = / Pz(21,22)dzz (4.21)
and, likewise, the conditional pdf @ givenz; is given by:

p(z1,22)

p(z1)

Both of these are, naturally, multidimensional pdf’s.

P(z2]21) = (4.22)

Discrete-valued variables For the sake of completeness, let us note that these
formulas are also valid for random variables with discretkigs; then the integrals
are simply replaced by sums. For example, for the conditipnababilities, we
simply have

Py(21,22)
Pz|z1) = ———= 4.23
(z2|21) B (z1) (4.23)
where marginal probability af; can be computed as
Py(z1) = Pi(21,22) (4.24)
2

4.5 Independence

Let us consider two random variables,andz. Basically, the variables andz
are said to be statistically independent if information loa value taken by, does
not give any information on the value Bf, and vice versa.

As an example, let us consider again the grey-scale valuggoofieighbouring
pixels. Asin Fig. 4.1, we go through many different locasaman image in random
order, and take the grey-scale values of the pixels as theradxb values of the two
random variables. These random variables malt be independent. One of the basic
statistical properties of natural images is that two nemhing pixels are depen-
dent. Intuitively, it is clear that two neighbouring pixeéknd to have very similar
grey-scale values: If one of them is black, then the otherisrmack with a high
probability, so they do give information on each other. Tisiseen in the oblique
shape (having an angle of 45 degrees) of the data “cloud’dn4iL. Actually, the
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grey-scale values are correlated, which is a special foraependence as we will
see below.

The ideathat; gives no information om, can be intuitively expressed using con-
ditional probabilities: the conditional probabilify(z; |z ) should be just the same

asp(z):

P(z2|21) = p(z) (4.25)
for any observed valua of z;. This implies
p(z1,22)
o)~ P@) (4.26)
or
P(z1,22) = p(z1) p(2z2) (4.27)

for any values ofz; andz,. Equation (4.27) is usually taken as the definition of

independence because it is mathematically so simple. filgisays that the joint

pdf must be a product of the marginal pdf’s. The joint pdf isrtltalled factorizable.
The definition is easily generalizedtovariablesz;, 2, . . . , z,, in which case itis

P(21,22,.--,%) = P(22)P(22) - .- P(Zn) (4.28)

Example 7 For the gaussian distribution in Equation (4.6) and Fig, w#&have
1 1 1 1
21,2) = ——exp(—=2Z) x ——exp(—=2 4.29
p( 1 2) \/ZT q 2 l) \/ZT q 2 2) ( )
So, we have factorized the joint pdf as the product of two gdéach of which
depends on only one of the variables. Thiysgndz, are independent. This can also
be seen in the form of the conditional pdf in Equation (4.26)ich does not depend
on the conditioning variable at all.

Example 8 For our second pdf in Eq. (4.7), we computed the conditiomtl p
p(z|z1) in Eq. (4.19). This is clearly not the same as the marginalpéf. (4.11);

it depends om;. So the variables are notindependent. (See the discussitingfore
Eq. (4.17) for an intuitive explanation of the dependentgies

Example 9 Consider the uniform distribution on a square:

L, if |zl <vV3andz| < V3

. (4.30)
0, otherwise

p(z1,22) = {

A scatter plot from this distribution is shown in Fig. 4.5.M@; andz, are indepen-
dent because the pdf can be expressed as the product of thmatalistributions,
which are
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L iflzl<V3
p(Z]_) _ 2\/@7 | 1| _ \/— (431)
0, otherwise

and the same fan.

/R 0 2 4

Fig. 4.5: A scatter plot of the two-dimensional uniform distition in Equation (4.30)

4.6 Expectation and covariance

4.6.1 Expectation

The expectation of a random vector, or its “mean” value,righeory, obtained by
the same kind of integral as for a single random variable

E{z}:/pz(z)zdz (4.32)

In practice, the expectation can be computed by taking theaation of each vari-
able separately, completely ignoring the existence of therovariables

E{z} Pz (z1)zndz
E{z} = E{:ZZ} = prZ(Z?)ZZdZZ (4.33)
E{zl)  \J pu(@)zmda

The expectation of any transformatignwhether one- or multidimensional, can be
computed as:

E{o()} = [ P(2)g(2)dz (4.34)
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The expectation is a linear operation, which means
E{az+ bs} = aE{z} + bE{s} (4.35)

for any constanta andb. In fact, this generalizes to any multiplication by a matrix
M:
E{Mz} = ME{z} (4.36)

4.6.2 Variance and covariance in one dimension

The variance of a random variable is defined as
var(z)) = E{Z} — (E{z1})? (4.37)

This can also be written vém) = E{(z; — E{z1})?}, which more clearly shows
how variance measures average deviation from the mean.value
When we have more than one random variable, it is useful ttyam#hecovari-
ance
cov(z1,2) = E{z1} — E{z1}E{2} (4.38)

which measures how well we can predict the value of one of #r@ables using a
simple linear predictor, as will be seen below.
The covariance is often normalized to yield the correlatioafficient

cov(z1,22)

Cor(z,z) = ————
var(zi)var(z)

(4.39)

which is invariant to the scaling of the variables, i.e. ih@ changed if one or both
of the variables is multiplied by a constant.

If the covariance is zero, which is equivalent to saying thatcorrelation coef-
ficient is zero, the variables are said toleorrelated

4.6.3 Covariance matrix

The variances and covariances of the elements of a randotorzeare often col-
lected to acovariance matrixwhosei, j-th element is simply the covariance nf
andz;:

coV(z1,71) COV(Z1,2p) ... COV(Zy,2Zn)

o) = COV(Z:z,Zl) cov(z,2) cov(z:z,zn) (4.40)

COV(Zn,21) COV(Zn,22) ... COM(Zn,Zn)
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Note that the covariance af with itself is the same as the variancezfSo, the
diagonal of the covariance matrix gives the variances. Tvaigance matrix is ba-
sically a generalization of variance to random vectors: angncases, when moving
from a single random variable to random vectors, the conagamatrix takes the
place of variance.

In matrix notation, the covariance matrix is simply obtaires a generalization
of the one-dimensional definitions in Equations (4.38) ahd@%) as

C(z) =E{zZ'} —E{z}E{z}T (4.41)

where taking the transposes in the correct places is eakdntimost of this book,
we will be dealing with random variables whose means are, Zzenohich case the
second term in Equation (4.41) is zero.

If the variables are uncorrelated, the covariance matrikiagional. If they are
all further standardized to unit variance, the covarianegrix equals the identity
matrix.

The covariance matrix is the basis for the analysis of nhtorages in the next
chapter. However, in many further chapters, the covarianagix is not enough,
and we need further concepts, such as independence, so @éonesderstand the
connection between these concepts.

4.6.4 Independence and covariances

A most important property oindependentandom variableg; andz is that the
expectation of any product of a function nf and a function of is equal to the
product of the expectations:

E{01(21)92(22)} = E{01(21) }E{92(22)} (4.42)

for any functionsy; andg,. This implies thaindependent variables are uncorre-
lated since we can takgi(z) = g2(z) = z in which case Eq. (4.42) simply says that
the covariance is zero.

Example 10 In the standardized gaussian distribution in Equation)(4h@ means
of bothz; andz are zero, and their variances are equal to one (we will nototry
prove this here). Actually, the word “standardized” meaxaatly that the means
and variances have been standardized in this way. The eoeatoyz;, z,) equals
zero, because the variables are independent, and thusrelaced.

Example 11 What would be the covariance af andz, in our example pdf in
Eq. (4.7)? First, we have to compute the means. Without ctimgpany integrals,
we can actually see thefz; } = E{z} = 0 because of symmetry: both variables are
symmetric with respect to the origin, so their means are.Z&his can be justified as
follows: take a new variablg = —z;. Because of symmetry of the pdf with respect
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to zero, the change of sign has no effect and the pgfisfust the same as the pdf
of z;. Thus, we have

E{y} =E{-2z}=-E{a} =E{z} (4.43)

which implies thaE{z; } = 0. Actually, the covariance is zero because of the same
kind of symmetry with respect to zero. Namely, we have (9@) = cov(z;,2)
because again, the change of sign has no effect and the girdfpy,z is just

the same as the pdf @f,z. This means cay,z) = E{(-z)z} = —E{zip} =
E{z12}. This obviously implies that the covariance is zero. Theatiance matrix

of the vectorz is thus diagonal (we don’t bother to compute the diagonahelgs,
which are the variances).

Example 12 Let’s have a look at a more classical example of covariafkssime
thatz; has mean equal to zero and variance equal to one. Assume (thahoise”
variable) is independent fromy. Let us consider a variabl® which is a linear
function ofx, with noise added:

Z=az+n (4.44)

What is the covariance of the two variables? We can calculate

cov(z1,22) = E{zi(az +n)} + 0 x E{z} = aE{Z} + E{zin}
=a+E{z}E{n} =a+0xE{zx} =a (4.45)

Here, we have the equality{zin} = E{z}E{n} because of the uncorrelatedness
of z7 andn, which is implied by their independence. A scatter plot oftsadata,
created for parameter set at 05 and with noise variance var) = 1, is shown in
Fig. 4.6. The covariance matrix of the vector (z,2) is equal to

Cz) = (; i‘) (4.46)

Example 13 White noisaefers to a collection of random variables which are in-
dependent and have the same distribution. (In some sounckys,incorrelatedness
is required, not independence, but in this book the defimibowhite noise includes
independence.) Depending on the context, the variabldd beuthe value of noise
at different time pointsi(t), or at different pixelsN(x,y). In the first case, white
noise in the system is independent at different time pointdye latter, noise at dif-
ferent pixels is independent. When modelling physical@oighich can be found in
most measurement devices, it is often realistic and mattieatlg simple to assume
that the noise is white.
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/R 0 2 4

Fig. 4.6: A scatter plot of the distribution created by theeledence relation in Equation (4.44)

4.7 Bayesian inference

Bayesian inference is a framework that has recently beenreasingly applied to
model such phenomena as perception and intelligence. @nete/o viewpoints on
what Bayesian inference is.

1. Bayesian inference attempts to infer underlying caudesnwve observe their
effects.

2. Bayesian inference uses prior information on parametergder to estimate
them better.

Both of these goals can be accomplished by using the cetebBatyes’ formula,
which we will now explain.

4.7.1 Motivating example

Let us start with a classic example. Assume that we have ddeatrare genetic
disorder. The test s relatively reliable but not perfeci: & patient with the disorder,
the probability of a positive test result is 99%, whereasdqgratient without the
disorder, the probability of a positive test is only 2%. Letdenote the test result by
t and the disorder bgl. A positive test result is expressedtas 1 and a negative one
ast =0. Likewise,d = 1 means that the patient really has the disorder, wherea3
means the patients doesn’t. Then, the specifications we@vat can be expressed
as the following conditional probabilities:

Pit=1|d=1)=.99 (4.47)
Pt=1|d=0)=.02 (4.48)
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Because probabilities sum to one, we immediately find thieviahg probabilities
as well:

Pt=0ld=1)=.01 (4.49)
P(t=0|d=0)=.98 (4.50)

Now, the question we want to answer @Given a positive test result, what is the
probability that the patient has the disordekhowing this probability is, of course,
quite important when applying this medical test. Basically then want to compute
the conditional probability of the formp(d = 1|t = 1). The order of the variables in
this conditional probability is reversed from the formuédmve. This is because the
formulas above gave us the observable effects given thesaoist now we want to
know the causes, given observations of their effects.

To find that probability, let’s try to use the definition in Hg4.23)

Pd=1t=1)

PA=1lt=1)= =5

(4.51)

which presents us with two problems: We know neither the dgnator nor the nu-
merator. To get further, let's assume we know the margirsfitdutionP(d). Then,
we can easily find the numerator by using the definition of dmhl probability

Pd=1t=1)=Pt=1/d=1)Pd=1) (4.52)

and after some heavy thinking, we see that we can also cortiputeenominator in
Eq. (4.51) by using the formula for marginal probability:

Pt=1)=P(d=1t=1)+Pd=0,t =1) (4.53)

which can be computed once we know the joint probabilitie$/h$2) and its cor-

responding version witld = 0. Thus, in the end we have
Pt=1|d=1)P(d=1)

(t=1|d=1)P(d=1)+P(t=1|d=0)P(d=0)

szlu:nzp (4.54)

So, we see that the key to inferring the causes from obsefffect®is to know
the marginal distribution of the causes, in this c&d). This distribution is also
called theprior distribution ofd, because it incorporates our knowledge of the cause
d prior to any observations. For example, let's assuni&@of the patients given
this test have the genetic disorder. Then, before the tesbest guess is that a
given patient has the disorder with the probability dd@L. However, after making
the test, we have more information on the patient, and tHatrimation is given
by the conditional distributiofP(d |t = 1) which we are trying to compute. This
distribution, which incorporates both our prior knowledged and the observation
oft, is called thegyosteriorprobability.

To see a rather surprising phenomenon, let us plug in the evalu
P(d = 1) = 0.001 as the prior probability of disorder in Equation (4.5%hen,
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we can calculate

- 0.99x 0.001
~ 0.99x 0.001+0.02x (1—0.001)

Pd=1|t=1 ~ 0.05 (4.55)
Thus, even after a positive test result, the probability the patient has the disorder
is approximately 5%. Many people find this quite surprisibg¢ause they would
have guessed that the probability is something like 99%heagest gives the right
result in 99% of the cases.

This posterior probability depends very much on the priabability. Assume
that half the tested patients actually have the disofd@,= 1) = 0.5. Then the
posterior probability is 99%. This prior actually gives usinformation because the
chances are 50-50, and the 99% accuracy of the test is gisseth in the posterior
probability.

Thus, in cases where the prior assigns very different priibab to different
causes, Bayesian inference shows that the posterior piibieslof the causes can
be very different from what one might expect by just lookingre effects.

4.7.2 Bayes’ Rule

The logic of the previous section was actually the proof & telebrated Bayes’
rule. In the general case, we consider a continuous-valaedom vectors that
gives the causes ardhat gives the observed effects. The Bayes’ rule then tddees t

form

o(s|z) = ~ LIPS (4.56)

/'p(z|s) ps(s)ds
which is completely analogous to Eqg. (4.54) and can be deglivéhe same way.
This is the Bayes’ rule, in one of its formulations. It giveg posterior distribution
of sbased on its prior distributiop(s) and the conditional probabilitiggz|s). Note
that instead of random variables, we can directly use vedtathe formula without
changing anything.
To explicitly show what is random and what is observed in Bayge, we should

rewrite it as (a[b) pa(b)
pz\s a Ps
s=blz=a)= 4.57
P=bI2=8 = 1 falu pw d (@57
wherep,s(alb) is the conditional probability(z = a|s= b), ais the observed value
of z, andb is a possible value of. This form is, of course, much more difficult to
read than Eq. (4.56).
In theoretical treatment, Bayes rule can sometimes be gietbbecause the de-
nominator is actually equal tp(z), which gives

p(z|s) ps(s)

0(2) (4.58)

p(s|z) =
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However, in practice we usually have to use the form in Ecp@because we do
not know how to directly computp,.

The prior ps contains the prior information on the random variakldhe con-
ditional probabilitiesp(z|s) show the connection between the observed quantity
(the “effect”) and the underlying variabig(the “cause”).

Where do we get the prior distributiop(s)? In some caseg(s) can be esti-
mated, because we might be able to observe the origimalthe medical example
above, the prior distributiop(d) can be estimated if some of the patients are sub-
jected to additional tests which are much more accurates (tisually much more
expensive) so that we really know for sure how many of thegpdsi have the dis-
order. In other cases, the prior might be formulated moréesively, based on the
opinion of an expert.

4.7.3 Non-informative priors

Sometimes, we have no information on the prior probabditie Then, we should
use a non-informative prior that expresses this fact. Ircdee of discrete variables,
a non-informative prior is one that assigns the same prdibatn all the possible
values ofs (e.g. 50% probability of a patient to have the disorder oj.not

In the case of continuous-valued priors defined in the whedéline[—o, o], the
situation is a bit more complicated. If we take a “flat” pdftieconstantp(s) = c,
it cannot be a real pdf because the integral of such a pdf ist@fior zero ifc = 0).
Such a prior is called improper. Still, they can often be useBayesian inference
even though the non-integrability may pose some theoitgticklems.

What happens in the Bayes rule if we take such a flat, non+imditive prior? We
get
_ ezl _ pls)

I p(z[s)eds [ p(z|s)ds
The denominator does not dependfthis is always true in Bayes'’ rule), so we
see thap(s|z) is basically the same qf(z|s); it is just rescaled so that the integral
is equal to one. What this shows is that if we have no inforamatin the prior
probabilities, the probabilities of effects given the aesiare simply proportional to
the probabilities of causes given the effects. Howevehéf prior p(s) is far from
flat, these two probabilities can be very different from eatter, as the example
above showed in the case where the disorder is rare.

p(s|z) (4.59)

4.7.4 Bayesian inference as an incremental learning proses

The transformation from the prior probabilitys) to p(s|z) can be compared to an
incremental (on-line) learning process where a biolog@rghnism receives more
and more information in an uncertain environment.



4.7 Bayesian inference 87

In the beginning, the organism’s belief about the value ofuamjty s is the
prior probability p(s). Here we assume that the organism performs probabilistic
inference: the organism does not “think” that it knows thkieaof s with certainty;
rather, it just assigns probabilities to different valisesight take. This does not
mean that we assume the organism is highly intelligent armvknBayes’ rule.
Rather, we assume that the neural networks in the nervotensys the organism
have evolved to perform something similar.

Then, the organism receives information via sensory orgasgnilar means. A
statistical formulation of “incoming information” is th#fte organism observes the
value of a random variablg. Now, the belief of the organism is expressed by the
posterior pdfp(s|z1). This pdf gives the probabilities that the organism asstgns
different values os&.

Next, assume that the organism observes another pieceasfriafion, sayz,.
Then the organism’s belief is changedds| z1, z2)

P(z1,22|S)p(s)

P(z1,22) (4.60)

p(s|z1,22) =
Assume further that, is independent fromz; givens, which mean(z1,z2|s) =
p(z1|s)p(zz2|s) (see Sec. 4.5 for more on independence). Then, the posherior
comes
P(z1[s)p(z2|9)p(S) _ P(z2]9) p(z1]s)p(s)
P(z1)p(z2) p(z2)  p(z)

Now, the expressiop(z1 |s)p(s)/p(z1) is nothing but the posteriqy(s| z;) that the
organism computed previously. So, we have

p(S| Zl,Zz) = (4.61)

p(z2)

The right-hand side is just like the Bayes’ Rule appliedandz, but instead of the
prior p(s) it hasp(s|zi1). Thus, the new posterior (after observing is computed
as if the previous posterior were a prior

This points out an incremental learning interpretation afy8s rule. When the
organism observes new information (new random variablesjpdates its belief
about the world by the Bayes rule, where the current belitgfken as the prior, and
the new belief is computed as the posterior. This is illusttan Fig. 4.7

Such learning can happen on different time scales. It coalthbts is a very
slowly changing parameter, say, the length of the arms (dattes) of the organism.
In that case, the organism can collect a large number of vasens over time, and
the belief would change very slowly. The first “prior” beligfat the organism may
have had before collection of any data, eventually losesigsificance (see next
section).

On the other handscould be a quantity that has to be computed instantaneously,
say, the probability that the animal in front of you is tryit@yeat you. Then, only
a few observed quantities (given by the current visual ippwe available. Such

p(S| 71, Zz) = (4.62)
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Replace prior by posterior

Observe new z
Prior p(s) P Posterior p(s|z)

Fig. 4.7: Computation of posterior as an incremental legymirocess. Given the current prior, the
organism observes the inpyytand computes the posteripfs|z). The prior is then replaced by this
new posterior, which is used as the prior in the future.

inference can then be heavily influenced by the prior infdromethat the organism
has at the moment of encountering the animal. For examptleeiinimal is small

and cute, the prior probability is small, and even if the aaliseems to behaves in
an aggressive way, you will probably infer that it is not gipio try to eat you.

4.8 Parameter estimation and likelihood

4.8.1 Models, estimation, and samples

A statistical modetiescribes the pdf of the observed random vector using a numbe
of parameters. The parameters typically have an intuititerpretation; for exam-
ple, in this book, they often define image features. A modehisically a conditional
density of the observed data variabz| o), wherea is the parameter. The param-
eter could be a multidimensional vector as well. Differealues of the parameter
imply different distributions for the data, which is why $htan be thought of as a
conditional density.

For example, consider the one-dimensional gaussian pdf

1
V2T

Here, the parameter has an intuitive interpretation as the mean of the distidlut
Given a, the observed data variabtethen takes values arourad, with variance
equal to one.

Typically, we have a large number of observations of the camd/ariablez,
which might come from measuring some phenomendimes, and these obser-
vations are independent. The set of observations is cabadlen statistics® So,
we want to use all the observations to better estimate trenpeters. For example,

p(zla) = exp(—%(z— a)?) (4.63)

2 In signal processing, sampling refers the process of reduaicontinuous signal to a discrete
signal. For example, an imadéx,y) with continuous-valued coordinatesandy is reduced to a
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in the model in (4.63), it is obviously not a very good idea stireate the mean of
the distribution based on just a single observation.

Estimationhas a very boring mathematical definition, but basicallyéams that
we want to find a reasonable approximation of the value of Hrarmpeter based on
the observations in the sample. A method (a formula or arritfgo) that estimates
a is called an estimator. The value given by the estimator foaudicular sample is
called an estimate. Both are usually denoted by adat:

Assume we now have a sample mbbservations. Let us denote the observed
values byz(1),z(2),...,z(n). Because the observations are independent, the joint
probability is simply obtained by multiplying the probahés of the observations,
so we have

P((1),2(2),...,z(n) |a) = p(z(1)[a) x p(z(2) |a) x ... x p(z(n)[a)  (4.64)

This conditional density is called tHi&elihood It is often simpler to consider the
logarithm, which transforms products into sums. If we téke logarithm, we have
the log-likelihood as

logp(z(1),z(2),...,z(n)|a) =logp(z(1)|a) +logp(z(2) |a) +...
+logp(z(n)|a) (4.65)

4.8.2 Maximum likelihood and maximum a posteriori

The question is then, How can we estimat®In a Bayesian interpretation, we can
consider the parameters as “causes” in Bayes’ rule, andlibereed data are the

effects. Then, the estimation of the parameters means thabmpute the posterior

pdf of the parameters using Bayes rule:

p(z(1)...,z(n)|a)p(a)
p(z(1)...,z(n))
In estimating parameters of the model, one usually taked prilar, i.e. p(a) = c.

Moreover, the termp(z(1)...,z(n)) does not depend om, it is just for normaliza-
tion, so we don’t need to care about its value. Thus, we sée tha

p(a|z(1)...,z(n)) =

(4.66)

p(a]z(1)...,z(n)) = p(z(1),z(2),...,z(n)| o) x const. (4.67)

the posterior of the parameters is proportional to the ililed in the case of a flat
prior.

Usually, we want a single value as an estimate. Thus, we loas@tehow sum-
marize the posterior distributiop(a |z(1)...,z(n)), which is a function ofr. The

finite-dimensional vector in which the coordinateandy take only a limited number of values
(e.g. as on arectangular grid). These two meanings of thd {gample” need to be distinguished.
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most widespread solution is to use the valuerdhat gives the highest value of the
posterior pdf. Such estimation is callethximum a posteriof(MAP) estimation.

In the case of a flat prior, the maximum of the posterior disttion is obtained at
the same point as the maximum of the likelihood, becauskHibed is then propor-
tional to the posterior. Thus, the estimation is then caflerimaximum likelihood
estimator If the prior is not flat, the maximum a posteriori estimatoayrbe quite
different from the maximum likelihood estimator.

The maximum likelihood estimator has another intuitiveeiptetation: it gives
the parameter value that gives the highest probability ierabserved datd his in-
terpretation is slightly different from the Bayesian ingeztation that we used above.

Sometimes the maximum likelihood estimator can be comployeal simple al-
gebraic formula, but in most cases, the maximization hastddne numerically.
For a brief introduction to optimization methods, see Chafi8.

Example 13 In the case of the model in Eq. (4.63), we have
logp(z|a) = —%(z—a)erconst. (4.68)

where the constant is not important because it does not depea. So, we have
for a sample

logp(z(1),2(2),...,z(n)|a) = —%j (z(i) — a)? 4 const. (4.69)

It can be shown (this is left as an exercise) that this is mepdthby

a= z(i) (4.70)
Thus, the maximum likelihood estimator is given by the ageraf the observed

values. This is not a trivial result: in some other models, tiraximum likelihood
estimator of such a location parameter is given by the median

Example 14 Here’s an example of maximum likelihood estimation with ssle
obvious result. Consider the exponential distribution

p(Zla) = aexp—az) (4.71)

wherez is constrained to be positive. The parametedetermines how likely large
values are and what the mean is. Some examples of this pdfiawnsn Fig. 4.8.
The log-pdfis given by

logp(zla) =loga —az (4.72)

so the log-likelihood for a sample equals
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n

logp(z(1),2(2),...,z(n)|a) = nloga — a'Zz(i) (4.73)

To solve for thea which maximizes the likelihood, we take the derivative asth
with respect tax and find the point where it is zero. This gives

n .
—— =0 4.74
XU (4.74)
from which we obtain 1
0 =—"— (4.75)
TSI 2(i)

So, the estimate is the reciprocal of the mean ofztimethe sample.

Fig. 4.8: The exponential pdf in Equation (4.71) plotted tturee different values aofr, which is
equal 1,2, or 3. The value af is equal to the value of the pdf at zero.

4.8.3 Prior and large samples

If the prior is not flat, we have the log-posterior

logp(a|z(1),2(2),...,z(n))
=logp(a)+logp(z(1)|a)+logp(z(2)|a)+...+logp(z(n)| o) + const.
(4.76)

which usually needs to be maximized numerically.

Looking at Equation (4.76), we see an interesting phenomenbenn grows
large, the prior loses its significance. There are more ancerteyms in the like-
lihood part, and, eventually, they will completely deteneithe posterior because
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the single prior term will not have any influence anymore. thes words, when
we have a very large sample, the data outweighs the priornrdtion. This phe-
nomenon is related to the learning interpretation we diseds®bove: the organism
eventually learns so much from the incoming data that ther plief it had in the
very beginning is simply forgotten.

4.9 References

Most of the material in this chapter is very classic. Mosttafan be found in ba-
sic textbooks to probability theory, while Section 4.8 canfbund in introductory
textbooks to the theory of statistics. A textbook coveringhareas is (Papoulis and
Pillai, 2001). Some textbooks on probabilistic machinenésay also cover all this
material, in particular (Mackay, 2003; Bishop, 2006).

4.10 Exercices

Mathematical exercises

1. Show that a conditional pdf as defined in Eq. (4.15) is prigpermalized, i.e.
its integral is always equal to one.

2. Compute the mean and variance of a random variable digtdbuniformly in
the intervalla, b] (b > a).

3. Considem scalar random variables, i = 1,2,...,n, having, respectively, the
variancesa%. Show that if the random variablegsare all uncorrelated, the vari-
ance of their sum equals the sum of their variances

n
oF = 21 ox (4.77)
i=

4. Assume the random vectgrhas uncorrelated variables, all with unit variance.
Show that the covariance matrix equals the identity matrix.

5. Take a linear transformation afin the preceding exercisg:= Mx for some
matrix M. Show that the covariance matrix pequalsvMM .

6. Show that the maximum likelihood estimator of the mean ghassian distribu-
tion equals the sample average, i.e. Eq. (4.70).

7. Next we consider estimation of the variance parametegigssian distribution.
We have the pdf 2

1
p(z|lo) = mexq_r‘z) (4.78)
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Formulate the likelihood and the log-likelihood, given angde z(1),...,z(n).
Then, find the maximum likelihood estimator for

Computer assignments

1. Generate 1,000 samples of 100 independent observatiengaussian variable
of zero mean and unit variance (e.g. with Matlakésdn function). That is,
you generate a matrix of size 10@0L00 whose all elements are all independent
gaussian observations.

a. Compute the average of each sample. This is the maximefihlilod estima-
tor of the mean for that sample.

b. Plot a histogram of the 1,000 sample averages.

c. Repeat all the above, increasing the sample size to 1/Dtal0,000.

d. Compare the three histograms. What is changing?

2. Generate a sample of 10,000 observations of a two-dimealsiandom vector
X with independent standardized gaussian variables. Pt @aservation in a
column and each random variable in a row, i.e. you havexal@000 matrix,
denote it byX.

a. Compute the covariance matrix of this samplexpg.g. by using theov
function in Matlab. Note that the transpose convention irtidais different
from what we use here, so you have to applydbe function of the transpose
of X. Compare the result with the theoretical covariance mdtitxat is its
value?)

b. Multiply x (or in practice X) from the left with the matrix

23
A= (0 1) (4.79)

Compute the covariance matrix 8k. Compare withAAT .
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Chapter 5
Principal components and whitening

The most classical method of analyzing the statisticalcttine of multidimen-
sional random data is principal component analysis (PCA)chvis also called the
Karhunen-Loéve transformation, or the Hotelling tramsfation. In this chapter we
will consider the application of PCA to natural images. Il e found that itis not a
successful model in terms of modelling the visual systenwéler, PCA provides
the basis for all subsequent models. In fact, before apglifie more successful
models described in the following chapters, PCA is ofterliepias a preprocessing
of the data. So, the investigation of the statistical streebf natural images must
start with PCA.

Before introducing PCA, however, we will consider a very glenand funda-
mental concept: the DC component.

5.1 DC component or mean grey-scale value

To begin with, we consider a simple property of an image patstbC component.
The DC component refers to the mean grey-scale value of #&dspn an image or
an image patch.lt is often assumed that the DC component does not contain int
esting information. Therefore, it is often removed from image before any further
processing to simplify the analysis. Removing the DC congmbithus means that
we preprocess each image (in practice, image patch) asviollo

oY) = 10x9) = 5 1K.Y) 61)

X,

wheremis the number of pixels. All subsequent computations wolkshtuse .

1 The name "DC” comes from a rather unrelated context in dtaltengineering, in which it
originally meant “direct current” as opposed to “altermaticurrent”. The expression has become
rather synonymous with “constant” in electrical enginegri

97
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In section 1.8, we looked at the outputs of some simple featatectors when the
input is natural images. Let us see what the effect of DC rehiswon the statistics
of these features; the features are depicted in Fig. 1.1@&ga RO. Let us denote the
output of a linear feature detector with weigh#gx,y) by s:

S = ZVVI(va)I(va) (52)
Xy

The ensuing histograms of tlsg for the three detectors when input with natural
images, and after DC removal, are shown in Fig. 5.1. Compauith Fig. 1.11 on
page 20, we can see that the first histogram changes radlighlye as the latter two
do not. This is because the latter two filters were not affitbiethe DC component
in the first place, which is because the sum of their weightaygsoximately zero:
YxyW(x,y) = 0. Actually, the three histograms are now more similar tcheztber:
the main difference is in the scale. However, they are by namaédentical, as will
be seen in the analyses of this book.

The effect of DC component removal depends on the size ofntilage patch.
Here, the patches were relatively small, so the removal hidge effect on the
statistics. In contrast, removing the DC component from lvhimages has little
effect on the statistics.

In the rest of this book, we will assume that the DC componastieen removed
unless otherwise mentioned. Removing the DC componenihasms that the mean
of anysis zero; this is intuitively rather obvious but needs sormmuagtions to be
shown rigorously (see Exercises). Thus, in what follows wallsassume that the
mean of any featurgis zero.

a) 8000 b) 8000 C) 10000

6000 6000 8000
6000;
4000 4000
4000;

2000 2000 2000

—04 -2 0 2 4 6 —[10 -20 0 20 40 —qO -5 0 5 10

Fig. 5.1: Effect of DC removal. These are histograms of thipwts of the filters in Fig. 1.10 when
the output is natural images whose DC component has beerveeimioeft: output of Dirac filter,
which is the same as the histogram of the original pixels gewes. Center: output of grating
feature detector. Right: output of edge detector. The saafli¢he axes are different from those in
Fig. 1.10.

Some examples of natural image patches with DC componewiuetiare shown
in Figure 5.2. This is the kind of data analyzed in almost &the rest of this book.
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Fig. 5.2: Some natural image patches, with DC componentvetho

5.2 Principal component analysis

5.2.1 A basic dependency of pixels in natural images

The point in PCA is to analyze the dependencies of the pixey-gcale values
I(x,y) andl(X,y) for two different pixel coordinate pair&,y) and(X,y’). More
specifically, PCA considers the second-order structureadfinal images, i.e. the
variances and and covariances of pixel vall@sy).

If the pixel values were all uncorrelated, PCA would havehinag to analyze.
Even a rudimentary analysis of natural images shows, hawthat the pixel val-
ues are far from independent. It is intuitively rather cléi@t natural images are
typically smoothin the sense that quite often, the pixel values are very ammil
two near-by pixels. This can be easily demonstrated by desqalot of the pixel
values for two neighbouring pixels sampled from naturalges This is shown in
Figure 5.3. The scatter plot shows that the pixels are catedl In fact, we can com-
pute the correlation coefficient (Equation 4.39), and ibtuout to be approximately
equal to 0.9.

Actually, we can easily compute the correlation coefficsefta single pixel with
all near-by pixels. Such a plot is shown in grey-scale in Big, both without re-
moval of DC component (in a) and with DC removal (in b). We de# the correla-
tion coefficients (and, thus, the covariances) fall off witbreasing distance. These
two plots, with or without DC removal, look rather similardzsise the plots use
different scales; the actual values are quite different.cafe take one-dimensional
cross-sections to see the actual values. They are showg.iB.Bic) and d). We see
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that without DC removal, all the correlation coefficients atrongly positive. Re-
moving the DC components reduces the correlations to soteatexnd introduces
negative correlations.

-4 -2 0 2 4 6 -4 -2 0 2 4

Fig. 5.3: Scatter plot of the grey-scale values of two netghiimg pixels.a) Original pixel values.
The values have been scaled so that the mean is zero and tteceaoneb) Pixel values after
removal of DC component in a 3232 patch.

5.2.2 Learning one feature by maximization of variance

5.2.2.1 Principal component as variance-maximizing feate

The covariances found in natural images pixel values cambb/zed by PCA. In
PCA, the pointis to find linear features that explain mosheftariance of the data.

It is natural to start the definition of PCA by looking at thefid&ion of the first
principal component. We consider the variance of the output

var(s) = E{s’} — (E{s})? = E{s’} (5.3)

where the latter equality is true becawsd®as zero mean.

Principal components are featurethat contain (or “explain”) as much of the
variance of the input data as possible. It turns out that theuat of variance ex-
plained is directly related to the variance of the featusewdl be discussed in
Section 5.3.1 below. Thus, the first principal componentitreéd as the feature, or
linear combination of the pixel values, which has the maximuariance. Finding a
feature with maximum variance can also be considered istiegein its own right.
The ideais to find the “main axis” of the data cloud, whichligstrated in Fig. 5.5.

Some constraint on the weight¥, which we call theprincipal component
weights must be imposed as well. If no constraint were imposed, thgimum
of the variance would be attained wh@hbecomes infinitely large (and the mini-
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a) b)

d) !

35 0 5 0 5 10 15 5 10 -5 0 5 10 15

Fig. 5.4: The correlation coefficients of a pixel (in the migdwith all other pixelsa) For original
pixels. Black is small positive and and white is obg After removing DC component. The scale
is different from a): black is now negative and white is pluga) A cross-section of a) in 1D to
show the actual valued) A cross-section of b) in 1D.

Fig. 5.5: lllustration of PCA. The principal component ofgtifartificial) two-dimensional data is
the oblique axis plotted. Projection on the principal axiplains more of the variance of the data
than projection on any other axis.
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mum would be attained when all thé(x,y) are zero). In fact, just multiplying all
the weights inW by a factor of two, we would get a variance that is four times
as large, and by dividing all the coefficients by two the vace decreases to one
quarter.

A natural thing to do is to constrain the norm\f

W)= [T Wixy)? (5.4)
Xy

For simplicity, we constrain the norm to be equal to one, Inyt@ther value would
give the same results.

5.2.2.2 Learning one feature from natural images

What is then the feature detector that maximizes the vagiafithe output, given
natural image input, and under the constraint that the ndrtheodetector weights
equals one? We can find the solution by taking a random sanfijjleage patches.
Let us denote by the total number of patches used, andibgach patch, where
is an index that goes from 1 fb. Then, the expectation af can be approximated
by the average over this sample. Thus, we maximize

2
T 21 (ZW (%, Y) e (x y)) (5.5)

with respect to the weights M/(x,y), while constraining the values #¥(x,y) so
that the norm in Equation (5.4) is equal to one. The companadf the solution is
discussed in Section 5.2.4.

Typical solutions for natural images are shown in Fig. 5I6e Teature detector
is an object of the same size and shape as an image patchasadoié plotted as an
image patch itself. To test whether the principal compomeights are stable, we
computed it ten times for differentimage samples. It candemghat the component
is quite stable.

Fig. 5.6: The feature detectors giving the first principampmnent of image windows of size
32 x 32, computed for ten different randomly sampled datasdgsntdrom natural images. The
feature detector is grey-scale-coded so that the grey-sedlie of a pixel gives the value of the
coefficient at that pixel. Grey pixels mean zero coefficiehght-grey or white pixels are positive,
and dark-grey or black are negative.
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5.2.3 Learning many features by PCA

5.2.3.1 Defining many principal components

One of the central problems with PCA is that it basically giealy one well-defined
feature. It cannot be extended to the learning of many featura very meaningful
way. However, if we want to model visual processing by PCAyauld be absurd
to compute just a single feature which would then be supptmsadalyze the whole
visual scene.

Definition Typically, the way to obtain many principal components isabYde-
flation” approach: After estimating the first principal coament, we want to find
the feature of maximum varianecamder the constrainthat the new feature must be
orthogonalto the first one (i.e. the dot-product is zero, as in Equatid®).5This
will then be called the second principal component. Thispdure can be repeated
to obtain as many components as there are dimensions in thespgace. To put
this formally, assume that we have estimalkgatincipal components, given by the
weight vectordV;, Wb ... \Wk. Then thek+ 1-th principal component weight vector
is defined by

maxvar (X, Y)W(X,Y) (5.6)
under the constraints
Wl = [Swixy?=1 (5.7)
X7y
ZV\/j(x,y)W(x,y) =0forallj=1,...,k (5.8)

Xy

An interesting property is that any two principal comporsesute uncorrelated, and
not only orthogonal. In fact, we could change the constrairthe definition to
uncorrelatedness, and the principal components woulddésdaimne.

Critique of the definition This classic definition of many principal components
is rather unsatisfactory, however. There is no really gaadification for thinking
that the second principal component corresponds to sonteihieresting: it is not

a feature that maximizes any property in itself. It only nmaies the variance not
explained by the first principal component.

Moreover, the solution is not quite well defined, since fotunal images, there
are many principal components that give practically theesaaniance. After the first
few principal components, the differences of the variamdekfferent directions get
smaller and smaller. This is a serious problem for the foltmwreason. If two prin-
cipal components, sayands;, have the same variance, then any linear combination
thS + gzSj has the same variance as wetind the weights; W (X, y) + oW, (X, Y)

2 This is due to the fact that the principal components are walzted, see Section 5.8.1.
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fulfill the constraints of unit norm and orthogonality, if wiermalize the coefficients
1 andgp so thatqf + q% = 1. So, not only we cannot say what is the order of the
components, but actually there is an infinite number of déffik components from
which we cannot choose the “right” one.

In practice, the variances of the principal components atesractly equal due
to random fluctuations, but this theoretical result meas tthe principal compo-
nents are highly dependent on those random fluctuationselparticular sample
of natural images that we are using, the maximum variandbggonal to previous
components) can be obtained by any of these linear combirgatr hus, we cannot
really say what the 100th principal component is, for exampkecause the result
we get from computing it depends so much on random samplfiegtef This will
be demonstrated in the experiments that follow.

5.2.3.2 All principal components of natural images

The first 320 principal components of natural images pateresshown in Fig-

ure 5.7, while Figure 5.9 shows the variances of the prin@peponents. For lack
of space, we don’t show all the components, but it is obvioomnfthe figure what

they look like. As can be seen, the first couple of featuremsggite meaningful:

they are oriented, something like very low-frequency edgfectors. However, most
of the features given by PCA do not seem to be very interestimfact, after the

first, say, 50 features, the rest seem to be just garbage. dileelpcalized in fre-

quency as they clearly are very high-frequency featuresvé¥er, they do not seem
to have any meaningful spatial structure. For example, #neyot oriented.

In fact, most of the features do not seem to be really well eéefiior the reason
explained in the previous section: the variances are toiesifor different features.
For example, some of the possible 100th principal compaértdifferent random
sets of natural image patches, are shown in Figure 5.8. Tioora changes in the
component are obvious.

5.2.4 Computational implementation of PCA

In practice, numerical solution of the optimization prableshich defines the prin-
cipal components is rather simple and based on what is ctikedigenvalue de-
compositionWe will not go into the mathematical details here; they carfdund
in Section 5.8.1. Briefly, the computation is based on thiefohg principles

1. The variance of any linear feature as in Equation (5.2)mmicomputed if we
just know the variances and covariances of the image pixels.

2. We can collect the variances and covariances of imagésgixa single matrix,
called thecovariance matrixas explained in Section 4.6.3. Each entry in the ma-
trix then gives the covariance between two pixels—variassanply covariance
of a pixel with itself.
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Fig. 5.7: The 320 first principal components weighff image patches of size 3232. The order
of decreasing variances is left to right on each row, and admwttom.

Fig. 5.8: Ten different estimations of the 100th principahtponent of image windows of size
32x 32. The random image sample was different in each run.
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3 500 1000 1500

Fig. 5.9: The logarithms of the variances of the principahponents for natural image patches,
the first of which were shown in Fig. 5.7.

3. Any sufficiently sophisticated software for scientifioxgputation is able to com-
pute the eigenvalue decomposition of that matrix. (Howebheramount of com-
putation needed grows fast with the size of the image patcihe patch size
cannot be too large.)

4. As aresult of the eigenvalue decomposition we get twagthifrirst, thesigen-
vectors which give theM which are the principal component weights. Second,
theeigenvalueswhich give the variances of the principal componentSo, we
only need to order the eigenvectors in the order of descegrelijenvalues, and
we have computed the whole PCA decomposition.

5.2.5 The implications of translation-invariance

Many of the properties of the PCA of natural images are dueticpéar property of
the covariance matrix of natural images. Namely, the cavene for natural images
is translation-invariant, i.e. it depends only on the dis&

cov(l (%), 1(X,y)) = f(x=X)*+ (y—¥)?) (5.9)

for some functionf. After all, the covariance of two neighbouring pixels is not
likely to be any different depending on whether they are anldfit or the right side
of the image. (This form of translation-invariance shoutd be confused with the
invariances of complex cells, discussed in Section 3.4c2CGtmapter 10).
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The principal component weight®(x,y) for a covariance matrix of this form
can be shown to always have a very particular form: they amessids:

Wi (x,y) = sin(ax+ by+c) (5.10)

for some constants b, ¢ (the scaling is arbitrary so you could also multiplywith
a constant). See Section 5.8.2 below for a detailed mathematical aigalyhich
proves this.

The constanta andb determine the frequency of the oscillation. For example,
the first principal components have lower frequencies tharater ones. They also
determine the orientation of the oscillation. It can be seelfig. 5.7 that some of
the oscillations are oblique while others are vertical andzontal. Some have os-
cillations in one orientation only, while others form a kiaficheckerboard pattern.
The constant determines the phase.

The variances associated with the principal componenssteiithow strongly the
frequency of the sinusoid is presentin the data, which isatiorelated to computing
the power spectrum of the data.

Because of random effects in the sampling of image patchesamputation
of the covariance matrix, the estimated feature weightshateexactly sinusoids.
Of course, just the finite resolution of the images makes thdfarent from real
sinusoidal functions.

Since the principal component weights are sinusoids, thiyaily perform some
kind of Fourier analysis. If you apply the obtaingé as feature detectors on an
image patch, that will be related to a discrete Fourier fiamns of the image patch.
In particular, this can be interpreted as computing thefeoents of the patch in the
basis given by sinusoidal functions, as discussed in Se2ti®.2.

An alternative viewpoint is that you could also consider ¢oenputation of the
principal components as doing a Fourier analysis of the riawee matrix of the
image patch; this interesting connection will be considéneSection 5.6.

5.3 PCA as a preprocessing tool

So far, we have presented PCA as a method for learning fesatubhéch is the classic
approach to PCA. However, we saw that the results were rdtkappointing in the
sense that the features were not interesting as neuropbgsial models, and they
were not even well-defined.

However, PCA is not a useless model. It accomplishes sewsefliipreprocess-
ing tasks, which will be discussed in this section.
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5.3.1 Dimension reduction by PCA

One task where PCA is very useful is in reducing the dimensfdhe data so that
the maximum amount of the variance is preserved.

Consider the following general problem that also occurs enynother areas
than image processing. We have a very large numbemsayf random variables
X1,---,Xm- Computations that use all the variables would be too bisole®. We
want to reduce the dimension of the data by linearly tramsfiog the variables into
a smaller number, say, of variables that we denote lay, ..., z,:

m
zi:ZWijxj,foraIIizl,...,n (5.11)
=1

The number of new variables might be only 10% or 1% of the original number
m. We want to find the new variables so that they preserve as infmtmation on
the original data as possible. This “preservation of infation” has to be exactly
defined. The most wide-spread definition is to look at the sggharror that we get
when we try to reconstruct the original data using zhél'hat is, we reconstruc

as a linear transformatiog, a;iz, minimizing the average error

E §<xj—|2ajizi>2 =E{|x—|2aiza|2} (5.12)

where theaj; are also determined so that they minimize this error. Fop8aity, let
us consider only transformations for which the transforgnireights are orthogonal
and have unit norm:

Zwﬁ =1, foralli (5.13)
J

3 wijwij =0, foralli # k (5.14)
J

What is the best way of doing this dimension reduction? Thetism is to take
as thez then first principal components! (A basic version of this resalshown in
the exercises.) Furthermore, the optimal reconstructieight vectorsy in Equa-
tion (5.12) are given by the very same principal componeeights which compute
thez.

The solution is not uniquely defined, though, because aimpgdnal transforma-
tion of thez is just as good. This is understandable because any susldraration
of thez contains just the same information: we can make the inveassfiormation
to get thez from the transformed ones.

As discussed above, the features given by PCA suffer fronptbblem of not
being uniquely defined. This problem is much less seriousarcase of dimension
reduction. What matters in the dimension reduction congaxbt so much the actual
components themselves, but thebspacevhich they span. Thprincipal subspace
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means the set of all possible linear combinations oftfiest principal components.

It corresponds to taking all possible linear combinatioithie principal component
weight vectorS\M associated with the principal components. As pointed out above,
if two principal components ands; have the same variance, any linear combina-
tion 1S + gpSj has the same variance faf + g3 = 1. This is not a problem here,
however, since such a linear combination still belongs éosime subspace as the
two principal components ands;. Thus, it does not matter if we consider the com-
ponentss andsj, or two components of the forapys + gzsj andris + rosj where
the coefficients, andr; give a different linear combination than thhgandqs.

So, then-dimensional principal subspace is usually uniquely deffe=n if some
principal components have equal variances. Of course, ytmaapen that the-th
and the(n+ 1)-th principal components have equal variances, and thatanaat
decide which one to include in the subspace. But the effethenvhole subspace
is usually quite small and can be ignored in practice.

Returning to the case of image data, we can rephrase thik byssaying that
it is the setof features defined by thefirst principal components and their linear
combinations that is (relatively) well defined, and not teattires themselves.

5.3.2 Whitening by PCA

5.3.2.1 Whitening as normalized decorrelation

Another task for which PCA is quite useful is whitening. Wimiing is an impor-
tant preprocessing method where the image pixels are transfl to a set of new
variabless,, ..., s, so that thes are uncorrelated and have unit variance:

0if i  j

5.15
Lifi=] ( )

E{ssj} ={

(Itis assumed that all the variables have zero mean.) Iss $did that the resulting
vector(sy, ..., S) is white.

In addition to the principal components weights being ogthraal, the principal
components themselves are uncorrelated, as will be showrone detail in Sec-
tion 5.8.1. So, after PCA, the only thing we need to do to getemed data is to
normalize the variances of the principal components byditig them by their stan-
dard deviations. Denoting the principal componentgibthis means we compute

N (. (5.16)
var(y;)

to get whitened componenss Whitening is a useful preprocessing method that
will be used later in this book. The intuitive idea is thatdnepletely removes the
second-order information of the data. “Second-order” nseagre correlations and
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variances. So, it allows us to concentrate on propertiesairenot dependent on
covariances, such as sparseness in the next chapter.
Whitening by PCA is illustrated in Figure 5.10.

a) 15 prommmmmTm ) LS e
0.5 F . 05 F -
~05F : ~05F ]
~15 0 L5 ~15 0 L5
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0 i
—05F :
-1F :
1.5 B b d
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Fig. 5.10: lllustration of PCA and whitenin@) The original data “cloud”. The arrows show the
principal components. The first one points in the directibthe largest variance in the data, and
the second in the remaining orthogonal directiohWhen the data is transformed to the principal
components, i.e. the principal components are taken asevecoordinates, the variation in the
data is aligned with those new axes, which is because theipaincomponents are uncorrelated.
¢) When the principal components are further normalized td vaiiance, the data cloud has
equal variance in all directions, which means it has beertemkd. The change in the lengths of
the arrows reflects this normalization; the larger the varéa the shorter the arrow.

5.3.2.2 Whitening transformations and orthogonality

It must be noted that there are many whitening transformatitn fact, if the ran-
dom variables;,i = 1...,n are white, then angrthogonal transformationf those
variables is also white (the proof is left as an exerciseje@fwhitening is based
on PCA because PCA is a well-known method that can be competgdast, but
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it must be kept in mind that PCA is just one among the many witgtransforma-
tions. Yet, PCA is a unique method because it allows us to aoerthree different
preprocessing methods into one: dimension reduction gnfrg, and anti-aliasing
(which will be discussed in the next section).

In later chapters, we will often use the fact that the corinadtetween orthog-
onality and uncorrelatedness is even stronger for whitetaal. In fact, if we com-
pute two linear componeng vis andy;w;s from white data, they are uncorrelated
only if the two vectorsv andw (which contain the entrieg andw;, respectively)
are orthogonal.

In general, we have the following theoretical result. Foiterldata, multiplication
by a square matrix gives white componentaiifd only if the matrix is orthogonal.
Thus, when we have computed one particular whitening toamsdtion, we also
know thatonly orthogonal transformations of the transformed data canfieew

Note here the tricky point in terminology: a matrix if calledthogonal if its
columns, or equivalently its rows, are orthogoreahd the norms of its columns
are all equal to one. To emphasize this, some authors calrtangonal matrix
orthanormal We stick to the word “orthogonal” in this book.

5.3.3 Anti-aliasing by PCA

PCA also helps combat the problemadiasing which refers to a class of problems
due to the sampling of the data at a limited resolution — in case the limited
number of pixels used to represent an image. Sampling ofrtiagé loses infor-
mation; this is obvious since we only know the image througivalues at a finite
number of pixels. However, sampling can also introduce ¢dssous distortions in
the data. Here we consider two important ones, and show hoWwdag help.

5.3.3.1 Oblique gratings can have higher frequencies

One problem is that in the case of the rectangular sampliidy gblique higher
frequencies are overrepresented in the data, becauseithé gible to represent
oblique oscillations which have a higher frequency thahegithe vertical or hori-
zontal oscillations of the highest possible frequency.

This is because we can have an image which takes the form cécketboard
as illustrated in Figure 5.11 a). If you draw long obliquesknalong the white and
black squares, the distance between such lines is eqm as can be calculated
by basic trigonometry. This is smaller than one, which isshertest half-cycle (half
the length of an oscillation) we can have in the vertical aodzwontal orientation.
(It corresponds to the Nyquist frequency as discussed iméx¢ subsection, and
illustrated in Figure 5.11 b).

In the Fourier transform, this lack of symmetry is seen infiie that the area
of possible 2-D frequencies is of the form of a square, irst&aa circle as would
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be natural for data which is the same in all orientationstéition-invariant”, as
will be discussed in Section 5.7). Filtering out the high&lslique frequencies is
thus a meaningful preprocessing step to avoid any artedaets$o this aliasing phe-
nomenon. (Note that we are here talking about the rectanfprta of the sampling
grid, i.e. the relation of the pixels centerpoints to eadteatThis is not at all related
to the shape of the sampling window, i.e. the shape of thehpatc

It turns out that we can simply filter out the oblique frequesdy PCA. With
natural images, the last principal components are thosetmeespond to the high-
est oblique frequencies. Thus, simple dimension redudiioPCA alleviates this
problem.

Fig. 5.11: Effects of sampling (limited number of pixels) eery high-frequency gratingg) A
sinusoidal grating which has a very high frequency in thequid orientation. The cycle of the
oscillation has a length of\21/2 = +/2 which is shorter than the smallest possible cycle length
(equal to two) in the vertical and horizontal orientatioh¥.A sinusoidal grating which has the
Nyquist frequency. Although it is supposed to be sinuseidak to the limited sampling (i.e.,
limited number of pixels), it is really a block grating.

5.3.3.2 Highest frequencies cannot can have only two diffent phases

Another problem is that at the highest frequencies, we camaxe sinusoidal grat-
ings with different phases. Let us consider the highestiplesgequency, called in

Fourier theory the Nyquist frequency, which means thatdli®one cycle for every
two pixels, see Figure 5.11 b). What happens when you chdrggphiase of the
grating a little bit, i.e. shift the “sinusoidal” grating at® Actually, almost noth-

ing happens: the grating does not shift at all because dueetbrited resolution

given by the pixel size, it is impossible to represent a sstait in the grating. (The

grey-scale values will be changed; they depend on the matetelen the sampling
lattice and the underlying sinusoidal they try to repregeftte sampled image re-
ally changes only when the phase is changed so much that shemgroximation

is to flip all the pixels from white to black and vice versa.
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Thus, a grating sampled at the Nyquist frequency can reailg lonly two differ-
ent phases which can be distinguished. This means that noamtgpts depending
on the phase of the grating, such as the phase tuning curegq$é.4) or phase-
invariance (Chapter 10) are rather meaningless on the Nydpeiquency. So, we
would like to low-pass filter the image to be able to analyzghguhenomena with-
out the distorting effect of a limited resolution.

Again, we can alleviate this problem by PCA dimension reuctbecause it
amounts to discarding the highest frequencies.

5.3.3.3 Dimension selection to avoid aliasing

So, we would like to do PCA so that we get rid of the checkerbpatterns as well
as everything in the Nyquist frequency. On the other handjerét want to get rid
of any lower frequencies.

To investigate the dimension reduction needed, we compated amount of
checkerboard and Nyquist gratings is present in the datdwascéion of dimension
after PCA. We also computed this for gratings that had hafNlyquist frequency
(i.e. a cycle was four pixels), which is a reasonable candiflar the highest fre-
guency patterns that we want to retain.

The results are shown in Figure 5.12. We can see in the figatetohget rid
of checkerboard patterns, not much dimension reductiorecessary: 10% or so
seems to be enougtlo get rid of the Nyquist frequency, at least 30% seems to be
necessary. And if we look at how much we can reduce the dirnengthout losing
any information on the highest frequencies that we areyéatérested in, it seems
we can easily reduce even 60%-70% of the dimensions.

Thus, the exact number of dimensions is not easy to detern@cguse we don't
have a very clear criterion. Nevertheless, a reduction d¢ast 30% seems to be
necessary to avoid the artifacts, and even 60%-70% can benreended. In the
experiments in this book, we usually reduce dimension by.75%

5.4 Canonical preprocessing used in this book

Now, we have arrived at a preprocessing method that we cafidnical preprocess-
ing” because it is used almost everywhere in this book. Camabpreprocessing
means:

1. Remove the DC component as in Eq. (5.1).
2. Compute the principal components of the image patches.

3 Note that this may be an underestimate: van Hateren propibsé®0% may be needed (van
Hateren and van der Schaaf, 1998). This is not importantaridtiowing because we will anyway
reduce at least 30% for other reasons that will be explaimdl n
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Fig. 5.12: The percentage of different frequencies presetie data as a function of PCA di-
mension reduction. Horizontal axis: Percentage of dinwssiretained by PCA. Vertical axis:
Percentage of energy of a given grating retained. Soligli@ratings of half Nyquist frequency
(vertical and oblique) (wanted). Dotted line (see lowehtipand corner): checkerboard pattern
(unwanted). Dashed lines: Gratings of Nyquist frequeneytigal and oblique) (unwanted).

3. Retain only then first principal components and discard the rest. The number

is typically chosen as 25% of the original dimension.
4. Divide the principal components by their standard déwegtas in Equation (5.16)

to get whitened data.
Here we see two important (and interrelated) reasons fangdwihitening by

PCA instead of some other whitening method. We can reducertiian to com-
bat aliasing and to reduce computational load with hardiyetira computational

effort.

Notation The end-product of this preprocessing isradimensional vector for
each image patch. The preprocessed vector will be denotedboyl its elements by
7,...,Zy, when considered as a random vector and random variablegr@tiions

of the random vector will be denoted lay, z,, . .., or more often with the subscript

t as inz. In the rest of this book, we will often use such canonicalggrocessed
data. Likewise, observed image patches will be denoted layd their individual
pixels byl (x,y), when these are considered a random vector and random lesiab

respectively, and their observations will be denoted;andl;(x,y).
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5.5 Gaussianity as the basis for PCA

5.5.1 The probability model related to PCA

In PCA and whitening, it is assumed that the only interestisgect of the data
variablesxs, ..., X, is variances and covariances. This is the case with gaudatan
where the probability density function equals

1
(2m)"/2| detC|~1/2

P(X1,---,Xn) = exp(—%inxj [CYi) (5.17)
1]

where C is the covariance matrix of the dat@ ! is its inverse, andC~1J;; is
thei, j-th element of the inverse. Thus, the probability distribatis completely
characterized by the covariances (as always, the meanssarmad zero here).

These covariance-based methods are thus perfectly suoffi€ithe distribution
of the data is gaussian. However, the distribution of imaafe @ typically very far
from gaussian. Methods based on the gaussian distributierteglect some of the
most important aspects of image data, as will be seen in tkischapter.

Using the gaussian distribution, we can also interpret PEA statistical model.
After all, one of the motivations behind estimation of stitial models for natural
images was that we would like to use them in Bayesian infereRor that, it is
not enough to just have a set of features. We also need to staddrhow we can
compute the prior probability density functigr(xs,...,X,) for any given image
patch.

The solution is actually quite trivial: we just plug in thevasiance of the data in
Eq. (5.17). There is actually no need to go through the t®obtomputing PCA in
order to get a probabilistic model! The assumption of gaussy is what gives us
this simple solution.

In later chapters, we will see the importance of the assumpmif gaussianity, as
we will consider models which do not make this assumption.

5.5.2 PCA as a generative model

A more challenging question is how to interpret PCA as a gahar model, i.e. a
model which describes a process which “generated” the Gatxe is a large litera-
ture on such modelling, which is typically calléatctor analysisPCA is considered
a special case, perhaps the simplest one, of factor analgiiels. The point is that
we can express data as a linear transformation of the pahcgmponents

xy) =5 W(xy)s (5.18)
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What we have done here is simply to invert the transformdtiom the data to the
principal components, so that the data is a function of thecgral components
and not vice versa. This is very simple because the vettpase orthogonal: then
the inverse of the system (matrix) they form is just the sanag¢rimtransposed, as
discussed in Section 19.7. Therefore, the feature veatotisis generative model
are just the same as the feature detector weights that wewtechwith PCA.

Now, we define the distribution of the as follows:

1. the distribution of each is gaussian with variance equal to the variance of the
i-th principal component
2. thes are statistically independent from each other.

This gives us, using Equation (5.18), a proper generativeahaf the data. That is,
the data can be seen as a function of the “hidden” variabkdsattle now given by
the principal components.

5.5.3 Image synthesis results

Once we have a generative model, we can do an interestingierqye to test our
model: We can generate image patches from our model, and lseetiey look
like. Such results are shown in Figure 5.13. What we see isttieaPCA model
captures the general smoothness of the images. The smesthomes from the
fact that the first principal components correspond to featectors which change
very smoothly. Other structure is not easy to see in thesétseJ he results can be
compared with real natural images patches shown in Fig@eb.page 99; they
clearly have a more sophisticated structure, visible enghaese small patches.

5.6 Power spectrum of natural images

An alternative way of analyzing the covariance structureiméges is through
Fourier analysis. The covariances and the frequency-basgzkrties are related
via the Wiener-Khinchin theorem. We begin by considering plower spectra of
natural images and then show the connection.

5.6.1 Thel/f Fourier amplitude or1/f? power spectrum

The fundamental result on frequency-based representatioatural images is that
the power spectrum of natural images typically falls offérsely proportional to
the square of the frequency. Since the power spectrum isgilie@rs of the Fourier
amplitude (spectrum), this means that the Fourier amdifiatls off as a function
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Fig. 5.13: Image synthesis using PCA. 20 patches were ralydpenerated using the PCA model
whose parameters were estimated from natural images. Gempth real natural image patches
in Figure 5.2.

¢/ f wherec is some constant anflis the frequency. It is usually more convenient
to plot the logarithms. For the logarithm this means

Log Fourier amplitude= —log f + const. (5.19)

or
Log power spectrurs= —2logf + const. (5.20)

for some constant which is the logarithm of the constant

Figure 5.15 a) shows the logarithm of the power spectrum efrtatural im-
age in Fig. 5.14 a). What we can see in this 2D plot is just thatgpectrum is
smaller for higher frequencies. To actually see how it faffs we have to look at
one-dimensional cross-sections of the power spectrunfyatorte average over all
orientations. This is how we get Fig. 5.15 b), in which we hals® taken the log-
arithm of the frequency as in Equation (5.20). This plot lyarérifies our result: it
is largely linear with a slope close to minus two, as expedt&ctually, more thor-
ough investigations have found that the log-power spectmay, in fact, change a
bit slower than 12, with a exponent closer to.8 or 1.9. ) In addition, the power
spectra are very similar for the two images in Fig. 5.15.

A large literature in physics and other fields has considénedsignificance of
such a behaviour of the power spectrum. Many other kinds t dave the same
kind of spectra. An important reason for this is that if theads scale-invariant,
or self-similar, i.e. it is similar whether you zoom in or gthie power spectrum is
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necessarily something like proportional tgf?; see References section below for
some relevant work.

Fig. 5.14: Two natural images used in the experiments.
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Fig. 5.15: Power spectrum or Fourier amplitude of naturadges.a) The logarithm of two-
dimensional power spectrum of natural image in Fig. 5.14&)The average over orientations
of one-dimensional cross-sections of the power spectrutheofwo images in Fig. 5.14. Only the
positive part is shown since this is symmetric with respeche origin. This is a log-log plot where

a logarithm of base 10 has been taken of both the frequenciz@imal axis) and the power (ver-
tical axis) in order to better show the/ i behaviour, which corresponds to a linear dependency
with slope of—2.
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5.6.2 Connection between power spectrum and covariances

What is then the connection between the power spectrum ahage, and the co-
variances between pixels we have been computing in thistet#apo this end, we
need a theorem from the theory of stochastic processes (lveavrigorously de-
fine what stochastic processes are because that is not agcemssthe purposes of
this book). The celebrated Wiener-Khinchin theorem sttditasfor a stochastic pro-
cess,the average power spectrum is the Fourier Transform of theaarrelation
function

The theorem talks about the “autocorrelation function”isTik the terminology
of stochastic processes, which we have not used in this ehape simply consid-
ered different pixels as different random variables. Thet6aorrelation function”
means simply the correlations of variables (i.e. pixel ealas a function of the hor-
izontal and vertical distances between them. Thus, thecatrlation function is a
matrix constructed as follows. First, take one row of theaz@nce matrix, say the
one corresponding to the pixel @, Yyo). To avoid border effects, let’s taKeo, yo)
which is in the middle of the image patch. Then, convert thastor back to the
shape of the image patch. Thus, we have a m&i(i, yo)

cov(l (X0, ¥0),1(1,1)) ... cov(l (Xo,Yo),1(1,n))
: (5.21)
cov(l (X0, ¥o0),1(n,1)) ... cov(l (Xo,Yo),1(n,n))

which has the same sizex mas the image patch. This matrix is nothing else than
what was already estimated from natural images and platt€ibi. 5.4.

Actually, it is obvious that this matrix essentially comtsiall the information in
the covariance matrix. As discussed in Section 5.2.5, ibrmmonly assumed that
image patches are translation-invariant in the sense lleatdvariances actually
only depend on the distance between two pixels, and not omewhehe patch the
pixels happen to be. (This may not hold for whole images, whbe upper half
may depict sky more often and lower parts, but it certainijdedor small image
patches.) Thus, to analyze the covariance structure ofesyal we really need is
a matrix like in Equation (5.21).

What the Wiener-Khinchin theorem now says is that when we tak Fourier
transformation ofC(xg, Yo), just as if this matrix were an image patch, the Fourier
amplitudes equal theveragegpower spectrum of the original image patches. (Due to
the special symmetry properties of covariances, the phiaghee Fourier transform
of C(Xo,Yo) are all zero, so the amplitudes are also equal to the coeffece the
cos functions.)

Thus, we can see the connection between theRourier amplitude of natural
images and the covariances of the pixels structure. Thegee¥ f Fourier ampli-
tude or the 7 f2 power spectrum of single images implies that the Fourierstiarm
of C(xo,Yo) also falls of as 1f2. Now, since the features obtained from PCA are
not very different from those used in a discrete Fouriergfarm (sine and cosine
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functions), and the squares of the coefficients in that kasishe variances of the
principal components, we see that the variances of the ipeghcomponents fall
off as 1/ f2 as a function of frequency. (This cannot be seen in the vegigtot in
Fig. 5.9 because that plot does not give the variances asdduorof frequency.)

Anotherimplication of the Wiener-Khinchin theorem is titathows howconsid-
ering the power spectrum of images alone is related to ussggian modelSince
the average power spectrum contains essentially the sdoreniation as the covari-
ance matrix, and using covariances only is equivalent tagugigaussian model, we
see that considering the average power spectrum alonedstesly equivalent to
modelling the data with a gaussian pdf as in Section 5.5 .eSime power spectrum
does not contain information about phase, using the phasetste is thus related
to using the non-gaussian aspects of the data, which wilbbsidered in the next
chapters.

5.6.3 Relative importance of amplitude and phase

When considering frequency-based representations ofal@tuages, the following
question naturally arises: Which is more important, phasengplitude (power) —
or are they equally important? Most researchers agreetiegittase information is
more important for the perceptual system than the amplistidesture. This view is
justified by experiments in which we take the phase strudroma one image and
the power structure from another, and determine whetheinthge is more similar
to one of the natural images. What this means is that we takEdhrier transform
(using the Discrete Fourier Transform) of the two images|, ianlate the phase and
amplitude from the two transforms. Then we compute the swef the Fourier
transform from the combination of the phase from the firstgmand the amplitude
from the second; this gives us a new image. We also creatbamiatage with the
inverse Fourier transform using the phase from the secoadénand the amplitude
from the first.

Results of such an experiment are shown in Fig. 5.16. In bages; the image
“looks” more like the image from which the phase structuresvteken, although
in a) this is not very strongly so. This may be natural if onekle at the Fourier
amplitudes of the images: since they are both rather sinfslaowing the typical
1/f fall-off), they cannot provide much information about whhé image really
depicts. If all natural images really have amplitude sgeethich approximately
show the ¥ f shape, the power spectrum cannot provide much informatiocany
natural image, and thus the phase information has to be thékidentifying the
contents in the images.

Thus, one can conclude that since PCA concentrates onlyforiation in the
power spectrum, and the power spectrum does not containod petrceptually im-
portant information, one cannot expect PCA and related atstho yield too much
useful information about the visual system. Indeed, thiszvjoles an explanation for
the rather disappointing performance of PCA in learninduess from natural im-
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ages as seen in Fig. 5.7 — the performace is disappointingast, if we want to
model receptive fields in V1. In the next chapter we will sea tising information
not contained in the covariances gives an interesting mafd@mple cell receptive
fields.

Fig. 5.16: Relative importance of phase and power/amgditinformation in natural images)
Image which has the Fourier phases of the image in Fig. 5,1ahd)the Fourier amplitudes of the
image in Fig. 5.14 b)) Image which has the phases of the image in Fig. 5.14 b), arahtpétude
structure of the image in Fig. 5.14 a). In both cases the imageperceptually more similar to the
image from which the phase structure was taken, which itekcthat the visual system is more
sensitive to the phase structure of natural images.

5.7 Anisotropy in natural images

The concept of anisotropy refers to the fact that naturab@saare not completely
rotationally invariant (which would be called isotropy).dther words, the statistical
structure is not the same in all orientations: if you rotateimage, the statistics
change.

This may come as a surprise after looking at the correlataefficients in Fig-
ure 5.4 d), in which it seems that the correlation is simplyraction of the distance:
the closer to each other the two pixels are, the stronger tugrelation; and the
orientation does not seem to have any effect. In fact, ipgtis not a bad first ap-
proximation, but a closer analysis reveals some depenegnai orientation.

Figure 5.17 show the results of such an analysis. We hava thieecorrelation
coefficients computed in Figure 5.4, and analyzed how thegeé on the orienta-
tion of the line segment connecting the two pixels. An orion of O (orrr) means
that the two pixels have the sameoordinate; orientation oft/2 means that they
have the same coordinate. Other values mean that the pixels have an abiigja-
tionship to each other. Figure 5.17 shows that the cormeiatare the very strongest
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if the pixels have the samecoordinate, that is, they are on the same horizontal line.
The correlations are also elevated if the pixels have theesasnordinate.

In fact, we already saw in Figure 5.6 that the first principainponent is, con-
sistently, a low-frequency horizontal edge. This is in liwgéh the dominance of
horizontal correlations. If the images exactly isotropiorizontal edges and verti-
cal edges would have exactly the same variance, and the ffinsigal component
would not be well-defined at all; this would be reflected inu¥g5.6 so that we
would get edges with different random orientations.

Thus, we have discovered a form of anisotropy in natural ergtgtistics. It will
be seen in different forms in all the later models and analygsawell.

0.4/
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Fig. 5.17: Anisotropy, i.e. lack of rotational invariande, natural image statistics. We took the
correlation coefficients in Figure 5.4 and plotted them omeehcircles with different radii (the

maximum radius allowed by the patch size, and that multitig one half and one quarter). For
each of the radii, the plot shows that the correlations argimmaed for the orientations of O or

i, which mean horizontal orientation: the pixels are on theesdorizontal line. The vertical

orientationrt/2 shows another maximum which is less pronounced.

5.8 Mathematics of principal component analysis*

This section is dedicated to a more sophisticated matheatatnalysis of PCA and
whitening. It can be skipped by a reader not interested irheragtical details.
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5.8.1 Eigenvalue decomposition of the covariance matrix

The “second-order” structure of data is completely desatiby the covariance ma-
trix, defined in Section 4.6.3. In our case with th@ndy coordinates of the patches,
we can write:

Cxy:X,yY) =E{l(x ) (X.Y)} (5.22)
The point is that the covariance afiytwo linear features can be computed by

E{[zw1<x7y>l<x7y>1[zwz<x,y>l <x,y>>1}
Xy Xy

—E {[ le(x,y)I (%YM (X, Y) (X’A/))]}
Xy

= Wl(xvy)VVZ(X,a)/)E{I(va)l(xla)/)}

xyXy'
= Y WX yWe(X,y)C(x,y;X,y) (5.23)
xyxXy'

which reduces to a something which can be computed usingav&riance ma-
trix. The second-order structure is thus conveniently@spnted by a single matrix,
which enables us to use classic methods of linear algebradlyze the second-
order structure.

To go into details, we change the notation so that the whobgens in one
vector,X, so that each pixel is one element in the vector. This can benaglished,
for example, by scanning the image row by row, as was expiaiméection 4.1.
This simplifies the notation enormously.

Now, considering any linear combinatiar x = ¥; wix; we can compute its vari-
ance simply by:

E{(w'x)?} = E{(Ww"x)(x"w)} = E{w" (xx")w} = wTE{xx" }w

=w'Cw (5.24)

where we denote the covariance matrix®y= E{xx"}. So, the basic PCA problem
can be formulated as

max w'Cw (5.25)

w:|lw||=1
A basic concept in linear algebra is the eigenvalue decoitiposThe starting

point is thatC is a symmetric matrix, because @y x;j) = cov(xj,X;). In linear
algebra, it is shown that any symmetric matrix can be expiebas a product of the
form:

Cc=ubpu" (5.26)
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whereU is an orthogonal matrix, and = diag(A1, ..., Am) is diagonal. The columns
of U are called theigenvectorsand the); are called theigenvaluesviany efficient
algorithms exist for computing the eigenvalue decompasitif a matrix.
Now, we can solve PCA easily. Lets us make the change of vasalk= UTw.
Then we have
w'cw=w"ubU'w=v"Dv= zViz)\i (5.27)
I

BecauseJ is orthogonal||v|| = ||w||, so the constraint is the same foas it was
for w. Let us make the further change of variableste= v2. The constraint of unit
norm of v is now equivalent to the constraints that the sum ofrthenust equal
one (they must also be positive because they are square=), Tie problem is
transformed to
mz?%:llzm)" (5.28)

It is rather obvious that the maximum is found when thecorresponding to the
largest); is one and the others are zero. Let us denot€ ltilye index of the max-
imum eigenvalue. Going back to thve this corresponds tav begin equal to the
i*-th eigenvector, that is, thé-th column ofU. Thus, we see how the first principal
componentis easily computed by the eigenvalue decomepnsiti

Since the eigenvectors of a symmetric matrix are orthogdimaling the second
principal component means maximizing the variance soxha kept zero. This is
actually equivalent to making the new orthogonal to the first eigenvector. Thus,
in terms ofm;, we have exactly the same optimization problem, but withetkiea
constraint thatry» = 0. Obviously, the optimum is obtained whenis equal to the
eigenvector corresponding to teecondargest eigenvalue. This logic applies to the
k-th principal component.

Thus, all the principal components can be found by orderrgdigenvectors
ui,i =1,...,min U so that the corresponding eigenvalues are in decreasiry.ord
Let us assume thét is ordered so. Then theth principal componers is equal to

s =u/x (5.29)

Note that it can be proven that tikeare all non-negative for a covariance matrix.
Using the eigenvalue decomposition, we can prove someeistiag properties
of PCA. First, the principal components arecorrelated because for the vector of
the principal components
s=U"x (5.30)

we have
E{ss } =E{U™xx"U} = UTE{xx"}u =UT(UDU")U
=(UTUD(UTU)=D (5.31)

because of the orthogonality &f. Thus, the covariance matrix is diagonal, which
shows that the principal components are uncorrelated.
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Moreover, we see that the variances of the principal compisreee equal to the
Ai. Thus, to obtain variables that are white, that is, uncateel and have unit vari-
ance, it is enough to divide each principal component by ¢fuaue root of the cor-
responding eigenvalue. This proves that diag/As,...,1/v/Am)UT is awhitening
matrix forx.

This relation also has an important implication for the wagess of PCA. If
two of the eigenvalues are equal, then the variance of thoseipal components
are equal. Then, the principal components are not well-ddfamymore, because we
can make aotation of those principal components without affecting their sades.
This is because if; andz 1 have the same variance, then linear combinations such
as+/1/2z ++/1/2z1 and/1/2z — \/1/2z 1 have the same variance as well;
all the constraints (unit variance and orthogonality) aii fellfilled, so these are
equally valid principal components. In fact, in linear dge, it is well-known that
the eigenvalue decomposition is uniquely defined only whereigenvalues are all
distinct.

5.8.2 Eigenvectors and translation-invariance

Using the eigenvalue decomposition, we can show why thecip@h components
of a typical image covariance matrix are sinusoids as stat8gction 5.2.5. This is
because of their property of being translation-invariaet,the covariance depends
only on the distance as in (5.9). For simplicity, let us cdesia one-dimensional
covariance matrix(x — x'). The functionc is even-symmetric with respect to zero,
i.e.c(—u) = c(u). By a simple change of variabie= x— X, we have

> cov(x,X)sin(x+a) =y c(x—X)sin(x+a) = c@)sinz+x +a) (5.32)

Using the property that sia+ b) = sinacosb+ cosasinb, we have
> c@sinz+x +a) = c(z)(sin(z) cogX + a) +cogz)sin(X + a))

= [y c(z)sin(z)]cosX +a) +[} c(z)cog2)]sin(x' +a) (5.33)

Finally, because(z) is even-symmetric and sin is odd-symmetric, the first sum in
brackets is zero. So, we have

> cov(x, X)sin(x+a) = [> c(2)coq2)] sin(X +a) (5.34)

z

which shows that the sinusoid is an eigenvector of the camag matrix, with eigen-
valuey ,c(z) cogz). The parametenr gives the phase of the sinusoid; this formula
shows thatr can have any value, so sinusoids of any phase are eigersector
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This proof can be extended to sinusoids of different fregie=3: they all are
eigenvalues with eigenvalues that depend on how stronglyréguency is present
in the datay ,c(z) cogBz).

In the two-dimensional case, we have fdx,y),l (X,y)) = c((x —X)?+ (y —
y)?) and withé = x—x andn =y —y we have

3 c((x=X)?+ (y—Y)?)sin(ax+by+c)
Xy

= Zc(E,n)sin(aE+br7+a>(+b)/+c)
&n
=Y c(&.n)[sin(@g +bn)cogax +by +c) + coga& + bn)sin(@x + by +c)]
&.n
=0-+[} c(&.n)cogaé +bn)]sin(ax +by +c) (5.35)
&n

which shows, likewise, that sinusoids of the form(sixi + by + c) are eigenvectors.

5.9 Decorrelation models of retina and LGN *

In this section, we consider some further methods for wimigiand decorrelation
of natural images, and the application of such methods aslmad processing in
the retina and the LGN. This material can be skipped withotgrrupting the flow
of ideas.

5.9.1 Whitening and redundancy reduction

The starting point here is the redundancy reduction hysishdiscussed in Chap-
ter 1. In its original form, this theory states that the earigual system tries to
reduce the redundancy in its input. As we have seen in in thapier, image pixel
data is highly correlated, so a first approach to reduce ttlerr@ancy would be to
decorrelateémage data, i.e. to transform it into uncorrelated compésnen

One way to decorrelate image data is to whiten it with a spéitier. In a visual
system, this filtering would correspond to a set of neurorit) Wlentical spatial
receptive fields, spaced suitably in a lattice. The outptitt@neurons would then
be uncorrelated, and if we were to look at the outputs of thelevket of neurons as
an image (or a set of images for multiple input images), tleegput images would
on the average have a flat power spectrum.

The whitening theory has led to well-known if rather con&sial models of the
computational underpinnings of the retina and the latezal@ulate nucleus (LGN).
In this section we will discuss spatial whitening and spaéeeptive fields accord-
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ing to this line of thought; the case of temporal whiteningl &mporal receptive
fields will be discussed in detail in Section 16.3.2 (page)345

The basic idea is that whitening alone could explain thearesiirround structure
of the receptive fields of ganglion cells in the retina, aslaelthose in the LGN.
Indeed, certain spatial whitening filters are very similarganglion RF’s, as we
will see below. However, such a proposal is problematic bsedhere are many
completely different ways of whitening the image input, a@rid not clear why this
particular method should be used. Nevertheless, this yhisdnteresting because
of its simplicity and because it sheds light on certain fundatal properties of the
covariance structure of images.

There are at least two ways to derive the whitening operatiaquestion. The
first is to compute it directly from the covariance matrix ofage patches sampled
from the data; this will lead to a set of receptive fields, bithva suitable constraint
the RF's will be identical except for different center looats, as we will see below.
We will call this patch-based whitening’he second way is to specify a whitening
filter in the frequency domain, which will give us additiomasight and control over
the process. This we will cafilter-based whitening

5.9.2 Patch-based decorrelation

Our first approach to spatial whitening is based on the PCAemimg introduced
above in Section 5.3.2 (page 109). The data transformditlustrated in the two-
dimensional case in Figure 5.18.

Here, we will use the matrix notation because it directlyvgieome important
properties of the representation we construct. Here, wetgdnyU the matrix with
the vectors defining the principal components as its columns

U = (ulau27' o ,Uk). (536)

Let x denote the data vector. Because the vectoese orthogonal, each of the
principal componentg, k= 1,...,K, of the data vectox can be computed simply
by taking the dot product between the data vector andtttn®CA vector:

Ye=upx, k=1,..K. (5.37)

Defining the vectoy = (y1,y2,---,yk)T, the Equations (5.37) for ak = 1,...,K
can be expressed in a single matrix equation

y=UTx. (5.38)

In our two-dimensional illustration, the result of this nsformation is shown in
Figure 5.18b).

As in Section 5.3.2, we next whiten the data by dividing the@pal components
with their standard deviations. Thus we obtain whitened ponentss,
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Fig. 5.18: An illustration of the whitening procedure thattised to derive a set of whitening
filters wy, k=1,...,K (here, we take&k = 2). The procedure utilizes the PCA basis vectogs
k=1,...,K. a) The original generated data points and the PCA basis veatoend u, (grey)
and the unit vector$l,0) and (0,1) (black).b) The data points are first rotated so that the new
axes match the PCA basis vector$. The data points are then scaled along the axes so that the
data have the same variance along both axes. This also ntekdéwd dimensions of the data
uncorrelated, so the end result is a whitened data set. (Fpopes of visualization of the data
points and the vectors, in this illustration this variangsiinaller than 1, while in whitening it is 1;
this difference corresponds to an overall scaling of tha.gid) Finally, the data points are rotated
back to the original orientation. Note that the data areaalyevhite after the second transformation
in ¢), and the last transformation is one of infinitely manysgible rotations that keep the data
white; in this method, it is the one that inverts the rotatdome by PCA. Mathematically, the
three transformations in b)-d) can in fact be combined instngle linear transformation because
each transformation is linear; the combined operation eddme by computing the dot products
between the original data points and the vecteysandw; which are the result of applying the
three transformations to the original unit vectors. Seefraaxdetails.
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S=—2 k=1 K, (5.39)

Vvarly)’

This is shown for our illustrative example in Figure 5.18c).

Again, we can express theBeequations by a single matrix equation. Define a
vectors= (s1,%, - - ,sK)T, and let/A denote a diagonal matrix with the inverses of
the square roots of the variances on its diagonal:

1

1 o ... 0

V/var(yr) .

/\ — Var(y2> . (540)
0 0 1
var(yk )
then

s=Ay=AUTx. (5.41)

So far we have just expressed PCA whitening as a matrix faatioul. Now,
we will make a new operation. Among the infinitely many whitepmatrices, we
choose the one which is given by inverting the PCA computagiven byU. In
a sense, we go “back from the principal components to thamaligoordinates”
(Figure 5.18d). Denoting by the final component computed, this is defined by the
following matrix equation:

z=Us=UAU"x. (5.42)

The computation presented in Equation (5.43) consist aethinear (matrix)
transformations in a cascade. The theory of linear transfbion states that a cas-
cade of consecutive linear transformations is simply amolinear transformation,
and that this combined transformation — which we will heraate byW — can be
obtained as the matrix product of the individual transfatioves:

z=UAUT x = Wx. (5.43)
=W

When written ask scalar equations, Equation (5.43) shows that the compsmént
vectorz=1[z 2 - zK]T can be obtained as a dot product between the data vector
x and thekth row of matrixW = [wy w ---wk]" :

Ze=wpx, k=1,... K. (5.44)

The vectorswvy, k= 1,....K, are of great interest to us, since they are filters which
map the inpuk to the whitened data. In other words, the vectorgsk=1,...,K,
can be interpreted as receptive fields. The receptive figldk = 1,...,K, can be
obtained simply by computing the matrix product in Equaiiom3).

Matrix square root As an aside, we mention an interesting mathematical inter-
pretation of the matriXV. The matrixW is called thenverse matrix square roaif
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the covariance matri, and denoted b ~/2. In other words, the inverse/—1
is called the square root &, and denoted b /2. The reason is that if we multi-
ply W1 with itself, we getC. This is because, firsfUAUT)~1 = UA~1UT, and
second, we can calculate

WIw—t = (UA"TUT)(UA-IUT) =UA L UTUATUT =uA—2UT  (5.45)

The matrixA ~2 is simply a diagonal matrix with the variances in its diagosathe
result is nothing else than the eigenvalue decompositidimeofovariance matrix as
in Equation (5.26).

Symmetric whitening matrix  Another interesting mathematical property of the
whitening matrixw in Equation (5.43) is that it is symmetric, which can be shown
as

WT = (UAUT)T = (UT)TATUT =uAUT =w. (5.46)

In fact, it is the only symmetric whitening matrix.

Application to natural images When the previous procedure is applied to natural
image data, interesting receptive fields emerge. Figur@ah.ghows the resulting
whitening filters (rows / columns diV); a closeup of one of the filters is shown
in Figure 5.19b). As can be seen, the whitening principleltesn the emergence
of filters which have center-surround structure. All of thigefs are identical, so
processing image patches with such filters is analogoustéuiffigy them with the
spatial filter shown in Figure 5.19b).

As pointed out several times above, whitening can be dongfinitely many
different ways: ifW is a whitening transformation, so is any orthogonal transfo
mation of W. Here the whitening solution in Equation (5.43) has beencseteso
that it results in center-surround-type filters. This is agml property that we will
bump into time and again below: the whitening principle doesstrain the form
of the emerging filters, but additional assumptions are edéxtfore the results can
have a meaningful interpretation.

Note that the theory results in a single receptive field $tn&g while in the retina,
there are receptive fields with differing spatial propestiein particular scale (fre-
quency) — in the retina and the LGN. This is another limitatad the whitening
principle, and additional assumptions are needed to p®mdu@nge of differing
filters.

5.9.3 Filter-based decorrelation

Now we reformulate this theory in a filter-based frameworkem the theory pos-
tulates that the amplitude response properties (see 8803, page 33) of retinal
and LGN receptive fields follow from the following two assutiops:
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5 e O e O
b)

Fig. 5.19: The application of the whitening principle resuh the emergence of a set of center-
surround filters from natural image datg. The set of filters (rows / columns of whitening matrix
W) obtained from image dath) A closeup of one of the filters; the other filters are identealept
for spatial location.
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1. the linear filters are whitening natural image data
2. with the constraint that noise is not amplified unduly.

Additional assumptions are needed to derive the phasemsspo order to specify
the filter completely. This is equivalent to the observatitade above in the general
case of whitening: there are infinitely many whitening tfansations. Here, the
phases are defined by specifying that the energy of the fhitauld be concentrated
in either time or space, which in the spatial case can be lpaserpreted to mean
that the spatial RF’s should be as localized as possible.

The amplitude response of the filter will be derived in twotpathe first part is
the whitening filter, and the second part suppresses noieefilter will be derived
in the frequency domain, and thereafter converted to théadmbbomain by inverse
Fourier transform. It is often assumed that the statistiésiage data do not depend
on spatial orientation; we make the same assumption herstadg the orientation-
independent spatial frequenay. Conversion from the usual two-dimensional fre-
quenciesw andwy, to spatial frequencyos is given byws = | /w? + . Let R (ws)
denote the average power spectrum in natural images. We thadfor uncorrelated
/ whitened data, the average power spectrum should be aacti(fiat). Because the
average power spectrum of the filtered data is the produbtcdiverage power spec-
trum of the original data and the squared amplitude respohtde whitening filter,
which we denote byV (as)|?, this means that the amplitude response of a whitening
filter can be specified by

V(o) = ———. (5.47)

since therV () |* R (aws) = 1.

Real measurement data contains noise. Assume that the mdiese average
power spectrum if,(ws), is additive and uncorrelated with the original image data,
whose average power spectrunRs{a); thenR;(ws) = Ro(ws) + Rn(ws). To de-
rive the amplitude response of the filter that suppressesenone can use\iener
filtering approach. Wiener filtering yields a linear filter that can lsedito com-
pensate for the presence of additive noise: the resultiteg ptimally restores the
original signal in the least mean square sense. The demnivafithe Wiener filter in
the frequency space is somewhat involved, and we will skiyeie; see (Dong and
Atick, 1995b). The resulting response properties of therfidire fairly intuitive: the
amplitude responsi (ws)| of the Wiener filter is given by

Ri(ws) — Rn( @)
Ri(ws) -

Notice that if there are frequencies that contain no noiskat is, Ry(ws) = 0 —
the amplitude response is simply 1, and that higher noiseept®ads to decreased
amplitude response.

The overall amplitude response of the filf@f(ws)| is obtained by cascading the
whitening and the noise-suppressive filters (equations/jzand (5.48)). Because
this cascading corresponds to multiplication in the fretpyedomain, the amplitude

F(as)| = (5.48)
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response of the resulting filter is

1 Ri(ws)—Rn(wy)
Ri(ows) R(as)

In practice R (ws) can be estimated directly from image data for eaglor one can
use the parametric form derived in Section 5.6 (page 11&géuve values given
by this formula (5.49) have to be truncated to zero.) Noissgimed to be spatially
uncorrelated, implying a constant (flat) power spectrund, tarhave power equal to
data power at a certain characteristic frequency, denoted; p, so that

Rn(ws) = w for all ws. (5.50)

W (as)| = [V (s)] [F (s)| = (5.49)

In order to fully specify the resulting filter, we have to defiits phase response.
Here we simply set the phase response to zero for all fredgegnc

/W(ws) =0 forall as. (5.51)

With the phases of all frequencies at zero, the energy of liiee i highly concen-
trated around the spatial origin, yielding a highly sp&gi&dcalized filter. After the
amplitude and the phase responses have been defined, tia fipatitself can be
obtained by taking the inverse two-dimensional Fouriengfarm.

The filter properties that result from the application of atjons (5.49), (5.50)
and (5.51) are illustrated in Figure 5.20 for characteriftequency valuevsc =
0.3cycles per pixelFor this experiment, 100,000 image windows of sizex1B6
pixels were sampled from natural image3he average power spectrum of these
images was then computed; the average of this spectrum lbgpatial orientations
is shown in Figure 5.20a). The squared amplitude respongeofhitening filter,
obtained from equation (5.49), is shown in Figure 5.20b¥ pbwer spectrum of the
filtered data is shown in Figure 5.20c); it is approximatedy #t lower frequencies
and drops off sharply at high frequencies because of theehigiative noise power
at high frequencies. The resulting filter is shown in Figur208l); for comparison,
a measured spatial receptive field of an LGN neuron is shovifigare 5.20e).

Thus, the center-surround receptive-field structure, dbimthe retina and the
LGN, emerges from this computational model and natural endega. However, we
made several assumptions above — such as the spacing otépive fields — and
obtained as a result only a single filter instead of a rangétefdiin different scales
and locations. In Section 16.3.2 (page 345) we will see thtte temporal domain,
similar principles lead to the emergence of temporal RF ertgs of these neurons.

4 Here, we did not use our ordinary data set but that of van ldatand van der Schaaf (1998).
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Fig. 5.20: The application of the whitening principle, camésl with noise reduction and zero
phase response, leads to the emergence of center-surrttersiffom natural image data) The
power spectruni; (ws) of natural image datdy) The squared amplitude response of a whitening
filter which suppresses noise: this curve follows the inves§ the data power spectrum at low
frequencies, but then drops off quickly at high frequendiezause the proportion of noise is larger
at high frequenciex) The power spectrum of the resulting (filtered) data, shoveipgroximately
flat (white) power at low frequencies, and dropping off shagt high frequenciesd) The resulting
filter which has been obtained from the amplitude respond® and by specifying a zero phase
response for all frequencies; see text for deta)s-or comparison, the spatial receptive field of
an LGN neuron.

5.10 Concluding remarks and References

This chapter considered models of natural images which Wwased on analyzing
the covariances of the image pixels. The classic model iejpal component anal-
ysis, in which variance of a linear feature detector is mazéd. PCA fails to yield
interesting feature detectors if the goal is to model viggdls in brain. However,
it is an important model historically and conceptually, aisb provides the basis
for the preprocessing we use later in this book: dimensidnecgon combined with
whitening. In the next chapter, we will consider a differkimtd of learning criterion
which does yield features which are interesting for visuatelling.

Most of the work on second-order statistics of images is thasethe (approxi-
mate) ¥/ f? property of the power spectrum. This was investigated garl§Field,
1987; Burton and Moorehead, 1987; Tolhurst et al, 1992; Ruda and Bialek,
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1994a; van der Schaaf and van Hateren, 1996). It has beeogaogo explain
certain scaling phenomena in the visual cortex, such asribatation bandwidth
(van der Schaaf and van Hateren, 1996) and the relativets#gsf cells tuned to
different frequencies (Field, 1987). Early work on PCA ofiges include (Sanger,
1989; Hancock et al, 1992). The fLproperty is closely related to the study of self-
similar stochastic processes (Embrechts and Maejima,)2@0i@¢h has a very long
history (Mandelbrot and van Ness, 1968). The study of sdical systems (Bak
et al, 1987) may also have some connection. A model of how sei¢tsimilarities
come about as a result of composing an image of differenetdbf is proposed in
(Ruderman, 1997).

A recent paper with a very useful discussion and review ofpsychophysical
importance of the Fourier powers vs. phases is (Wichmant, &086); see also
(Hansen and Hess, 2007).

Another line of research proposes that whitening explatiaal ganglion recep-
tive fields (Atick and Redlich, 1992). (An extension of thieebry explains LGN
receptive field by considering temporal correlations ad {i&4n et al, 1996a), see
also Chapter 16.) For uniformity of presentation, we follthve mathematical the-
ory of (Dong and Atick, 1995b) both here in the spatial casg ianthe temporal
case in Section 16.3.2. As argued above, the proposal isgonaltic because there
are many ways of whitening data. A possible solution to thubl@m is to consider
energy consumption or wiring length, see Chapter 11 forc¢hiscept, as was done
in (Vincent and Baddeley, 2003; Vincent et al, 2005).

The anisotropy of pixel correlations has been used to exgame anisotropic
properties in visual psychophysics in (Baddeley and Hakct@91).

An attempt to characterize the proportion of informatioplained by the covari-
ance structure in natural images can be found in (ChandteFaid, 2007).

5.11 Exercices

Mathematical exercises

1. Show that if the expectations of the grey-scale valueb®pixels are the same
forall x,y:

E{I(x,y)} =E{l(X,y)} foranyx,y, X,y (5.52)

then removing the DC component implies than the expectatidtx,y) is zero
foranyx,y.

2. Show that ify, , Wy = 0, the removal of the DC component has no effect on the
output of the features detector.

3. Show that if the vectofys,...,yn)" is white, any orthogonal transformation of
that vector is white as well.

4. To get used to matrix notation:
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a. The covariance matrix of the vector= (X, ... ,xn)T is defined as the matrix
C with elementsci; = cov(x;,X;). Under what condition do we have =
E{xx"}?

b. Show that the covariance matrixyf= Mx equalsMCM T

5. Denote byw a vector which reduces the dimensiomofo one asz = 3 wix;.
Now, we will show that taking the first principal componentrie optimal way of
reducing dimension if the optimality criterion is leastisges error. This means
that we reconstruct the original data as a linear transftonaf z as:

IW) =E{Y (xj —wj2)*} (5.53)
J

a. Show thafl is equal to

ZWJZ Zwiwi/cov(xi,xi/) —2% w; Yy wicov(x;, %)+ Y var(xj)  (5.54)
T T ]

b. Using this expression fal, show that thew which minimizesJ under the
constraint|w/| = 1 is the first principal component af

Computer assignments

1. Take some images from the Web. Take a large sample of esfyesmall patches
of the images, so that the patch contains just two neighbguypixels. Convert
the pixels to grey-scale if necessary. Make a scatter platepixels. What can
you see? Compute the correlation coefficient of the pixelesl

2. Using the same patches, convert them into two new vasalie sum of the
grey-scale values and and their difference. Do the scalid¢iapd computer the
correlation coefficient.

3. Using the same images, take a sample of 1,000 patches @rtheof 1 x 10
pixels. Compute the covariance matrix. Plot the covarianagrix (because the
patches are one-dimensional, you can easily plot this tweedsional matrix).

4. The same as above, but remove the DC component of the pédahdoes this
change the covariance matrix?

5. The same as above, but with only 50 patches sampled froimtges. How are
the results changed, and why?

6. *Take the sample of 1,000 one-dimensional patches cadmiiove. Compute
the eigenvalue decomposition of the covariance matrixt Bk principal com-
ponent weight¥\i (x).



Chapter 6
Sparse coding and simple cells

In the preceding chapter, we saw how features can be leamW&CK of natural
images. This is a classic method of utilizing the seconceoidformation of sta-
tistical data. However, the features it gave were not vetgrasting from a neural
modelling viewpoint, which motivates us to find better madéh fact, it is clear
that the second-order structure of natural images is dureg¢he surface of the sta-
tistical structure of natural images. Look at the outputshef feature detectors of
Figure 1.10, for example. We can see that the outputs ofrdiftekinds of filters
differ from each other in other ways than just variance: thpat of the Gabor filter
has a histogram that has a strong peak at zero, whereas tios tise case for the
histogram of pixel values. This difference is captured inr@perty calledsparse-
ness It turns out that a more interesting model is indeed obthihee look at the
sparseness of the outpiinstead of the variance as in PCA.

6.1 Definition of sparseness

Sparseness means that the random variable is most of thevéimelose to zero,
and only occasionally gets clearly nonzero values. Onencféys that the random
variable is “active” only rarely.

It is very important to distinguish sparseness from smaiiarace. When we say
“very close to zero”, this is relative to the general dedatof the random variable
from zero, i.e. relative to its variance and standard dewiafThus, “very close to
zero” would mean something like “an absolute value that iallanthan 01 times
the standard deviation”.

To say that a random variable is sparse needs a baseline @acmon. Here
it is the gaussian (normal) distribution; a random variablsparse if it is active
more rarely compared to a gaussian random variable of thes samance (and
zero mean). Figure 6.1 shows a sample of a sparse randonbleartmpared
to the gaussian random variable of the same variance. Anuaide of looking at
sparseness is to consider the probability density funcfomt). The property of
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being most of the time very close to zero is closely relatetieégroperty that the pdf
has a peak at zero. Since the variable must have some dewviatio zero (variance
was normalized to unity), the peak at zero must be compemhdatea relatively
large probability mass at large values; a phenomenon ofibadc“heavy tails”. In
between these two extremes, the pdf takes relatively srahleg, compared to the
gaussian pdf. This is illustrated in Fig. 62.

HA e

o

gaussian

1 ‘IIJJ A Ill L ].-”I
T |

Fig. 6.1: lllustration of sparseness. Random samples ofussian variable (top) and a sparse
variable (bottom). The sparse variable is practically zerast of the time, occasionally taking
very large values. Note that the variables have the samangej and that these are not time series
but just observations of random variables.

6.2 Learning one feature by maximization of sparseness

To begin with, we consider the problem of learning a singkgdes based on max-
imization of sparseness. As explained in Section 1.8, Iegrfeatures is a simple
approach to building statistical models. Similar to theecalSPCA, we consider one
linear features computed using weight#/(x,y) as

S= %W(x,y)l (%,Y) (6.1)

1 Here we consider the case of symmetric distributions onlig. possible to talk about the sparse-
ness of non-symmetric distributions as well. For examléheé random variable only obtains
non-negative values, the same idea of being very close torrest of the time is still valid and
is reflected in a peak on the right side of the origin. See Becti3.2.3 for more information.
However, most distributions found in this book are symneetri
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Fig. 6.2: lllustration of a typical sparse probability dépsThe sparse density function, called
Laplacian, is given by the solid curve (see Eq. (7.18) in tiwet chapter for an exact formula) For
comparison, the density of the absolute value of a gausaiztom variable of the same variance
is given by the dash-dotted cuna. the probability density function®) their logarithms.

While a single feature is not very useful for vision, this eggch shows the basic
principles in a simplified setting. Another way in which wengilify the problem
is by postponing the formulation of a proper statistical mlod’hus, we do not
really estimatethe feature in this section, but rather learn it by some ftivielly
justified statistical criteria. In Section 6.3 we show howdgarn many features, and
in Chapter 7 we show how to formulate a proper statistical eh@ahd learn the
features by estimating it.

6.2.1 Measuring sparseness: General framework

To be able to find features that maximize sparseness, we baleelop statistical
criteria for measuring sparseness. When measuring spgeseane can first normal-
ize sto unit variance, which is simple to do by dividisdy its standard deviation.
This simplifies the formulation of the measures.

A simple way to approach the problem is to look at the expexniadf some
function of s, a linear feature of the data. If the function is the squarefion, we
are just measuring variance (which we just normalized todpeakto one), so we
have to use something else. Since we know that the variarespuisl to unity, we
can consider the square function as a baseline and look &ixihextations of the
form

E{h(&)} (6.2)

whereh is somenonlinearfunction.
How should the functioh be chosen so that the formula in Equation (6.2) mea-
sures sparseness? The starting point is the observatibsghese variables have a
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lot of data (probability mass) around zero because of th& peaero, as well as a
lot of data very far from zero because of heavy tails. Thushaee two different
approaches to measuring sparseness. We can chawsthat it emphasizes values
that are close to zero, or values that are much larger thanttmeever, it may not
be necessary to explicitly measure both of them, becausmtisraint of unit vari-
ance means that if there is a peak at zero, there has to betsnmqkéte heavy tails
to make the variance equal to unity, and vice versa.

6.2.2 Measuring sparseness using kurtosis

A simple function that measures sparseness with emphadaga values (heavy
tails) is the quadratic function

hi(u) = (u—1)? (6.3)

(We denote byithe argument offi, to emphasize that it is not a functionsdirectly.
Typically, u = s2.) Algebraic simplifications show that then the sparsenesasure
is equal to

E{hy ()} =E{(¥-1)?} =E{s" -2 +1} =E{s"} -1 (6.4)

where the last equality holds because of the unit varianastcaint. Thus, this mea-

sure of sparseness is basically the same as the fourth mpsudnitaction of the

constant (one) is largely irrelevant since it just shifts theasurement scale.
Using the fourth moment is closely related to the classitissia calledkurtosis

kurt(s) = E{"} — 3(E{s}})2. (6.5)

If the variance is normalized to 1, kurtosis is in fact the saam the fourth moment
minus a constant (three). This constant is chosen so theddisiis zero for a gaus-
sian random variable (this is left as an exercise). If kust@spositive, the variable
is called leptokurtic (or super-gaussian); this is a singygerational definition of
sparseness.

However, kurtosis is not a very good measure of sparsenessufopurposes.
The basic problem with kurtosis is its sensitivity to outieAn “outlier” is a data
point that is very far from the mean, possibly due to an emahe data collection
process. Consider, for example, a data set that has 1,020 salues and has been
normalized to unit variance. Assume that one of the valuesjisal to 10. Then,
kurtosis is necessarily equal to at least AID00— 3= 7. A kurtosis of 7 is usually
considered a sign of strong sparseness. But here it was @usirigle value, and not
representative of the whole data set at all!

Thus, kurtosis is a very unreliable measure of sparsenéssiSdue to the fact
thath; puts much more weight on heavy tails than on values closerto(zegrows
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infinitely when going far from zero). It is, therefore, uskfo consider other mea-
sures of sparseness, i.e. other nonlinear functions

6.2.3 Measuring sparseness using convex functions of squar

Convexity and sparseness Many valid measures can be found by considering
functionsh that areconvex? Convexity means that a line segment that connects
two points on the graph is always above the graph of the fangcts illustrated in
Figure 6.3. Algebraically, this can be expressed as follows

h(axi+ (1—a)x2) < ah(x1) + (1 — a)h(x2) (6.6)

for any O< o < 1. It can be shown that this is true if the second derivativh isf
positive for allx (except perhaps in single points).

15

0 05 1 15 2

Fig. 6.3: lllustration of convexity. The plotted functiosyi = —/X+ X+ % which from the view-
point of measurement of sparseness is equivalent to justeative square root, as explained in
the text. The segment (dashed line) connecting two poiniss@naph is above the graph; actually,
this is always the case.

Why is convexity enough to yield a valid measure of spars&h@se reason is
that the expectation of a convex function has a large valieifiata is concentrated
in the extremes, in this case near zero and very far from 2emppoints between the
extremes decrease the expectation of the cohwdxe to the fundamental equation
(6.6), whereq andx, correspond to the extremes, amgh + (1 — o )x; is a pointin
between.

The functionhy in Equation (6.3) is one example of a convex function, bubtel
we will propose better ones.

2 The convexity we consider here is usually called “strictheexity in mathematical literature.
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An example distribution To illustrate this phenomenon, consider a simple case
wherestakes only three values:

P(s= —V5)=0.1,P(s= V5) =0.1,P(s=0) = 0.8 (6.7)

This distribution has zero mean, unit variance, and is gsji@se. The squas?
takes the values 0 and 5, which can be considered very laripe igense that it is
rare for a random variable to take values that @&times the standard deviation,
and 0 is, of course an extremely small absolute value. Nawslenove some of the
probability mass from 0 to 1, and to preserve unit variancakerthe largest value
smaller. We define

P(s=-2)=0.1,P(s=2)=0.1, P(s=0)=06,  (6.8)
P(s=-1)=01,P(s=1)=0.1 (6.9)

We can now compute the value of the meagg{@(s?)} for the new distribution
and compare it with the value obtained for the original dhsition, based on the
definition of convexity:

0.2h(4) + 0.2h(1) + 0.6h(0)
=0.2h(0.8 x 5+ 0.2 x 0) +0.2h(0.2 x 5+ 0.8 x 0) + 0.6n(0)
< 0.2 x (0.8n(5) +0.2h(0)) + 0.2 x (0.2h(5) + 0.8n(0)) -+ 0.6h(0)
=0.2h(5) +0.8h(0) (6.10)

where the inequality is due to the definition of convexity in. 6.6). Now, the last
expression is the value of the sparseness measure in theabdgstribution. Thus,

we see that the convexity tf makes the sparseness measure smaller when proba-
bility mass is taken away from the extremes. This is true for@nvex function.

Suitable convex functions A simple convex function — which will be found to be
very suitable for our purposes — is given by the negative sgjt@ot:

ha(u) =~/ (6.11)

This function is actually equivalent to the one in Figure, ®8cause the addition of
u= <% just adds a constant 1 to the measure: Adding a linear terhretefiarseness
measurd has no effect because it only adds a constant due to the aostf unit
variance. Adding a linear term has no effect on convexithieitwhich is left as
an exercise). This linear term and the constant term weteajiged to the function
Figure 6.3 to illustrate the fact that it puts more weight @tues near zero and far
from zero, but the weight for values far from zero do not grow tast.

The validity ofh, as a sparseness measure is easy to see from Figure 6.3, which
shows how the measure gives large values if the data is etbend zero, or takes
very large values. In contrast ka, or kurtosis, it does not suffer from sensitivity to
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outliers because it is equivalent to using the square roatwgrows very slowly
when going away from zero. Moreovégp, also emphasizes the concentration around
zero because it has a peak at zero it3elf.

Another point to consider is that the functibp(s?) is actually equal to the neg-
ative of the absolute value function|s|. It is not differentiable at zero, because
its slope abruptly changes froml to +1. This may cause practical problems, for
example in the optimization algorithms that will be used taximize sparseness.
Thus, it is often useful to take a smoother function, such as

hs(u) = —logcoshy/u (6.12)

which is as a function of
hs(s?) = —logcosts (6.13)

The relevant functions and their derivatives are plotteBigure 6.4. Note that the
point is to have a functioh that is a convex function as a function of the square
u=¢ as in Eq. (6.12). When expressed as a functios aé in Eq. (6.13), the
function need not be convex anymore.

Alternatively, one could modify, as

hop = —vu+e (6.14)

wheree¢ is a small constant. This is another smoother version of theut® root
function. It has the benefit of being simpler tHarwhen we considdn as a function
of u; in contrasths tends to be simpler when considered a functios. of

There are many different convex function that one might clepso the question
arises whether there is an optimal one that we should usactndstimation theory
as described in detail in Chapter 7 shows that the optimakuoreaof sparseness is
basically given by choosing

hopt(s?) = log ps(s) (6.15)

whereps is the probability density function af The functionh; is typically not a
bad approximation of this optimal function for natural inesg Often, the logarithm
of a pdf has an even stronger singularity (peak) at zero thaethy has. Thus, to
avoid the singularity, it may be better to use something nsim@lar to h, or hs.
This will be considered in more detail in Section 7.7.2.

Summary To recapitulate, finding linear feature detectors of maximgparseness
can be done by finding a maximum of

E{h(S W) (x,y)])} (6.16)
Xy

3 One could also argue thhs does not give a large value for large valuesat all, but only fors

very close to zero, because the functferhas a peak at zero. This is a complicated point because
we can add a linear function t® as pointed out above. In any case, it is certain thaiuts much
more weight on values af very close to zero.
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Fig. 6.4: lllustration of the log cosh function and its compan with the absolute value function.
a) The functionhy is Eq. (6.11) is given in solid curve. The functidg in (6.12) is given as a
dash-dotted curvén) The same functionk, andhz are given as function of (and not its square).
c) the derivatives of the functions in b).

with respect taV, constrainingV so that

E{[Y Wy (xy)*} =1, (6.17)
Xy

where the functiot is typically chosen as in Eq. (6.12).

Usually, there are many local maxima of the objective funt{isee Section 18.3
for the concept of global and local maxima). Each of the looalkima gives a
different feature.

6.2.4 The case of canonically preprocessed data

In practice, we use data that has been preprocessed by tbeicalnvay described
in Section 5.4. That is, the dimension of the data has bearceztby PCA to re-
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duce computational load and to get rid of the aliasing artifaand the data has
been whitened to simplify the correlation structure. Damgpthe canonically pre-
processed data lwy,i = 1,...,nthe maximization then takes the form

E {h([,_ﬁiviaﬁ} (6.18)

with respect to the weightg which are constrained so that

VP=y V=1 (6.19)

6.2.5 One feature learned from natural images

Consider again the three distributions in Figure 5.1. Altleém look quite sparse
in the sense that the histograms (which are just estimatdseqidf’s) have a peak
at zero. It is not obvious what kind of features are maximalharse. However,
optimizing a sparseness measure we can find well-definegrésat

Figure 6.5 shows the weightg obtained by finding a local maximum of sparse-
ness, using the sparseness measgiasd canonically preprocessed data. It turns out
that features similar to Gabor functions and simple-celepive fields are charac-
terized by maximum sparseness. The features that are l@ahm of sparseness,
they turn out to have the three basic localization propgrtieey are localized in
the (x,y)-space, localized in frequency (i.e. they are bpask), and localized in
orientation space (i.e. they are oriented).

Note that in contrast to variance, sparseness has manyrfaodaima. Most local
maxima (almost all, in fact) are localized in space, frequyeand orientation. The
sparsenesses of different local maxima are often not véiigrdnt from each other.
In fact, if you consider a feature detectors whose weightésgiven by the Gabor
functions which are but otherwise similar but are in two eliént locations, it is
natural to assume that the sparsenesses of the two featuistshm equal, since
the properties of natural images should be the same in alltilmts. The fact that
sparseness has many local maxima forms the basis for |gammany features.

6.3 Learning many features by maximization of sparseness

A single feature is certainly not enough: Any vision systeeeas many features
to represent different aspects of an image. Since sparsénéscally maximized
by many different features, we could, in principle, just fimény different local
maxima — for example, by running an optimization algorithtarsng from many
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Fig. 6.5: Three weight vectors found by maximization of spaess in natural images. The max-
imization was started in three different points which eaalkiegone vector corresponding to one
local maximum of sparseness.

different random initial conditions. Such a method would e very reliable, how-
ever, because the algorithm could find the same maxima mawegti

A better method of learning many features is to find many lenakima that
fulfill some given constraint. Typically, one of two optioissused. First, we could
constrain the detector weight¥ to be orthogonal to each other, just as in PCA.
Second, we could constraint the differento be uncorrelated. We choose here the
latter because it is a natural consequence of the generatigel approach that will
be explained in Chapter 7.

Actually, these two methods are not that different aftertzdicause if the data is
whitened as part of canonical preprocessing (see Secddndsthogonality and un-
correlatedness are, in fact, the same thing, as was distusSection 5.3.2.2. This
is one of the utilities in canonical preprocessing. Thugodelation is equivalent
to orthogonalizationpwhich is a classic operation in matrix computations.

Note that there is no order that would be intrinsically dediletween the fea-
tures. This is in contrast to PCA, where the definition autticaly leads to the
order of the first, second, etc. principal component. One aaler the obtained
components according to their sparseness, but such anraydenot as important
as in the case of PCA.

6.3.1 Deflationary decorrelation

There are basically two approaches that one can use in egrist the different fea-

ture detectors to have uncorrelated outputs. The first ocallisd deflation, and pro-
ceeds by learning the features one-by-one. First, oneddhmfirst feature. Then,
one learns a second feature under the constraint that jsibonust be uncorrelated
from the output of the first one, then a third feature whos@uoutust be uncorre-
lated from the two first ones, and so on, always constrairtiegiew feature to be
uncorrelated from the previously found ones. In algoritbifiorm, this deflationary

approach can be described as follows:

1. Setk=1.
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2. Find a vectoW that maximizes the sparseness:

E {h <[ZW(x,y>l<x7y>]2>} (6.20)

Xy

under the constraints of unit variancedsflationarydecorrelation:
2
E <ZW(x,y)l (x,y)> =1 (6.21)
Xiy

E {ZW(x,y)l (x,y)ZV\/l(x,y)l(x,y)} =0forall1<i<k (6.22)
Xy Xy

3. Store this vector i and incremenk by one.
4. If k does not equal the dimension of the space, go back to step 2.

The deflationary approach is easy to understand. Howev&ndt recommended
because of some drawbacks. Basically, in the deflationgvyoagh those features
that are found in the beginning are privileged over othehgylcan do the optimiza-
tion in the whole space whereas the last vect@rslgse to the dimension of the
space) have very little space where to optimize. This leadke gradual deterio-
ration of the features: the latter ones are often rather pecause their form is so
severely restricted. In other words, the random errors (duenited sample size),
as well as numerical errors (due to inexact optimizatiorthifirst feature weights
propagate to latter weights, and produce new errors in therurther problem
is that the method is not very principled; in fact, the mormg@pled approach to
sparse coding discussed in the next chapter leads to tloevfoly method, symmet-
ric decorrelation.

6.3.2 Symmetric decorrelation

It would be more natural and efficient to use a method in whithha features
are learned on an equal footing. This is achieved in whatlisctshe symmetric
approach. In the symmetric approach, we maximizestiaof the sparsenesses of
the outputs. In this maximization, the outputs of all units eonstrained to be un-
correlated. Thus, no filters are privileged. Using the measaf sparseness defined
above, this leads to an opimization problem of the followfioigm:

Maximize iiE {h ([ZW{(X,y)I (x,y)]2> } (6.23)
i= Xy

under the constraints of unit variance ayinmetricdecorrelation:
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2
E <ZV\/.(x,y)I (x,y)) =1foralli (6.24)
Xy
E{ZV\/.(x,y)l (%,Y) ZV\/j(x,y)I (x,y)} =0foralli # j (6.25)
Xy Xy

This approach can also be motivated by considering that waeually maximiz-
ing the sparseness of a representation instead of spasssn&sthe features; these
concepts will be discussed next.

Whichever method of decorrelation is used, this approaunitdithe number of
features that we can learn to the dimensionality of the daiacanonically prepro-
cessed data, this is the dimensionality chosen in the PGy stahis is because the
features are constrained orthogonal in the whitened spacehere can be at mast
orthogonal vectors in anrdimensional space. Some methods are able to learn more
features than this, they will be treated later in Sectiori13.

6.3.3 Sparseness of feature vs. sparseness of representati

When considering a group of features, sparseness has ttirctisspects. First, we
can look at the distribution of a single featusevhen the input consists of many
natural image,t =1,...T, as we did above — this is what we call the sparseness
of features (or “lifetime sparseness”). The second aspeotlook at the distribution
of the features; overthe index=1,...,n, for a single inputimagé— this is what
we call the sparseness of the representation (or “populaparseness”).

Sparseness of a representation means that a given imageéseated by only
a small number of active (clearly non-zero) features. Thaswn fact, one of the
main motivations of looking for sparse features in the fidsice, and it has been
considered the defining feature of sparse coding, i.e. aspapresentation.

A sparse representation can be compared to a vocabularypokes language.
A vocabulary typically consists of tens of thousands of vgordet, to describe a
single event or a single object, we only need to choose a fewdsvd hus, most of
the words are not active in the representation of a singlatee the same way, a
sparse representation consists of a large number of patédiures; yet, to describe
a single input image, only a small subset of them are activate

This kind of reduction of active elements must be clearlytidggiished from
dimension reduction techniques such as principal compoaealysis (PCA). In
PCA, we choose once and for all a small set of features thaisme for representing
all the input patches. The number of these principal featisesmaller than the
dimension of the original data, which is why this is callechdnsion reduction. In
a sparse representation, the active features are diffgntpatch to patch, and the
total number of features in the representation need not ladlenthan the number
of dimensions in the original data — in fact, it can even bgéar
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What is then the connection between these two concepts despess? Basically,
we could measure the sparseness of the representation eémigiage using the
same measures as we used for the sparseness of the featwsfTa single image
I;, the sparseness of the representation given by the imagies¥ifti = 1... ,ncan
be measured as:

.ih <[ZW|(X7Y)It(X7y)]2> (6.26)
i= Xy

For this measure to be justified in the same way as we justifigolave, it must be
assumed that for the single image, the following two normadion conditions hold:

1. the mean of the features is zero, and
2. the mean of the square of the features equals one (or aayaihstant).

While these conditions do not often hold exactly for a singiage, they typically
are approximately true for large sets of features. In palaic if the features are
statistically independent and identically distributeglgSection 4.5), the conditions
will be approximately fulfilled by the law of large numbers -hetbasic statistical
law that says that the average of independent observagaods to the expectation.
Now, let us assume that we have obserVeichage patchek(x,y),t =1,...,T,

and let us simply take the sum of the sparsenesses of eacle icoagputed as in
Equation (6.26) above. This gives

tiilh (%V\/l(xay)lt(xay)]Z) (6.27)

Rearranging the summations, we see that this is equal to

n T
Zzh ([ZV\/'(x,y)lt(x,y)F) (6.28)
i=1t= Xy

The expression in Equation (6.28) is the sum of the sparsesad the features.
The expression in Equation (6.27) is the sum of the sparsesed representations.
Thus we see that these two measures are equal. Howeveridaghality to be
meaningful, it must be assumed that the normalization ¢mmdi given above hold
as well. Above, we argued that they are approximately fetilif the features are
approximately independent.

So, we can conclude that sparseness of features and seémepresentation
give approximately the same function to maximize, henceéme feature set. The
functions are closer to equal when the feature sets are Endethe features are
statistically independent and have identical distringioHowever, the measures
might be different if the normalization conditions above &ar from true?

4 Here’s a counterexample in which the sparseness of feasizeso but the sparseness of repre-
sentation is high. Consider ten independent gaussianrésatith zero mean. Assume nine have
a very small variance, and one of them has a very large vagidbach of the features, considered
separately, is gaussian, and thus not sparse. Howeverdbrimage, the feature distribution has
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6.4 Sparse coding features for natural images

6.4.1 Full set of features

Now we are ready to learn a whole set of features from natorages. We sampled
randomly 50000 image patches of 3232 pixels, and applied canonical prepro-
cessing to them, reducing the dimension to 256, which mesairting 25% of the
dimensions. We used the logcosh function, hg.in Eq. (6.12), and symmetric
decorrelation. The actual optimization was done using @iapalgorithm called
FastICA, described in Section 18.7.

The obtained results are shown in Figure 6.6. Again, theifeatetector weights
are coded so that the grey-scale value of a pixel means the wélthe coefficient
at that pixel. Grey pixels mean zero coefficients.

Visually, one can see that these feature detectors havestitgy properties. First,
they are localized in space: most of the coefficients aretigedly zero outside of a
small receptive field. The feature detectors are also aterifurthermore, they are
multiscale in the sense that most of them seem to be codirsgrfall things whereas
a few are coding for large things (in fact, so large that theydt fit in the window,
so that the detectors are not completely localized).

6.4.2 Analysis of tuning properties

We can analyze the feature detectdisfurther by looking at the responses when
gratings, i.e. sinusoidal functions, are input to them.timeo words, we create arti-
ficial images which are two-dimensional sinusoids, and asethe outputs,. We
consider sinusoidal functions of the form

fo(X,y) = sin(2ma (sin(8)x+ cog 0)y)) (6.29)
fe(X,y) = cog2ma (sin(6)x+ cog0)y)) (6.30)

These are sinusoidal gratings wheétayives the orientation (angle) of the oscilla-
tion, thex axis corresponding t6 = 0. The parameten gives the frequency. The

two functions give two oscillations in different phases;rmprecisely, they are in

quadrature-phase, i.e. a 90 degrees phase difference.

Now, we compute these functions for a large number of orteorta and fre-
guencies. We normalize the obtained functions to unit ndinen we compute the
dot-products of th&\{ with each of the gratings. We can then compute the opti-
mal orientation and frequency by finding toreand 8 that maximize the sum of the
squares of the two dot-products corresponding to the sircaadunctions. (We take

nine values close to zero and one which is typically verydaand therefore the distribution is
sparse. The key here is that the features have differeran@es, which violates the normalization
conditions.
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Fig. 6.6: The whole set of symmetrically orthogonalizedtdiea vectorsM maximizing sparsity,
learned from natural images.

the sum of squares because we do not want the phase \of théhave influence on
this computation.)

This is actually almost the same as computing the 2-D powectspm for all
orientations and frequencies. We could do similar comjmriatusing the Discrete
(or Fast) Fourier Transform as well, but we prefer here tliead computation for
two reasons. First, we see the concrete meaning of the pgveetram in these
computations. Second, we can compute the gratings for mamg combinations
of orientations and frequencies than is possible by the DFT.

In neurophysiology, this kind of analysis is usually donmgdgrifting gratings.
In other words, the gratings move on the screen in the doratif their oscilla-
tion. The maximum response of the cell for a drifting gratofga given (spatial)
frequency and orientation is measured. This is more or lessame thing as the
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analysis that we are conducting here on our model simpls.célie fact that the
gratings move in time may be necessary in neurophysiologalme movement
greatly enhances the cell responses, and so this methedsdlgter and and more
accurate measurement of the optimal orientation and frecyué&lowever, it compli-
cates the analysis because we have an additional parathetegmporal frequency
of the grating, in the system. Fortunately, we do not needeodrifting gratings in
our analysis.

When we have found the optimal frequency and orientatioarpaters, we can
analyze the selectivities by changing one of the paramétéh grating, and com-
puting again the total response to two gratings that havenéve parameters and
are in quadrature phase. Such analysis of selectivity rfiicurves) is routinely
performed in visual neuroscience.

In the same way, we can analyze the selectivity to phase., Me&renust obvi-
ously take a slightly different approach since we cannot tado filters in quadra-
ture phase since then the total response would not depeniteophiise at all. In
neurophysiology, this is analyzed by simply plotting thepense as a function of
time when the input is a drifting grating with the optimaldresncy and orientation.
We can simulate the response by simply taking the dot-proofusf with gratings
whose phase goes through all possible values, and stilifkgdépe orientation and
frequency at optimal values. (The real utility of the anayxf phase selectivity will
be seen when the responses of linear features are compdredamiinear ones in
Chapter 10.)

In Figure 6.7 we show the results of the analysis for the fest features in
Fig. 6.6, i.e., the first ten receptive fields on the first ronhal/we see is that all
the cells are tuned to a specific values of frequency, orilemaand phase: any
deviation from the optimal value decreases the response.

Itis also interesting to look at how the (optimal) orientais and frequencies are
related to each other. This is shown in Fig. 6.8. One can saetlle model tries
to cover all possible combinations of these variables. Henehere is a strong
emphasis on the highest frequencies that are present imtggel Note that prepro-
cessing by PCA removed the very highest frequencies, soitfies$t frequencies
present are much lower (approx. 9 cycles per patch) than trguist frequency
(82/2=16 cycles per patch).

Another way of looking at the distributions is to plot thethigrams of the two
parameters separately, as shown in Fig. 6.9. Here we seethgaimost of the fea-
tures have very high frequencies. The orientations areredvwather uniformly, but
there are more features with horizontal orientation (O quigalently,r). This is an-
other expression of the anisotropy of natural images, dirsaen in the correlations
in Section 5.7.
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6.5 How is sparseness useful? 155

6.5 How is sparseness useful?

6.5.1 Bayesian modelling

The central idea in this book is that it is useful to find go@distical models for nat-
ural images because such models provide the prior proliebitieeded in Bayesian
inference, or, in general, the prior information that theual system needs on the
environment. These tasks include denoising and complefiarissing data.

So, sparse coding models are useful for the visual systemlgibecause they
provide a better statistical model of the input daté&e outputs of filter detectors are
sparse, so this sparseness should be accounted for by thed. Méeddid not really
show that we get a better statistical model this way, butgbiat will be considered
in the next chapter.

A related viewpoint is that of information theory: sparsssi&s assumed to lead
to a more efficient code of the input. This viewpoint will bensadered in Chapter 8.

6.5.2 Neural modelling

Another viewpoint is to just consider the power of the staiéd models to account
for the properties of the visual system. From the viewpofrdanputational neuro-
sciencesparse coding leads to the emergence of receptive fieldasitmisimple
cells so sparse coding is clearly a better model of the visuakgdrt this respect
than, say, PCA. Results in Chapters 15 and 16 give even mpp®&to this claim.
This viewpoint does not considetythe visual system should use sparseness.

6.5.3 Metabolic economy

However, there are other, additional, reasons as well wiwitld be advantageous
for the visual system to use sparse coding, and these rehaeas othing to do with
the statistics of the input stimuli. The point is that firinfyoells consumes energy,
and energy is one of the major constraints on the biologidesign” of the brain. A
sparse code means that most cells do not fire more than tlogitesgeous firing rate
most of the time. Thus, sparse codingisergy-efficient

So, we have a fortunate coincidence where those linearrfsathat are opti-
mal statistically are also optimal from the viewpoint of emeconsumption. Possi-
bly, future research will show some deep connections betweese two optimality
properties.
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6.6 Concluding remarks and References

In this chapter, we learned feature detectors which maxditiie sparseness of their
outputs when the input is natural images. Sparseness isigtistd property which
is completely unrelated to variance, which was the critenmPCA in the preceding
chapter. Maximization of sparseness yield receptive fieldish are quite similar to
those of simple cells. This fundamental result is the bafsidl the developments in
the rest of this book.

Early work on finding maximally sparse projection can be foim(Field, 1987,
1994). Estimating a whole basis for image patches was figraplished in the
seminal paper (Olshausen and Field, 1996) using a methosidewad in Sec-
tion 13.1. A detailed comparison with simple cell recepfiedds is in (van Hateren
and van der Schaaf, 1998); see also (van Hateren and Rudet8f8). A discus-
sion on sparseness of features vs. sparseness of reptesergtan (Willmore and
Tolhurst, 2001).

The idea of increasing metabolic efficiency by sparse codatgs back to (Bar-
low, 1972); for more recent analysis, see e.g. (Levy and &af996; Balasubra-
maniam et al, 2001; Attwell and Laughlin, 2001; Lennie, 2003

Some researchers have actually measured the sparseneasméduron outputs,
typically concluding that they are sparse, see (Baddeley, €t997; Gallant et al,
1998; Vinje and Gallant, 2000, 2002; Weliky et al, 2003).

An approach that is popular in engineering is to take a fixeedr basis and then
analyze the statistics of the coefficients in that basisichlly, one takes a wavelet
basis (see Section 17.3.2) which is not very much unlike fagse coding basis.
See (Simoncelli, 2005) for reviews based on such an approach

Approaches for sparse coding using concepts related t@ smkns instead of
mean firing rates include (Olshausen, 2002; Smith and Ley2€05, 2006).

6.7 Exercices

Mathematical exercises

1. Show thatiff (x) is a (strictly) convex function, i.e. fulfils Eq. (6.6)(x) +ax+b
has the same property, for any constants

2. Show that the kurtosis of a gaussian random variable is. ZEor simplicity,
assume the variable is standardized to zero mean and ufdnear Hint: try
partial integration to calculate the fourth moment.)

3. The Gram-Schmidt orthogonalization algorithm is defiasdollows. Givemn
feature detector vectoW$ (x,y) which have been normalized to unit norm, do

a. Seti — 1.
b. Compute the new value of the vectaras
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i—1

WX y) = Wixy) = 5 5 WX, Y (XY )W (x.y) (6.31)
=1y

c. Renormaliz&M: Wi (x,y) —W(X,y)/ /Ty W(X,y)2.
d. Increment by one and go back to step 1jifs not yet larger tham.

Show that the set of vectors is orthogonal after applicaticthis algorithm.

Computer assignments

1. Take some images. Take samples ofx110 pixels. Construct a simple edge
detector. Compute its output. Plot the histogram of the wytand compute its
kurtosis.






Chapter 7
Independent component analysis

In this chapter, we discuss a statistical generative makddtindependent compo-
nent analysis. It is basically a proper probabilistic fotation of the ideas under-
pinning sparse coding. It shows how sparse coding can beometed as providing

a Bayesian prior, and answers some questions which wergopeégy answered in

the sparse coding framework.

7.1 Limitations of the sparse coding approach

In the preceding chapter, we showed that by finding lineatufeadetectors that
maximize the sparseness of the outputs, we find featurear#bcalized in space,
frequency, and orientation, thus being similar to Gaborcfioms and simple cell
receptive fields. While that approach had intuitive appialas not completely
satisfactory in the following respects:

1. The choice of the sparseness measure was rather ad hawltt e interesting
to find a principled way of determining the optimal nonlinéamctionh used in
the measures.

2. The learning of many features was done by simply constrgithe outputs of
feature detectors to be uncorrelated. This is also quiteoagddnd some justifi-
cation for the decorrelation is needed.

3. The main motivation for this kind of statistical modefjiof natural images is
that the statistical model can be used as a prior distrihutioBayesian infer-
ence. However, just finding maximally sparse features do¢gine us a prior
distribution.

A principled approach that also solves these problems igyugenerative models. A
generative model describes how the observed data (natnagles) is generated as
transformations of some simple original variables. Thgioal variables are called
latentsince they cannot usually be observed directly.

159
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The generative model we propose here for modelling natumabe patches is
called independent component analysis. This model wasnatlg developed to
solve rather different kinds of problems, in particulare tho-called blind source
separation problem, see the References section below fax imfmrmation. How-
ever, it turns out that the same model can be interpreted @sradf sparse coding,
and is more or less equivalent to finding linear features @natmaximally sparse,
as we will see in this chapter.

7.2 Definition of ICA

7.2.1 Independence

The latent variables in independent component analysi&)(HZe called indepen-
dent components. While the term “component” is mainly usedhistorical reasons
(inspired by the expression “principal components”), tldvindependence” tells
what the basic starting point of ICA is: the latent variatdes assumed to be statis-
tically independent.

Let us consider two random variables, sayands,. Basically, the variables;
ands, are statistically independent if information on the valdiespodoes not give
any information on the value @, and vice versa. In this book, whenever the word
“independent” is used, it always refers to statistical peledence, unless otherwise
mentioned.

Section 4.5 gave a more extensive treatment of independeiece we recall the
basic definition. Let us denote kp{s;,s,) the joint probability density function of
s ands,. Let us further denote bp;(s1) the marginal pdf of;, i.e. the pdf ofs;
when it is considered alone. Then we define thaands, are independent if and
only if the joint pdf isfactorizable i.e. the pdf can be expressed as a product of the
individual marginal pdf’s

P(s1,%2) = P1(S1) P2(Se)- (7.1)

This definition extends naturally for any numbeof random variables, in which
case the joint density must be a produchderms. (Note that we use here a sim-
plified notation in whichs appears in two roles: it is the random variable, and the
value taken by the random variable — often these are dengtstightly different
symbols.)

It is important to understand the difference between inddpace and uncor-
relatedness. If the two random variables are independesy, dre necessarily un-
correlated as well. However, it is quite possible to havelcem variables that are
uncorrelated, yet strongly dependent. Thus, correlatesiizea special kind of de-
pendence. In fact, if the two variableg ands, were independent, any nonlinear
transformation of the outputs would be uncorrelated as:well
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cov(91(s1), 92(s2)) = E{01(s1)g(s2) } — E{91(s1) }E{Q2(s2)} =0 (7.2)

for any two functionsgy; andg,. When probing the dependencespands;, a sim-
ple approach would thus be to consider the correlationsmiswoonlinear functions.
However, for statistical and computational reasons, wedeVelop a different ap-
proach below.

7.2.2 Generative model

The generative model in ICA is defined by a linear transforomabf the latent
independent components. Let us again denotkky) the pixel grey-scale values
(point luminances) in an image, or in practice, a small impgth. In ICA, an
image patch is generated as a linear superposition of scamerésA;, as discussed
in Section 2.3:

I (Xa y) = iAI (Xa Y)S (73)

for all x andy. Thes are coefficients that are different from patch to patch. They
can thus be considered as random variables, since theiesaliange randomly
from patch to patch. In contrast, the featufesire the same for all patches.

The definition of ICA is now based on three assumptions magdarding this
linear generative model:

1. The fundamental assumption is thatsharestatistically independenthen con-
sidered as random variables.

2. Inthe next sections we will also see that in order to be tbéstimate the model,
we will also have to assume that the distributions ofgheenon-gaussianThis
assumption shows the connection to sparse coding sinceesyEss is a form of
non-gaussianity.

3. We will also usually assume that the linear system defilyatidA; is invertible
but this is a technical assumption that is not always corafyletecessary. In
fact, we will see below that we might prefer to assume thalittear system is
invertible after canonical preprocessing, which is notettie same thing.

These assumptions are enough to enastimationof the model. Estimation
means that given a large enough sample of image patthes; 1,...,T, we can
recover some reasonable approximations of the valuég, afithout knowing the
values of the latent componergsn advance.

One thing that we cannot recover is the scaling and signseofdimponents. In
fact, you could multiply a componegtby any constant, say -2, and if you divide the
corresponding\ by the same constant, this does not show up in the data in any wa
So, we can only recover the components up to a multiplicativestant. Usually, we
simplify the situation by defining that the components haviewariance. This only
leaves the signs of the components undetermined. So, focamponents, we
could just as well consider the componerg.
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As typical in linear models, estimation of tiA¢ is equivalent to determining the
values of theM which give thes as outputs of linear feature detectors with some
weightsW:

Xy
for each image patch. The coefficieliisare obtained by inverting the matrix of the
A.

7.2.3 Model for preprocessed data

In practice, we will usually prefer to formulate statisticaodels for canonically pre-
processed data (see Section 5.4). The data variables irethated representation
are denoted by . For a single patch, they can be collected to a vecto(z, . . ., z,).
Since a linear transformation of a linear transformatiostis a linear transforma-
tion, thez are also linear transformations of the independent compusrse al-
though the coefficients are different from those in the e’djspace. Thus, we have

m
Z = Z bijs; (7.5)
=1

for some coefficientl;; which can be obtained by transforming the featutassing
the same PCA transformation which is applied on the images.

We want to choose the numberof independent components so that the lin-
ear system can be inverted. Since we are working with pregssed data, we will
choosen so that it equals the number of variables after canonicgnoeessing (in-
stead of the number of original pixels). Then, the systengn(E.5) can be inverted
in a unique way and we can compute thas a linear function of thg:

n
S = Z VijZj = Vi z (7.6)
=1

Here, the vector; = (vi,...,Vn) allows a simple expression using vector prod-
ucts. The coefficientg; are obtained by inverting the matrix of the coefficiebys
The coefficient8\ in Equation (7.4) are then obtained by concatenating thealin
transformations given byjj and canonical preprocessing (i.e. multiplying the two
matrices).

7.3 Insufficiency of second-order information

When comparing the feature learning results by PCA and spanding, it is nat-
ural to conclude that the second-order information (i.eiaciances) used in PCA
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and other whitening methods is insufficient. In this sectiwe justify the same
conclusion from another viewpoint: we show that seconcepnaformation is not
sufficient for estimation of the ICA model, which also im@ithat the components
should not be gaussian.

7.3.1 Why whitening does not find independent components

It is tempting to think that if we just whiten the data, maybe whitened com-
ponents are equal to the independent components. Thedastfi would be that
ICA is a whitening transformation, because it gives compdsievhich are inde-
pendent, and thus uncorrelated, and we defined their vasaioche equal to one.
The fundamental error with this logic is that there is an itdimumber of whiten-
ing transformations, because any orthogonal transfoomati whitened data is still
white, as pointed out in Section 5.3.2. So, if you whiten thtady, say, PCA, you
get just one of those many whitening transformations, aedetlis absolutely no
reason to assume that you would get the ICA transformation.

There is a reason why it is, in fact, not possible to estimad €A model using
anymethod which is only based on covariances. This is due teyhenetryof the
covariance matrix: co\z;,z) = cov(z,z). Thus, the number of different covari-

ances you can estimate from data is equaﬂ@fgi), i.e. roughly one half ofi®. In
contrast, the number of parametéfswe want to estimate (this refers to the model
with preprocessed data in Equation (7.5)) is equaft&o, if we try to solve thé; j

by forcing the model to give just the right covariance stauet we have less equa-
tions (by one half!) than we have variables, so the solusamoit uniquely defined!
The same logic applies equally well to the original data beefireprocessing.

This is illustrated in Figure 7.1. We take two independemhponentss; and
s, with very sparse distributions. Their joint distribution, a), has a “star-shape”
because the data is rather much concentrated on the comrdixes. Then, we mix
these variables linearly using randomly selected coeffisibe;; = 0.5, by, = 1.5,
bo1 = 1 andby, = 0.2. The resulting distribution is shown in Figure 7.1b). Thers
has now been “twisted”. When we whiten the data with PCA, welgedistribution
in c). Clearly, the distribution is not the same as the oadgtistribution in a). So,
whitening failed to recover the original components.

On the positive side, we see that the whitened distributioRigure 7.1c) has
the right “shape”, because what remains to be determindukisight orthogonal
transformation, since all whitening transformations arta@gonal transformations
of each other. In two dimension, an orthogonal transforameis basically a rotation.
So, we have solved part of the problem. After whitening, wewrihat we only
need to look for the remaining orthogonal transformatiohich reduces the space
in which we need to search for the right solution.

Thus, we see why it was justified to constrain the differeatdee detectors to
give uncorrelated outputs in the sparse coding framewo8eiction 6.3. Constrain-
ing the transformation to be orthogonal for whitened datgisivalent to constrain-



164 7 Independent component analysis

c)

Fig. 7.1:a) The joint distribution of the independent componesiteands, with sparse distribu-
tions. Horizontal axiss;, vertical axis:s,. b) The joint distribution of the observed data which are
linear transformations of thg ands;. ¢) The joint distribution of observed data after whitening
by PCA.

ing the features; to be uncorrelated (and to have unit variance). Even in tee o&
ICA estimation, the features are often constrained to be@walated, because this
simplifies the objective function, as discussed later is thiapter, and allows the
development of very efficient algorithms (see Section 18tvgontrast, in the ICA
framework, it is not justified, for example, to constrain tirgginal featureg\; or the
detector weight®\f to be orthogonal, since the mixing matrix (or rather, itsarse)
is not necessarily orthogonal in the ICA model.

7.3.2 Why components have to be non-gaussian

The insufficiency of second-order information also implteat the independent
components must not be gaussian, because gaussian daiasoathing else than
second-order information. In this section, we explain aptewf different view-
points which further elaborate this point.

7.3.2.1 Whitened gaussian pdf is spherically symmetric

We saw above that after whitening, we have to find the righdtion (orthogonal
transformation) which gives ICA. If the data is gaussiais ¥, in fact, not possible
due to a symmetry property of gaussian data.

To see why, let us consider the definition of the gaussianrpéiguation (5.17)
on page 115. Consider whitened variables, whose covariaatex is the identity
matrix by definition. The inverse of the identity matrix isetidentity matrix, so
C~1is the identity matrix. Thus, we hayg; xix;[C1]ij = ¥;X2. Furthermore, the
determinant of the identity matrix is equal to one. So, théipdequation (5.17)
becomes

1 1

PO 0) = G5 3 ) = el ()
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This pdf depends only on the noriw||. Such a pdf is called spherically symmetric:
Itis the same in all directions. So, there is no informatifhih the data to determine
the rotation corresponding to the independent components.

An illustration of this special property of the gaussiant@isition is in Fig-
ure 7.2, which shows a scatter plot of two uncorrelated ganssriables of unit
variance. The distribution is the same in all directiongept for random sampling
effects. The circles show contours on which the pdf is caristais clear that if you
rotate the data in any way, the distribution does not chasgéehere is no way to
distinguish the right rotation from the wrong ones.

Fig. 7.2: A scatter plot of two uncorrelated gaussian vdeatf unit variance. This is what any
whitening method would give when applied on gaussian ddta.distribution is spherically sym-
metric, i.e. the same in all directions. This is also seenoloking at contours on which the pdf is
constant: they are circles, as further plotted here.

7.3.2.2 Uncorrelated gaussian variables are independent

A further justification why ICA is not possible for gaussiaariables is provided by
a fundamental result in probability theory. It says thatiidom variables, ..., s,
have a gaussian distribution and they are uncorrelated,ttiey are also indepen-
dent. Thusfor gaussian variables, uncorrelatedness and indepenrelarethe same
thing, although in general uncorrelatedness does not imply iedeégnce. This fur-
ther shows why ICA brings nothing new for gaussian variablé® main interest-
ing thing you can do to gaussian variables is to decorrelegmf which is already
accomplished by PCA and other whitening methods in Chapter 5
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It is easy to see from Equation (7.7) why uncorrelated ganssariables are
independent. Here, the variables are actually white, hey have also been stan-
dardized to unit variance, but this makes no differenceessich standardization
obviously cannot change the dependencies between théleid he point is that
the pdf in Equation (7.7) is something which can be factalize

p(x,.. . Xn) =] \/%TeXp(—%x,-z) (7.8)

where we have used the classic identity @«p b) = exp(a) exp(b). This form is
factorized, i.e. it is a product of the one-dimensional deadized gaussian pdf’s.
Such factorization is the essence of the definition of indépeace, as in Equa-
tion (7.1). So, we have shown that gaussian variaklese independent if they
are uncorrelated.

Thus, the components in ICA have to be non-gaussian in ooddiCfA to be
meaningful. This also explains why models based on nongjgisy (such as ICA)
are very new in the field of statistics: classic statistidarngely based on the assump-
tion that continuous-valued variables have a gaussiarilisobn—that is why it is
called the “normal” distribution!

7.4 The probability density defined by ICA

Now that we have a statistical generative model of the datacan compute the
probability of each observed image patch using basic regulprobability theory.
Then we can estimate the optimal features using classimatstin theory. This
solves some of the problems we mentioned in the introdudtichis chapter: we
will find the optimal measure of sparseness, and we will seg té constraint of
uncorrelatedness of the features makes sense. And obyiwestan then use the
model as a prior probability in Bayesian inference.

Let us assume for the moment that we know the probability idefisnctions
(pdf’s) of the latent independent componegtsThese are denoted lyy. Then, by
definition of independence, the multidimensional pdf ofth# 5 is given by the
product:

P(SL; - n) = |j pi(s) (7.9)

What we really want to find is the pdf of the observed preprsedwvariableg;,
which is almost the same thing as having a pdf of the imagehpatcx,y). It is
tempting to think that we could just plug the formula for thegiven by equation
(7.6) into equation (7.9). However, this is not possiblee Tiext digression (which
can be skipped by readers not interested in mathematiclgjatill show why not.

Short digression to probability theory To see why we cannot just combine (7.9) and (7.6),

let us consider what the pdf means in the one-dimensional, edsere we have just one variable
s with probability densityps. By definition, the pdf at some poisg gives the probability thas
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belongs to a very small interval of lengthas follows:
P(s€ [s0,%+d]) = ps(so)d (7.10)

Now, let us consider a linearly transformed variakle- as for a > 0. Here,s can be solved as
s=wxwherew = 1/a (note that we use a notation that is as close to the ICA casesathe). Let
us just plug this in the equation (7.10) and consider the ity at pointsy = wxg:

P(wx € [wxg, wxg + d]) = ps(wxo)d (7.11)
Obviously,P(wx € [X1,X2]) = P(X € [x1/W,X2/W]). So, we can express (7.11) as

pa(wio)d = Plx € fro.50-+ 3) = pyfoo) (112

Note that the length of the interval changed tad/w, and so we changed the right-hand side
of the equation to get the same term. Multiplying both sidesh equation byw/d we get
ps(Wxo)W = px(Xg). Thus, the actual pdf ofis ps(wx)w, instead of simplyps(wx) ! This shows that

in computing the pdf of a transformation, thkange in scaleaused by the transformation must
be taken into account, by multiplying the probability deydiy a suitable constant that depends
on the transformation.

In general, an important theorem in probability theory sthat for any linear
transformation, the probability density function shouérbultiplied by the absolute
value of thedeterminantetV of the matrix that gives the linear transformation.The
determinant of a matrix is a measure of the associated changmale (volume).
The absolute value of the determinant is equal to the voluihtleeoparallelepiped
that is determined by its column vectors. (For more infoiorabn the determinant,
see Section 19.4.)

Thus, the pdf of the preprocessed datiefined by ICA is actually given by

P(2) = etV [P 2) = [dev[]p(Swz) (.19
1= I= =

whereV is a matrix whose elements are given by the coefficignfsn other words,
the rows ofV are given by the vectors.

The pdf depends not only on the patch zjebut also on the parameters of the
model, i.e. the weightsjj. Equivalently, we could consider the probability as a
function of the featureb;j, but this does not make any difference, sincevihare
uniquely determined by thisj and vice versa. The formula for the probability in
equation (7.13) is more easily formulated as a function efuéctorsy;.

7.5 Maximum likelihood estimation in ICA

Maximum likelihood estimation is a classic, inde#ts classic method for estimat-
ing parameters in a statistical model. It is based on a sippteiple: Find those
parameter values that would give the highest probabilitytfie observed data. A
brief description was provided in Section 4.8.



168 7 Independent component analysis

Thelikelihoodis the probability of observing the data for given model pagea
ters. For a given data set, it is thus a function of the pararaeLet us assume that
we have observed image patchek(x,y),t =1,...,T that are collected at random
locations in some natural images. We consider here canbnpaprocessed data,
let us denote by; the vector obtained by canonically preprocessing the inpageh
It

Because the patches are collected in random locations, wassume that the
patches are independent from each other. Thus, the pragalbibbserving all these
patches is the product of the probabilities of each patcis gies the likelihood
of the observed data:

T T
L(vy,...,vn) = rlp(zt) = I_l
t= t=

It is much simpler to look at the logarithm of the likelihoaghich is, after some
simple rearrangements:

detV)| rl 3 <v?zt>] (7.14)

n T
logL(vs,...,vq) = Tlog|det(V)| + 21 Zlog pi (V] z) (7.15)
= e

Since the logarithm is a increasing function, maximizatdithe likelihood is the
same as maximization of this log-likelihood. Estimatiorthg maximum likelihood
method now means that we maximize the log-likelihood in Eigma(7.15) with
respect to the parameters, that is, the weightéChoosing the functions Iqg will
be discussed in Section 7.7.)

Maximization of the log-likelihood can be accomplished lynerical optimiza-
tion methods. In addition to general-purpose methods,iap@ior-made methods
have been developed for this particular ICA maximizatiaktah thorough discus-
sion of such optimization methods can be found in Chapteat8,we will not go
into details here. Let us just note that the first term in Equaf.15 can be consid-
ered to be constant and omitted, as we will see in Sectiod.7.7.

7.6 Results on natural images

7.6.1 Estimation of features

Using maximum likelihood estimation on 5I00 image patches of size 3232 pix-
els as in the preceding chapters, we obtain the results ir&ig.3. These features
have the same qualitative properties as the feature deseettimated by maxi-
mization of sparseness in Figure 6.6 on page 151. That ide#iteres are spatially
localized, oriented, and code for different scales (fremies).

This is actually not surprising because, as will be shown,maaximum like-
lihood estimation of ICA is mathematically almost equivelé the sparse coding
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analysis we did in Section 6.4. The only difference is thatase here showing
the (generating) featurey instead of the feature detectdf$. This difference is
explained in detail in Section 7.10.

A s
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Fig. 7.3: The whole set of featurés obtained by ICA. In this estimation, the functions lagvere
chosen as in Equation (7.19) in Section 7.7.

7.6.2 Image synthesis using ICA

Now that we have defined a generative model, we can generageioata from it.
We generate the values of tlseindependently from each other, and multiply the
estimated features; with them to get one generated image patch. One choice we
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have to make is what our model of the marginal (i.e. indiviildatributions of the
independent componentis. We use here two distributioribelfirst case, we simply
take the histogram of the actual component in the naturaj@sai.e. the histogram
of eachy, W (x,y)l(x,y) when computed over the whole set of images. In the
second case, we use a well-known sparse distribution, tipgatian distribution
(discussed in the next section), as the distribution ofldependent components.

Figures 7.4 and 7.5 show the results in the two cases. Thaesistresults are
clearly different than those obtained by PCA on page 117eher can see more
oriented, edge-like structures. However, we are obviofasiyrom reproducing all
the properties of natural images.

Fig. 7.4: Image synthesis using ICA. 20 patches were ranglg@herated using the ICA model
whose parameters were estimated from natural images.dffighire, the marginal distributions of
the components were those of the real independent compor@ninpare with real natural image
patches in Figure 5.2 on page 99, and the PCA synthesiss@siitgure 5.13 on page 117.

7.7 Connection to maximization of sparseness

In this section, we show how ICA estimation is related to spaess, how we should
model the log; in the log-likelihood in Equation 7.15 and how this connextiells
us how we should design the sparseness measure.
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Fig. 7.5: Image synthesis using ICA, and a Laplacian appration of the pdf of the independent
components. Compare with Figure 7.4, in which the real ithistions were used for the indepen-
dent components. The results are perhaps less realisttusedthe Laplacian distribution is less
sparse than the real distributions.

7.7.1 Likelihood as a measure of sparseness

Let us assume, as we typically do, that the linear featurmesidered are constrained
to be uncorrelated and to have unit variance. This is egemidab assuming that the
transformation given by is orthogonal in the canonically preprocessed (whitened)
space. Thus, the matri is constrained orthogonal. It can be proven that the deter-
minant of an orthogonal matrix is always equatt. This is because an orthogonal
transformation does not change distances and thus not esleither; so the abso-
lute value of the determinant which measures the changelime&must be equal

to 1. Thus, the first term on the right-hand-side of Eq. (7i$5)ero and can be
omitted.

The second term on the right-hand-side of Eq. (7.15) is theeetation (mul-
tiplied by T) of a nonlinear function log@; of the outputs of the feature detector
(more precisely, an estimate of that expectation, sinadstdtomputed over the sam-
ple). Thus, what the likelihood really boils down to is me@sg the expectations of
the formE{f(s)} for some functionf.

The connection to maximization of sparseness is now evidfethie feature out-
puts are constrained to have unit variance, maximizaticghefikelihood is equiv-
alent to maximization of the sparsenesses of the outfutise functions logy; are
of the form required for sparseness measurements, i.e.\Wevean express them as

logpi(s) = hi(s) (7.16)
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where the functionk; areconvexIn other words, the functions
hi(u) = log pi (v/u) (7.17)

should be convex fan > 0. It turns out that this is usually the case in natural images
as will be seen in the next section.

Earlier, we considered using the negative of square robt &s the probabilistic
interpretation given by ICA, using the square root meansttieapdf of a component
s is of the form

(8)= 2
N
where the constants have been computed sathas unit variance, and the integral
of the pdfis equal to one, as is always required. This digtidm is called Laplacian.
It is also sometimes called the double exponential digtidy since the absolute
value ofs has the classic exponential distribution (see Equatiofildon page 90).
The Laplacian pdf was already illustrated in Figure 6.2 ogeph39.

As already pointed out in Chapter 6, using the Laplacian pdflme numeri-
cally problematic because of the discontinuity of its dative. Thus, one might use
a smoother version, where the absolute value function igcep by the logcosh
function. This also corresponds to assuming a particul&rf@dthe independent
components, usually called the “logistic” pdf. When prdp@ormalized and stan-
dardized to unit variance, the pdf has the form

T 4./3
logpi(s) = —2logcosi——=s) — — 7.19
gpi(s) gcostiz 7 ) - — (7.19)
In practice, the constants here are often ignored, and githplplain log cosh func-
tion often is used to keep things simple.

exp(—v2|s|) (7.18)

7.7.2 Optimal sparseness measures

The maximum likelihood framework tells us what the nonliriées used in the
sparseness measure really should be. They should be choz®diag to Equation
(7.17). These nonlinearities can be estimated from natorages. To really find
the best nonlinearities, we could first maximize the likebd using some initial
guesses of thh;, then estimate the pdf’s of the obtained independent coemtsn
and recompute thl; according to Equation (7.17). In principle, we should then
re-estimate th&\{ using these news;, re-estimate thé; using the latest\f and so
on until the process converges. This is because we are basitaximizing the
likelihood with respect to two different groups of paramst@gheW, and theh;) and
the real maximum can only be found if we go on maximizing onthefparameters
groups with the other fixed until no increase in likelihood te obtained. However,
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in practice we do not need to bother to re-iterate this prebesause thig do not
change that much after their initial estimation.

Figure 7.6 shows twb;’s estimated from natural images with the corresponding
log-pdf’'s; most of them tend to be very similar. These areant®d by computing
a histogram of distribution of two independent componestisreated by a fixedh;:
the histogram gives an estimatemffrom whichh; can be derived.

We see that the estimatégare convex, if we ignore the behaviour in the tails,
which are impossible to estimate exactly because they roatafew data points.
Theh; estimated here are not very different from the square rowttion, although
sometimes they tend to be more peaked.

If we want to use such optimal nonlinearities in practice,veed to use para-
metric probability models for the (log-)pdf’s. Using higi@mm estimates that we
show here is not used in practice because such estimatesocarypinexact and
non-smooth. One well-known option for parameterized desssis the generalized
gaussian density (sometimes also called the generalizglddian density):

1 Isi|”

p(S) = exl— 7

) (7.20)

The parameterb andc are determined so that this is a pdf (i.e. its integral equals
one) which has unit variance. The correct values are

r(i) _ 2bymr ()
I'(§) and C_W (7.21)

a

b:

wherel™ is the so-called “gamma” function which can be computed Yesyin most
software for scientific computation. The parameter- O controls the sparseness
of the density. Ifa = 2, we actually have the gaussian density, andofet 1, the
Laplacian density. What is most interesting when modellimgges is that foo < 1,
we have densities that are sparser than the Laplacian gearsitcloser to the highly
sparse densities sometimes found in image features.

Another choice is the following density:

(s)= 1 (a+2)[a(a+1)/2)@>2D
P 2 Valar D2t |s)@d

with a sparseness parameterWhena — o, the Laplacian density is obtained as
the limit. The strong sparsity of the densities given by thizsdel can be seen e.g.,
from the fact that the kurtosis of these densities is alwaygdr than the kurtosis of
the Laplacian density, and reaches infinity dox 2. Similarly, p(0) reaches infinity
asa goes to zero.

A problem with these highly peaked distributions is thathee not smooth, in
particular their derivatives are discontinuous at zera. the generalized gaussian
distribution, the derivative is actually infinite at zera fw < 1. Thus, to avoid prob-
lems in the computational maximization of sparseness megstimay not be a bad
idea to use something more similar to a square root functigractical maximiza-

(7.22)
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Fig. 7.6: Estimated optimdd from natural images. After doing ICA, the histograms of tbhenpo-

nent with the highest kurtosis and a component with kurtostee middle range were computed,
and their logarithms taken. The feature corresponding eohilghest kurtosis is on the left, and
the one corresponding to the mid-range kurtosis is on the.rigop row: feature. Second row:
logarithm of pdf. Third row: optimah;. Bottom row: the derivative of log-pdf for future reference

tion of the sparseness measures. Actually, usually we usmatked version of the
square root function as discussed in Section 7.7.1.

The two density families in Equations (7.20) and (7.22) Hustrated in Fig-
ure 7.7. While it does not seem necessary to use such moreagedensity models
in the estimation of the basis, they are likely to be quitdwise Bayesian inference
where we really do need a good probabilistic model.
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Fig. 7.7: Top row: Some plots of the density function (leftpats logarithm (right) given in Egs
(7.20),a is given values 0.75, 1 and 1.5. More peaked ones correspasiddllera. Bottom row:
Plots of the density function (7.22y, is given values (,2,10. More peaked values correspond to
smallera.

7.8 Why are independent components sparse?

There are many different ways in which random variables camn-gaussian.
What forms do there exist, and why is it that independent comepts in images are
always sparse — or are they? These are the questions thatinesadh this section.

7.8.1 Different forms of non-gaussianity

While the forms of non-gaussianity are infinite, most of thenigaussian as-
pects that are encountered in real data can be described-amgasianity, super-
gaussianity, or skewness.

Super-gaussianity is basically the same as sparseness, &fper-gaussianity is
defined as positive kurtosis (see Equation (6.5) for a defimdf kurtosis), but other
definitions exist as well. The intuitive idea is that the pablity density function
has heavy tails and a peak at zero.
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The opposite of super-gaussianity is sub-gaussianityhwisi typically charac-
terized by negative kurtosis. The density function is “flatbund zero. A good
example is the uniform distribution (here standardized it uariance and zero

mean)
Lo if s <3
g = | 2ver TIH=V3 (7.23)
0, otherwise

The kurtosis of this distribution equalst/5, which is left as an exercise.
An unrelated form of non-gaussianity is skewness whichdadlgimeans the lack
of symmetry of the probability density function. A typicalample is the exponen-

tial distribution:
exp(—s), ifs>0
S) = 7.24
P(s) {O, otherwise ( )

which is not symmetric with respect to any point on the harmizab(s) axis. Skewness
is often measured by the third moment (assuming the meama} ze

skew(s) = E{s’} (7.25)

This is zero for a symmetrically-distributed random val&athat has zero mean
(this is left as an exercise). In fact, skewness is usualfinde as exactly the third
moment. However, any other nonlinear odd function could $&duinstead of the
third power, for example the function that gives the sigi) of s.

7.8.2 Non-gaussianity in natural images

Is it true that all the independent components in naturabigsaare sparse, and no
other forms of non-gaussianity are encountered? This isstitnue, but not quite.

The skewness of the components is usually very small. Aftenatural images
tend to be rather symmetric in the sense that black and wtetegually probable.
This may not be exactly so, since such symmetry depends anghsurement scale
of the grey-scale values: a non-linear change of measurtesnale will make sym-
metric data skewed. However, in practice, skewness seebesgo small that it can
be ignored.

There are some sub-gaussian components, though. In partitie DC compo-
nent, i.e. the mean luminance of the image patch, is tygisalb-gaussian. In fact,
its distribution is often not far from a uniform distributiolf we do not remove the
DC component from the images (in contrast to what we usually dnd we use
an ICA algorithm that is able to estimate sub-gaussian corapis as well (not all
of them are), the DC component actually tends to be estinegenhe independent
component. Depending on the window size and the preprogeased, a couple of
further very low-frequency components can also be subgjans
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7.8.3 Why is sparseness dominant?

One reason why the independent components in images aréyrapatse is the
variation of the local variance in different parts of an irragome parts of the
image have high variation whereas others have low variatiofact, flat surfaces
have no variation, which is sometimes called the blue-sfgcif

To model this change in local variance, let us model an indepet component
s as a product of an “original” independent compongmf unit variance, and an
independent, non-negative “variance” variatile

S=0d (7.26)

We calld; a variance variable because it changes the scale of eactvatise ofg;.
Such a variance variables will be the central topic in Cha@te

Let us assume that the original compongris gaussian with zero mean and unit
variance. Then the distributions of tlseis necessarily super-gaussian, i.e. it has
positive kurtosis. This can be shown using fact that for asgen variable, kurtosis
is zero and thu& {g'} = 3, so we have

kurts = E{s'} — 3(E{s'})* = E{d/q'} — 3(E{d?g’})
= E{d"}E{g’} — 3(E{d?})*(E{d’})* = B[E{d} — (E{d?})?] (7.27)

which is always non-negative because it is the varian(cﬁ ofiultiplied by 3. It can
be zero only ifd; is constant.

Thus, the changes in local variance are enough to transfoergdussian distri-
bution of g; into a sparse distribution fag. The resulting distribution is called a
gaussian scale mixture.

7.9 General ICA as maximization of non-gaussianity

Now we can consider the problem of ICA estimation in more galitg, in the
case where the components are not necessarily sparsetitufzarwe consider the
following two questions: Does estimation of ICA for non-sg@components have
a simple intuitive interpretation, and: Is there a deepaso@ why maximization
of sparseness is related to the estimation of the ICA modets& questions can
be answered based on the Central Limit Theorem, a most fuadi@itheorem in
probability theory. Here we explain this connection andwshow it leads to a more
general connection between independence and non-gaitxssian
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7.9.1 Central Limit Theorem

The Central Limit Theorem (CLT) basically says that when yake an average or
sum of many independent random variables, it will have aidigion that is close
to gaussian. In the limit of an infinite number of random vilés, the distribution
actually tends to the gaussian distribution, if properlymalized:

1 X :

’\Ilanw N n;sq gaussian (7.28)
where we assume that have zero mean. We have to normalize the sum here be-
cause otherwise the variance of the sum would go to infinigteNhat if we nor-
malized by ¥N, the variance would go to zero.

Some technical restrictions are necessary for this resoltsold exactly. The
simplest choice is to assume that theall have the same distribution, and that
distribution has finite moments. The CLT is illustrated iigie 7.8.

7.9.2 “Non-gaussian is independent”

What does the CLT mean in the context of ICA? Let us considaneat combi-
nation of the observed variableg;wiz. This is also a linear combination of the
original independent components:

zWiijzWizajij:Z(ZWiajj)SjZZQJSJ' (7.29)
T ] ] [ J

where we have denoteyj = y;w;a;j. We do not know the coefficienty because
they depend on tha;.

The CLT would suggest that this linear combinatij;s; is closer to gaussian
than the original independent compones)tsThis is not exactly true because the
CLT is exactly true only in the limit of an infinite number ofdependent compo-
nents, and there are restrictions on the distributionsefample, the variables s
do not have identical distributions if treg are not equal). However, the basic idea
is correct. This is illustrated in Figure 7.9 which showstttiee original indepen-
dent components are more gaussian than the observed datavhitening, shown
in Figure 7.1.

Thus, based on the central limit theorem, we can intuitivebtivate a general
principle for ICA estimation: find linear combinatiorysw;z of the observed vari-
ables that are maximally non-gaussian.

Why would this work? The linear combinatiof) wiz equals a linear combina-
tion of the independent components with some coefficignt®Now, if more than
one of thegj is non-zero, we have a sum of two independent random vasaBke
cause of the CLT, we can expect that such a sum is closer tgigaubat any of the
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c)
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Fig. 7.8:a) Histogram of a very sparse distribution) Histogram of a sum of two independent
random variables distributed as in a), normalized by dividby+/2. ¢) Histogram of a normalized
sum of ten variables with the same distribution as in a). Tdaesof the axes are the same in all
plots. We see that the distribution goes towards gausgianit

a) b)

4 A

Fig. 7.9:a) Histogram of one of the original components in Figure h)LHistogram of one of
thewhitenedcomponents in Figure 7.1. The whitened component has dbdistm which is less
sparse, thus closer to gaussian.

original variables. (This is really only an intuitive jufstiation and not exactly true.)
Thus, the non-gaussianity of such a linear combination isima when it equals
one of the original independent components, and the makimah-gaussian linear
combinations are the independent components.

Here, we have to emphasize that this connection betweermgaossianity and
independence only holds for linear transformations. In &9 we will see that
for nonlinear transformations, such a connection need xist at all, and may in
fact be reversed.

7.9.3 Sparse coding as a special case of ICA

Estimation of ICA by maximization of sparseness can now lea s a special case
of maximization of non-gaussianity. Sparseness is one fifron-gaussianity, the
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one that is dominant in natural images. Thus, in natural Esaghaximization of
non-gaussianity is basically the same as maximizationarsgmess. For other types
of data, maximization of non-gaussianity may be quite d#fifie from maximization
of sparseness.

For example, in the theory of ICA, it has been proposed thahtin-gaussianity
of the components could be measured by the sum of the squateslartoses:

n

Zl[kurt(viT 2)]? (7.30)

where, as usual, the data vectois whitened and the feature vectorsare con-
strained to be orthogonal and to have unit norm. It can be shibat ICA estimation
can really be accomplished by maximizing this objectivection. This works for
both sub-gaussian and super-gaussian independent contpone

Now, if the components all have positive kurtoses, maxingzhis sum is closely
related to finding vectors; such that the/iTz are maximally non-gaussian. The
square of kurtosis is, however, a more general measure efjaassianity because
there are cases where the kurtosis is negative as we saw i@b®getion 7.8.1. For
such components, maximization of non-gaussianity meanisnizingkurtosis (and
sparseness), because for negative values of kurtosismiration of the square
means to minimize kurtosis.

In fact, maximization of sparseness may not always be theecomethod for
estimation ICA even on images. If we do not remove the DC campbfrom the
images, the DC component turns out to be one independentammnp and it some-
times has negative kurtosis. For such data, simply maximgigparseness of all the
components will produce misleading results.

Thus, we see that there is a difference between basic lipeases coding and
ICA in the sense that ICA works for different kinds of non-gaianity and not just
sparseness.

7.10 Receptive fields vs. feature vectors

An important point to note is the relation between the featwmctorsA; and the
feature detector weighisf. The feature vectors are shown Fig. 7.3. However, it is
often theW that are more interesting, since they are the weights tlsajplied to
the image to actually compute the and in neurophysiological modelling, they are
more closely connected to the receptive fields of neurons.

There is, in fact, a simple connection between the twoAhare basically low-
pass filtered versions of thWd. In fact, simple calculations show that the covariance
cov(l (x,y),I(X,¥)) in images generated according to the ICA model equals

5 AYAK.Y) (7.31)
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because thg are uncorrelated and have unit variance. Thus we have
Z cov(l (x,y), 1 (X,y))W(X,y) = Z > A YAXY)W(X,Y)
Xy Xyl

= TAKY) T AXYIWK.Y) =A(xy) (732)
i Xy

by definition of theM as the inverse of th&;. This means that th&; can be obtained
by multiplying theW by the covariance matrix of the data.

Such multiplication by the covariance matrix has a simplerjoretation as bow-
pass filteringoperation. This is because the covariances are basicakgi@asing
function of the distance betweér,y) and(x,y'), as shown in Figure 5.4. Thus;
andW have essentially the same orientation, location and frecyuining proper-
ties. On the other hand, thfg are better to visualize because because they actually
correspond to parts of the image data; especially with detbis not purely spatial,
as in Chapter 15, visualization of the detector weights wowit be straightforward.

7.11 Problem of inversion of preprocessing

A technical point that we have to consider is computationhefA; for original
images based on ICA of canonically preprocessed data. Thaotually a problem
here: in order to get th&; we have to invert the canonical preprocessing, because
estimation of the model gives the vectassin the reduced (preprocessed) space
only. But canonical preprocessing is not invertible in thrics sense of the word,
because it reduces the dimension and therefore loses iafimmh

Typically, a solution based on the idea of computing the pessible approxima-
tion of the inverse of the PCA/whitening transformationcBuibest approximation
can be obtained by the theory of multivariate regressigraltarnatively, by the the-
ory of pseudo-inverses (see Section 19.8). Without goitgydetails, the description
of the solution is simple.

Denote byJ the orthogonal matrix which contains theectors giving the direc-
tions of the principal components as its rows, i.e.rfltominant eigenvectors of the
covariance matrix. Denote by the corresponding eigenvalues. Then, steps 3 and
4 of canonical preprocessing in Section 5.4 consist of mlyitig the vectorized
image patches by digy/\/Ai)U.

We now define the inverse preprocessing as follows: Aftermating the fea-
ture vectors in the preprocessed space {hethe basis vectors are multiplied by
UTdiagv/Ai). These are the optimal approximations of the feature vedtothe
original space. They can also be computed by taking the psevetse of the ma-
trix of the featuredM, which is what we did in our simulations.

Note that we have no such problem with computation ofvihéor the original
data because we just multiply the vectersvith the PCA/whitening matrix, and no
inversion is needed.
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7.12 Frequency channels and ICA

A long-standing tradition in vision science is to talk abbisequency channels”,
and more rarely, about “orientation” channels. The idedé& tn the early visual
processing (something like V1), information of differen¢duencies is processed
independently. The word “independence” as used here hasgab do with sta-
tistical independence: it means that processing happedsf@rent physiological
systems that are more or less anatomically separate, andt@xchange informa-
tion with each other.

Justification for talking about different channels is abamidn research on V1. In
recordings from single cells, simple and complex cell reéivedields are band-pass,
i.e. respond only to stimuli in a certain frequency rangej garious optimal fre-
quencies are found in the cells (see Chapter 3 and its refesgrin psychophysics,
a number of experiments also point to such a division of gandgessing. For exam-
ple, in Figure 3.8 on page 60, the information on the high-lamdfrequency parts
are quite different, yet observes have no difficulty in pssieg (reading) them sep-
arately.

In the results of ICA on natural images, we see an interestavginterpretation
of why the frequency channels might be independent in tefmpsgsiological and
anatomical separation in the brain. The reason is that tleenmation in different
frequency channels seems todtatisticallyindependent, as measured by ICA. The
feature vectorg\ given by ICA are band-pass, thus showing that a decompaositio
into statistically independent features automaticalbdeto frequency channels.

7.13 Concluding remarks and References

Independent component analysis is a statistical generatddel whose estimation
boils down to sparse coding. It gives a proper probabili&irenulation of sparse
coding and thereby solves a number of theoretical problensparse coding (in
particular: optimal ways of measuring sparseness, opitynafl decorrelation), and
gives a proper pdf to be used in Bayesian inference. The sgjomre “independent
component analysis” also points out another important @nypof this model: the
components are considered statistically independerg.imtiependence assumption
is challenged in many more recent models which are the tagiChapters 9-11.

The first application of ICA, as opposed to sparse codinghtage patches was
in (Bell and Sejnowski, 1997) based on the earlier sparseagdcamework in (Ol-
shausen and Field, 1996) considered in Section 13.1.

For more information on the ICA model, see (Hyvarinen ané,000) or
(Hyvéarinen et al, 2001b). Some of the earliest historief¢rences on ICA include
(Hérault and Ans, 1984; Mooijaart, 1985; Cardoso, 198f&eiuand Hérault, 1991).
Classic references include (Delfosse and Loubaton, 198%¢h showed explicitly
how maximization of non-gaussianity is related to ICA estiion; (Comon, 1994),
which showed the uniqueness of the decomposition, and tlidityaof the sum-
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of-squares-of-kurtosis in Equation (7.30); the maximukalihood framework was
introduced in (Pham et al, 1992; Pham and Garrat, 1997).

For more information on the central limit theorem, see aapgard textbook on
probability theory, for example (Papoulis and Pillai, 201

A related way of analyzing the statistics of natural image®ilook at the cu-
mulant tensors (Thomson, 1999, 2001). Cumulants (strsgaking, higher-order
cumulants) are statistics which can be used as measures-@aussianity; for ex-
ample, kurtosis and skewness are one of the simplest cutsu@amulant tensors
are generalizations of the covariance matrix to higheepodimulants. Analysis of
cumulant tensors is closely related to ICA, as discusseceiaildn Chapter 11 of
(Hyvéarinen et al, 2001b). Equivalently, one can analysepblyspectra (usually the
trispectrum) which are obtained by Fourier transformatiohthe cumulant spec-
tra, in a similar way as the ordinary Fourier spectrum fumtitan be obtained as
the Fourier transform of the autocovariance function; sge (&likias and Mendel,
1993; Nikias and Petropulu, 1993) for further information.

7.14 Exercices

Mathematical exercises

. Prove (7.2).

. Based on (7.2), prove that two independent random vasedoe uncorrelated.

. Calculate the kurtosis of the uniform distribution inZ3).

. Calculate the kurtosis of the Laplacian distribution7ri@).

. Show that the skewness of a random variable with a pdf wikietlen-symmetric
(i.e. p(—x) = p(x)) is zero.

. In this exercise we consider a very simple case of gaussigtures (see Sec-
tion 7.8.3). Assume that a component follos/s- vz wherez is gaussian with
zero mean and unit variance. Let us assume that in 50% of theahamages the
variance coefficient has valuex. In the remaining 50% of natural image<as
valuef.

GO~ WN PP

(o2}

a. What is the distribution of the random variakla the set of all natural im-
ages? (Give the density functiqtgs))

. Show thaE{s?} = 3(a? + B?)

. Show thaE{s*} = 3(a*+ B

. What is the kurtosis of this distribution?

e. Show that the kurtosis is positive for almost any parametieies.

7. Prove (7.31).

o 0O T
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Computer assignments

1. Using numerical integration, compute the kurtoses ot#hygacian and uniform
distributions.

2. Load the FastICA program from the web. This will be usedhie following
assignments. You will also need some images; try to find sdraehave not
been compressed, since compression can induce very néstisef

3. Take patches of 16 16 of the image. 10,000 is a sufficient amount of patches.
Input these to FastICA.

4. Plot histograms of the independent components. Compeie kurtoses. Plot
(some of the) RF’s. Look at the RF’'s and comment on whethgrltak like V1
RF's or not. If not, why not?



Chapter 8
Information-theoretic interpretations

So far, we have been operating within the theoretical fraotkvef Bayesian in-
ference: the goal of our models is to provide priors for Bégesnference. An al-
ternative framework is provided by information theory. hfarmation theory, the
goal is to find ways of coding the information as efficientlypassible. This turns
out to be surprisingly closely connected to Bayesian infeee In many cases, both
approaches start by estimation of parameters in a parairedestatistical model.

This chapter is different from the previous ones becauseavead provide any
new models for natural image statistics. Rather, we des@ihew framework for
interpreting some of the previous models.

8.1 Basic motivation for information theory

In this section, we introduce the basic ideas of informatii@ory using intuitive ex-
amples illustrating the two principal motivations: datarmgwession and data trans-
mission.

8.1.1 Compression

One of the principal motivations of information theory is@@ompression. Let us
begin with a simple example. Consider the following strifiglvaracters:

BABABABADABACAABAACABDAAAAABAAAAAAAADBCA

We need to code this using a binary string, consisting ofzara ones, because
that's the form used in computer memory. Since we have fditeréint characters,
a basic approach would be to assign the four possible twib-atigewords for each
of them:

185
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A — 00 (8.1)
B 01 (8.2)
C—10 (8.3)
D11 (8.4)

(8.5)

Replacing each of the characters by its two-digit codewarelgthe code

0100010001000100110001001000000100001000
0111000000000001000000000000000011011000

However, a shorter code can be obtained by using the fundainasight of
information theory:frequent characters should be given shorter codewofdés
makes intuitive sense: if frequent characters have shalgwords, even at the ex-
pense of giving less frequent characters longer codewtirdgverage length could
be shortened.

In this example, the character A is the most frequent onercqpately one half
of the letters are A's. The letter B is the next, with a profmrtof approximately
one quarter. So, let us consider the following kind of codelassignment:

A—0 (8.6)
B — 10 (8.7)
C— 110 (8.8)
D— 111 (8.9)

(8.10)

Now, the code becomes

1001001001001110100110001000110010111000
001000000000111101100

This is more than 10% shorter than the basic code given alloveal-world appli-
cations, the saving is often much larger, sometimes regahiore than 90% in im-
age compression.) Note that the codeword assignment hagle¥erly constructed
so that the original string can be recovered from this codbaut any ambiguity.

Compression was possible because some of the charactersnweee common
than others. In other words, it was due to the statisticallegies of the data (or
redundancy, which will be defined later). Thus, it is not sisipg that the methods
developed in information theory have also been appliederfitid of natural image
statistics.
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8.1.2 Transmission

A rather different application of information theory is iaih transmission. In trans-
mission, the central problem i®ise That is, the transmission will introduce ran-
dom errors in the data. The goal here is to code the data sthinetceiving end of
the system can correct as many of the random errors as passibl

As a simple example, consider the following binary stringickhwe want to
transmit:

1111101100100011100110100101110110100101

To code this string we use a very simple method: we simplyatp# the digits
three times. Thus we get the code

1111111111111110001111110000001110000000
0011111111100000011111100011100000011100
0111111111000111111000111000000111000111

This is transmitted through a channel which has relativelyng) noise: 25% of the
digits are randomly changed to the opposite. So, the reggiend in the channel
receives the following string:

1111100111111110000111110000001110100001
1000110100100100111010101011100001010100
1111111111000110101000111010010111100111

Now, we can use the repetitions in the string in the followimay: we look at all
consecutive groups of three digits, and guess that thenatigtring probably had
the digit which has the most occurrences among each grougs, We obtain the
following string

1111101100100101000110100101110110100101

This string has less than 10% wrong digits. Thus, our enapsitheme reduced the
number of errors introduced by the channel from 25% to leaa ®0%. (Actually,
we were a bit lucky with this string: on the average the emveosild be of the order
of 16%.)

So, the central idea in transmission is very different frasmpression. In order
to combat noise, we want to code the data so that we introcatendancy (to be
defined later), which often means making the code longerttiaoriginal data.

8.2 Entropy as a measure of uncertainty

Now, we introduce the concept of entropy, which is the fouimeof information
theory. First, we give its definition and a couple of exampdesl then show how it
is related to data compression.



188 8 Information-theoretic interpretations

8.2.1 Definition of entropy

Consider a random variablewhich takes values in a discrete sgt...,ay with
probabilitiesP(z= g),i = 1,...,N. The most fundamental concept of information
theory isentropy denoted byH (z), which is defined as

N
H(z) = —;P(z:aj)logzP(z:ai) (8.11)

If the logarithms to base 2 are used, the unit of entropy ikdalbit. Entropy is a
measure of thaverage uncertaintin a random variable. It is always non-negative.
We will next present a couple of examples to illustrate theidbmea.

Example 1 Consider a random variable which takes only two valuesndB.
Denote the probabilit?(z= A) by po. Then, entropy of equals

H(z) = —polog, po — (1 — po)log,(1 — po) (8.12)

We can plot this as a function @b, which is shown in Fig. 8.1 The plot shows that
the maximum entropy is obtained whep= 0.5, which means that both outcomes
are equally probable. Then the entropy equals one bit. Itrast) if pg equals O or
1, there is no uncertainty at all in the random variable, anémtropy equals zero.

157
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Fig. 8.1: Entropy of a random variable which can only take tatues, plotted as a function of the
probability po of taking one of those values.

Example 2 Consider a random variabiavhich takes, for some givem any of 2!
values with equal probability, which is obviously2". The entropy equals



8.2 Entropy as a measure of uncertainty 189

2 1 a1l
H(Z):_ziﬁlm‘:lzﬁ =-2 ?(—n):n (8.13)
i=

Thus, the entropy equatsbits. This is also the number of binary digits (also called
bits) that you would need to represent the random variabéebasic binary repre-
sentation.

Example 3 Consider a random variabiewhich always takes the same value, i.e.
it is not really random at all. Its entropy equals

H(z) = -1xlog,1=0 (8.14)

Again, we see that the entropy is zero since there is no uaingytat all.

8.2.2 Entropy as minimum coding length

An important result in information theory shows that the rusiwal value of entropy
directly gives theaverage code length for the shortest possible code the one
giving maximum compression). Itis no coincidence that thi¢ ef entropy is called
a bit, since the length of the code is also given in bits, instrese of the number of
zero-one digits used in the code.

The proof of this property is very deep, so we will only try toistrate it with an
example.

Example 4 Now we will return back to the compression example in the pdaty
section to show how entropy is connected to compressionsi@enthe characters
in the string as independent realizations of a random viriahich takes values in
the set{A,B,C,D}. The probabilities used in generating this data are

P(A)=1/2 (8.15)
P(B) =1/4 (8.16)
P(C)=1/8 (8.17)
P(D)=1/8 (8.18)

We can compute the entropy, which equals 1.75 bits. Thusenir@py is smaller
than 2 bits, which would be (according to Example 2), the mmaxn entropy for
a variable with four possible values. Using the definitioneafropy as minimum
coding length, we see that the saving in code length can beost (B-1.75)/2 =
12.5 % for data with these characteristics. (This holds édase of infinite strings
in which random effects are averaged out. Of course, for gefieingth string, the
code would be a bit shorter or longer due to random effects.)

Note also it is essential here that the characters in thegstiie generated inde-
pendently at each location; otherwise, the code length thigkhorter. For example,
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if the characters would be generated in pairs, as in AACCBBA#is dependency
could obviously be used to reduce the code length, possédygiid the bound that
entropy gives.

8.2.3 Redundancy

Redundancy is a word which is widely used in information tiyeas well as in nat-
ural image statistics. It is generally used to refer to tlagistical regularities, which
make part of the information “redundant”, or unnecessanfodtunately, when talk-
ing about natural images, different authors use the wordghty different ways.

An information-theoretic definition of redundancy is basedentropy. Given a
random variable which hag'2lifferent values, say,1..,2", we compare the length
of the basim-bit code and the length of the shortest code, given by entrop

redundancy=n—H(z) (8.19)

This is zero only if all the values, 1. ., 2" are equally likely. Using this terminology,
we can say that compression of the string in Section 8.1.1lpwmasible because the
string had some redundanay \as larger thard (z)). Compression is possible by
removing, or at least reducing, redundancy in the data.

This definition is actually more general than it seems, bge#ican also consider
dependenciebetweerdifferent variables (say, pixels). If we have two variabtes
andz, we can simply define a new varialdevhose possible values correspond to
all the possibleombination$of the values of; andz,. Then, we can define entropy
and redundancy for this new variable. If the variables aghlyi dependent from
each other, some combinations will have very small prolt#s| so the entropy
will be small and redundancy large.

It is important to understand that you may want to either oedor increase re-
dundancy, depending on your purpose. In compression you tvareduce it, but
in information transmission, you actually want to increés@he situation is even
more complicated than this because usually before trasgmisyou want to com-
press the data in order to reduce the time needed for datntiasion. So, you first
try to remove the redundancy to decrease the length of theetddte transmitted,
and then introduce new redundancy to combat noise. Thismatdze contradictory
because in introducing new redundancy, you do it is a cdettolay using care-
fully designed codes which increase code length as littleassible for a required
level of noise-resistance. A result called “source-chénading theorem” lays out
the conditions under which such a two-stage procedure facin optimal.

1 More precisely: ifz can take values in the seitl,2} and z can take values in the
set {1,2,3}, we definez so that it takes values in the Cartesian product of those sets
{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}, so that the probabilitg= (a1, a2) simply equals the prob-
ability thatzy =a; and 2 =&
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8.2.4 Differential entropy

The extension of entropy to continuous-valued random légaor random vec-
tors is algebraically straightforward. For a random valealith probability density
function p, we define thealifferential entropy denoted byH just like entropy, as
follows:

H(@ = [ pe(2)logpa(2)dz (8.20)

So, basically we have just replaced the summation in théraidefinition in Equa-
tion (8.11) by an integral. The same definition also appliethé case of a random
vector.

It is not difficult to see what kind of random variables havea#indifferential
entropies. They are the ones whose probability densities lErge values, since
these give strong negative contributions to the integrdtdn (8.20). This means
that certain small intervals are quite probable. Thus wenagee that entropy is
small when the variable is not very random, that is, it is ¢giliy contained in some
limited intervals with high probabilities.

Differential entropy is related to the shortest code lerajthdiscretizedversion
of the random variable. Suppose we discretizeso that we divide the real line
to bins (intervals) of lengtll, and define a new discrete-valued random variable ~
which tells which of these bins the value pbelongs to. This is similar to using
a limited number of decimals in the representation, for ep@nusing only one
decimal place as in “4” to represent the values of the random variable. Then, the
entropy ofZ’is approximately equal to the differential entropyzgblus a constant
which only depends on the size of the bids,

Example 5 Consider a random variablewhich follows a uniform distribution in
the interval[0, a]: Its density is given by

1l/a, for0<z<a
2) = ’ - 8.21
P2(2) {O, otherwise ( )
Differential entropy can be evaluated as
H(z)—_/a}m Ldz=10ga (8.22)
=) a ga =109 .

We see that the entropy is largeaifs large, and small i& is small. This is natural
because the smalleris, the less randomness there isziMActually, in the limit

whereagoes to 0, differential entropy goes+ao, because in the limigis no longer
random at all: it is always 0. This example also shows thdeftial entropy, in
contrast to basic entropy, need not be non-negative.
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8.2.5 Maximum entropy

An interesting question to ask is: What kind of distribusomave maximum en-
tropy?

In the binary case in Example 1, we already saw that it was tbeitzition
with 50%-50% probabilities which is clearly consistenttwthe intuitive idea of
maximum uncertainty. In the general discrete-valued dasan be shown that the
uniform distribution (probabilities of all possible vali@are equal) has maximum
entropy.

With continuous-valued variables, the situation is monaplcated. Differential
entropy can become infinite; consider, for example wheno in Example 5 above.
So, some kind of constraints are needed. The simplest eamisivould perhaps be
to constrain the random variable to take values only insifieit interval[a, b]. In
this case, the distribution of maximum entropy is, agaie, whiform distribution,
i.e. a pdf which equal§}—a in the whole interval and is zero outside of it. However,
such a constraint may not be very relevant in most applinatio

If we consider random variables whogariance is constrainetb a given value
(e.g. to 1), the distribution of maximum entropy is, inteinegly, the gaussian distri-
bution. This is why the gaussian distribution can be coneid¢he least “informa-
tive”, or the least “structured”, of continuous-valuedtdisutions.

This also means that differential entropy can be considarattasure ohon-
gaussianity The smaller the differential entropy, the further away thgtribution
is from the gaussian distribution. However, it must be ndteat differential en-
tropy depends on the scale as well. Thus, if entropy is usedrasasure of non-
gaussianity, the variables have to normalized to unit waefirst, just like in the
case of kurtosis. We will see in Section 8.4 how differenéatropy is, in fact,
closely related to the sparseness measures we used in €éapte

8.3 Mutual information

In information transmission, we need a measure of how muohrimation the output
of the channel contains about the input. This the purposkeotbncept of mutual
information.

Let’s start with the concept afonditional entropylt is simply the average en-
tropy calculated for the conditional distribution of theriadle z, where the condi-
tioning is by the observation of another variakie

H(zly) = -3 P(y) ) P(zly)logP(zly) (8.23)
y Z

That is, it measures how much entropy there is leftiwhen we know (observe) the
value ofy; this is averaged over all values ynf
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If zandy are independent, the conditional distributionzajiveny is the same
as the distribution of alone, so conditional entropy is the same as the entropy of
z If zandy are not independent, conditional entropy is smaller thanethtropy
of z, because then knowledge of the valueyofeduces the uncertainty an In
the extreme case where-=y, the conditional distributioz giveny is such that all
the probability is concentrated on the observed valug. dthe entropy of such a
distribution is zero (see Example 3 above), so the conditientropy is zero.

Let us assume thatis the message input to a transmission channelydadhe
output, i.e. the received signal. Basically, if transnussis very good, knowledge
of y will tell us very much about whatwas. In other words, the conditional distri-
bution ofz giveny is highly concentrated on some values. So, we could medsere t
transmitted information by the change in entropy which is tumeasurement gf
It is called the mutual information, which we dendtey J:

J(zy) =H(z) —H(Zy) (8.24)

Just as entropy gives the code length of the optimal codeyahirtformation is
related to the amount of information which can be obtainexliah based on obser-
vation of the channel outpyt

Note that, in practice, mutual information depends not amythe noise in the
channel, but also on how we code the data as the variablthe first place. There-
fore, to characterize the properties of the channel itsedf,need to consider the
maximum of mutual information over all possible ways of euglz. This is called
channel capacitgnd gives the maximum amount of information which can bestran
mitted through the channel.

A generalization of mutual information to many variableoften used in the
theory of ICA. In that case, the interpretation as inforrattransmitted over a
channel is no longer directly applicable. The generalorais based on the fact that
mutual information can be expressed in different forms:

J(zy) =H(@) —H(zly) =H(y) —H(y|2 =H(2) +H(y) —H(zy)  (8.25)

whereH(zy) is thejoint entropy which is simply obtained by defining a new ran-
dom variable so that it can take all the possible combinatadfrvalues ofz andy.
Based on this formula, we define mutual informatiomaéndom variables as

INz1,2,...,2) :.ZLH(Zi)_H(Zl’ZZ""’Z”) (8.26)

The utility in this quantity is that it can be used a measurendépendence: it is
always non-negative and zero only if the varialdeare independent.

2 We use a non-conventional notatidrfor mutual information because the conventional dnpe,
could be confused with the notation for an image.
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Conditional entropy, joint entropy, and mutual informatican all be defined for
continuous-valued variables by using differential enyropthe definitions instead
of ordinary entropy.

8.4 Minimum entropy coding of natural images

Now, we discuss the application of the information-theisreancepts in the context
of natural image statistics. This section deals with datap@ssion models.

8.4.1 Image compression and sparse coding

Consider first the engineering application of image comgiogs Such compression
is routinely performed when images are transmitted ovefriternet or stored on a
disk. Most successful image compression methods beginanlitiear transforma-
tion of image patches. The purpose of such a transformatitmreduce (differen-
tial) entropy. Grey-scale values of single pixels have almamer entropy than, for
example, the coefficients in a Fourier or discrete cosinesfiam (DCT) basis (at
least when these are applied on small patches). Since tiffecaods in those bases
have smaller differential entropy, discretized (quardjaeersions of the coefficients
are easier to code: the quantization error, i.e. the errquamtizing the coefficients
for a fixed code length, in reduced. This is why such a trams&tion is done as the
first step.

This means that the optimal linear transformation of imaggshe first step of
a compression method would be a transformation which mieshthe differential
entropy of the obtained components. This turns out to bee@lt sparse coding,
as we will now show.

Let us consider the differential entropy of a linear compuree How can we
compute the valukl (s) using the definition in Equation (8.20) in practice? The key
is to understand that entropy is actually the expectatianradnlinear function o$.
We have

H(s) = E{G(9)} (8.27)

where the functiois is the negative of the log-pd&(s) = —logps(s). In practice,
we have a sample & denote it bys(t),t =1,..., T. Assume we also have reason-
able approximation o, that is, we know rather well what the log-pdfis like. Then,
differential entropy can be estimated as the sample avdoagefixedG as

H(s) = % 3 Gis(t) (8.28)

Comparing this with Equation (6.2) on page 139, we see tlfi@rdntial entropy is
similar the sparseness measures we used in sparse codiagt, lin Section 7.7.2 it
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was shown that the optimal sparseness measures are obtdieedve use exactly
the log-pdf ofs as the nonlinearity. Thuslifferential entropy is the optimal sparse-
ness measure the sense of Section 7.7.2: it provides the maximum Hiaid
estimator of the ICA model.

However, there is one important point which needs to be takeraccount. The
sparseness measures assumed that the variareis @bnstrained to be equal to
one. This is consistent with the theory of ICA which tellsttkize transformation
should be orthogonal in the whitened space. In contrastage compression, the
transformation giving the components is usually consedito be orthogonal (in the
original image space). One reason is that then the quaiotizatror in the image
space is the same as the quantization error in the compopaoé sThis makes
sense because then minimizing quantization error for thepoments is directly
related to the quantization error of the original image.dntrast, any method which
whitens the data amplifies high-frequency components whake low variance,
thus emphasizing errors in their coding. So, the quantratiror in the components
is not the same as the error in the original image—which istwmleausually want to
minimize in engineering applications.

If we consider transformations which are orthogonal in thiginal space, the
constraint of unit variance of a componeis not at all fulfilled. For example, PCA
is an orthogonal transformation which finds components widximally different
variances. From the viewpoint of information theory, f[pghanges quite a lot as
a function of variance, so using a fixé&lmay give a very bad approximation of
entropy. So, while sparse coding, as presented in Chapterrélated to finding
an optimal basis for image compression, it uses a rathermnwectional constraint
which means it does not optimize the compression in the isarede.

8.4.2 Mutual information and sparse coding

Information-theoretic concepts allow us to see the conoedttetween sparse cod-
ing and ICA from yet another viewpoint. Consider a linearartible transformation
y = Vz of a random vector which iswhite. The mutual information between the
componenty; is equal to

(Y1, ,Yn) = iH(viTz) —H(Vz) (8.29)

Recall that mutual information can be interpreted as a nreasfidependence. Now,
let us constrailV to be orthogonal. Then, we haiVVz) = H(z) because thehape

(in an intuitive sense) of the distribution is not changedlhtan orthogonal trans-
formation simply rotates the pdf in thiedimensional space, leaving its shape intact.
This means that the values takenggyand logp; in the definition in Equation (8.20)
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are not changed; they are just taken at new values ©hat is why differential en-
tropy is not changed by an orthogonal transformation of @l

So, to minimize the mutual information, we simply need to fardorthogonal
transformation which minimizes the differential entropigf the components; this
is the same as maximizing the nongaussianities of the coemtenAnd for sparse
data, maximizing non-gaussianity is usually the same asmmarg sparseness.
Thus, we see that under the constraint of orthogonajigrse coding is equiva-
lent to minimization of the dependence of the compon#érite data is white. This
provides another deep link between information theory;spaoding, and indepen-
dence.

8.4.3 Minimum entropy coding in the cortex

A very straightforward application of the data compresgioinciple is then to as-
sume that V1 “wants” to obtain a minimum entropy code. Thigasy well in line
with the results on sparse coding and ICA in Chapters 6 andcguse we have just
shown that the objective functions optimized there can berpmeted as differential
entropies and code lengths. Basically, what informatiaoti provides is a new
interpretation of the objective functions used in learrsimgple cell receptive fields.

Yet, it is not quite clear whether such an entropy-basedraegus are relevant to
the computational tasks facing the visual cortex. A crltiiacussion on the analogy
between compression and cortical coding is postponed thoBe: 6.

8.5 Information transmission in the nervous system

Following the fundamental division of information theomté compression and
transmission, the second influential application of infation theory to visual cod-
ing considers maximization of data transmission, usuallied simply infomax.

8.5.1 Definition of information flow and infomax

Assume thai is a continuous-valued random vector. It is the input to araleu
system, which is modelled using a linear-nonlinear modes Section 3.4.1), with

3 A rigorous proof is as follows: denoting = Vz, we simply havepy(y) = p,(VTy) for an or-
thogonalV. The basic point is that the absolute value of the deterninathe transformation
matrix needed in transforming pdf’s, or variables in angné formula, (see Section 7.4) is equal
to one for an orthogonal transformation, so it can be omiftéais, we have py (y)log py(y)dy =

[ p2(VTy)logpz(VTy)dy. In this integral we make a change of variables VTy and we get
I P2(2)l0gp,(2)dz
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additive noise. Thus, outputs are of the form
yi = @(bx)+n (8.30)

where theg are some scalar functions, theare the connection weight vectors of
the neurons, and is a vector of white gaussian noise. That is, the neural né&two
first computes a linear transformation of the input datahwit coefficients given by
network connection weights; then it transforms the outputs using scalar functions
@, and there is noise in the system.

Let us consider information flow in such a neural network.dint information
transmission requires that we maximize the mutual inforomabetween the inputs
x and the outputy, hence the name “infomax”. This problem is meaningful only
if there is some information loss in the transmission. Tfere we assume that
there is some noise in the network; in practice, we have torasghat the noise is
infinitely small to be able to derive clear results. We camthsk how the network
parameters should be adapted (learned) so as to maximigenafion transmission.

8.5.2 Basic infomax with linear neurons

To begin with, we shall consider the very basic case whermre thie actually no non-
linearities: we definep(u) = u, and the noise has constant variance. (It may seem
odd to say that white noise has constant variance, becaatsssttims obvious. How-
ever, in Section 8.5.4 we will consider a model where thearare is not constant
because that is the case in neural systems.)

By definition of mutual information, we have

J(X,y) =H(y) — H(y[x) (8.31)

In the present case, the conditional distributioy gfvenx is simply the distribution
of the gaussian white noise. So, the entréfiy|x) does not depend on the weights
b; at all: it is just a function of the noise variance. This metrat for the purpose
of finding theb; which maximize information flow, we only need to consider the
output entropyH (y). This is true as long as the noise variance is constant.

To simplify the situation, let us assume, just for the pugsosf this section, that
the transformation matriB, with theb; as its rows, is orthogonal. Theyjs just an
orthogonal transformation of, with some noise added.

Furthermore, in all infomax analysis, we consider the liwiitere the noise vari-
ance goes to zero. This is because simple analytical remartenly be obtained in
that limit.

So, combining these assumptions and results, infomax rieati neurons with
constant noise variance boils down to the following: we mazxe the entropy (y),
wherey is an orthogonal transformation &f Noise does not need to be taken into
account because we consider the limit of zero noise. Buti@sisin Section 8.4.2,
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an orthogonal transformation does not change differeatifdopy, so the informa-
tion flow does not depend dhat all!

Thus, we reach the conclusion that for linear neurons withstamt noise vari-
ance, the infomax principle does not really give anythingriesting. Fortunately,
more sophisticated variants of infomax are more intergstimthe next subsections,
we will consider the two principal cases: noise of constamtance with nonlinear
neurons, and noise of non-constant variance with linearameu

8.5.3 Infomax with nonlinear neurons

8.5.3.1 Definition of model

First, we consider the case where

1. the functiongg are nonlinear. One can build a more realistic neuron model by
taking a nonlinearity which is saturating, and has no negatutputs.

2. The vecton is additive gaussian white noise.This is the simplest nmisdel to
begin with.

Maximization of this mutual informatiod(x,y) is still equivalent to maximiza-
tion of the output entropy, as in the previous subsectioraiAgve take the limit
where the noise has zero variance. We will not go into detel®, but it can be
shown that the output entropy in this nonlinear infomax mdden equals

H(y) = 5 E{logg{(b{ x)} + log| detB| (8.32)

It turns out that this has a simple interpretation in termghefl CA model. Now
we see that the output entropy is of the same form as the eatfizcof the likelihood
as in Equation (7.15). The pdf’s of the independent comptsname here replaced
by the functionsy. Thus, if the nonlinearitieg used in the neural network are
chosen as the cumulative distribution functions corredjpunto the densitieg; of
the independent components, i) = pi(-), the output entropy is actually equal
to the likelihood. This means that infomax is equivalent taximum likelihood
estimation of the ICA model.

Usually, the logistic function

1

G Al wrwre gy (8.33)
is used in the nonlinear infomax model (see Fig. 8.2 a). Thismates the ICA
model in the case of sparse independent components, betewsaterprety as a
pdf, it is sparse. In fact, the log-pdf given by Iggis nothing else than the familiar
logcosh function (with negative sigh and some unimportamistants), which we
have used as a measure of sparseness in Chapter 6, and aslaofreodenooth

sparse log-pdf in Equation (7.19).
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8.5.4 Infomax with non-constant noise variance

Here, we present some critique of the nonlinear infomax mate propose an
alternative formulation.

8.5.4.1 Problems with nonlinear neuron model

Using alogistic function as in Equation (8.33) is a correaywf estimating the ICA
model for natural image data in which the components reallysaper-gaussian.
However, if the transfer functioq is changed to the gaussian cumulative distri-
bution function, the method does not estimate the ICA modgireore, since this
would amount to assuming gaussian independent compomgritty makes the es-
timation impossible. An even worse situation arises if warge the functiog so
that ¢ is the pdf of a sub-gaussian (anti-sparse) distributioris @mounts to esti-
mating the ICA model assuming sub-gaussian independemaoemts. Then, the
estimation fails completely because we have made a completeng assumption
on the distribution of the components.

Unfortunately, the three nonlinear functiopscorresponding to Equation (8.33),
the gaussian case, and one particular sub-gaussian c&sallleery similar, how-
ever. This is illustrated in Fig. 8.2 a). All the three furmcts have the same kind of
qualitative behaviour. In fact, all cumulative distriborifunctions look very similar
after appropriate scaling along the x-axis.

It is not very likely that the neural transfer functions (whiare only crude ap-
proximations anyway) would consistently be of the type in B8¢33), and not closer
to the two other transfer functions. Thuke model can be considered to be non-
robust, that is, too sensitive to small fluctuations in itsgmaeters?

8.5.4.2 Using neurons with non-constant variance

A possible solution to the problems with nonlinear infomsaxa consider a more
realistic noise model. Let us thus take the linear functisrga and change the
definition of the noise term instead.

What would be a sensible model for the noise? Many classicefsad neurons
assume that the outputis coded as the mean firing rate in@tspik, which follows
a Poisson processWithout going into details, we just note that in that case, t
variance of mean firing rate has a variance that is equal toen. Thus, we have

var(ni|x) Or + |bf x| (8.34)

41t could be argued that the nonlinear transfer function caestimated from the data and it need
not be carefully chosen beforehand, but this only modifiés ridbustness problem because then
that estimation must be very precise.
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Fig. 8.2:a) Three sigmoidal nonlinearities corresponding to logisgigussian, and sub-gaussian
(with log-pdf proportional to-x*) prior cumulative distributions for the independent comgots.
The nonlinearities are practically indistinguishableo{®l that we can freely scale the functions
along the x-axis since this has no influence on the behavipl€A estimation. Here we have
chosen the scaling parameters so as to emphasize the ginjilay Three functionsh that give
the dependencies of noise variance (functibpsvhich are equivalent to different distributions.
Solid line: basic Poisson like variance as in Eq. (8.36)rexponding to a sparse distribution.
Dashed line: the case of gaussian distribution as in Eq9)8otted line: the sub-gaussian distri-
bution used in a). Here, the function in the basic Poisskmariance case is very different from
the others, which indicates better robustness for the matitbl changing noise variance. From
(Hyvarinen, 2002), Copyright2002 Elsevier, used with permission

wherer is a constant that embodies the spontaneous firing rate vidicbt zero
(and hence does not have zero noise). We take the absolute ofh| x because
we consider the output of a signed neuron to be actually ctgevo different
neurons, one for the negative part and one for the positivie Plae distribution of
noise in mean firing rate is non-gaussian in the Poisson psocase. However, in
the following we approximate it as gaussian noise: The fumetetal property of this
new type of noise is considered to be the variance behavieendn Eq. (8.34), and
not its non-gaussianity. Therefore, we call noise with ksl of variance behaviour
“noise with Poisson-like varianceinstead of Poisson noise.

A more general form of the model can be obtained by definingvtlr@nce to
be a nonlinear function of the quantity in Eq. (8.34). To sigate the robustness
of this model, we do in the following all the computationsietmore general case
where

var(ni|x) = h(b{ x) (8.35)

whereh is some arbitrary function with non-negative values, foameyple
h(u) =r+|u| (8.36)

in the case of Eq. (8.34).
It then can be shown that the mutual information in the linfizero noise is
equal to
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J(x,y) = log|detB| - E{log,/ h(bTx)} +const. (8.37)

where terms that do not depend Bnare grouped in the constant. A comparison
of Eq. (8.37) with Eqg. (8.32) reveals that in fact, mutuabimhation is of the same
algebraic form in the two cases. By takin@) = 1/¢ (u)?, we obtain an expression
of the same form. Thus, we see tltansidering noise with non-constant variance,
we are able to reproduce the same results as with a nonlimaasfer function.

If we consider the basic case of Poisson-like variance, kvirieans defining the
function h so that we have Eq. (8.34), this is equivalent to the nonlimdamax
with 1

¢ (u) J (8.38)
Inthe nonlinear infomaxy corresponds to the probability density function assumed
for the independent component. The function in (8.38) ismaproper probability
density function, since it is not integrable. However, it&litative behaviour is typ-
ically super-gaussian: very heavy tails and a peak at zero.

Thus, in the basic case of Poisson-like variance, the inkgpniaciple is equiva-
lent to estimation of the ICA model with this improper prigrtsity for the compo-
nents. Since the choice of nonlinearity is usually critmally along the sub-gaussian
VS. super-gaussian axis, this improper prior distributian still be expected to prop-
erly estimate the ICA model for most super-gaussian compisiie

To investigate the robustness of this model, we can congillat the noise vari-
ance structure should be like to make the estimation of sgaessian components
fail. As with the nonlinear infomax, we can find a noise stauetthat corresponds
to the estimation of gaussian independent componentsellimtiit of r = 0, we have
the relatiorh(u) = 1/¢/(u)?, and we see that the gaussian case corresponds to

h(u) O exp(u?) (8.39)

This is a fast-growing (“exploding”) function which is cléy very different from
the Poisson-like variance structure given by the esséntiaéar function in Equa-
tion (8.36). In the space of possible functidgnthat define the noise structure in this
model, the function in Eq. (8.39) can be considered as a blorddetween those
variance structures that enable the estimation of supesgi@n independent com-
ponents, and those that do not. These two different choards fogether with one
corresponding to sub-gaussian independent componertsgpéon) are plotted in
Fig. 8.2 b). The Poisson-like variance is clearly very df@ from the other two
cases.

Thus, we may conclude that the model with Poisson-like naeds quite robust
against changes of parameters in the model, since the ma@mpéer is the function

5 There is, however, the problem of scaling the component&eShe improper density has infinite
variance, the estimates of the components (and the weiglireg grow infinitely large. Such be-
haviour can be prevented by adding a penalty term of the fofm||w; ||? in the objective function.
An alternative approach would be to use a saturating naadityeas @, thus combining the two
infomax models.
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h, and this can change qualitatively quite a lot before theabieiur of the model

with respect to ICA estimation changes. This is in contragihé nonlinear infomax
principle where the nonlinearity has to be very carefullpsén according to the
distribution of the data.

8.6 Caveats in application of information theory

We conclude this chapter with a discussion on some opengmabéncountered in
the application of information theory to model corticalwéd coding in the context
of natural image statistics.

Classic information theory is fundamentally a theory of goession and trans-
mission of binary strings. Itis important to akskthis theory really useful in the study
of cortical visual representationgften, the concepts of information theory are di-
rectly applied in neuroscience simply because it is assutradhe brain processes
“information”. However, the concept of information, or they it is processed, may
be rather different in the two cases.

In the data compression scheme, we start with a binary striega sequence
of zeros and ones. We want to transform the vectors into ehanatring, so that
the string is as short as possible. This is basically accisimgd by coding the most
frequent realizations by short substrings or codewordd Lesmng longer codewords
for rarely occurring realizations. Such an approach has bmend immensely useful
in storage of information in serial digital computers.

However, if the processing of information is massively fletaas in the brain,
it is not clear what would be the interpretation of such reaurcin codelength
Consider an image that is coded in the millions of neuronslinA/straightforward
application of information theory would suggest that fomsimages, we only use
ki neurons, where each neuron codes for one digit in the stvilngreas others
needk, neurons wheré, > k;. Furthermore, an optimal image code would be one
where the average number of neurons is minimized. Yet, tiheben of neurons that
are located in, say, the primary visual cortex is just thees&n different stimuli. It
would be rather absurd to think that some region of V1 is netieel to represent the
most probable images. Even if some cells are not activatedeathe spontaneous
firing rate, this lack of activation is an important part oétbode, and does not mean
that the neuron is not “part of the code”.

In fact, in sparse coding the active neurons are assumeddifferent for differ-
ent stimuli, and each neuron is more or less equally impoftamepresenting some
of the stimuli. While sparseness, when interpreted in teofnentropy, has some
superficial similarity to information theoretic argumentsducing the length of a
string is very different from sparse coding because spasdeng is fundamentally
a parallel scheme where no sequential order is given to thens, and the outputs
of all neurons are needed to reconstruct the stimulus. ®hahere is no reduc-
tion of code “length” because the number of coding units Beddr reconstructing
the stimulus is always the same, i.e. the total number ofareurThe whole con-
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cept of “length” is not well-defined in the case of massivedyallel and distributed
processing. Reducing the length of a string is fundamenégalobjective inserial
information processing.

Another motivation for application of information theoryliearning optimal rep-
resentations comes from transmission of data. Optimabkitrégsion methods are
important in systems where data have to be sent through @ dlo@nel of limited
capacity. Again, the basic idea is to code different binaguences using other bi-
nary strings, based on their probabilities of occurrentes allows faster and more
reliable transmission of a serial binary signal.

Such “limited-capacity channel” considerations may beejtélevant in the case
of the retina and optic nerve as well as nerves coming frorargikripheral sensory
organs. Another important application for this theory isuimderstanding coding
of signals using spike trains. However, in V1, a limited aapachannel may be
difficult to find. A well-known observation is that the visuaput coming from the
lateral geniculate nucleus (LGN) is expanded in the V1 bygisi representation
consisting of many more neurons than there are in the LGNthH&dransmission of
information from LGN to V1 may not be seriously affected by fimited capacity
of the “channel”. Yet, the limited capacity of the channefring to V1 is the basic
assumption in infomax modefs.

Thus, we think application of information-theoretical angents in the study of
cortical visual coding has to be done with some caution. Borrowingasfcepts
originally developed in electrical engineering should laeetully justified. This is
an important topic for future research.

8.7 Concluding remarks and References

Information theory provides another viewpoint to the tyilbf statistical modelling
of images. The success in tasks such as compression anghigaits depends on
finding a useful representation of the data, and informati@ory points out that
the optimal representation is the one which provides thé¢ jebabilistic model.
Some studies therefore apply information-theoretic cptet® the study of natural
image statistics and vision modelling. The idea of minimentropy coding gives
some justification for sparse coding, and information traission leads to objec-
tive functions which are sometimes equivalent to those @&.INevertheless, we
take here a more cautious approach because we think it idewoti€ information
theoretical concepts can be directly applied in the condéxteuroscience, which
may be far removed from the original digital communicatisegting in which the
theory was originally developed.

A basic introduction to information theory is (Mackay, 2008 classic reference
which can be read as an introduction as well is (Cover and Hsp2006).

6 Possibly, the channélom V1 to V2 and other other extrastriate areas could have a veiyeld
capacity, but that is not the usual assumption in curreminmax models.
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Basic and historical references on the infomax principke @aughlin, 1981;
van Hateren, 1992; Linsker, 1988; Fairhall et al, 2001). Toalinear infomax
principle was introduced in (Nadal and Parga, 1994; Bell 8eghowski, 1995).
Infomax based on noise models with non-constant varianae \wéroduced by
(van Vreeswijk, 2001; Hyvarinen, 2002), using rather eliéint motivations. Pois-
son models for spike trains are discussed in (Dayan and A1). Information
content in spike trains in considered in, e.g. (Rieke et29,7). Another critique of
the application of infomax principles to cortical codingndae found in (Ringach
and Malone, 2007).

8.8 Exercices

Mathematical exercises

1. Consider the set of all possible probability distribngdor a random variable
which takes values in the séi,2,...,100}. Which distribution has minimum
entropy?

. Prove Equation (8.25).

3. Consider a general (not standardized) one-dimensicaassian distribution,

with pdf given by

N

1 1 2
Z) = ——eXp—=—(z— 8.40
P(2) = o X555 (2 W) (8.40)
Compute its differential entropy. When it is maximized? Weinimized?
4. Consider a random variakaevith pdf

1 z

5 Po(5) (8.41)
whereztakes values on the whole real line, and the funcpgrs fixed. Compute
the differential entropy as a function ofand pg.

5. * Assume we have a random vectowith pdf p,, and differential entropid (z).
Consider a linear transformatign= Mz. What is the differential entropy of?
Hint: don’t forget to use the probability transformatiorrfmula involving the
determinant oM, as in Equation (7.13); and note that the preceding exeixise
a special case of this one.

Computer assignments

1. Let's consider discrete probability distributions wiitake values in the set
{1,2,...,100}. Create random probabilities for each of those values téfen
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member to normalize). Compute the entropy of the distrdyutRepeat this 1,000
times. Find the distribution which had the largest and sesaléntropies. What
do they look like? Compare with results in Examples 2 and 3.






Part Il

Nonlinear features & dependency of linear
features






Chapter 9

Energy correlation of linear features &
normalization

It turns out that when we estimate ICA from natural images,dhtained compo-
nents are not really independent. This may be surprisingesititer all, in the ICA
model, the components are assumed to be independent. Burhiportant to under-
stand that while the components in the theoretical modeinalependent, thesti-
matesof the components akal image dataare often not independent. What ICA
does is that it finds the most independent components thatomssble by a linear
transformation, but a linear transformation has so few patars that the estimated
components are often quite far from being independent.itndimapter and the fol-
lowing ones, we shall consider some dependencies that cabdsrved between
the estimated independent components. They turn out to tbenesly interesting
both from the viewpoint of computational neuroscience anage processing. Like
in the case of ICA, the models proposed here are still venfrtam providing a
complete description of natural image statistics, but eaoldel does exhibit some
very interesting new phenomena just like ICA.

9.1 Why estimated independent components are not indepenadle

9.1.1 Estimates vs. theoretical components

A paradox with ICA is that in spite of the name of the methoe, ¢stimated com-
ponents need not be independent. That is, when we have aesammal image
patches, and estimate the independent components by anlfOAtlam, we get
components which are usually not independent. The key sopiiadox is the dis-
tinction between the estimated components and theoreticaponents. The theo-
retical components, which do not really exist because theyust a mathematical
abstraction, are assumed to be independent. However, wh@tsalgorithm gives,
for any real data, is estimates of those theoretical compishand the estimates do

209
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not have all the properties of the theoretical componentgatticular, the estimates
need not be independent.

Actually, it is not surprising that the components estirddig ICA are not inde-
pendent. If they were, the statistical structure of natimalges would be completely
described by the simple ICA model. If we knew the linear feas#y and the dis-
tributions of the independent components, we would knowyhieng there is to
know about the statistical structure of natural imagess Would be rather absurd,
because natural images are obviously an extremely complexsgt; one could say
it is as complex as our world.

There are two different reasons why the estimates need wettha properties
assumed for the theoretical components. First, the real mhaty not fulfill the as-
sumptions of the model. This is very often the case, sinceatsate basically ab-
stractions or approximations of reality. (We will see belogw the ICA model does
not hold for natural image data.) The second reason is rarfilatuation, called
sampling effect in statistics: When we estimate the modehféinite number of
image patches, we have only a limited amount of informattooua the underlying
distribution, and some errors in the estimates are bounddardecause of this.

Consider, for example, the two-dimensional data in Fig. 9His data is white
(uncorrelated and unit variance), so we can constrain t@enh@trix to be orthogo-
nal. If we input this data into an ICA algorithm, the algonitsays that the horizon-
tal and vertical axis (sag; andsp) are the “independent components”. However, it
is easy to see that these components are not independestkiHaw thats; is zero,
we know thats, cannot be zero. Thus, information on one of the componeugsgi
information on the other component, so the components ¢amandependent.
This data does not follow the ICA model fanyparameter values.

4 -2 0 2 4

Fig. 9.1: Scatter plot of a distribution which cannot be éifg decomposed to independent compo-
nents. Thus, the estimated components (given by the haalzand vertical axes) are dependent.
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9.1.2 Counting the number of free parameters

Another way of looking at this paradox is to think of the numbgfree parameters.

A linear transformation of variables tan new variables has? free parameters. We
can think of the problem of finding really independent comgras as a large system
of equations which express the independence of the obtaioegbonents. How

many equations are there? In Section 4.6 we saw that two émdkgmt components
have the following nonlinear uncorrelatedness property:

cov(fi(s), fa(sj)) =0 (9.1)

for any nonlinear function$; andf,. Now, there are an infinite number of different
nonlinearities we could use. So, based on Equation (4.4Xamgorm an infinite
number of different equations (constraints) that need tdulféled, but we only
have a finite number of free parameters, nanrélyThus, it is cleat that usually,
no solution can be found!

Note that the situation with respect to independence isdarkstontrast to the
situation with whitening. As we saw in Chapter 5, we awaysfind a linear
transformation which gives uncorrelated, and further eséd, components. This
is because whitening only needs to consider the covariaatexywhich has a rel-
atively small number of free parameters. In fact, the nunadf@quations we get is
n(n+1)/2 (because the covariance is a symmetric operation, thieistmber of
free parameters), which is smaller thaf) so we can find a transformation which
whitens the data.

9.2 Correlations of squares of components in natural images

Now, let us consider the dependencies of the componentsagsti in the Chapter 7.
The components are forced to be exactly uncorrelated byGhenhethod we used.
So, any dependencies left between the components mush&fan of some kind
of nonlinear correlations. Let us compute correlationsheftype in Equation (9.1)
for different nonlinear functiong (we use the same function as bdthand f5).
Because the variances of the nonlinear transformations@reecessarily equal to
one, it is a good idea to normalize the covariance to yieldtireslation coefficient:

_E{f(8)f(5)} — E{F(8)}E{f(5)}
JVarf(s)var(f(s))

1 Strictly speaking, we should show that we can form an infiniteber of equations which cannot
be reduced to each other. This is too difficult to show but ltksly to be true when we look at
some arbitrary data distribution, such as the distributibnatural images. Of course, the situation
is different when the data actually follows the ICA model:tivat case we know that there is a
solution. A solution is then possible because in this vescip case, the equations can be reduced,
just as if we needed to solve a system of linear equationsesthermatrix is not full rank.

corr(f(s), f(sj))

(9.2)
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In Figure 9.2 we show the correlation coefficients for seléiféerent functions
f. The figure shows the histograms of all the correlation coieffits between dif-
ferent pairs of independent components estimated in Chapte
It turns out that we have a strong correlation for even-syiim&inctions, i.e.
functions for which
f(—s) = f(s) (9.3)

Typical examples are the square function or the absoluteev@land a in the figure).
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Fig. 9.2: Histograms of correlation coefficients of nonfinéunctions of independent components
estimated from natural images) f(s) = |5, b) f(s) = &, ¢) f(s) is a thresholding function that
gives 0 between -1 and 1 and gives 1 elsewhae,(s) = sign(s), e) f(s) = s°. Note that linear
correlations, i.e. the cas(s) = sare zero up to machine precision by definition.
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9.3 Modelling using a variance variable

Intuitively, the dependency of two components that was rilesd above is such
that the components tend to be “active”, i.e. have non-zeitpuds, at the same
time. However, the actual values of the components are rsiliygaedictable from
each other. To understand this kind of dependency conschseawhere the compo-
nentss are defined as products of “original” independent variagleasd a common
“variance” variabled, which is independent of thg. For simplicity, let us define

that the means of the &re zeros and the variances are equal to one. Thus, we define
the distribution of the components as follows:

s =58d (9.4)
S =%d
S =5d

Now, s ands; are uncorrelated far# j, but they are not independent. The idea is
thatd controls the overall activity level of the two componentd is very small,s;
ands, are probably both very small, anddfis very large, both components tend to
have large absolute values.

Such dependency can be measured by the correlation of theiress?, some-
times called the “energies”. This means that

cov(s’,s)) = E{s's]} - E{'}E{s]} > 0. (9.5)

In fact, assuming theg andsj have zero mean and unit variance, the covariance of
the squares equals

E(SPSP) - E(Fd)E(Se?)
— E(SIE(SIE{d’d?} — E(F)E(PIE(FIE(d?) = E{d*} ~E{d?}? (9.6)

This covariance is positive because it equals the variahdé,and the variance of
a random variable is always positive (unless the variabteistant).

Moreover, if thes are gaussian, the resulting componennds, can be shown
to be sparse (leptokurtic). This is because the situatioedch of the components
is just the same as in Section 7.8.3: changing the varianeegafussian variable
creates a sparse variable. However, we do not assume hecgithiaal components
§ are gaussian, so the effect of the variance variablesiigteasetheir sparseness.

What is not changed from basic ICA is that the compongnése uncorrelated
in the ordinary sense. This is because we have

E{ssi} = E{§}E{§}E{d®} =0 9.7)
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due to the independence of tdérom §;. One can also define that tsehave vari-
ance equal to one, which is just a scaling convention as in. [QAIs the vector
(s1,%,-..,5) can be considered to be white.

9.4 Normalization of variance and contrast gain control

To reduce the effect of the variance dependencies, it isilgehormalize the local
variance. Let us assume that the image patch is generateliremacombination
of independent features, as in ICA. However, now the vagaraf the components
change from patch to patch as above. This can be expressed as

66y) = 3 Acy)(dS) ~d 5 AGcy)S 08)

whered is the variance variables that gives the standard deviati@ach patch. It
is a random variable because its value changes from patcht¢b.p

Here we made the strong assumption that the variances beatldmponents are
determined by a single variance variableThis may be not a bad approximation
when considering small image patches. It simplifies theasiitm considerably, since
now we can simply estimatéand divide the image patch lay

[(Xy) — — (9.9)

Assuming that we have a perfect estimator d, the normalized imageEthen
follow the basic ICA model

I(xy) = gim (xY)§ = im (x.Y)§ (9.10)

with the original components.In practice we don’t have a perfect estimator, so the
data will follow the ICA model only approximatively. Alsa, iis preferable to do

(y) - éxﬁg

(9.11)
whereeg is a relatively small constant that prevents division byozera very small
number

This kind of normalization of variances is calledntrast gain contral It can
be compared with the subtraction of the DC component: anlatect (irrelevant)
variable that has a strong effect on the statistics of theifea we are modelling is
removed so that we have a more direct access to the statistics

2 A reasonable method for determinimgmight be to take the 10% quantile of the valuesdpf
which we did in our simulations.
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For small image patches, one rather heuristic approachssriply estimatel
using the norm of the image patch
d=c [SI(xy)? (9.12)
X7y

wherec is a constant that is needed to make ghieave unit variance after normal-
ization; it depends of the covariance matrix of the data.dlUguhowever, we do not
need to compute because it only changes the overall scaling of the data.

When we normalize the contrast as described here, and centipaioutput of
linear feature detector, the result is closely related &rtburophysiological model
of divisive normalizationsee Equation (3.9) on page 65. The output of the linear
feature detector is then computed as

§ _ ZX,yW(Xa y)l (X7 y) (9 13)

ZX.yI (Xa y)2 + €

In the divisive normalization model, the denominator waseesially the sum of the
squares of the outputs of linear feature detectors. Herehave the norm of the
image patch instead. However, these two can be closeledetateach other if the
set of linear feature detectors form an orthogonal basia fonall image patch; then
the sum of squares of pixel values and feature detectorsactlyg equal.

The approach to estimatirtin this section was rather ad hoc. A more principled
method for contrast gain control could be obtained by prigpbafining a probability
distribution ford together with thes,"and estimating all those latent variables using
maximum likelihood estimation or some other principled hoets. Furthermore, if
the model is to be used on whole images instead of small pstalengle variance
variable is certainly insufficient. This is still an area afgwing research, see the
References section for more information.

Let us just mention here a slight modification of the divish@malization in
Equation (9.11) and (9.12) which has been found useful inesoomtexts. The idea
is that one could compute a weighted sum of the pixel val(ey) to estimate the
variance variable. In particular, low frequencies domgnatjuation (9.12) because
they have the largest variances. This effect could be eéiteth by computing a
whitening matrix and using the norms of the patches in theemeid space as.
Note that the divisive normalization destroys the whitesmafthe data, so after such
normalization, the whitening matrix has to be recomputed, the data has to be
whitened with this new whitening matrix.
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9.5 Physical and neurophysiological interpretations

Why are the variances, or general activity levels, so stiyoogrrelated, and what
is the point in contrast gain control? A number of intuitivgolnations can be put
forward.

9.5.1 Cancelling the effect of changing lighting conditien

The illumination (lighting) conditions can drastically afige from one image to
another. The same scene can be observed under very diffigitgtinig conditions,
think for example of daylight, dusk, and indoor lighting.&light coming onto the
retina is a function of the reflectances of the surfaces irstleme R), and the light
(iluminance) level ). In fact, the reflectances are multiplied by the illuminana
give the luminance arriving at the retina:

I(X7 y) = L(X7 y) R(X7 y) (9.14)

In bright daylight, the luminance levels are uniformly larghan in an indoor room,
and so are the contrasts. The average luminance level isigibtevin our images
because we have removed the DC component, which is nothsedgten the mean
luminance in an image patch. But the general illuminancelleMl has a clear effect
on the magnitude of the contrasts in the image, and theseandrsthe values of the
independent components. In a whole scene the illuminangémeguite differentin
different parts of the image due to shadows, butin a smalyapatch illuminance is
likely to be approximately the same for all pixels. Thus, ¢sirggle variance variable
d, which does not depend otory, could be interpreted as the general illuminance
level in an image patch.

In this interpretation, the utility of divisive normalizan is that it tries to estimate
the reflectanceR of the surfaces (objects). These are what we are usuallested
in, because they are needed for object recognition. lllaméelL is usually not of
much interest.

9.5.2 Uniform surfaces

A second reason for the correlated changes in the variarfdegtoires outputs is
what is called the “blue sky effect”. Natural images confairge areas of almost
zero contrast, such as the sky. In such areas, the variafedistioe independent
components should be set to almost zero. Thus, the variar@bled is related to
whether the image patch is in a uniform surface or not. Thisldi@artly explain
the observed changes in the variances of the componenthidaioes not seem to
explain utility of contrast gain control.
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9.5.3 Saturation of cell responses

Mechanisms related to gain control have been observed ity pats of the visual
system, from the retina to the visual cortex (see the Reba®rection below). Be-
fore the advent of statistical modelling, their existen@swsually justified by the
limited response range of neurons. As discussed in secdbh,3he neurons cannot
fire above a certain firing rate. The range of contrasts trapagsent in the stim-
uli coming to the retina is huge because of the changes imiileance condition:
the incoming signal can differ in several orders of magrétudontrast gain con-
trol is assumed to solve this problem by dividing the congé® be coded by cell
responses) by a measure of the general contrast level. dduils to a very similar
computation to what our statistical modelling proposdbmlgh our model does not
consider limited response ranges of neurons — linear RR/e ha such limitation.

9.6 Effect of normalization on ICA

Although we considered the dependencies after estima@idg it makes sense to
do the variance normalization before ICA. This would be tietioally optimal be-
cause then the ICA estimation would be performed on data evdasribution is
closer to the distribution given by the ICA model. In facte tmethod given above
in Section 9.4 can actually normalize the patches withoutpating independent
components.

Avalid question then is: does variance normalization dfffee independent com-
ponents? Let us now estimate ICA after variance normatinath see what effect
there may be. The obtain&d andA; are shown in Figures 9.3 and 9.4. The simi-
larity to the results obtained without variance normal@aiFigs. 6.6 on page 151
and 7.3 on page 169) is strikirig.

There is one important difference, however. Variance néimagon makes the
components less sparse. In Fig. 9.5 we have plotted theghéstoof the kurtoses of
the independent components, estimated either with an@dutitrariance normaliza-
tion. Variance normalization clearly reduces the averagedsis of the components.
The components after variance normalization corresporegtimates ™

This reduction in kurtosis is not very surprising if we rddhle results in Sec-
tion 7.8.3. There, it was shown that changing variance osgiamn variables is one
mechanism for creating sparse variables. The variancablarin Equation (9.8)
does exactly that. Here, the variance variable is the samallffaomponents, but
that does not change the situation regarding the margistillalitions of the single
components: multiplication by the variance variable makesn more sparse. Thus,
if we cancel the effect of the variance variable, it is naltthrat the components be-
come less sparse.

3 However, there is some difference as well: the vecfgraow have some spurious oscillations.
The reason for this phenomenon remains to be investigated.
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Fig. 9.3: The whole set of detector weight$ obtained by ICA after the variances have been
normalized as in Equations (9.11) and (9.12).

In practice, normalization of the image patches only redilse variance depen-
dencies but does not eliminate them. The process desctimee@ for modelling the
variances of the components was only a very rough approiomatet us do the
same measurements on the variance dependencies that wmdéalsefore normal-
ization. The results are shown in Figure 9.6. We see thatggnasrrelations still
remain, although they are now smaller.
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Fig. 9.4: The whole set of featurés obtained by ICA after the variances have been normalized.

9.7 Concluding remarks and References

This chapter focused on the simple empirical fact that tmelépendent compo-
nents” estimated from natural images are not independdris. eemingly para-
doxical statement is due to the slightly misleading way theression “indepen-
dent component” is used in the context of ICA. While ICA finde tmost indepen-
dent components possible by a linear transformation, tisare guarantee that they
would be completely independent. The dependencies olibiertiee case of natural
images can be partly explained by the concept of a globahree variable which
changes from patch to patch. Attempts to cancel the deperetegenerated by such
a changing variance lead to divisive normalization or gaintool models. However,
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a) 60 ‘ ‘ ‘ b) 150
50
40 100
30
20 50
10
% 5 10 15 20 50 s 1 1 2

Fig. 9.5: Histograms of kurtoses of independent componetestimatedwithout variance nor-
malization,b) estimatedvith variance normalization.
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Fig. 9.6: Histograms of correlation coefficients of nonfinéunctions of independent components
estimatedvith variance normalizatiora) f(s) = |s|, b) f(s) =?, ¢) f(s) is a thresholding function
that gives 0 between -1 and 1 and gives 1 elsewhere. Comptre)ag) in Fig. 9.2.
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this is merely the beginning of a new research direction — eflod) dependencies
of “independent” components — which will be continued in fblbowing chapters.

The results in this chapter also point out an interestingl aery important,
change in the relationship between sparseness and indepandVith linear mod-
els, maximization of sparseness is equivalent to maxinoizadf independence,
if the linear projections are sparse (super-gaussian).iB@ection 9.6, we saw
that divisive normalizatioincreases independenaes measured by correlations of
squares, whilelecreasing sparseneas measured by kurtosis. Thus, sparseness and
independence have a simple relation in linear models orityy, monlinear process-
ing, we cannot hope to maximize both simultaneously. Thistde elaborated in
(Lyu and Simoncelli, 2008); we will also return to this pointSection 17.2.1.

A seminal work on normalizing images to get more gaussiatribligions for
the components is (Ruderman and Bialek, 1994b). Simoraailicoworkers have
proposed sophisticated methods for modelling varianceégncies in large im-
ages. They start with a fixed wavelet transform (which is Eimio the ICA de-
composition, see Section 17.3.2). Since the linear basiisaid, it is much easier to
build further models of the wavelet coefficients, which caert be used in contrast
gain control (Schwartz and Simoncelli, 2001a; Schwartzl e2@05). More com-
plex model include hidden Markov models (Wainwright et &02; Romberg et al,
2001) as well as Markov Random Fields (Gehler and Wellin@52@yu and Si-
moncelli, 2007). A recent experimental work which considdifferent alternatives
for the functional form of divisive normalization is (Bonet al, 2006); the authors
conclude that something like the division by the norm is acdyowdel of contrast
gain control in the cat's LGN.

Finally, let us mention that some work considers the stesisproperties of il-
lumination itself, before its interaction with objects (@ret al, 2004; Mury et al,
2007).

Gain control phenomena can be found in many different pdrtiseovisual sys-
tem. Some of the earliest quantitative work on the effectattiral stimuli statistics
considered gain control in the retina (Laughlin, 1981; vaatdfien, 1992). Recent
work on gain control in the LGN can be found in (Bonin et al, 8R0

9.8 Exercices

Mathematical exercises

1. Show that if two componentg ands, are created using a variance variable
as in Eg. (9.4), then also their absolute values have a pegibtrrelation, i.e.
cov(|s1],|s2|) > O unlesd is constant.

2. Consider a variance varialdewhich only takes two valuesr with probability
1/2 andp with probability 1/2. Assumes; ands, follow Eq. (9.4) with gaussian
§; ands;.
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a. Show that fora,3 > 0, the resulting joint pdf ofs;,s) is a sum of two

gaussian pdf’s.
b. Takea =0 andf > 0. What is the distribution now like? Can you write the

pdf?

Computer assignments

1. Take someimages and sample patches from them. Thenfwaiktge detectors
in orthogonal orientations. Compute the outputs of botreatkgjectors for all the
patches. Normalize the outputs to unit variance. What ae th

a. the ordinary covariances and correlation coefficientexigfe detector outputs
b. the covariances and correlation coefficients of the sspiafithe edge detector
outputs?



Chapter 10
Energy detectors and complex cells

In preceding chapters we considered only linear featurethis chapter, we intro-
duce nonlinear features. There is an infinite variety ofedl#ht kinds of nonlinear-
ities that one might use for computing such features. Weawitisider a very basic
form inspired by models previously used in computer visiod aeuroscience. This
approach is based on the concepts of subspaces and enargipdetThe resulting
model called “independent subspace analysis” gives neatifeatures which turn
out to be very similar to complex cells when the parameter$earned from natural
images.

10.1 Subspace model of invariant features

10.1.1 Why linear features are insufficient

In the previous chapters, we assumed that each featureitalbas linear entity.
Linearity worked in two directions: The coefficient (stréhps of the feature in
the image was computed by a linear feature detector as intlequ@.4) on page
162, and the image was composed of a linear superpositidredéatures\;, as in

Equation (7.3) on page 161.

A problem with linear features is that they cannot represevdriances For
example, an ideal complex cell gives the same response f@atiag irrespective of
its phase. A linear feature detector cannot have such bedabecause the response
of a linear system to a grating depends on the match betwegrhtise of the input
and the phase of the detector, as discussed in Section Rihigher levels of the
visual system, there are cells which respond to complexcbpjarts irrespective of
their spatial location. This cannot be very well describga@lsingle linear template
(feature detector), either.

223
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10.1.2 Subspaces or groups of linear features

Linear combinations are a flexible tool that is capable of potimg and representing
invariant features. Let us consider a feature that congiseeeral vectors and all
their linear combinations. Thus, one such feature cornedpto a group of simple
linear features which are mixed together with some coefiisie

q
invariant feature= set of ZA; (x,y)s for all values ofs (10.2)
i=

whereq is the number of vectors in a single group. This grouping ehponents is
closely related to the concept sfibspaceén linear algebra. The subspace spanned
by the vector®\ fori =1,...,qis defined as the set of all the possible linear combi-
nations of the vectors. Thus, the range of values that ttegigmt feature represents
is a subspace.

The pointis that each such subspace is representing areintBgature by taking
different linear combinations of the vectors. Let us coasitbr example, the prob-
lem of constructing a detector for some shape, so that thpubaf the detector does
not depend on location of that shape, i.e. it detects wheltlgeshape occurs any-
where in the image. You could approach the problem by lineators (templates)
A that represent the shape in many different locations. Nbthese vectors are
dense enough in the image space, so that all locations aesezh\the occurrence
of the shape in any location can be represented as a triw@dticombination of the
templates: take the coefficient at the right location to beag¢tp one, and all the
other coefficients; to be zero. Thus, the subspace can represent the shape in a way
that is invariant with respect to the location, i.e. it does depend on the location.
In fact, subspaces are even more powerful, because to egpr@shape that is not
exactly in the locations given by the basic vectors, a sattsfy representation can
often be obtained by taking the average of two or more teraplatnearby locations
(say, just to the left and just to the right of the actual lgaa) It is this capacity of
interpolationthat makes the linear subspace representation so useful.

The whole image (patch) can be expressed as a linear sufigmay these
nonlinear features. Let us denote ) the set of indices of thoseA; that belong
to the k-th group or subspace; for example, if all the subspaces Haxmension
two, we would haves(1) = {1,2},S(2) = {3,4} etc. Thus, we obtain the following

model
l(x,y)zg ;)A«(x,y)s (10.2)
ieS(k

The image is still a linear superposition of the vectdr&, y), but the point is that
these vectors are grouped together. The grouping is usefdéfining nonlinear
feature detectors, as shown next.
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10.1.3 Energy model of feature detection

In Equation (10.2), there was no quantity that would disesty what the strength
(value, output) of a subspace feature is. It is, of coursppmant to define such a
measure, which is the counterpart of #én the case of simple linear features. We
now define the value of the feature, i.e. the output of a feadetector as a particular
nonlinearfunction of the input image patch. We shall denote iy

First of all, since the model in Equation (10.2) is still adar superposition
model, we can invert the system given by the vectyras in the linear case. To
be able to do this easily, we assume, as in ICA, that the totalber of vectors\
is equal to the number of pixels (alternatively, equal toinenber of dimensions
after canonical preprocessing, as discussed below). Baah linear coefficiers
can be computed by inverting the system, just as in equafi@): (

S = Z\M(X’y)l(x’y) (103)
Xy

for some detector weight& which are obtained just as with any linearimage model
(e.g. the ICA model).

Now, how do we compute the strength of the subspace featar&astion of the
coefficientss that belong to that subspace? There are several reasonsofmsing
the square root of the sum of the squares:

&= ¢ (10.4)
i€Sk)

The first reason for using this definition is that the sum ofesgs is related to the
norm of the Vectoly gk Ais . In fact, if theA; form an orthogonal matrix i.e. they
are orthogonal and have norms equal to one, the square rttoe¢ alum of squares
is equal to the norm of that vector. The norm of the vector imbwious measure
of its strength; here it can be interpreted as the “totalpogsse of all thes in the
subspace.

Second, a meaningful measure of the strergtlof a subspace feature in an
imagel could be formed by computing the distancé &fom the best approximation
(projection) that the subspace feature is able to provide:

i L(X,y) — (X, Y)]? 10.5
SQQK)W[ (xy) ieék)s/\(xy)] (10.5)

Again, if the A; form an orthogonal matrix, this can be shown to be equal to

SIy?- 5 (10.6)
Xy i€STk)

which is closely related to the sum of squares, because thédim does not depend
on the coefficients at all.
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Third, a sum of squares is often used in Fourier analysis:ghergy” in a given
frequency band is usually computed as the sum of squares &ftlrier coefficients
in the band. This is why a feature detector using sum of sguareften called an
energy detector. Note, however, that the connection taggrieithe sense of physics
is quite remote.

Fourth, the sum of squares seems to be a good model of the wayleocells
in the visual cortex compute their outputs from outputs ofige cells, see Sec-
tion 3.4.2. In the physiological model, a square root is remassarily taken, but the
basic idea of summing the squares is the same. In that cotibexsummation is
often called “pooling”.

Note that we could equally well talk about linear combinat®f linear feature
detectordV instead of linear combinations of ti#g. For an orthogonal basis, these
are essentially the same thing, as shown in Section 19.6, Tinear combinations
of theW in the same subspace give the forms of all possible linedufeaetectors
associated with that subspace.

Figure 10.1 illustrates such an energy pooling (summatioogel.

Fig. 10.1: lllustration of computation of complex cell outp by pooling squares of linear feature
detectors. From (Hyvarinen and Hoyer, 2000), Copyri@2000 MIT Press, used with permis-
sion.
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Canonically preprocessed data

Invariant features can be directly applied to data whoseedsion has been re-
duced. Just as in the case of a basic linear decompositiosawesimply formu-

late the linear model as in Equation (10.2) where the datéhedeft-hand side is
the preprocessed datg and the linear feature vectors are in the reduced space.
Nothing is changed in the concept of subspaces. Likewiseettergy detector in
Equation (10.4) takes the same form.

10.2 Maximizing sparseness in the energy model

10.2.1 Definition of sparseness of output

What we are now going to show is that we can learn invariarttfea from natu-
ral images by maximization of sparseness of the energy tetss given by the
subspace model. Sparseness can be measured in the sameinvihedmear case.
That is, we consider the expectation of a convex functiomefitguare of the detec-
tor output.

First of all, we take a number of linear features that sparatufe subspace. To
keep things simple, let us take just two in the following. lstdenote the detector
weight vectors, which work in the reduced space after carapireprocessing, by
v1 andv,. Since we are considering a single subspace, we can dropdegiiof
the subspace. So, what we want to maximize is a measure cespEms of the form

E{h(e)} =E{h((v2+(v}2)))} =E {h(( S viz 4 (S ijzJ-)Z)} (10.7)
=1 =1

whereh is a convex function just as in the linear feature case.

An important point that must be considered is how the refakietweens; and
Vo should be constrained. If they are not constrained at aliay easily happen that
these two linear detectors end up being the equal to each dthen we lose the
capability of representing a subspace. Mathematicallplksipg, such a situation is
violating our assumption that the linear system given byvngtorsA, is invertible,
because this assumption implies that \tkiglor thev;) are not linear combinations
of each other.

We constrain herg; andv, in the same way as in the linear feature case: the
outputs of the linear feature detectors must be uncorrtlate

E{(vi2) (v;2)} =0 (10.8)
and, as before, we also constrain the output variances tqumd & one:

E{(v/2)?} =1, fori=1,2 (10.9)
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Now, we can maximize the function in Equation (10.7) under donstraints in
Equations (10.8) and (10.9).

10.2.2 One feature learned from natural images

To give some preview of what this kind of analysis means ircfica, we show the
results of estimation of a single four-dimensional subspom natural images.
The four vectorsy;, converted back to the original image space (inverting tiee p
processing), are shown in Figure 10.2.

Fig. 10.2: A group of weight vectoi&f found by maximization of the nonlinear energy detector in
natural images.

What is the invariance represented by the subspace likePplsiway to analyze
this is to plot a lot of linear combinations of the weight v@stM belonging to the
same subspace. Thus, we see many instances of the diffeetatds that together
define the invariant feature. This is shown in Fig. 10.3 far theight vectors in
Fig. 10.2, using random coefficients inside the subspace.

L ) 0 G G 1

Fig. 10.3: Random combinations of the weight vectirén the subspace shown in Fig. 10.2. These
combinations are all particular instances of the featureegresented by the invariant feature

The resulting invariance has a simple interpretation: Thaviant feature ob-
tained by the algorithm is maximally invariant with respezthe phaseof the in-
put. This is because all the four linear featuvsare similar to Gabor functions
which have quite similar parameters otherwise, but withrttegor difference that
the phases of the underlying oscillations are quite differk the theory of space-
frequency analysis (Section 2.4), and in complex cell me{&éction 3.4.2), invari-
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ance to phase is achieved by using two different linear feadetectors which are
in quadrature-phase (as sine and cosine functions). Herbawe four linear feature
detectors, but the basic principle seems to be the same.

Such phase-invariance does, in fact, practically alwaysrgmfor the feature
subspaces estimated from natural image data, see Sectibfot@ more detailed
analysis. The invariant features are thus similar to comp#dls in the visual cor-
tex. This invariance appears because the linear featutb® isame subspace have
similar orientations, and frequencies, whereas they haite different phases, and
slightly different positions. Note that it is not easy totdiguish the effects of dif-
ferent phases and slightly different positions, since tresult in very much the
same transformations in the overall shape of the featumsdthing that looks like
a small displacement of the feature).

These results indicate that from a statistical viewpoimg, invariance to phase
is a more important feature of natural images that, say,riasae to orientation.
Such invariance to phase has been considered very impartaistial neuroscience
because it is the function usually attributed to complelscphase-invariance is the
hallmark property that distinguished simple and compldisce

To see that this “emergence” of phase-invariant featuremiself-evident, we
can consider some alternatives. A well-known alternatieeidd be a feature sub-
space invariant to orientation, called “steerable filténstomputer vision. Actually,
by taking a subspace of Gabor-like vectors that are similadliother parameters
than orientation, one can obtain exactly orientation-irarg features (see Refer-
ences and Exercises sections below). What our results shtvat in representing
natural images, invariance with respect to phase is moreiitapt in the sense that
it gives a better statistical model of natural images. Thasne will be justified in
the next section, where we build a proper probabilistic nhbdsed on sparse, inde-
pendent subspaces.

10.3 Model of independent subspace analysis

Maximization of sparseness can be interpreted as estimafia statistical model
just as in the case of linear features. Assume that the pties tis of the following

form:
logp(st, ., S) = Zh(ei) L] ) (10.10)
ieSk)

(A constant needs to be added to make this a proper pdf if thetitnh is not prop-
erly normalized, but it has little significance in practideenote byz,t =1,...,T a
set of observed image patches after preprocessing. Theelikelihood of the model
can be obtained in very much the same way as in the case of IE4uation (7.15)
on page 168. The log-likelihood is given by
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T
logL(v1,...,vn) = Tlog|det( V)| + Z zih( S z)?) (10.11)
t=1 ieSk)

Again, if we constrain thg to be uncorrelated and of unit variance, which is equiv-
alent to orthogonality of the matri¥/, the term logdet'V)| is constant. The re-
maining term is just the sum of the sparseness measurestbéahergy detectors.
Thus, we see that maximization of the sparsenesses is éntiva estimation of
the statistical generative model by maximization of likelbd.

As a concrete example, let us consider the case of two-dimesssubspaces,
and choosé(y) = —,/y. This defines a distribution inside each subspace for which

logp(s,sj) =—, /sz + sj2 If we further normalize this pdf so that its integral is efjua

to one, and so thag ands;j have unit variance, we get the following pdf fgrand
sj in the same subspace:

P(S.5i) = o eXD(—V3y[F ) (10.12)

This could be considered as a two-dimensional generadizati the Laplacian dis-
tribution. If you assumes; is given ass; = 0, the conditional pdf o is proportional

to exp(—\/ﬁ\/g), which is as in the Laplacian pdf in Equation (7.18) up to some
scaling constants.

What is the main difference between this statistical moael ECA? In ICA,
the pdf was derived using the assumption of independendeeofdmponents.
Since we have here a rather different model, it must meanstivae statistical de-
pendencies exist among the components. In fact, the pdfeabowresponds to a
model where thenonlinear features gare independent, but the components (i.e.
linear features) in the same subspace are. fidte independence of the nonlinear
features can be seen from the fact that the log-density irafimu(10.10) is a sum
of functions of the nonlinear features. By definition, thenlioear features are then
independent. This also implies that two components in tfemrdint subspaces are
independent. Since the subspaces are independent in Weseays, this model is
called independent subspace analysis (ISA).

The more difficult question is: What kind of dependenciesexétween the com-
ponents in a single subspace? This will be considered next.

10.4 Dependency as energy correlation

The basic result is that in the ISA model, the dependencidsdinear components
in the same subspace take the form of energy correlatioeadyrintroduced in
Chapter 9. This result will be approached from differentlaagn the following.
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10.4.1 Why energy correlations are related to sparseness

To start this investigation on the statistical dependenafeeomponents in ISA, we
consider a simple intuitive explanation of why the sparssr energy detectors is
related to the correlations of energies of the underlyingdi features.

Let us consider the following two cases. First, considet ju® linear feature
detectors which have the same output distributions, andse/bbotput energies are
summed (pooled) in a nonlinear energy detector. If the datare statistically inde-
pendent, the pooling reduces sparseness. This is becatlse fohdamental result
given by the Central Limit Theorem (see Section 7.9.1). yssaoughly speaking,
that the sum of independent random variables is closer tegjau (and therefore,
less sparse) than the original random variables themselves

Second, consider the contrasting extreme case where e litetector outputs
are perfectly dependent, that is, equal. This means thalistréoution of the pooled
energies is equal to the distribution of the original enesdup to a scaling constant),
and therefore there is no reduction in sparseness.

So, we see that maximization of the sparseness of the ererglated to maxi-
mization of the energy correlations (dependencies) of tiiedying linear features.

10.4.2 Spherical symmetry and changing variance

Next, we show how the ISA pdf can be interpreted in terms ofréamae variable,
already used in Chapter 9.

The distribution inside each subspace, as defined by EqL@},thas the distin-
guishing property of beingpherically symmetricThis simply means that the pdf

depends on the norr(y Yiesk) gz only. Then, any rotation (orthogonal transforma-

tion) of the variables in the subspace has exactly the sastebdition.

Spherically symmetric distributions constitute one ofsiraplest models of non-
linear correlations. Ih is nonlinear, the variables in the same subspace are depen-
dent. In contrast, an important special case of spherisgittymetric distributions is
obtained wheitn(u) = u, in which case the distribution is just the ordinary gaussia
distribution with no dependencies or correlations.

Spherical symmetry is closely related to the the model inclla separate vari-
ance variable multiplies two (or more) independent vagalds in Equation (9.4)
on page 213. If the independent variabdgsids; aregaussianthe distribution of
the vector(sy, sp) is spherically symmetric. To show this, we use the basicgipie
that the marginal pdf of the vectgs;,s,) can be computed by integrating the joint
pdf of (s1,,d) overd. First note that we hav§ = §%/d?. Since thes™are gaussian
and independent (let us say they have unit variance), argpentient ofl, the pdf
can be computed as:

p(s1, ) = / p(st, 5, d)dd = / ; ;dzexp(—i—gﬁ)p(d)dd (10.13)
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Even without actually computing the integral (“integratich out”) in this formula,
we see that the pdf only depends on the (square of the) |$§)Fms§ Thus, the
distribution is spherically symmetric. This is becausedistribution of(5;,5,) was
spherically symmetric to begin with. The distribution @f given by p(d) in the
equation above, determines what the distribution of themierike.

In the model estimation interpretatiomjs obtained as the logarithm of the pdf,
when it is expressed as a function of the square of the norms,Tdased in Equa-
tion (10.13) we have

h(e?) = Iog/ 2—7;2 exp(—%)p(d)dd (10.14)

Note that we obtain a spherically symmetric distributioyahthe § are gaus-
sian, because only gaussian variables can be both sphesgaimetrically dis-
tributed and independent. In Chapter 9, we did not assuntehtbd are gaussian;
in fact, when we normalized the data we saw the the estimgtade “still quite
super-gaussian. This apparent contradiction arises bedauthe ISA model, we
have a different variance variabiig for each subspace, whereas in Chapter 9 there
was only onel for the whole image patch. If we estimated ghéthe ISA model,
their distributions would presumably be much closer to garsthan in Chapter 9.

10.4.3 Correlation of squares and convexity of nonlinearit

Next we consider the role of the nonlinearhyin Equation (10.11). In the model
developed in this chapter, we don’t have just &nyputh is assumed to be convex
because we are considering measures of sparseness. Adtuaiins out that the
h that can be derived from the model with a variance variablmdke preceding
section, are necessarily convex. A detailed mathemaitnzdyais of this connection
is given in Section 10.8.

Conversely, if we define the pdf inside a subspace by takirmnaex functiorh
of the square of the norm, we usually get a positive covaddmetween the squares
of the components. Again, a detailed mathematical anabfsikis connection is
given in Section 10.8, but we will discuss this connectiorehveith an example.

As an illustrative example, consider two-dimensional paees with pdf defined
as in Equation (10.12). The covariance of the squaresanids; can be calculated,
it is equal to 23. The kurtosis of eithes or s;j is equal to 2, and the variables
are uncorrelated. (This density has been standardizedatatthmean is zero and
variance equal to one.) Using this pdf we can investigatedinelitional distribution
of sj for a givens:

ey P(ssS) _ p(ss)
p(sjls) = o)~ Tp(s.5)ds (10.15)
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This can be easily computed for our pdf, and is plotted in Eig4 a). We see a shape
that has been compared tdaw-tie when going away from zero on the horizontal
axis (), the distribution on the vertical axis;j) becomes wider and wider, i.e. its
variance grows. This can be quantified by the conditionabvae

var(sj|s) = /sfp(s”s)dsj (10.16)

The actual conditional variance gf givens; is shown in Fig. 10.4 b). We see that
the conditional variance grows with the absolute valug .of

What is the connection to energy correlations? Both inéngasonditional vari-
ance and energy correlations try to formalize the sametinéuidea: when one of
the variables has a large absolute values, the other(&ely lio have a large abso-
lute values as well. Correlations of squares or energiesngeshing we can easily
compute, whereas conditional variance is a more faithfuhfdization of the same
idea.

Thus, we see that taking a convbxor assuming the data to come from the
variance variable model (with gaussian “original” variedd)) are closely related.

a) b) 0.9
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Fig. 10.4: lllustration of the correlation of squares in firebability density in Equation (10.12).
a) The two-dimensionatonditional density ofs; (vertical axis) givens (horizontal axis). The
conditional density is obtained by taking vertical slicéstee density function, and then normal-
izing each slice so that it integrates to one, and thus defir@sper probability density function.
Black means low probability density and white means higtbphility density. We see that the
conditional distribution get broader asgoes further from zero in either direction. This leads to
correlation of energies since the expectation of the sgearething but the variancé) The condi-
tional variance og; (vertical axis) for a givers, (horizontal axis). Here we see that the conditional
variance grows with the square (or absolute valuey.of



234 10 Energy detectors and complex cells

10.5 Connection to contrast gain control

Both the ISA model and the model we used to motivate divismemalization in
Chapter 9 lead to a similar kind of dependency. This may dieeimpression that
the two are actually modelling the same thing. This is not scalise in ISA, the
variance variablesdl are different for each subspace, whereas in the contrast gai
control there was a singlfor the whole patch.

In the ISA model, the variance variablésare actually closely related to the out-
puts of nonlinear feature detectors. The sum of square®af thside one subspace
(or rather, that sum divided by the dimension of the subspear be considered
a very crude estimator of thd;2 of that subspace, because, in general, the average
of squares is an estimator of variance. No such interpretaif d can be made in
the contrast gain control context, where the simdjie considered an uninteresting
“nuisance parameter”, something whose influence we wardroe.

Although the contrast gain control models could be gensgdlto the case where
the patch is modelled using several variance variables;hwhossibly control the
variances in different parts of the patch due to differehtniination conditions,
the basic idea is still that in ISA, there are many more endeggctors than there
are variance variables due to illumination conditions ie tontrast gain model in
Chapter 9.

Because the dependencies in the two models are so simiegGauid envision
a single model that encompasses both models. Steps towentds snodel are dis-
cussed in Section 11.8. On the other hand, we can use ISA telntoel energy
correlations that remain in the imagafer divisive normalization. In the image ex-
periments below, we first reduce energy correlation by digisormalization using
Equation (9.11), and then model the data by ISA. This has tfferent motivations:

1. We want to model energy correlations, or in general théssitzal structure of
images, as precisely as possible. So it makes sense toditsta¢he overall value
of energy correlations to be able better to see fine detdils. Gan be compared
with removal of the DC component, which makes the detailseicoad-order
correlations more prominent. Just like in ICA, one finds tthet dependencies
between the subspaces are reduced by divisive normalizatothe ISA model
is then simply a better model of image data.

2. On a more intuitive level, one goal in image modelling iditml some kind of
“original” independent features. Reducing the dependenai linear features by
divisive normalization seems a reasonable step toward sgaal.

10.6 ISA as a nonlinear version of ICA

It is also possible to interpret the ISA model of independeriispace analysis as a
nonlinear invertible transformation of the data. Obvigubke transformation is non-
linear, but how can we say that it is invertible? The poinbigonsider not just the
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norms of the coefficients in the subspaces, but also the sirgligle the subspaces.
That is, we look at what is called thmolar coordinates inside each subspace. For
simplicity, let us consider just two-dimensional subsgaedthough this discussion
also applies in higher-dimensional subspaces.

The point is that if we express the coordinasgss, in a two-dimensional sub-

space as a function of the nomm= ,/s? + s3 and the angléd = arctars;/s; with

respect to one of the axes. This is an invertible transfdonathe inverse is given
by s; =rcosf ands, =rsinf.

The fundamental point is that the two variablesd6 areindependentinder the
ISA model. This is precisely because of the assumption tfeptf is spherically
symmetric, i.e. it depends on the norm only. Intuitivelyistis easy to see: since
the pdf only depends on the norm, it can be factorized, asinedjby the defini-
tion of statistical independence, to two factors. The fiegpehds on the norm only,
and the second, completely trivial factor is equal to 1. Thestant factor can be
interpreted to be a (constant) function@fcorresponding to a uniform distribution
of the angles. So, we see that the pdf can be factorized intodupt of a function
of r and a functiord, which proves the independence. (Note that this proof is not
quite correct because we have to take into account the diet@ntof the Jacobian,
as always when we transform pdf’s. The rigorous proof is ésftan exercise for
mathematically very sophisticated readers.)

Thus we see that we can think of the generative model of ISA Benéinear,
invertible transformation, which is, in the case of two-éimsional subspaces, as
follows:

r Vi)

91 Vi)

2 (10.17)
n/2 Zn_1
9n/2 Zn

where the components on the left-hand-side are all indeperfdom each other.
The same idea holds for subspaces of any dimensions; wegadtto parameterize
arbitrary rotations in those subspaces (which is rathengizated).

10.7 Results on natural images

10.7.1 Emergence of invariance to phase

10.7.1.1 Data and preprocessing

We took the same 5000 natural image patches of sizex332 as in the ICA case.
We performed contrast gain control by divisive normaliaatas in Equation (9.11),
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as motivated in Section 10.5. Then, we preprocessed thealiaad patches in the
same (“canonical”) way as with ICA, reducing the dimensio256.

The nonlinearityh used in the likelihood or sparseness measure was chosen to
be a smoothed version of the square root as in Eq. (6.14) om &8 We then esti-
mated the whole set of feature subspaces using subspackfsizeatural images,
which means 64= 256/4 subspaces.

10.7.1.2 Features obtained

The results are shown in Fig. 10.5 and Fig. 10.6 foth@nd theA, respectively.
Again, the feature detectors are plotted so that the grales@lue of a pixel means
the value of the coefficient at that pixel. Grey pixels meaio zeefficients. As with
linear independent components, the order of the subspacast idefined by the
model. For further analysis, the subspaces are ordereddingdo the sparsenesses
of the subspaces as measure by the tgfm h(¥;cs (v z)?) in the likelihood.

Visually, one can see that these feature detectors haveestitey localization
properties. First, they are localized in space: most of thedficients are practically
zero outside of a small receptive field. This is true of thevittlial feature detectors
in the same way as in the case of linear feature detectorsastil by sparse coding
or ICA. What is important here is that it is also true with respto the whole sub-
space, because the non-zero coefficients are more or ldsssaine spatial location
for all feature detectors corresponding to the same sulesfde linear feature de-
tectors and the invariant features are also oriented antigoalle in exactly the same
way: the optimal orientations and frequencies seem to bedhme for all the linear
features in the same subspace.

10.7.1.3 Analysis of tuning and invariance

We can analyze these features further by fitting Fourierimgat just as in Sec-
tion 6.4. In determining the optimal orientation and fremae for a subspace, we
find the grating that has maximum energy response, i.e. marisum of squares of
linear dot-productsinside the subspace. The analysisdemait more complicated
by the fact that for these nonlinear features, we cannot firdhtaximum response
over all phases by using two filters in quadrature-phaseakidd the square of the
responses as we did in Section 6.4. We have to compute thensspover different
values of orientation, frequen@nd phase. Thus we take many different values of
a,B and@in
f(x,y) = sin(2ra (sin(@)x+ cog 0)y) + B) (10.18)

Then we compute the responses of the energy detectors antid¢iodd that max-
imize the sum of responses over the differBribr each subspace.

We can then investigate the selectivities of the featureshanging one of the
parameters, while the others are fixed to the optimal vallbs gives the tuning
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Fig. 10.5: The whole set of vectdrg obtained by independent subspace analysis. The four gector

in the same subspace are shown consecutively on the sam&hewubspaces have been ordered
so that the sparsest ones are first (top rows).

curves for each of the parameters. Note that when computegesponses for vary-
ing orientation or frequency, we again take the sum overadbfble phases to sim-
ulate the total response to a drifting grating. On the ottaarch when we compute
the tuning curve for phase, we do not take a sum over diffgzhases.

In Figure 10.7 we have show the results of the analysis fdiitsteen (i.e. the ten
sparsest) subspaces in Fig. 10.5. We can clearly see tiratistl energy detectors
are still selective to orientation and frequency. Howetlegy are less selective to
phase. Some of the features are rather completely insensitiphase, whereas in
other, some selectivity is present. This shows that the tadeessfully produces
the hallmark property of complex cells: invariance to phaseleast in some of the
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Fig. 10.6: The whole set of vectofg obtained by independent subspace analysis.

cells® Thus, the invariance and selectivities that emerge fromrabimages by ISA
is just the same kind that characterize complex cells.

The selectivity to orientation and frequency is a simplesamuence of the fact
that the orientation and frequency selectivities of thearlying linear feature de-
tectors are similar in a given subspace. This can be anaiyzewre detail by vi-
sualizing the correlations of the optimal parameters fav timear features in the

11t should be noted that the invariance to phase of the sumuzireg of linear filter responses
is not an interesting property in itself. Even taking reaapfields with random coefficients gives
similar phase-response curves as in Fig. 10.7 for the sumuadrses. This is because the phase-
responses are always sinusoids, and so are their squargsheghases of different filters are
different enough, their sum often ends up being relativelystant. What is remarkable, and needs
sophisticated learning, is trmbinationof selectivity to orientation and frequency with phase-
invariance.
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Fig. 10.7: Tuning curves of the ISA featundk Left: change in frequency (the unit is relative to the
window size of 32 pixels, so that 16 means wavelength of 2igix®iddle: change in orientation.
Right: change in phase.



240 10 Energy detectors and complex cells

same subspace. In Fig. 10.8 we see that the orientationse(Bjrangly correlated.
In the case of frequencies the correlation is more difficuide because of the over-
all concentration to high frequencies. As for phases, noetation (or any kind of
statistical dependency) can be seen.

In this analysis, itis important to reduce the dimension BARjuite a lot. This is
because as explained in Section 5.3.3.2, the phase is noparprdefined quantity
at the very highest frequencies (the Nyquist frequency) ¢ha be represented by
the sampling lattice, i.e. the pixel resolution.
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Fig. 10.8: Correlation of parameters characterizing thnedr features in the same independent
subspace. In each plot, we have divided the subspaces iot@aiws, and plotted the optimal
parameter values for the two linear features in a scattetr pJoscatter plot of frequenciedy)
scatter plot of orientations;) scatter plot of phasesl) scatter plot of locations (x-coordinate of
centerpoints).

Finally, we can analyze the distribution of the frequeneied orientations of the
subspace features. The plot in Fig. 10.9 shows that whilerehtations are rather
equally present (except for the anisotropy seen even in E3Allts), the frequency
distribution is strongly skewed: most invariant features mned to high frequen-
cies.



10.7 Results on natural images 241

a) 40 " " b) 15

30

20

10

00 5 10 15 1 2 3 4

Fig. 10.9: Histograms of the optima)) frequencies andb) orientations of the independent sub-
spaces.

10.7.1.4 Image synthesis results

Results of synthesizing image with the ISA model are showFignire 10.10. This
is based on the interpretation as a nonlinear ICA in Secth, but the model with
variance dependencies in Section 10.4 would give the sasuése

Here, the norms;, i.e. the values of the invariance features, were choseeto b
equal to those actually observed in the data. The angledeiribe subspace were
then randomly generated.

The synthesized images are quite similar to those obtaigd@A. The invari-
ance is not really reflected in the visual quality of thesetlsgsized images.

Fig. 10.10: Image synthesis using ISA. Compare with the 1€%ults in Figure 7.4 on page 170.
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10.7.2 The importance of being invariant

What is the point in features that are invariant to phase®hegal, the variability

of how objects are expressed in the retinal image is one ofjthatest challenges,
perhaps the very greatest, to the visual system. Objectdeaseen in different

locations in the visual space (= retinal space). They carapgt different distances
to the observer, which changes their size in the retinal en&@pjects can rotate,
turn around, and transform in a myriad of ways. And that'salbtthe environment

can change, moving light sources and changing their stneogsting shadows and
even occluding parts of the object.

The visual system has learned to recognize objects debpie difficulties. One
approach used in the early parts of the system is to compatarés that are in-
variant to some of such changes. Actually, in Chapter 9 weadly saw one such
operation: contrast gain control attempts to cancel soffieetsfof changes in light-
ing, and removal of the DC component is doing something aimil

With energy detectors, we find phase-invariant featuresi)ai to those in com-
plex cells. It is usually assumed that the point in such amriance is to make
recognition of objects less dependent on the exact positlwere they appear. The
pointis that a change in phase is very closely related to agdhm position. In fact,
it is rather difficult to distinguish between phase-invada and position-invariance
(which is often called translation- or shift-invariancH.you look at the different
feature vectorgy inside the same subspace in Fig. 10.6, you might say thatiteey
the same feature in slightly different positions.

Changing the phase of a grating, and in particular of a Gaboctfon is in-
deed very similar to moving the stimulus a bit. However, in® movement in
an arbitrary direction: It is always movement in the direntof oscillations. Thus,
phase-invariance is rather a special case of positiordiamvee. And, of course, the
position-invariance exhibited by these energy detec®ygry limited. If the stim-
ulus is spatially localized (say, a Gabor function as aM)aymly a small change
in the position is allowed, otherwise the stimulus goes dthe receptive field and
the response goes to zero. Even this very limited posithvasiance can be useful
as a first step, especially if combined with further invatiemmputations in the next
processing layers.

Figure 10.11 shows a number of Gabor stimuli that have akogarameters
fixed at the same values but the phase is changed systertyaticaideal phase-
invariant feature detector would give the same responsk: tioege stimuli.

Fig. 10.11: A Gabor stimulus whose phase is changed.
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10.7.3 Grouping of dependencies

Next we analyze how grouping of dependencies can be seer ilBSthresults on
natural images. A simple approach is to compute the coroelabefficients of the
squares of components. This is done separately for compomérich belong to
the same subspace, and for components which belong toafiffenbspaces. When
this is computed for all possible component pairs, we cahthehistogram of the
correlation coefficients in the two cases. This is shown guFé 10.12. We see that
square correlations are much stronger for components irsdhee subspace. Ac-
cording to the model definition, square correlations shi@dero for components
in different subspaces, but again we see that the real das it exactly respect
the independence assumptions.

a) 250 " " " b) X 10"
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Fig. 10.12: Correlation coefficients of the squares of afigbole pairs of components estimated by
ISA. a) Components in the same subspareComponents in different subspaces.

Another way of analyzing the results is to visualize the sguarrelations. This
is done in Figure 10.13 for the first 80 components, i.e. 20dubspaces. Visually,
we can see a clear grouping of dependencies.

10.7.4 Superiority of the model over ICA

How do we know if the ISA model really is better for natural iges when compared
to the ICA model? The first issue to settle is what it means @ laebetter model.
Of course, ISA is better than ICA in the sense that it showsrgemee of new
kinds of phenomena. However, since we are building stedisthodels, it is impor-
tant to ask if the new model we have introduced, in this cage i8ally is better
than ICA in a purely statistical sense. One useful way of apphing this is to
compute the maximum likelihood. In a Bayesian interpretatihe likelihood is the
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80 ’
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Fig. 10.13: Correlation coefficients of the squares of thdi® components in Figure 10.5. The
correlation coefficients are shown in grey-scale. To imprdwe visualization, values larger than
0.3 have been set ta®.

probability of the parameters given the data, if the pridtas This helps us in com-
paring ICA and ISA models because we can consider the subsee as another
parameter. The ICA model is obtained in the case where thepsugle size equals
one. So, we can plot the maximum likelihood as a function bfpace size, always
recomputing th&\ so as to maximize the likelihood for each subspace sizeelf th
maximum is obtained for a subspace size larger than one, weaathat ISA is a
better model than ICA.

It is important to note that we need to use a measure which lisénwith the
theory of statistics. One might think that comparison ofj, sparsenesses of the
ICA and ISA features could be used to compare the models,Unlt 8 compari-
son would be more problematic. First, ISA has fewer featuseshow to compare
the total sparseness of the representations? Second, wd alsa encounter the
more fundamental question: Which sparseness measure ?olfuge use likeli-
hood, statistical theory automatically shows how to corafhe quantities used in
the comparison.

2 Comparison of models in this way is actually a bit more coogitd. One problem is that if
the models may have a different number of parameters, atdiogsparison of the likelihoods is
not possible because having more parameters can lead tfittovgr Here, this problem is not
serious because the number of parameters in the two modeisestially the same (it may be a bit
different if the nonlinearities; are parameterized as well). Furthermore, Bayesian thaoposes

a number of more sophisticated methods for comparing mpttedg consider the likelihood with
many different parameter values and not only at the maxiraitpSuch methods are, however,
computationally quite complicated, so we don't use thene her
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In Figure 10.14, likelihood is given as a function of subspaize for the ISA
model, for image patches is 2424. What we see here is that the likelihood grows
when the subspace size is made larger than one—a subspacé sie is the same
as the ICA model. Thus, ISA gives a higher likelihood. In didai, the graph shows
that the likelihood is maximized when the subspace size isvB&h is quite large.
However, this maximum depends quite a lot on how contrast gantrol is per-
formed. Here, it was performed by dividing the image patdnetheir norms, but
as noted in Chapter 9, this may not a very good normalizatiethod. Thus, the re-
sults in Figure 10.14 should not be taken too seriously. Gnimg a proper contrast
gain control method with the ICA and ISA model is an importeogic for future
research.

-1.22

-1.24¢

-1.26¢

log-Likelihood

-1.28¢

_1.3,

1 2 4 8 16 32 64 128256
Subspace size

Fig. 10.14: Maximum likelihood of natural image data as acfion of subspace dimensionality
in ISA. Subspace size equal to 1 corresponds to the ICA mathel.error bars are computed by
doing the estimation many times for different samples otlpes. Adapted from (Hyvarinen and
Koster, 2007).

10.8 Analysis of convexity and energy correlations*

In this section, we show more detailed mathematical aratysithe connection of
the correlation of squares and convexitytodiscussed in Section 10.4.3. It can be
omitted by readers not interested in mathematical details.
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10.8.1 Variance variable model gives conviex

First we show that the dependency implied by the model witbravexh typically
takes the form of energy correlations. To prove that (10.14) is always convex, it
is enough to show that the second derivativé &f always positive. We can ignore
the factor ¥ 2. Using simple derivation under the integral sign, we obtain

] XA~ 520)P(d)dd [  expl— 5 P(d)dd— [ & expl— 5% )p(d)dd]?
[/ & exp— ) p(d)dd]?
(10.19)

Since the denominator is always positive, it is enough tavsthat the numerator is
always positive. Let is consider ekp54;)p(d) as a new pdf ofl, for any fixedu,
after it has been normalized to have unit integral. Thenntiraerator takes the form
(E{1/d°}E{1/d?} — E{1/d*}?). Thus, it is enough that we prove the following
general result: for any random varialde 0, we have

h”(u)

(E{Z})? <E{Z}E{z} (10.20)

When we apply this om= 1/d?, we have shown that the numerator is positive. The
proof of Equation (10.20) is possible by the classic CauShiwarz inequality,
which says that for any,y > 0, we have

E{xy} <E{CHPE{y?}? (10.21)

Now, choosex = 72/2 andy = 7%/2. Then, taking squares on both sides, Equa-
tion (10.21) gives Equation (10.20).

10.8.2 Conve typically implies positive energy correlations

Next we show why convexity dfi implies energy correlations in the general case.
We cannot show this exactly, we have to use a first-order agpadion. Let us
consider two variables, and look at the conditional pd§ofiear the poins, = 0.
This gives

h(s? + ) = h(s?) + h'(s3)s3 + smaller terms (10.22)

Let us interpret this as the logarithm of the pdfsf given a fixeds;. Some nor-
malization term should then be added, corresponding tog¢hemhinator in (10.15),
but it is a function ofs; alone. This first-order approximation of the conditional pd
is gaussian, because only the gaussian distribution hagpdbthat is a quadratic
function. The variance of the distribution is equal {t2(s?)|. Because of convex-
ity, " is increasing. Usuallyly' is also negative, because the pdf must go to zero
(and its log to—) whens, goes infinite. Thus|i'(s?)] is a decreasing function,
and 2| (s?)| is increasing. This shows that the conditional variance aficreases
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with sf if his convex. Of course, this was only an approximation, butstifies the
intuitive idea that a convelt leads to positive energy correlations.

Thus, we see that using a convex the ISA model is closely related to assuming
that thes inside the same subspace have positive energy correlations

10.9 Concluding remarks and References

Independent subspace analysis is for complex cells whati@#\for simple cells.
When estimated from natural image data, it learns an enexggctbr model which
is similar to what is computed by complex cells in V1. The tgsg features have a
relatively strong phase-invariance, while they retaingmaple-cell selectivities for
frequency, orientation, and to a lesser degree, locatiaeskiction in the model is
that the pooling in the second layer is fixed; relaxing thinietion is an important
topic of current research and will be briefly considered ictid® 11.8. Another
question is whether the squaring nonlinearity in compatedif the features is better
than, say, the absolute value; experiments in (Hyvarimehkédster, 2007) indicate
that it is.

Steerable filters (orientation-invariant features) asedssed in the exercises and
computer assignments below. The earliest referencesdadlKioenderink and van
Doorn, 1987; Freeman and Adelson, 1991; Simoncelli et ad2)19An alterna-
tive viewpoint on using quadratic models on natural imagemi(Lindgren and
Hyvarinen, 2007), which uses a different approach and fiedg different features.

Early and more recent work on energy detectors can be four{Batien and
Ronner, 1983; Mel et al, 1998; Emerson et al, 1992; Gray et398). It is also
possible to directly incorporate energy detectors in watgelising complex-valued
wavelets (Romberg et al, 2000). The idea of transformingitite into polar coor-
dinates can be found in (Zetzsche et al, 1999). Using positivariant features in
pattern recognition goes back to at least (Fukushima, 19&@) e.g. (Fukushima
et al, 1994; Riesenhuber and Poggio, 1999) for more recerlaiements.

Only recently, reverse correlation methods have been drtbto estimation en-
ergy models (Touryan et al, 2005; Rust et al, 2005; Chen 208I7). These provide
RF’s for linear subunits in an energy model. The obtainedltesre quite similar to
those we learned in this chapter. However, such reverselation are quite scarce
at the moment, so a detailed comparison is hardly possiliterrfative approaches
to characterizing complex cells is presented in (Felser, &0®5; Touryan et al,
2002).
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10.10 Exercices

Mathematical exercises

1. Show Equation (10.6).
2. This exercise considers the simplest case of steeratalesfiConsider the gaus-
sian function

B(x.y) = exp(— 3¢ ) (10.23)

a. Compute the partial derivatives ¢fwith respect tac andy. Denote them by

dx andgy.
b. Show thatpx and¢y are orthogonal:

[ #x(xy)dy(xy) dxdy=0 (10.24)

c. The two functiongpy and ¢y define a pair of steerable filters. The subspace
they span has an invariance property which will be shown.riegfine an
orientation angle parameter. Consider a linear combination

$a = PxCOSA + Pysina (10.25)

The point is to show thap, has just the same shape @sor ¢y, the only

difference being that they are all rotated versions of eabbroThus ¢y and

¢y form an orthogonal basis for a subspace which consists gblsidge
detectors with all possible orientations. The proof canl@ioed as follows.
Define a rotated version of the variables as

X\ [ sinB cosB) (x
H-(BE) e
Expressp as a function ok’ andy’. Show that this is equivalent tf, for a
suitably choser.

Computer assignments

1. Create two two-dimensional Gabor filters in quadraturage and plot random
linear combinations of them.
2. Next we consider steerable filters.

a. Plot the partial derivativegy, and ¢y, defined in the mathematical exercise 2
above.
b. For a couple of different values of alpha, plot their lineambinationgp,.

Compare visually the shapes of the functions plotted.



Chapter 11

Energy correlations and topographic
organization

The energy detection model in the preceding chapter catydssimodified to in-
corporate topography, i.e. an arrangement of the featuregwo-dimensional grid.
This is very interesting because such organization is otleeafnost prominent phe-
nomena found in the primary visual cortex. In this chaptershall investigate such
a topographic version of the ICA model. It is, mathematigallrather simple mod-
ification of the independent subspace analysis model.

11.1 Topography in the cortex

Topography means that the cells in the visual cortex arematy random order;
instead, they have a very specific spatial organization.Mfeving on the corti-
cal surface, the response properties of the neurons chargystematic ways. The
phenomenon can also be called topological organizatiath sametimes the term
“columnar organization” is used in almost the same sense.

Fundamentally the cortex is, of course, three-dimensidnalddition to the sur-
face coordinates, which we denoteX@yandye, there is the depth dimensian The
depth “axis” goes from the very surface of the cortex throdiferent layers of the
grey matter to the white matter.

However, the depth dimension is usually assumed to be diftdrom the other
two dimensions. In the most simplistic interpretations, ¢kells that are on the same
surface locatiorixc, y¢) are similar irrespective of how deep they are on the cortex.
This is most clearly expressed in the classic “ice cube” rhofié1. Such a simplis-
tic view has been challenged, and it is now well-known thégast some properties
of the cells are clearly different in different (depth) lageln particular, input to V1
is received in some of the layers and others are specializedtputting the results.
Still, it seems that the response properties which we censidthis book, such as
location, frequency, and orientation selectivities, depmainly on the coordinates
(X, Ye) of the cell with respect to the surface.

249
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Looking at the spatial organization of response proped®gs function of the
surface coordinates andyc, the most striking aspect of topographic organizationis
retinotopy which means that the location of the receptive field in ti@atspace is
closely correlated with thg. andy. coordinates. The global correspondence of the
retinal coordinates and the cortical coordinates is sona¢admplicated due to such
phenomena as the magnification factor (the area in the cehtiee visual field has
a relatively larger representation on the cortex), thesilri into two hemispheres,
some unexpected discontinuities, and so on. The corraletjaherefore, more of a
local nature.

The second important topographic property is the graduahgk of orienta-
tion tuning. The preferred orientation of simple and complells mostly changes
smoothly. This phenomenon s often referred t@asntation columnsThey can be
seen most clearly in optical imaging experiments where aked a “photograph” of
the cortex that shows which regions are active when the iopusists of a grating
of a given orientation. Such activity patterns take the fofratripes (columns).

The third important property of spatial organization isttfraquency selectivity
seems to be arranged topographically into low-frequenalgdbto that the blobs (or
at least their centers) contain predominantly cells thafgsrlow-frequency cells
and the interblob cells prefer higher frequencies. Thegeftequency blobs seem
to coincide with the well-known cytochrome oxidase blobs.

A final point to note is that phase is not arranged topograglyidn fact, phase
seems to be completely random: there is no correlation legtilee phase parame-
ters in two neighbouring cells.

11.2 Modelling topography by statistical dependence

Now we show how to extend the models of natural image stadi$t include to-
pography. The key is to consider the dependencies of the aoemts. The model is
thus closely related to the model of independent subspadgsasin Chapter 10. In
fact, ISA can be seen as a special case of this model.

11.2.1 Topographic grid

To model topographic organization, we have to first definecwifeatures are “close
to each other” on the cortical surface. This is done by airamthe features on
a two-dimensional grid or lattice. The restriction to 2D itimated by cortical
anatomy, but higher dimensions are equally possible. Th&adrganization on
the grid models the organization on the cortical surfacee @ahrangement on the
lattice is illustrated in Figure 11.1.

The topography is formally expressed by a neighbourhoodtfon ri(i, j) that
gives the proximity of the features (components) with iedicand j. Typically, one
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" hood of

independent

Fig. 11.1: lllustration of topography and its statisticaierpretation. The neurons (feature detec-
tors) are arranged on a two-dimensional grid that defineshwvhéurons are near to each other and
which are far from each other. It also defines the neighbadataf a cell as the set of cells which
are closer than a certain radius. In the statistical modalrens that are near to each other have
statistically dependent outputs, neurons that are far #aoh other have independent outputs.

defines thatr(i, j) is 1 if the features are sufficiently close to each other (tuey
“neighbours”), and 0 otherwise. Typically, the neighbawt function is chosen by
defining the neighbourhood of a feature to be square. For pkamii, j) is 1 if the
featurej is in a 5x 5 square centered on featuretherwiseri(i, j) is zero.

11.2.2 Defining topography by statistical dependencies

Consider a number of featurgsi = 1,...,n. How can we order the features on the
topographic grid in a meaningful way? The starting poinbisléfine a measure of
similarity between two features, and then to order the festgo that features that
are similar are close to each other on the grid. This is a gépénciple that seems
fair enough. But then, what is a meaningful way of definingiksirity between two
features? There are, actually, a couple of different pdgssis.

In many models, the similarity of features is defined by samiiy of the features
weights or receptive fieldg4. Typically, this means the dot-product (also called,
somewhat confusingly, the correlation of the receptivedfigl This is the case in
Kohonen’s self-organizing map and related models. Howekier seems rather in-
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adequate in the case of the visual cortex. For example, taturfes of the same
frequency need not exhibit large dot-products of weighttees; in fact, the dot-
product can be zero if the features are of orthogonal oriamts with otherwise
similar parameters. Yet, since the V1 exhibits low-frequeblobs, low-frequency
features should be considered similar to each other evereif are quite differ-
ent with respect to other parameters. What's even worseaitsdince the phases
change randomly when moving a bit on the cortical surface dibt-products be-
tween neighbouring components also change rather randaindg the phase has a
large influence on the shape of the receptive fields and onatiprdducts.

Another candidate for a similarity measure would be cotiefaof the feature
detector outputs; when the input consists of natural images. However, thiois n
good either, since the outputs (components) are typicalhstained to be exactly
uncorrelated in ICA and related models. Thus, they woulbalnaximally dissim-
ilar if similarity is based on correlations.

Yet, using correlations seems to be a step in the right dinectThe central hy-
pothesis used in this book — visual processing in the codestrongly influenced
by the statistical structure of the natural input — wouldgest that we have to look
at the statistics of feature detector outputs in order to imdeaningful measure of
similarity to be used in a model of topography. We just needenaformation than
the ordinary linear correlations.

Our statistical approach to topography thus concentratéb@pattern of statis-
tical dependencies between tgeassuming that the joint distribution of tiseis
dictated by the natural image input. The basic idea is $hatlarity is defined by
the statistical dependency of the outputhus, features that have strong statistical
dependencies are defined to be similar, and features thatdapendent or weakly
dependent are defined to be dissimilar.

The application of this principle is illustrated in Fig. 11.The linear feature
detectors (simple cells) have been arranged on a grid §gastethat any two fea-
ture detectors that are close to each other have dependputeuvhereas feature
detectors that are far from each other have independentitsutp

Actually, from Chapters 9 and 10 we know what are the most ment statis-
tical dependencies that remains after ordinary ICA: theatations of squares (or
absolute values, which seems to be closely related). Theislomot need to model
the whole dependency structure of ghewhich would be most complicated. We can
just concentrate on the dependencies of the sqls%res

11.3 Definition of topographic ICA

As in the ICA and ISA models, we model the image as a linear rpgséion of
featuresA; with random coefficients:

I (Xa y) = ZIAI (Xa Y)S (lll)
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As in ICA and ISA, thes are obtained as the outputs of linear feature detectors as

n

§=YWEYIXY) =5 vijzi=V]z (11.2)
Xy =1

where thez; denotes thg-th variable obtained from the image patch by canonical
preprocessing.

The point is now to define the joint pdf of ttse so that it expresses the topo-
graphic ordering. First, we define the “local energies” as

n

CEDY i, j)s;. (11.3)

This is basically the general activity level in the neightimod of the linear feature
s. The weighting byr(i, j) means that we only sum ovgrwhich are close tg; in
the topography.

Next, we define the likelihood of the topographic ICA modelebgimple mod-
ification of the log-likelihood in the ISA model, given in Egtion (10.11) on page
230. We replace the subspace energigsy these local energies. (The connection
between the two models is discussed in more detail lateu,Ttefine the pdf of
thes as

log p(s1 Zh (11.4)
= l

whereh is a convex function as in the preceding chapters, e.g. @e6ét2.1. As-
suming we have observed a set of image patches, represented b-1,...,T
after canonical preprocessing, we obtain the likelihood

n T n
logL(vy,...,vn) =Tlog|detV)|+ h( v z)? (11.5)
“ 2"

The topography given byr(i, j) is considered fixed, and only the linear feature
weightsv; are estimated, so this likelihood is a function of theonly. As in earlier
models, the vectong; are constrained to form an orthogonal matrix, so the determi
nant is constant (one) and the tefrog|det(V)| can be ignored.

The central feature of this model is that the resposse$ near-by simple cells
arenotstatistically independent in this model. The responsestdiénearly uncor-
related, but they have nonlinear dependencies. In facemleegiesaz are strongly
positively correlated for neighbouring cells. This proyas directly inherited from
the ISA model; that connection will be discussed next.
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11.4 Connection to independent subspaces and invariant feaes

Topographic ICA can be considered a generalization of thdehof independent
subspace analysis. The likelihood of ISA, see Equatiori{)Qcan be expressed as
a special case of the likelihood in Equation (11.5) with eghbourhood function
which is one if the components are in the same subspace aad#esrwise, or
more formally:

i j) = 1, if there is some subspace with indgso thati, j € S(q)
= V0  otherwise

This shows that topographic ICA is closely connected to tireciple of invari-
ant feature subspaces in Chapter 10. In topographic ICAy@@mponent has its
own neighbourhood, which corresponds to a subspace in 18h Bf the local en-
ergiesc; could be considered as the counterpart of the eneggigsISA. Thus the
local energies, possibly after a nonlinear transform, camterpreted as the values
of invariant features. The pooling process is controlledh®/neighbourhood func-
tion 71(i, j). This function directly gives the pooling weights, i.e. thennections
between the linear features with indieand the invariant feature cell with indgx
Note that the number of invariant features is here equalgmtimber of underlying
linear features.

The dependencies of the components can also be deducedHeranalogy
with ISA. In ISA, components which are in the same subspaee barrelations
of energies. In topographic ICA, components which are ctoseach other in the
topographic grid have correlations of squares. Thus, &lfdgatures in the same
neighbourhood tend to be active (non-zero) at the same time.

In a biological interpretation, our definition of the podimeights from simple
cells to complex cells in topographic ICA is equivalent te issumption that com-
plex cells only pool outputs of simple cells that are neashyhe topographic grid.
Neuroanatomic measurements indicate that the wiring ofgdexrcells may indeed
be so constrained, see References below. Such a two-lalyevnkés illustrated in
Fig. 11.2.

11.5 Utility of topography

What is the computational utility of a topographic arrangen? A widely used ar-
gumentis that such a spatial arrangement is usefuitdmize wiring lengthWiring
length means here the length of the physical connectiomn&xeeded to send sig-
nals from one neuron to another. Consider, for example, tbblem of designing
the connections from simple cells to complex cells so that‘thires” are as short
as possible. It is rather obvious that topographic ICA istesd to minimizing that
wiring length because in topographic ICA all such connexiare very local in the
sense that they are not longer that the radius of the neighbods. A more general
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task may be to pool of responses to reduce noise: if a cell iilglaeh area wants
to “read”, say, the orientation of the stimulus, it could wed noise in V1 cell re-
sponses by looking at the average of the responses of malsywd@ath have the
same orientation selectivity.

In general, if we assume that two cells need to communicatte @dch other
if (and only if) their outputs are statistically dependenpographic ICA provides
optimal wiring. The same applies if the responses of twoscale combined by a
third cell only if the outputs of the two cells are statistigalependent. Such as-
sumptions are reasonable because if the cells represeespiéinformation which
are related (in some intuitive sense), it is likely that theeitputs are statistically de-
pendent, and vice versa; so, statistical dependence teithwells contain related
information which has to be combined in higher levels.

Minimization of wiring length may be important for keepinggettotal brain vol-
ume minimal: a considerable proportion of the brain volusased up in intercon-
necting axons. It would also speed up processing becausgghal travels along
the axons with limited speed.

Fig. 11.2: Computation of invariant features in the toppgia ICA model. Invariant features (com-
plex cell outputs) are obtained by summing the squares eétifeatures (simple cell outputs) in
a neighbourhood of the topographic grid. From (Hyvarineale2001a), Copyrighf©2001 MIT
Press, used with permission.
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11.6 Estimation of topographic ICA

A fundamental similarity to ISA is that we daot specify what parameters should
be considered as defining the topographic order. That isntheel does not specify,
for example, that near-by neurons should have receptivesfiglat have similar
locations, or similar orientations. Rather, we let the ratimages decide what the
topography should be like, based on their statistical stirec

fixed
weights

maximize
sparseness
learned

COMPLEX CELLS
(locally pooled energies)

SIMPLE CELLS
(linear filters)

PIXEL INPUT

Fig. 11.3: lllustration of learning in the topographic ICAodel. From (Hyvarinen and Hoyer,
2001), Copyright©2001 Elsevier, used with permission.

Since we have already defined the likelihood in Equatiorf}l &stimation needs
hardly any further comment. We use whitened (canonicakgpprcessed) data, so
we constrainV to be orthogonal just like in ICA and ISA. We maximize the like
lihood under this constraint. The computational impleragioh of such maximiza-
tion is discussed in detail in Chapter 18, in particular B&ec18.5.

The intuitive interpretation of such estimation is that we aaximizing the
sparsenesses of the local energies. This is completelpgmalo ISA, where we
maximize sparsenesses of complex cell outputs. The leaprocess is illustrated
in Fig. 11.3.
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11.7 Topographic ICA of natural images

11.7.1 Emergence of V1-like topography

11.7.1.1 Data and preprocessing

We performed topographic ICA on the same data as in previbapters. We took
the same 5M00 natural image patches of sizex332 as in the preceding chapters.
We preprocessed the data in the same way as in the ISA casemEains divisive
normalization using Equation (9.11), and reducing the disien to 256 by PCA.
The nonlinearityh was chosen to be a smoothed version of the square root as in
Eq. (6.14), just like in the ISA experiments.

The topography was chosen so tht, j) is 1 if the cellj is in a 5x 5 square
centered on cell; otherwiser(i, j) is zero. Moreover, it was chosen to be cyclic
(toroidal) so that the left edge of the grid is connected ® riight edge, and the
upper edge is connected to the lower edge. This was doneudoedubrder artifacts
due to the limited size to the topographic grid.

11.7.1.2 Results and analysis

The linear detector weight#f obtained by topographic ICA from natural images
are shown in Fig. 11.4, and the corresponding feature veétoare in Fig. 11.5.
The topographic ordering is visually obvious. The undewylinear features are
tuned for the three principal parameters: orientatiorgdiency and location. Visual
inspection of the map shows that orientation and locatiostm@hange smoothly
as a function of position on the topographic grid. A strikfiegture of the map is a
“blob” grouping low-frequency features. Thus the topodnajs determined by the
same set of parameters for which the features are selgctivetd; these are just the
same as in ICA and ISA. These are also the three parametérsespect to which
a clear spatial organization has been observed in V1.

The topography can be analyzed in more detail by either aajlmta local anal-
ysis. A local analysis is done by visualizing the correlat@f the optimal Gabor
parameters for two linear features that are immediate thoeigrs. In Fig. 11.6 we
see that the locations (a,b) and orientations (c) are syarggrelated. In the case
of frequencies (d) the correlation is more difficult to seednese of the overall con-
centration to high frequencies. As for phases (e), no catiogl (or any kind of sta-
tistical dependency) can be seen, which is again similartat\iwas been observed
in V1. Furthermore, all these correlations are similar ® ¢brrelations inside inde-
pendent subspaces in Figure 10.8 on page 240. This is notsogibecause of the
intimate connection between the two models, explained@abo$ection 11.4.

A global analysis is possible by colour-coding the Gabomrpeaters of linear
features. This gives “maps” whose smoothness shows thetbmess of the under-
lying parameter. The maps are shown in Figure 11.7. Theimtai{a and b) can be
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Fig. 11.4: The whole set of vectov¥ obtained by topographic independent component analysis,
in the topographic order.

seen to change smoothly, which is not obvious from just logkit the features in
Figure 11.4. The orientation and frequency maps (c and d)isnehange smoothly,
which was rather obvious from Figure 11.4 anyway. In somatsoihe orientation
seems to change abruptly, which may correspond to so-cgladheels”, which
are points in which many different orientations can be fooexit to each other, and
have been observed on the cortex. As for phases, the map shé¢a)s that they
really change randomly.

We can also analyze the distribution of the frequencies aiht@tions of the
features. The plot in Fig. 11.8 shows the histograms prefeorientations and
frequencies for the linear features. We see that all ortenta are almost equally
present, but the horizontal orientation is slightly overesented. This is the same
anisotropy we have seen all preceding models. In conttastrequency distribu-
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Fig. 11.5: The whole set of vectofs obtained by topographic independent component analysis.

tion is very strongly skewed: most linear features are tuteetigh frequencies.
However, the distribution of frequencies is a bit closer miferm than in the cases
of ICA (Fig. 6.9) or ISA (Fig. 10.9).

The connection of the model to ISA suggests that the localggg®can be in-
terpreted as invariant features. What kind of invarianaesvd see emerging from
natural images? Not surprisingly, the invariances arelaimid what we obtained
with ISA, because the neighbourhoods have the same kindarafmeters correla-
tions (Figure 11.6) as in ICA; we will not analyze them in maletail here. The
main point is thatocal energies are like complex cellBhat is, the topographic ICA
model automatically incorporates a complex cell model.

Basically, the conclusion to draw from these results is thattopographic ICA
model produces a spatial topographic organization of fifieatures that is quite
similar to the one observed in V1.
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Fig. 11.6: Correlation of parameters characterizing thedr features of two neighbouring features
in Figure 11.4. An immediate neighbour for each cell chosetha one immediately to the right.
Each point in the scatter plots is based on one such coajpdeatter plot of locations along x-axis,
b) locations along y-axis;) orientationsd) frequencies, and) phases. The plots are very similar
to corresponding plots for ISA in Fig. 10.8 on page 240; thénmésual difference is simply due
to the fact that here we have twice the number of dots in eaath pl

11.7.1.3 Image synthesis results & sketch of generative meld

Next, we will synthesize images from the topographic ICA mlo@his is a bit tricky
because in fact, we did not yet introduce a proper generatael for topographic
ICA. Such a model can be obtained as a special case of thevitaetroduced
later in Section 11.8.2. We will here briefly describe howlsacgenerative model
can be obtained.
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a)

Fig. 11.7: Global structure of the topography estimatechfraatural images in Figure 11.4. Each
parameter of the Gabor functions describing the featurgsoied grey-scale or colour-coded.
Colour-coding is used for parameters which are cyclic: @agon and phase, since the colour
spectrum is also cyclic. The actual values of the parametersiot given because they have little
importance.a) locations along x-axish) locations along y-axisg) orientations,d) frequencies,
ande) phases.

Basically, the idea is a simple generalization of the framdwising variance
variables as in Section 10.4 and Section 9.3. Here, we haeparae variance
variabled; for each componers:

s =§d (11.6)
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Fig. 11.8: Histograms of the optimal)) frequencies ant) orientations of the linear features in
topographic ICA.

where thes™are gaussian and independent from each other (and from Xh€he
pointis to generate thé so that their dependencies incorporate the topographg. Thi
can be accomplished by generating them using a higher-tZdemodel, where the
mixing matrix is given by the neighbourhood function. Dengtthe higher-order
components by, we simply define

di= zn(i,j)ui 117
J

This produces approximately the same distribution as tHewfdich we used to
define the topographic ICA model earlier in this chapter. Seetion 11.8.2 for
details. A problem we encounter here is that it is not obvioow to estimate the
distributions of theu;. So, we have to fix them rather arbitrarily, which means the
results are not quite directly comparable with those olet@ioy ISA and ICA where
we could use the observed histograms of the features.

Results of synthesizing images with this generative modelsaown in Fig-
ure 11.9. Theu; were generated as the fourth powers of gaussian variables. T
synthesized images seem to have more global structureltbaa tbtained by ICA
or ISA, but as we just pointed out, this may be related to thg wa fixed the
distributions of they;.

11.7.2 Comparison with other models

When compared with other models on V1 topography, we see thrgortant prop-
erties in the topographic ICA model:

1. The topographic ICA model shows emergence of a topogecaplhyanization us-
ing the above-mentioned three principal parameters: lmeatrequency and ori-
entation. The use of these particular three parameters {[gradetermined by the
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Fig. 11.9: Image synthesis using topographic ICA. Compatke thie ICA results in Figure 7.4 on
page 170 and ISA results in Figure 10.10 on page 241.

model, but determined by the statistics of the input. Thig isontrast to most
models that only model topography with respect to one or tar@meters (usu-
ally orientation possibly combined with binocularity) tlee chosen in advance.

2. No other model has shown the emergence of a low-frequdnby b

3. Topographic ICA may be the first one to explicitly show amection between
topography and complex cells. The topographic, columngawization of the
simple cells is such that complex cell properties are autmalyy created when
considering local activations. This is related to the randess of phases, which
means that in each neighbourhood, there are linear featites/ery different
phases, like in the subspaces in ISA.

It is likely that the two latter properties (blobs and compleells) can only
emerge in a model that is based on simultaneous activatioerdg correlation)
instead of similarity of receptive fields as measured by Igean distances or recep-
tive field correlations. This is because Euclidean distarwecorrelations between
feature vectors of different frequencies, or of differehapes, are quite arbitrary:
they can obtain either large or small values depending oattier parameters. Thus,
they do not offer enough information to qualitatively digtuish the effects of phase
vs. frequency, so that phase can be random and frequencyednge a blob.
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11.8 Learning both layers in a two-layer model *

In this section, we discuss estimation of a two-layer modaictvis a generaliza-
tion of the topographic ICA. The section is quite sophigedamathematically, and
presents ongoing work with a lot of open problems, so it caskigped by readers
not interested in mathematical details.

11.8.1 Generative vs. energy-based approach

Many of the results in the preceding chapters are relateditdayer generative
model. In the model, the observed variabtesre generated as a linear transforma-
tion of components, just as in the basic ICA modet:= As. The point is to define
the joint density ok so that it expresses the correlations of squares that sebm to
dominantin image data.

There are two approaches we can use. These parallel very thhecparse cod-
ing and ICA approaches in Chapters 6 and 7. In the first appragpically called
“energy-based” for historical reasohsye just define an objective function which
expresses sparseness or some related statistical aritemal maximize it. In the
second approach, we formulate a generative model whiclrideschow the data
is generated starting from some elementary components.nak cnsider here
first the generative-model approach; the energy-based Inedensidered in Sec-
tion 11.8.5.

11.8.2 Definition of the generative model

In the generative-model approach, we define the joint dgosis as follows. The
varianceydi2 of thes are not constant, instead they are assumed to be random vari-
ables. These random variablésare, in their turn, generated according to a model
to be specified. After generating the variandésthe variables are generated in-
dependently from each other, using some conditional Bigions to be specified.
In other words, the areindependent given their variancd3ependence among the
s is implied by the dependence of their variances.

This is a generalization of the idea of a common varianceabégi presented
in Section 7.8.3. Here, there is no single common variancebig, since there is
a separate variance variallg corresponding to eack. However, these variance
variables are correlated, which implies that the squardsex are correlated. Con-
sider the extreme case where thare completely correlated. Then, tt\%are actu-
ally the same variable, possibly multiplied by some cortstarhus, in this extreme

1 Note that the word “energy” here has nothing to do with Faueieergy, it comes from a com-
pletely different physical analogy.
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case, we actually have just a single variance variable &idivisive normalization
model in Chapter 9.

Many different models for the variancd% could be used. We prefer here to use
an ICA model followed by a nonlinearity:

n

di=r( z mi(i, k)uy) (11.8)
K=1

Here, theuy are the “higher-order” independent components used torganéne
variances, and is some scalar nonlinearity (possibly just the identifg) = 2).
The coefficientst(i, k) are the entries of a higher-order feature matrix. It is dipse
related to the matrix defining the topography in topograp@i, which is why we
use the same notation.

This particular model can be motivated by two facts. Fiskjriig sparsei;, we
can model a two-layer generalization of sparse coding, /ther activations (i.e. the
variances) of the componergsare sparse, and constrained to some groups of “re-
lated” components. Related components means here comgosmeose variances
are strongly influenced by the same higher-order comporngnts

In the model, the distributions of th& and the actual form of are additional
parameters; some suggestions will be given below. It seatusal to constrain the
Uk to be non-negative. The functiancan then be constrained to be a monotonic
transformation in the set of non-negative real numberss €hsures that they's are
non-negative, so is a natural constraint since they givstiwedard deviation of the
components.

The resulting two-layer model is summarized in Fig. 11.10teéNthat the two
stages of the generative model can be expressed as a singléoaganalogously to
(9.4), as follows:

S = (3 (i Kuos (11.9)

wheres’ is a random variable that has the same distributios; @gven thatd; is
fixed to unity. Theuy and thes™are all mutually independent.
11.8.3 Basic properties of the generative model

Here we discuss some basic properties of the generativeljustdefined.

11.8.3.1 The components are uncorrelated

This is because according to (11.9) we have

E(ss1) = E(S)E{S LT (Y mi.0uor(3 7w} =0 (11.10)
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due to the independence of the from § andsj. (Recall thats”ands;j are zero-
mean.) To simplify things, one can define that the marginaawaes (i.e. integrated
over the distribution ofl;) of thes are equal to unity, as in ordinary ICA. In fact,

we have
E{s} = E{éz}E{r(Z (i, k)ui)?}, (11.11)

so we only need to rescal€i, j) (the variance o§is equal to unity by definition).

11.8.3.2 The components are sparse

This is true in the case where componsgris assumed to have a gaussian distribu-
tion when the variance is given. This follows from the proafeg in Section 7.8.3:
the logic developed there still applies in this two-layerdal when the marginal
distribution of each componestis consider separately. Then, the marginal, uncon-
ditional distributions of the componergsare called gaussian scale mixtures.

11.8.3.3 Topographic organization can be modelled

This is possible simply by constraining the higher-ordetnrar(i, j) to equal a
topographic neighbourhood matrix as in Section 11. We caitygarove that com-
ponents which are far from each other on the topography ae thdependent.
Assume that thag ands; are such that their neighbourhoods have no overlap, i.e.
there is no indexk such that bottr(i,k) and(j,k) are non-zero. Then their vari-
ancedl; andd; are independent because no higher-order component indadrath

of these variances. Thus, the componengds; are independent as well.

11.8.3.4 Independent subspaces are a special case

This is more or less implied by the discussion in Section iihére independent
subspace analysis was shown to be a special case of topagi@phA more direct
connection is seen by noting that each variance variablelaetermine the vari-

ance inside a single subspace, with no interactions betteevariance variables.
Then we get the ISA model as explained in Section 10.4.

11.8.4 Estimation of the generative model

11.8.4.1 Integrating out

In this section, we discuss the estimation of the two-layedet introduced in the
previous section. In principle, this can be done by “intéiggout” the latent vari-
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Fig. 11.10: Anillustration of the two-layer generative nebd-irst, the “variance-generating” vari-
ablesuy; are generated randomly. They are then mixed linearly. Thaltiag variables are then
transformed using a nonlinearity thus giving the local variances?. Components are then
generated with variance#?. Finally, the components are mixed linearly to give the observed
variablesx; (which are subsequently whitened to give #e

ables. Integrating out is an intuitive appealing methoacsithe likelihood depends
on the values of the variance variablgsvhich we don’t know, why not just com-
pute the likelihood averaged over all possible valueg®Basically, if we have the
joint density of thes and theu;, we could just compute the integral over theto
get the density oves; alone:

) = / p(s,u)du (11.12)

The problem is, as always with integration, that we may nodltle to express this
integral with a simple formula, and numerical integratioayrbe computationally
impossible.

In our case, the joint density gfi.e. the topographic components, and.e. the
higher-order independent components generating thenaeta can be expressed as

) 1
Xk" K)ui) " (X 7i k)

Pl = p(slu)p(w) = ] Bl T ALICIREED)
J

where thep{' are the marginal densities of theand thep? are the densities af? for

variance fixed to unity. The marginal densitysatould be obtained by integration:
- NP LLACI
(i K)ue) (S, Ky

(11.14)

Possibly, for some choices of the nonlinearignd the distributiong!, this integral
could be computed easily, but no such choices are known to us.
11.8.4.2 Approximating the likelihood

One thing which we can do is approximatehe likelihood by an analytical expres-
sion. This approximation actually turns out to be ratheldessefor the purpose of
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estimating the two-layer model, but it shows an interestiognection to the likeli-
hood of the topographic ICA model.

To simplify the notation, we assume in the following that thensitiesp;' are
equal for alli, and likewise forp?. To obtain the approximation, we first fix the
density p? = ps to be gaussian, as discussed in Section 11.8.3, and we dedine t

nonlinearityr as

r(; (i, k)uk) = (Z i, k)uy) Y2 (11.15)
The main motivation for these choices is algebraic simlithat makes a sim-
ple approximation possible. Moreover, the assumption ofit@mnally gaussiars;,
which implies that the unconditional distribution®fsuper-gaussian, is compatible

with the preponderance of super-gaussian variables in lgpAieations.
With these definitions, the marginal densitys#quals:

:/%exp(—%zﬁz[g Qud) [ pult), [3 i kucdu (12.16)

which can be manipulated to give

:/%exp{—%guk[zn(i,k)sﬂ)npu(ui) 3 nKudu. (11.47)

The interesting point in this form of the density is that iaiunction of the “local
energies’y; n(i,k)a2 only. The integral is still intractable, though. Therefovee
use the simple approximation:

Zn(i,k)ukm (i, i)u;. (11.18)

This is actually a lower bound, and thus our approximatidhtve a lower bound of
the likelihood as well. This gives us the following approxsition j(s):

s) = [exnG(Y (i,k)s)) (11.19)
k i
where the scalar functio® is obtained from they, by:
1 1
=lo /—ex —=u u)y/ (i, ihudu 11.20
gmp(zy)pu()x/() ( )

Recall that we assumet(i, i) to be constant.
Next, using the same derivation as in ICA, we obtain theiliia@d of the data as

—

n

logL(V) = 21 G( 21 v (1)) +Tlog|detV|. (11.21)
= J=1 i=

—
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whereV = (vi,...,vy)T = A1, and thez(t),t = 1,..., T are the observations af
It is here assumed that the neighbourhood function and thénsarity r as well
as the densitiep' and p} are known. This approximation is a function of local
energies. Every terny"_, 71(i, j) (v{ z(t))? could be considered as the energy of a
neighbourhood, related to the output of a higher-order ore@s in complex cell
models. The functiorc has a similar role as the log-density of the independent
components in ICA,; the corresponding functibiis basically obtained as(u) =
G(y/Iu).

The formula forG in (11.20) can be analytically evaluated only in speciaksas
One such case is obtained if theare obtained as squares of standardized gaussian
variables. Straight-forward calculation then gives thiéofeing function

Go(y) = —log(1+Yy) +const. (11.22)

However, in ICA, it is well-known that the exact form of theglalensity does not
affect the consistency of the estimators, as long as theathatape of the function
is correct. This is probably true in topographic ICA as well.

11.8.4.3 Difficulty of estimating the model

What we have really shown in deriving the approximation &élihood in Equa-
tion (11.21) is that the heuristically justified objectiventtion in Equation (11.5)
can be obtained from the two-layer generative model as aroappation. But we

have not really got any closer to the goal of estimating bagtets of weights. This
is because the approximation used here approximates tlendepce of the likeli-
hood fromrt quite badly. To see why, consider maximization of the apjnative

likelihood in Equation (11.21) with respectto tig, j). TakeG as in (11.22). Now,
s (i, j)(v{ z(t))? is always non-negative. On the other haGdattains its max-
imum at zero. So, if we simply taka(i, j) = 0 for all i, j, G is actually always
evaluated at zero and the approximative likelihood is mazeh. So, taking all ze-
ros in iris the maximum, which is absurd!

One approach would be to find the values of the latent vagsablehich max-
imize the likelihood, treating thg; like the parameters. Thus, we would not try to
integrate out they;, but rather just formulate the joint likelihood &f, (i, j ), ui(t)
foralli,jandallt=1,...,T. This is computationally very difficult because the la-
tent variablesl; are different for each image patch, so there is a very largeasu of
them. The situation could be simplified by first estimating finst layer by ordinary
ICA, and then fixingv once and for all (Karklin and Lewicki, 2005). However, this
does not reduce the number of dimensions.

So, we see that the estimation of both layers in a generativdayer model is
quite difficult. However, abandoning the generative-magegiroach simplifies the
situation, and provides a promising approach, which wiltreated next.
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11.8.5 Energy-based two-layer models

A computationally simpler alternative to estimation of the layers is provided by
an “energy-based” approach. The idea is to take the liketiio Equation (11.5) as
the starting point. As pointed out above, it does not makseémtry to maximize
this with respect to ther, because the maximum is obtained by taking all zeros as
the second layer weights.

There is a deep mathematical reason why we cannot maximézékedihood
in Equation (11.5) with respect to the The reason is that the likelihood ot
normalized That is, when we interpret the likelihood as a pdf, its in&g@ver the
data variables is not equal to one: the integral dependsewalues of thet. This
means it is not a properly defined pdf, because a pdf must almggrate to one,
so the likelihood is not a properly defined likelihood eith®&v alleviate this, we
have to introduce what is calledrmrmalization constanr a partition functionin
the likelihood. The normalization constant, which is atifuaot a constant but a
function of the model parameters, is chosen so that it maledtegral equal to
one. Denoting the normalization constantafyt), we write

n
logL(vy,...,V ZZhZ )(v] z)?) —log|detV| —logZ(m)  (11.23)

See Section 13.1.5 and Chapter 21 for more discussion onottmeatization con-
stant.

In principle, the normalization constant can be computeddiyputing the inte-
gral of the underlying pdf over the space of thebut this is extremely complicated
numerically. Fortunately, there is a way around this problevhich is to use spe-
cial estimation methods which do not require the normaliratonstant. Thus, we
abandon maximization of likelihood, because it required the compute the nor-
malization constant. See Chapter 21 for information on suethods.

Attempts to estimate both layers in a two-layer model, usingenergy-based
approach, and estimation methods which circumvent the faresl normalization
constant, can be found in (Osindero et al, 2006; Koster andihen, 2007, 2008).
This is a very active area of research (Karklin and Lewicki0®). Some more re-
motely related work is in (Koster et al, 2009a).

11.9 Concluding remarks and References

A simple modification of the model of independent subspaedyais leads to emer-
gence of topography, i.e. the spatial arrangement of theifes This is in contrast
to ICA and ISA, in which the features are in random order. @A\ it is the sub-

spaces which are in random order, but the linear features bame organization
because of their partition to subspaces.) The basic ideairefting topography is
to consider subspaces which are overlapping, so that tighibeiurhood of each cell
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is one subspace. Itis also possible to formulate a propargéwe model which in-
corporates the same kind of statistical dependencies uaitgnce variables which
are generated by a higher-order ICA model, but that appréachathematically
difficult and still under construction.

Basic though old papers on topography are (Hubel and Wi&8é8; DeValois
etal, 1982). Optical imaging results are shown in (Blastié92), and a recent high-
resolution imaging study is in (Ohki et al, 2005). Topognaplith respect to spatial
frequency is investigated in (Tootell et al, 1988; Silvermedal, 1989; Edwards et al,
1996). Seminal papers on pinwheels are (Bonhoeffer and/&@dn1991; Maldon-
ado et al, 1997). A most interesting recent paper is (DeAsgehl, 1999) that also
shows that the phases are not correlated in neighbourifgy ¢éle relationships of
the topographic representation for different parametegansidered in (Hubener
et al, 1997). An important point is made in (Yen et al, 2007hovehow that the
topography of responses is not so clear when the stimuli @mgptex, presumable
due to nonlinear interactions. The connection betweengahny and complex cell
pooling is discussed in (Blasdel, 1992; DeAngelis et al, 299

The idea of minimum wiring length, or wiring economy, goesk# Ramoén
y Cajal, cited in (Chen et al, 2006). The metabolic advardagfe¢opography are
further considered in (Durbin and Mitchison, 1990; Mitars 1992; Koulakov and
Chklovskii, 2001; Attwell and Laughlin, 2001). Comparisobetween white and
grey matter volume also point out how brain (skull) size tenihe connectivity
(Zhang and Sejnowski, 2000).

Original papers describing the topographic ICA models afgvérinen and
Hoyer, 2001; Hyvarinen et al, 2001a). Kohonen’s famous@gjanizing map is
also closely related (Kohonen, 1982, 2001), but it has nehtshown to produce
a realistic V1-like topography; reasons for this were dé&smd in Section 11.7.2.
A model which produces more a realistic topography (but stl low-frequency
blobs) is Kohonen’s ASSOM model (Kohonen, 1996; Kohonen, €t297). How-
ever, in that model the nature of the topography is stromflyénced by an artificial
manipulation of the input (a sampling window that moves sthlydn time), and it
does not really emerge from the structure of images alone.

A related idea on minimization of wiring length has been ®gd in (Vincent
and Baddeley, 2003; Vincent et al, 2005), in which it is pregubthat the retinal
coding minimizes wiring, whereas cortical coding maxinsizparseness of activi-
ties.






Chapter 12
Dependencies of energy detectors: Beyond V1

All the models in this book so far have dealt with the primaryual cortex (V1).
In this chapter, we show how statistical models of naturaldes can be extended
to deal with properties in the extrastriate cortex, i.e sthareas which are close to
V1 (also called the striate cortex) and to which the visuedimation is transmitted
from V1.

12.1 Predictive modelling of extrastriate cortex

Most of the experimental results in early cortical visualggssing have considered
V1. The function of most extrastriate areas is still ratheicina mystery. Likewise,
most research in modelling natural image statistics has badow-level features,
presumably corresponding to V1.

However, the methodology that we used in this book couldiptsise extended
to such extrastriate areas as V2, V3(A), V4, and V5. Actyallyce the function of
most extrastriate areas is not well understood, it would bstraseful if we could
use this modelling endeavour inpsedictivemanner, so that we would be able to
predict properties of cells in the visual cortex, in case®relthe properties have
not yet been demonstrated experimentally. This would gegtable, quantitative
hypotheses that might lead to great advances in visual seigrce.

In the next sections, we attempt to accomplish such prediatiodelling in order
to predict properties of a third processing step, followihg simple and complex
cell layers. The predictions should be based on the staigiroperties of modelled
complex-cell outputs. Our method is to apply ordinary inglegent component anal-
ysis to modelled outputs of complex cells whose input cassisnatural images.

1 This chapter is based on the article (Hyvarinen et al, 2))G&&inally published in BMC Neu-
roscience. The experiments were done by Michael Gutmanpyi@t retained by the authors.

273
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12.2 Simulation of V1 by a fixed two-layer model

The basic idea in this chapter is to fix a model of complex cafid then learn
a representation for complex cell outputs using a stagistitcodel. The resulting
three-layer network is depicted in Fig. 12.1.

This approach is rather different from the one used in prev@hapters, in which
we learned first the simple cells and then the complex calis fthe data. Here, to
simplify the model and the computations, we do not attempéeson everything
at the same time. Instead, we fix the first two layers (simpk @mplex cells)
according to well-known models, and learn only the thircelay

contour cells

complex cells

simple cells

image

Fig. 12.1: The simplified hierarchical model investigatadhis chapter. Modelled complex-cell
responses are calculated in a feedforward manner, and tegsenses are subsequently analyzed
by a higher-order feature layer in the network (“contourydg). To emphasise that the lower layers
are fixed and not learned, these layers have been greyedtbetfigure. The direction of the arrows
is from higher features to lower ones which is in line with theerpretation of our analysis as a
generative model.

The classic complex-cell model is based on Gabor functidssexplained in
Section 3.4.2, complex cells can be modelled as the sum @ireguwf two Gabor
functions which are in quadrature phase. Quadrature phasasn simply, that if
one of them is even-symmetric, the other one is odd-symméihiis is related to
computation of the Fourier energy locally, as explainedeat®n 2.4.

Complex-cell responsex to natural images were thus modelled with a Gabor
energy model of the following form:

2

2
Ck = (Z\M?(x,y)l(x,y)> + <2Wke(x,y)l(x,y)> (12.1)
Xy Xy
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whereW¢ andW? are even- and odd-symmetric Gabor receptive fields; the-equa
tion shows that their squares (energies) are pooled togiettize complex cell. The
complex cells were arranged on & spatial grid. They had & 6 = 36 differ-
ent spatial locations, and at each location, four diffepgeferred orientations and
three different frequency selectivities (“bands”). Th@ed ratio (ratio of spatial
length to width) was fixed to.5. The frequency selectivities of the Gabor filters
are shown in Figure 12.2, in which all the filtené were normalized to unit norm
for visualization purposes. The actual normalization wedus the experiments
consisted of standardizing the variances of the compldxoegputs so that they
were equal to unity for natural image input. The number of ptax cells totalled
36x4x3=432.

sponse

Filter Ry
o
S

0 0.1 0.2 0.3 0.4 0.5
Spatial Frequency [cycles/pixel]

Fig. 12.2: We used fixed complex cells with three differeegjfiency selectivities. The amplitudes
of the Fourier Transforms of the odd-symmetric Gabor filmes shown here. The selectivities are
such that each cell is sensitive to a certain frequency “bafde underlying Gabor filters had
logarithmically spaced frequency peaks. Peak spatialigegies were chosen as followfg:= 0.1
cycles/pixel,f, = 0.21 cycles/pixel ands = 0.42 cycles/pixel.

As the basic data, we used 1008 grey-scale natural imageseol824x 1536
pixels from van Hateren’s datab&s&Ve manually chose natural images in the nar-
rower sense, i.e. only wildlife scenes. From the source 88a0,000 image patches
of size 24x 24 pixels were randomly extracted. The mean grey value dfl @ae
age patch was subtracted and the pixel values were rescaledttvariance. The
resulting image patch will be denoted b, y).

2 Available atht t p: // hl ab. phys. rug. nl /i m i b/index. ht M , category “deblurred”
(van Hateren and van der Schaaf, 1998).
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12.3 Learning the third layer by another ICA model

After fixing the first two layers, we learned the feature weggim the third layer
by doing a simple ICA of the complex cell (second-layer) autpdenoted byy.

No PCA dimension reduction was done here, so the number eperdent com-
ponents equals the number of complex céfls,Thus, ICA was performed on the
vectorc = (c1,...,Ck ) using the FastICA algorithm (see Section 18.7). In ICA, the
orthogonalization approach was symmetric. Different im@dritiesg were used,
see Table 12.1. (The nonlinearities are related to the raursgjanity measures used,
see Section 18.7.)

Non-gaussianity measure FastICA nonlinearity)Motivation

Gi(y) = logcosty g1(y) = tanHy) Basic sparseness meadure
Ga(y) = —exp(—y?/2) g2(y) = yexp(—y?/2)|More robust variant ofy;
Ga(y) = 3¥° gs(y) = Skewness (asymmetry)
Ga(y) = Gaussian cum. distr. functigg(y) = exp(—y?/2) |Robust variant ofjs

Table 12.1: The measures of non-gaussianity used, i.e.iffeeedt functionsG = log ps used in

the likelihood of the ICA model. These correspond to diffgéreonlinearitiesy in the FastiICA
algorithm, and to different sparseness meashrdhe measures probe the non-gaussianity of the
estimated components in different ways.

Thus we learned (estimated) a linear decomposition of tha fo
K
Ck = Zakis forallk=1,...,K (12.2)
i=

or in vector form «
c= ) as =As (12.3)
2,

where each vecta; = (ay, . .., axi) gives a higher-order feature vector. Theale-
fine the values of the higher-order features in the thirdicaktfprocessing stage.
Recall that the input to the system was natural images, setétistics ofc reflect
natural image statistics.

Note that the signs of the feature vectors are not defineddédyGA model, i.e.
the model does not distinguish betwegiand—a; because any change in sign of the
feature vector can be cancelled by changing the sighadcordingly. Here, unlike
in the original natural images, the features will not be syatnio with respect to
such a change of sign, so it makes sense to define the signsaftihsed on that
asymmetry. We defined the sign for each ve@oso that the sign of the element
with the maximal absolute value was positive.

This model can be interpreted as a generative model of imamdes, following
the interpretation of ISA as a nonlinear ICA in Section 106e higher-order inde-
pendent component (here denoteds)yare generated according to Equation (12.2).
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Then, the activity of the complex cell is expressed as d@wiof simple cells with

random division of the activity to the simple cells, usingamadom angle variable
as in Equation (10.17) on page 235. Finally, the simple adl/dies are linearly

transformed to image patches as in ICA or ISA models. Thisiges a complete
generative model from the higher-order features to imagelpialues.

12.4 Methods for analysing higher-order components

We need to introduce some special methods to analyze thbéhigrder” compo-
nents obtained by this method, because the resulting higlder feature vectors;
cannot be simply plotted in the form of image patches.

We visualize the vectorg by plotting an ellipse at the centerpoint of each com-
plex cell. The orientation of the ellipse is the orientatafrthe complex cell with
indexk, and the brightness of the ellipse with indeis proportional to the coeffi-
cientay; of the feature vectaa;, using a grey-scale coding of coefficient values. We
plotted complex cells in each frequency band (i.e. with e frequency selectiv-
ity) separately.

We are also interested in the frequency pooling of compldls ¢e different
higher-order features. We quantified the pooling over fesguies using a simple
measure defined as follows. Let us denoteali,y, 0, fn) the coefficient in the
higher-order feature vectey that corresponds to the complex cell with spatial loca-
tion (x,y), orientationd and preferred frequendy. We computed a quantity which
is similar to the sums of correlations of the coefficientsrabe three frequency
bands, but normalized in a slightly different way. This meas? was defined as

follows:
_ |Zx7y,eai(X,y,97fm)ai(X,y,eafn”

R= (12.4)
I m<n Can
where the normalization constddy, is defined as
1 2
Cn= /% > aj(xy,0,fm) (12.5)
K ixy.0

and likewise foIC,.

For further analysis of the estimated feature vectors, wienelé the preferred
orientation of a higher-order feature. First, let us defioe & higher-order fea-
ture of indexi the hot-spot(x,yi)* as the centre locatiofx,y) of complex cells
where the higher-order componestgenerates the maximum amount of activity.
That is, we sum the elements afthat correspond to a single spatial location, and
choose the largest sum. This allows us to define the tuningyiees orientation of
a higher-order featureby summing over the elements afthat correspond to the
spatial hotspot and a given orientation; the preferrechbaition is the orientation for
which this sum is maximized. We also computed the length dafladr-order feature
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by least-squares fitting a gaussian kernel to the pategr(tdoyer and Hyvarinen,
2002).

It is also possible to perform an image synthesis from a highhaer feature
vector. However, the mapping from image to complex-celpotg is not one-to-
one. This means that the generation of the image is not ulyigieéined given the
activities of higher-order features alone. A unique defimitcan be achieved by
constraining the phases of the complex cells. For the pegposimage synthesis,
we assume that only odd-symmetric Gabor filters are activghErmore, we make
the simplifying assumptions that the receptive fidldsn simple cells are equal to
the corresponding feature vectors, and that all the elesrierihe higher-order fea-
ture vector are non-negative (or small enough to be ignofidhn, the synthesized
imagel‘symhfor higher-order feature vectey is given by

iy Y) = 5 W(x.Y) /i (12.6)
keH

where the square root cancels the squaring operation iroth@wtation of complex-
cell responses, arld denotes the set of indices that correspond to complex cells o
the preferred orientation at the hotspot. Negative valdesonvere set to zero in
this formula.

Since we are applying ICA on data which has been heavily ss&zk (by the
complex cell model), we have to make sure that the model ismigtanalyzing the
artefacts produced by that processing. To obtain a baseithenhich to compare
our results, and to show which part of the results is due testagstical properties
of natural images instead of some intrinsic properties offitterbank and analysis
methods, we did exactly the same kind of analysis fox24 image patches that
consisted of white gaussian noise, i.e. the grey-scaleevialeach pixel was ran-
domly and independently drawn from a gaussian distributitzero mean and unit
variance. The white gaussian noise input provides a “chiewed’ for any quantities
computed from the ICA results. In a control experiment, swtlite noise patches
were thus fed to the complex cell model, and the same kind Afu@s applied on
the outputs.

12.5 Results on natural images

12.5.1 Emergence of collinear contour units

In the first experiment, we used only the output from compleltscin a single
frequency bandf, in Figure 12.2.

The higher-order features are represented by their feaotrsa; which show
the contribution of the third-stage feature of indesn the activities of complex
cells. A collection of the obtained feature vectors is shawirigure 12.3 for the
nonlinearityg; (see Table 12.1), visualized as described above. We camsee e
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gence of collinear features. That is, the higher-ordeiest code for the simulta-
neous activation of complex cells that together form soingtkimilar to a straight
line segment.

Those coefficients that are clearly different from zero hailraost always the
same sign in a single feature vector. Defining the sign asaéxgd above, this means
that the coefficients are essentially non-negative.

Other measures of non-gaussianity (FastlCA nonlineajitezl to similar feature
vectors. However, some led to a larger number of longer agsté-igure 12.4 shows
the distribution of lengths for different nonlinearitieBhe nonlinearityg, (robust
skewness) seems to lead to the largest number of long cantdhe outputs of
complex cells are skewed (hon-symmetric), so it makes sensse a skewness-
based measure of non-gaussianity, as discussed in Sec®iolm This experiment,
the results were very similar to those obtained by sparsgihesvever.

Fig. 12.3: Random selection of learned feature vecpvehen the complex cells are all in a single
frequency band. ICA nonlinearitywas the tanh nonlinearity;. Each patch gives the coefficients
of one higher-order feature. Each ellipse means that thetoneell in the corresponding location

and orientation is present in the higher-order featurebtfghtness of the ellipse is proportional to
the coefficientay;.

12.5.2 Emergence of pooling over frequencies

In the second experiment, the complex cell set was exparwéettiude cells of
three different preferred frequencies. In total, thereaveow 432 complex cells.
We performed ICA on the complex cell outputs when their inpansisted of nat-
ural images. Thus, we obtained 432 higher-order featurtove¢featuresy; with
corresponding activities.

3 In earlier work (Hoyer and Hyvarinen, 2002) we actually imspd a non-negativity constraint

on the coefficients, see Section 13.2. The results reporteel $how that those results can be
replicated using ordinary ICA methods. The constraint af-negativity of the feature vectors has
little impact on the results: even without this constrathe system learns feature vectors which
are mainly non-negative.
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Fig. 12.4: Comparison of different measures of non-ganggigFastiCA nonlinearities) in the
first experiment. The histogram gives the lengths of the mampatterns for the four different
nonlinearitiesyy, ..., g4 in Table 12.1.

We visualized a random selection of higher-order featusasned from natural
images in Figure 12.5. The visualization shows that theufeattend to be spatially
localized and oriented, and show collinearity as in the Isioipannel experiment
above. What is remarkable in these results is that many peli$ responses over
different frequencies. The pooling is coherent in the sehaethe complex cells
that are pooled together have similar locations and oriemts. A smaller number of
cells is shown in more detail in Figure 12.6, where the coieffits in all orientations
are shown separately.

We computed the frequency pooling meadgiie Equation (12.4) for the learned
feature vectors. The distribution of this measure for retimage input and white
gaussian noise input is shown in Figure 12.7. The figure shioat§requency pool-
ing according to this measure was essentially nonexistentifite gaussian noise
input, but relatively strong for many feature vectors whia input consisted of
natural images. To express this more quantitatively, wepded the 99% quantile
for the white gaussian noise input. Then, 59% of the basigveéor natural image
input had a pooling indeR that was larger than this quantile. (For the 95% quantile
the proportion was 63%.) Thus, we can say that more than hétiechigher-order
basis vectors, when learned from natural images, have angooVer frequencies
that is significantly above chance level.

To show that the pooling measure is valid, and to furtheralige the frequency
pooling in the higher-order features, we chose randomlyufeavectors learned
from natural images that have pooling significantly overrdealevel B above its
99% quantile for white gaussian noise). These are plotté&dguare 12.8. Visual in-
spection shows that in this subset, all basis vectors exloling over frequencies
that respects the orientation tuning and collinearity prtips.

The corresponding results when the input is white gaussigserare shown in
Figure 12.9, for a smaller number of higher-order cells . (fTake the comparison
fair, these were randomly chosen among the 59% that had hggw@ing mea-
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sures, the same percentage as in Figure 12.8.) Pooling i@eerencies as well as
collinearity are minimal. Some weak reflections of thesgoprties can be seen, pre-
sumably due to the small overlap of the filters in space arglfacy, which leads
to weak statistical correlations between complex cellsahaspatially close to each
other or in neighbouring frequency bands.

We also examined quantitatively whether the higher-ordatudres are tuned to
orientation. We investigated which complex cell has the imaxn weight ina; for
eachi in each frequency band. When the data used in learning ¢edsi§ natural
images, in 86% of the cells the maximally weighted compldlsaeere found to be
located at the hot-spox;, y;)* (i.e., point of maximum activity, see above) and tuned
to the preferred orientation of the higher-order featunedeeryfrequencyf. This
shows how the higher-order features are largely selective single orientation.
When the data used in learning consisted of gaussian whise nanly 34% of the
cells were found to be orientation-selective accordindnis ¢riterion.

Fig. 12.5: A random selection of higher-order feature vec# estimated from natural images
using complex cells of multiple frequencies in the secongeeent. ICA nonlinearityy was the
tanh nonlinearityg; . Each display of three patches gives the coefficients of agieeh-order fea-
ture. Each patch gives the coefficients of one higher-ordatufe in one frequency band. Each
ellipse means that the complex cell in the correspondingtion, and of the corresponding orien-
tation and frequency is present in the higher-order featuightness of ellipse is proportional to
coefficientay;.
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Finally, we synthesized images from higher-order featetivities. Figure 12.10
shows a slice orthogonal to the preferred orientation of bigier-order feature
vector (H209 in Figure 12.6). The intensity of the synthediinage shows no side-
lobes (unnecessary oscillations), while representingagosthocalized edge. In con-
trast, synthesis in the white gaussian noise case (alsorsimoktigure 12.10) gives
curves that have either side-lobes like the underlying Gélers, or do not give a
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Fig. 12.6: Higher-order feature vectors of four selecteghki-order features in the second ex-
periment, shown in detail. The coefficients in each oriéataand frequency band are plotted
separately.
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Fig. 12.7: The distributions of the frequency pooling measn Equation (12.4) for natural images
and white gaussian noise.
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Fig. 12.8: A selection of higher-order feature vectarestimated from natural images in the second
experiment. These basis vectors were chosen randomly athosg that have frequency pooling
significantly above chance level.
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Fig. 12.9: For comparison, higher-order feature vectotsneged from white gaussian noise, with
each frequency band shown separately.

sharp localized edge. Thus, the curve obtained from syistbéthe features learned
from natural images corresponds better to the notion of geed
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Fig. 12.10: Local image synthesis from the three odd-symme&abor elements that have pre-
ferred orientation at the hotspot of a higher-order feattgetor (H209 in Figure 12.6). The thick
dotted curve shows the synthesis using coefficients fromrakiimages, and the solid curves show
various synthesis results using coefficients learned frdmiteagaussian noise input.

12.6 Discussion of results

12.6.1 Why coding of contours?

The result of the first experiment, using a single frequemanoel (Section 12.5.1),
is that simple ICA of simulated complex cell outputs lead&meergence of units
coding for collinear contours (Figure 12.3). First, we h&wveote that this result is
not logically necessary: It is not obvious that the highetes representation should
necessarily code for contours. Multi-layer mechanismslaimno the one used here
have been proposed in the context of texture segregatiorelgSperling, 1989;
Malik and Perona, 1990). A priori, one could have expectathdexture bound-
ary detectors to emerge from this model. Our results seemdicate that contour
coding is, at least in this sparse coding sense, more funal@hiban texture segre-
gation.

The higher-order neurons which represent long contours f@ay similarities
to ‘collator’ (or ‘collector’) units, proposed in the psyaphysical literature (Mussap
and Levi, 1996; Moulden, 1994). Such units are thought tegrdte the responses
of smaller, collinear filters, to give a more robust estimaftglobal orientation than
could be achieved with elongated linear mechani$ms.

4 In principle, long contours could be represented by longuieavectors on the level of simple
cells as well. However, the representation by these highdgr contour coding cells has the ad-
vantage of being less sensitive to small curvature and oyeairtures from strict collinearity. Even
very small curvature can completely change the response eliomgated linear filter (simple cell),
but it does not change the representation on this highel; Bssuming that the curvature is so small
that the line stays inside the receptive fields of the sameptmatells. Thus, higher-order contour
cells give a more robust representation of the contours.cDfse, the intermediate complex cell
layer also confers some phase-invariance to the contoacubes.
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12.6.2 Frequency channels and edges

In the second experiment using multiple frequency chanfgsdstion 12.5.2), we
saw emergence of pooling of contour information acrossipialfrequencies (Fig-
ures 12.5,12.6,12.8). What is the functional meaning afftieiquency pooling? One
possibility is that this spatially coherent pooling of miplié frequencies leads to a
representation of an edge that is more realistic than thesediyen by typical Ga-
bor functions. Presumably, this is largely due to the faat tratural images contain
many sharp, step-like edges that are not contained in aesfregjuency band. Thus,
representation of such “broad-band” edges is difficult ssl@formation from dif-
ferent frequency bands is combined.

In terms of frequency channels, the model predicts thatuigeqy channels
should be pooled together after complex cell processingléobased on frequency
channels and related concepts have been most prominenggeitoding litera-
ture in recent years, both in biological and computer vigionles. The utility of
frequency channels in the initial processing stages is lyideknowledged, and it
is not put into question by these results — in fact, the rasutChapters 6—10
show that using frequency-selective simple and complels ¢istatistically opti-
mal. However, the question of when the frequency channelsldibe pooled or
otherwise combined has received little attention. Theltesuthis chapter (second
experiment) indicate that a statistically optimal way igptmwl| them together right
after the complex cell “stage”, and this pooling should beelamong cells of a
given orientation which form a local, collinear configutati

12.6.3 Towards predictive modelling

As we explained in the beginning of the chapter, the pres=uiits are an instance of
predictive modelling, where we attempt to predict propertf cells and cell assem-
blies that have not yet been observed in experiments. Toduggey, the prediction is
that in V2 (or some related area) there should be cells whpsmal stimulus is a
broad-band edge that has no sidelobes while being relatbelrp, i.e. the optimal
stimulus is closer to a step-edge than the Gabor functiatgehd to be optimal for
V1 simple and complex cells. The optimal stimulus should &le more elongated
(Polat and Tyler, 1999; Gilbert and Wiesel, 1985) than whatsually observed in
V1, while being highly selective for orientation.

Statistical models of natural images offer a framework teats itself to pre-
dictive modelling of the visual cortex. First, they offer mfmework where we of-
ten see emergence of new kinds of feature detectors — soeeetiery different
from what was expected when the model was formulated. Set¢badramework
is highly constrained and data-driven. The rigorous thexrstatistical estimation
makes it rather difficult to insert the theorist’s subjeetexpectations in the model,
and therefore the results are strongly determined by thee ddtird, the framework
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is very constructive. From just a couple of simple theosdtgpecifications, e.g.
non-gaussianity, natural images lead to the emergencengblex phenomena.

We hope that the present work as well as future results ingheesdirection will
serve as a basis for a new kind of synergy between theoretichlexperimental
neuroscience.

12.6.4 References and related work

Several investigators have looked at the connection betwatiral image statistics,
Gestalt grouping rules, and local interactions in the Visodex (Geisler et al, 2001;
Sigman and Gilbert, 2000; Elder and Goldberg, 2002; Kriiy@®8). However, few
have considered the statistical relations between feswnfréifferent frequencies.
It should be noted that some related work on interactionsfédérént frequencies
does exist in the models of contrast gain control, see Ch&pte (Schwartz and
Simoncelli, 2001a).

Recent measurements from cat area 18 (somewhat analogu@3 émnphasize
responses to “second-order” or “non-Fourier” stimuli, ioglly sine-wave gratings
whose amplitudes are modulated (Mareschal and Baker, 1908&hese results
and the proposed models are related to our results and ficedicyet fundamen-
tally different. In the model in (Mareschal and Baker, 199&bhigher-order cell
pools outputs of complex cells in the same frequency banatbddntours that are
defined by texture-like cues instead of luminance. The sathalso receives direct
input from simple cells of a different frequency, which eleatthe cell to combine
luminance and second-order cues. This is in stark contodsigher-order cells in
the model we used in this chapter, which pool outputs of cemptlls of different
frequencies. They can hardly find contours defined by secodér cues; instead
they seem to be good for coding broad-band contours. Fumibrer, in (Mareschal
and Baker, 1998a,b), any collinearity of pooling seems taliment. This naturally
leads to the question: Why are our predictions so differemhfthese results from
area 18? We suspect this is because it is customary to thiniseél processing
in terms of division into frequency channels — “second-ofd&muli are just an
extension of this conceptualization. Therefore, not muténapt has been made to
find cells that break the division into frequency channetoading to our prediction.
On the other hand, one can presume that the cells found inl&r&a(Mareschal
and Baker, 1998a,b) are different from our predictions beeghey use a learning
strategy which is different from sparse coding used in oudebgoerhaps related to
the temporal aspects of natural image sequences, see €hépte

Another closely related line of work is by Zetzsche and cdwos (Zetzsche and
Krieger, 1999; Zetzsche and Rohrbein, 2001) who emphé#sé&zenportance of de-
composing the image information to local phase and amgiinébrmation. The
local amplitude is basically given by complex cell outputbereas the physiologi-
cal coding of the local phases is not known. An important tjaegor future work
is how to incorporate phase information in the higher-orggts. Some models by
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Zetzsche et al actually predict some kind of pooling oveqtiencies, but rather
directly after the simple cell stage, see Fig. 16 in (Zetesaid Rohrbein, 2001).

Related models in which edge detection uses phase infamatioled over dif-
ferent frequencies are in (Morrone and Burr, 1988; Kove889d). An interesting
investigation into the relation of edges and space-frequanalysis filter outputs in
natural images is in (Griffin et al, 2004). A psychophysid¢ably on the integration
of information over different frequencies is (Olzak and Wéas, 1997).

The model in this chapter opens the way to highly nonlinealtifayer models
of natural image statistics. While this seems like a mosradting direction of
research, not much work has been done so far. Related atemponstruct very
general, nonlinear models of natural image statisticsuihel(Pedersen and Lee,
2002; Lee et al, 2003; Malo and Gutiérrez, 2006; Chandldrraeld, 2007; Griffin,
2007).

12.7 Conclusion

Experiments in this chapter show that two different kindpobling over complex
cells emerge when we model the statistical properties afrahimages. First, the
higher-order features group collinear complex cells whiatm a longer contour.
Second, they group complex cells of different frequencyiggences. This is ac-
complished by applying ordinary ICA on a set of modelled céargells with mul-
tiple frequencies, and inputting natural images to the dergells. Thus, statistical
modelling of natural stimuli leads to an interesting hypastis on the existence of a
new kind of cells in the visual cortex.






Chapter 13
Overcomplete and non-negative models

In this chapter, we discuss two generalizations of the h&#cand sparse coding
models. These do not reject the assumption of independdnites @omponents
but change some of the other assumptions in the model. Adtndlue generative
models are linear, the computation of the features is nealirin the overcomplete
basis model, the number of independent components is lttgarthe number of
pixels. In the non-negative model, the components, as geta feature vectors,
are constrained to be non-negative.

13.1 Overcomplete bases

13.1.1 Motivation

An important restriction of most of the models treated soigahat the number of
features cannot be larger than the dimension of the datadifikension of the data
is at most equal to the number of pixels, and it is actuallylenafter canonical
preprocessing including PCA. This was for two reasons:

1. In the sparse coding models the feature detector weighits wonstrained to be
orthogonal. In a space with dimensions, we can have at masbrthogonal
vectors, so this constrains the number of features.

2. Inthe generative models such as ICA, we had to assuméthatatrixA, which
has the features as its columns, is invertible. Again, aima#n be invertible
only if it is square: thus the number of features cannot bgelathan the number
of pixels.

However, it can be argued that the number of features shoeilidiger than the
dimension of the image data. The computational justificaft such a claim goes
as follows:

289
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1. The processing of an image part, corresponding perhags ¢dject, should not
depend on which location of the image it happens to occupat &) if a face
is in on the left side of the visual field, it should be procelssethe same way
as if it were on the right side; and if the object is moved onebto the left, its
processing should not change either.

2. Thus, any feature the system computes should be compigadrapossible loca-
tion — at the minimum at the location corresponding to eagklpFor example,
if we have an edge detector, the output of that edge detewbarid be computed
at each possibléx,y) location possible. Denote their number Ry

3. So, any feature should basically ha\Neeplicates in the system, one for each
location. Possibly it could be a bit less because we may not teareplicate the
feature very close to borders where they could not be reggliceompletely, but
this does not change the basic argument.

4. What all this implies is that if we just take one featurey savertical odd-
symmetric Gabor of a given frequency and envelope, copyatlidifferent loca-
tions, we already hawd different features, supposedly the maximum number!

5. Of course, we would actually like to have many differenbGia with different
orientations, different phases, different frequencied araybe something else
as well. Actually, the argument in point 1 can be applied dguweell to differ-
ent orientations and frequencies, which should be prodesgeally well. So, in
the end, the number of features must be many times greatethleanumber of
pixels.

A neuroanatomical justification for the same phenomenohasfollowing cal-
culation: the number of simple cells in V1 seems to be muafelathan the number
of retinal ganglion cells which send out the information be tetina, perhaps by
a factor of 25 (Olshausen, 2003). So, if we consider the nurobganglion cells
as the “dimension” of input to V1, the number of features seémbe much larger
than the number of dimensioRs.

13.1.2 Definition of generative model

Now we define a generative model which has more features tieddta has di-
mensions. In this context, to avoid any confusion, we call fibature vectorgy
basis vectorsA set of basis vectors which contains more vectors thangheeshas

1 The resolution of the retinal image changes as a functiorceémtricity (the distance from the
centerpoint), so talking about moving “one pixel to the’leftan oversimplification. However, this
does not change the underlying logic very much, if one sintilyks of photoreceptors or ganglion
cells instead of pixels.

2 This point is a bit complicated by the fact that the number lobtpreceptors in the retina is
approximately 100 times larger than the number of gangliellscThus, ganglion cells reduce
the dimension of the data, and V1 seems to increase it aga&vertheless, if we consider the
computational problem faced by V1, it does seem justifie@jotkat it uses an overcomplete basis
because it can only receive the outputs of ganglion cells.
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dimensions is called anvercomplete basiSimoncelli et al, 1992; Olshausen and
Field, 1997).

The definition of a generative model with an overcompletédiasather straight-
forward. We just need to express the image as a linear sugiégyo

L(xy) = _iAa (xy)s (13.1)

where the only difference to previous models is that the remalb featuream is
arbitrarily large. We also need to specify the statisticalgerties of the components
s. In the basic case, we assume that they are sparse andcalyishdependent.

For technical reasons, another modification is also usuathpduced at this
point: we assume that the image is not exactly a linear sunhefféatures, but
there is noise as well. That is, gaussian ndige,y) is added to each pixel:

166) = 3 AGcY)S-+NGxy) (132)

This does not change the behaviour of the model very muclecéslfy if the noise
level is small, but it simplifies the computations in thisea@n the case of basic
ICA, introduction of noise in the model just complicatesnts, so it is usually
neglected.)

Note that the meaning of overcompleteness changes wherrttemsion is re-
duced by PCA. From the viewpoint of statistical modellinge dimension of the
data is then the dimension given by PCA. So, even a basis iaislthe same num-
ber of vectors as there are pixels can be called overcompletause the number of
pixels is larger than the PCA-reduced dimension.

Despite the simplicity of the definition of the model, the mamplete basis
model is much more complicated to estimate. What is intergss that it has a
richer behaviour than the basic sparse coding and ICA mdzkdause it leads to
some nonlinearities in the computation of the features. \il@neat this point first.

13.1.3 Nonlinear computation of the basis coefficients

Consider first the case where the basis veddpege given, and we want to compute
the coefficients for an input imagd. The fundamental problem is that the linear
system given by the basis vect@sis not invertible: If one tries to solve for the
given anl, there are more unknowssthan there are equations. So, computation of
thes seems impossible. Indeed, it is impossible in the sensestieat if the image
were created as a linear sum of tAefor some coefficient values, we cannot
recover those original coefficients from the input imagenalovithout some further
information.
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As an illustration, consider an image with two pixels witHues(1,1). Assume
we use a basis with three vectof®; 1), (1,0), and(1,1). Thus, we have

(1,L1)=(0,1)s1+(1,0)+ (1,1)s3 (13.3)

Obviously, we could represent the image by setting: 0, s, = 0, ands; = 1. But,
equally well, we could set; = 1,5, = 1, andsz = 0. Even if the image was exactly
generated using one of these choicessfoiwe cannot tell which one it was by using
information in the image alone. Actually, there is an infnitumber of different
solutions: you could take any weighted average with of the$alution just given,
and it would be a solution as well.

However, there is a partial solution to this problem. The lsdp use sparseness.
Since we know that thg are sparse, we can try decide to find fparsest solution
In the illustration above, we would choose the solutspn=0,s, =0, andsz =1
because it is the sparsest possible in the sense that onlyoefiecient is different
from zero?

There is a clear probabilistic justification for such a praes. Basically, we can
find the most probable values for the coefficiegtaunder the assumption that the
s have sparse distributions. This is possible by using cadit probabilities in a
manner similar to Bayes’ rule (see Section 4.7). Now we wellice the procedure
based on probabilistic reasoning. By the definition of ctiadal pdf’s, we have

p(sil) = pé?il)) - p('!)?l';’(s) (13.9)

which is the basis for Bayes' rule. The formula can be singiifbecause(l) does
not depend ors. Since our goal is to find the which maximizesp(s|l), we can
just ignore this constant. We can also maximize its logarithstead because it is
often simpler, and equivalent because logarithm is a ktrintreasing function.
This gives us the following objective function to maximize:

logp(l|s) +logp(s) (13.5)

Such estimation of theis called maximum a posteriori (MAP) estimation, as dis-
cussed in Section 4.8.2.

Now, we have to compute the probabilities fa(@|s) and logp(s) needed. The
first thing we consider is thprior distributionp(s) of thes. In Bayesian inference,
the prior distribution (or prior for short) incorporatestknowledge we have before
making any observations. What prior knowledge do we havehEirst, we know
that the components are sparse. Second, we assume thatdlimyependent, which
is a simple approximation although it is not terribly preci$hus, log(s) is similar
to what was used in ordinary ICA estimation and linear spars#ing. It can be
expressed as

3 Another solution would be to use the Moore-Penrose psentrse, see Section 19.8. However,
that method is less justified by statistical principles, Bss useful in practice.
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logp(s) = iG(s) (13.6)

where the functiorG is the same kind of function we used in ICA estimation, see
e.g. Equation (7.19) on page 172.

To computep(l|s), we will use the noisy version of the model in Equation (13.2)
Assume that we know the variance of the gaussian noise, amtelé by byo?.
Then, the conditional probability df(x,y) given all thes is the gaussian pdf of
N(x,y) = ST A(XY)s — I (xy). By definition of the gaussian pdf, the pdf of a
single noise variable is thus

1
V2m

So, the conditional log-pdf for one pixel is

PINGXY)) = ——exal—5 5N(xy)?) (137)

1 1
log p(I (x,y)[s) = =5 5N(x.y)* - 5 log 2

= 52l 0y) = 3 Abky)SI* - 3 log2n (13.8)

We assume that the noise is independent in all pixels, sodahéittonal pdf of the
whole imagd is the sum of these log-pdf’s:

00p11s) = 553 S10cy)~ 5 Alcy)slP= Flogzn (139
Xy i=

The constan% log 21T can be omitted for simplicity.
Putting all this together: To find the most probabie. .., sy, that generated the
image, we maximize

logp(s|l) = logp(l|s) + logp(s) + const.

— _T; ;y[l (X,y) — iZmiAi (xy)s]2+ i=iG(s) +const. (13.10)

where the “const” means terms which do not depend.oMaximization of this
objective function is usually not possible in closed formgdaumerical optimiza-
tion methods have to be used. We have here assumed that gine known; their
estimation will be considered below.

Maximization of such an objective function leads to@nlinearcomputation of
the cell activitiess. This is in stark contrast to ordinary (non-overcompletedn
els, in which thes are a linear function of thé(x,y). The implications of such a
nonlinearity will be considered in more detail in Chapter 14
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13.1.4 Estimation of the basis

Estimation of the basis vectofs can be performed using the same principle as es-
timation of thes. Basically, the solution is hidden in Equation (13.10)sEinote
that the pdf in Equation (13.9) depends on feas well. So, that equation actu-
ally describes(l|s,A1,...,Am) instead of justp(l|s). Further, if we backtrack in
the logic that lead us to Equation (13.10), we see that theitional probability

in Equation (13.10), when considered as a function of lsodind theA, is equal

to p(s,Aq,...,Am|l), if we assume a flat (constant) prior for tAe This is the con-
ditional probability ofboth s and theA;, given the imagé. Thus, the conditional
log-pdf can be interpreted as essentially the likelihoothefA;.

Estimation of theA; can now be performed by maximizing the conditional pdf
in Equation (13.10) for aampleof imagesly, I»,...,lt. (Obviously, we cannot es-
timate a basis from a single image.) As usual, we assumelibattages in the
sample have been collected independently from each otheihich case the log-
pdf for the sample is simply the sum of the log-pdf. So, we whitze final objective
function

tilog P(S(t), Az, ..., Anmllt)

1 T B m , Im
= Zazt;;y[h(x,y) i;A(x,y)s(t)] +t;i;6(s(t))+const. (13.11)

When we maximize this objective function with respect toth# basis vectors,
and cell outputs;(t) (the latter are different for each image), we obtain, at rees
time, the estimates of the components and the basis véctorsther words, we
compute both the nonlinear cell outputs and the featdyes

Note that it is not straightforward to define the receptivédBeof the cell any-
more. This is because computation of the cell outputs isineat, and receptive
fields are simple to define for linear cells only. Actually,wk collect the basis
vectorsA; into a matrixA as we did earlier in the ordinary ICA case, that matrix
is simply not invertible, so we cannot define the receptiviel§ias the rows of its
inverse, as we did earlier.

13.1.5 Approach using energy-based models

An alternative approach for estimating an overcompleteasgntation is the follow-
ing: We give up a generative model and concentrate on gériegathe sparseness

4 One technical problem with this procedure is that the soal¢se independent components are
not fixed, which leads to serious problems. This problem @asdived simply by normalizing the
variances of the independent components to be equal to aingyery optimization step. Alterna-
tively, one can normalize the basis vecéprto unit norm at every step.
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criteria. Basically, we take the log-likelihood of the b@BCA model, and relax the
constraint that there cannot be too many linear featurecttat®e This approach is
computationally more efficient because we do not need to cdengine nonlinear
estimates of the componergtsvhich requires another optimization.

Consider the log-likelihood of the basic ICA model in Eqoat{7.15), which we
reproduce here for convenience:

m T
logL(V1,...,Vn;Z1,...,2z7) = T log|det(V)| + ZiziGi(ViTZt) (13.12)
= T

wherez is the canonically preprocessed data sample, and; thes the feature de-
tector vectors in the preprocessed space. We have changeudithber of feature
detectors tanin line with the notation in this section. Moreover, we useehgen-
eral functionsG;, which in the case of basic ICA is equal to lpgthe log-pdf of
the independent component. (In this section, we revertitggusanonically prepro-
cessed data, but this does not really change anything in #tleematical develop-
ments. Overcompleteness then means that the number ofdedduarger than the
PCA-reduced dimension.)

Now, could we just use the formula in Equation (13.12) withrenfeatures than
dimensions? Let us denote the dimension of the data byen, this means that we
just takem > n to achieve an overcomplete representation.

Unfortunately, this is not possible. The problem is the téog| detV)|. The
simple reason is that ifi > n, the matrixV, which collects the; as its rows, would
not be square, and the determinant is only defined for a souatex.

On the other hand, the second term on the right-hand side urati€o (13.12)
is just a sum of measures of sparseness of the features,sstetiri need not be
changed if we want to have an overcomplete representation.

So, we have to understand the real meaning of the terrfdiet)/)| to obtain
a model with an overcomplete representation. This term tigadly the logarithm
of what is called thenormalization constandr apartition function It is a function
of the model parameters which makes the pdf of the data fttidl fundamental
constraint that the integral of the pdf is equal to one—a tai# that every pdf
must fulfill. A likelihood is nothing else than a pdf interpee as a function of the
parameters, and computed for the whole sample instead aflisezvation. So, the
likelihood must fulfill this constraint as well.

The normalization constant is, in theory, obtained in aightforward manner.
Let us define the pdf (for one observation) by replacing th& tierm in Equa-
tion (13.12) by the proper normalization constant, whichdeeote byZ:

n
logL(z;V1,...,vn) = —logZ(V) + zic;i (Vi 2) (13.13)
i=
Normalization of the pdf means that we should have

/L(z;vl, cooVp)dz=1 (13.14)
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In the present case, this means
/L(Z'V Vn)dz = L/ - exp(Gi(v{ z))dz=1 (13.15)
s V1.5 Vn _Z(V) Il:l | i - .
So, in principle, we just need to take
n
Z(V) = / []exrG (T2))dz (13.16)
. =

because this makes the integral in Equation (13.15) equaieo

However, in practice, evaluation of the integral in Equat{tt3.16) is extremely
difficult even with the best numerical integration metho8s, the real problem
when we take more feature detector vectors than there arendions in the data, is
the computation of the normalization constant.

Estimation of the model by maximization of likelihood recps that we know
Z. If we omit Z and maximize only the first term in Equation (13.13), thereati
tion goes completely wrong: If th&; have a single peak at zero (like the negative
log cosh function), as we have assumed in earlier chaptersnaximum of such a
truncated likelihood is obtained when tix,y) are all zero, which is quite absurd!

So, the model becomes much more complicated to estimate wiedon’t know
how to normalize the pdf as a function of the vectarsThis is in stark contrast to
the basic case where the number of feature detector vedoedsthe number of
input variables: the functioB is simply obtained from the determinant of the matrix
collecting all the vectors;, as seen in Equation (7.15).

Fortunately, there are methods for estimating models incs® where can-
not be easily computed. First of all, there is a number of westfor computing
approximately, so that the maximum likelihood estimatiscdmputationally pos-
sible. However, in our case, it is probably more useful toklad methods which
estimate the model directly, avoiding the computation @& ttormalization con-
stant. Score matching and contrastive divergence are twbads for estimating
such “non-normalized” models. The mathematical detailscofe matching are de-
scribed in Chapter 21.

One point to note is that we are really estimating linear p&ge fieldsW us-
ing this method. Thus, the result is not really an overcomedasisbut rather an
overcomplete representation using an overcomplete setceptive fields.

This approach is sometimes called “energy-based” due t@toated historical
reasons. The model in Equation (13.13) has also been cdlRrdducts of Experts”
model (Hinton, 2002). Further related methods are consitiér (Hyvarinen and
Inki, 2002). See (Utsugi, 2001) for an overcomplete versibtie ISA model.
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13.1.6 Results on natural images

We estimated an overcomplete representation from nameés using the method
in Section 13.1.5. Thus, we defined the model using the nomalzed log-
likelihood in Equation 13.13. We basically used the clagségative) log cosh func-
tion asG, but we allowed a bit more flexibility by allowing rescalind the G; by
definingG;i(u) = —ajlogcoshu), wherea; are parameters that are estimated at the
same time as the;. We also constrained the norms of theto be equal to one.
We used the score matching approach (see above or Chaptér 2%)imate the
parameters without computation of the normalization camist

To reduce the computational load, we took patches of 16 pixels. We prepro-
cessed the data just like with ICA in Chapter 7, but the dir@mseduction was
less strong: we retained 128 principal components, i.e hatfeof the dimensions.
Then, we estimated a representation with 512 receptivesfidlde representation is
thus 4 times overcomplete when compared to the PCA dimenamhtwo times
overcomplete when compared with the number of pixels.

The resulting receptive fields are shown in Figure 13.1. e sgpace, only a
random sample of 192 receptive fields is shown. The recefiéilds are quite sim-
ilar to those estimated by basic ICA or sparse coding. Somerenre oscillatory,
though.

13.1.7 Markov Random Field models *

The approach of energy-based overcomplete represergatorbe readily extended
to models which cover the whole image using the principle @rkév Random
Fields. Here, we provide a very brief description of thisemdion for readers with
some background in MRF's.

A very important question for any image-processing apfiliceis how the mod-
els for image patches can be used for whole images which kageof thousands,
or even millions, of pixels. One approach for this is to userlda random fields
(MRF). What this means is that we define what is called in thedty aneighbour-
hoodfor each pixel, and define the probability density for the gmas a function
of each pixel value and the values of the pixels in the neightbmod. The central
idea is that we compute the same function in all possiblilmea of the image.

In our context, the neighbourhood of a pixel can be definectarbimage patch
taken so that the pixel in question is in the very middle. Teeed our models to a
MRF, we can also use the outputs of linear feature deteatatsfine the pdf.

This leads to a pdf of the following form:

OGP, W) =55 Gy W(E.M1 06+ E.y-+ ) ~10GZ(W, .. W)
Xy i= ;
o (13.17)



298 13 Overcomplete and non-negative models

Fig. 13.1: Receptive field& in a four times overcomplete basis for canonically prepssee data,
estimated using the model in Equation (13.13) and score imgtestimation. Only a random
sample of th&\f is shown to save space.
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Here, the first sum over,y goes over all possible image locations and neighbour-
hoods. For each location, we compute the outputs lifiear feature detectors so
that they are always centered around the locatign The functionG is the same
kind of function, for example logcosh, as used in sparseragpdi

An important point is that the indices n only take values inside a small range,
which is the neighbourhood size. For example, we could déffiaethey belong to
the range-5,...,5, in which case the patch size would bexi11 pixels.

One interpretation of this pdf is that we are sliding a windover the whole
image and computing the outputs of the feature detectol®etwindows. In other
words, we compute the convolution of each oftiewvith the image, and then apply
the nonlinear functio® on the results of the convolution. Summation oxgrand
overi then simply means that the log-pdf is the sum over the wholeva@eed,
nonlinearly processed image, and all the filters.

As in the case of the model in Section 13.1.5, the log-pdiides a normaliza-
tion constanZ, which is a function of the feature detector weighits Again, the
computation of the normalization constant is most difficattd the model is prob-
ably best estimated using methods which avoid computatidgheonormalization
constant (see e.g. Chapter 21).

In fact, we can see a direct connection with the overcomilasés framework
as follows. Define the translated feature dete@G*? as a feature detector whose
weights have been translated by the amount givea &ydb, so thatw(@b)(x,y) =
W(x—a,y— b). Also, redefine indices as+ £ =X, y+n =y. Then we can write
the log-pdf as

n

logp(1; WA, ..., Wh) = ZZG(ZMX’W(%,y)l(%,y)) —logz  (13.18)
i=1Xy Xy

This model is just like the overcomplete model in Sectionl13.but the feature
weights areconstrainedso that they are copies of a small number of feature weights
W in all the different locations, obtained by the translataperation\ (x,y). Due

to the summation over the translation parameteyseach weight vector is copied

to all different locations. (We are here neglecting any leoreffects which appear
because for those weight in thi¢ which go over the edges of the image.) Further-
more, the normalization constant is computed in a slighiffeent way because the
integration is over the whole image.

Learning feature detector weights of MRF’s was proposediotli and Black,
2005). A related approach was proposed in (Zhu et al, 1997)hd time of this
writing, the first successful attempt to estimate MRF’s ia fense that we obtain
Gabor-like features was obtained in (Koster et al, 2008bgview of classic MRF
models, i.e. models in which the features are not learnednaunually tuned, is in
(Li, 2001); a more mathematical treatise is (Winkler, 2003)

Let us finally mention some completely different approadbesaodelling whole
images or scenes. One is to extract some global statis#cdernture histograms,
which can then be further analyzed by various statisticaletg as in , e.g., (Liu and
Cheng, 2003; Lindgren and Hyvarinen, 2004). Yet anothermative is to compute
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a low-dimensional holistic representation by techniquedated to PCA, as in e.g.,
(Torralba and Oliva, 2003).

13.2 Non-negative models

13.2.1 Motivation

Neural firing rates are never negative. Even if we considersfiontaneous firing
rate as the baseline and define it to be zero in our scale, thg fir cortical cells
cannot go much below zero because the spontaneous firirg aeteso low; so,
it may be useful to consider them non-negative anyway. Itheen argued that
this non-negativity of firing rates should be taken into agtan statistical models.
Non-negative matrix factorization (NMF) (Lee and Seun@9fs a recent method
for finding such a representation. It was originally intradd in a different context
and calledpositivematrix factorization (Paatero and Tapper, 1994), but theraen
NMF is now more widely used.

13.2.2 Definition

Let us assume that our data consistsTobf n-dimensional vectors, denoted by
x(t) (t=1,...,T). These are collected to a non-negative data mat¢rinhich has
x(t) as its columns. NMF finds an approximate factorizatioXdfito non-negative
factorsA andS. Thus, non-negative matrix factorization is a linear, magative
approximate data representation, given by

x(t)zia;s(t):As(t) or X=~AS

whereA is ann x m matrix containing thebasis vectorsy as its columns. This
representation is, of course, similar in many respects ta & ICA. In particular,
the dimension of the representatimtan be smaller than the dimension of the data,
in which the the dimension is reduced as in PCA.

Whereas PCA and ICA do not in any way restrict the signs of thiees ofA and
S, NMF requires all entries of both matrices to be non-negativhat this means
is that the data is described by using additive componenys ©his constraint has
been motivated in a couple of ways: First, in many applicetione knows (for ex-
ample by the rules of physics) that the quantities invohathot be negative—firing
rates are one example. In such cases, it can be difficultégaret the results of PCA

5 This section is based on the article (Hoyer, 2004), origynaliblished in Journal of Machine
Learning Research. Copyright retained by the author.
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and ICA (Paatero and Tapper, 1994; Parra et al, 2000). Secomndnegativity has
been argued for based on the intuition that parts are génemhbined additively
(and not subtracted) timrm a whole hence, these constraints might be useful for
learning parts-based representations (Lee and Seung).1999

Given a data matrix, the optimal choice of matrice& and S are defined to
be those non-negative matrices that minimize the recoct&ruerror betweerx
andAS. Various error functions have been proposed (Paatero gopkEfal994; Lee
and Seung, 2001), perhaps the most widely used is the sqaaen@d(Euclidean
distance) function

D(A,S) = [IX ~AS|? ="y (xj — [AS];j)*.
1]

A gradient algorithm for this optimization was proposed Baétero and Tapper,
1994), whereas in (Lee and Seung, 2001) a multiplicativerélgn was devised
that is somewhat simpler to implement and also showed goddrpgance.

Although some theoretical work on the properties of the NMpresentation ex-
ists (Donoho and Stodden, 2004), much of the appeal of NMFesdnom its em-
pirical success in learning meaningful features from amdigeollection of real-life
datasets. It was shown in (Lee and Seung, 1999) that, whelathset consisted of a
collection of face images, the representation consistd@sis vectors encoding for
the mouth, nose, eyes, etc; the intuitive features of faegyes. In Figure 13.2a) we
have reproduced that basic result using the same datasditiohally, they showed
that meaningful topics can be learned when text documentssed as data. Sub-
sequently, NMF has been successfully applied to a varietatdsets (Buchsbaum
and Bloch, 2002; Brunet et al, 2004; Jung and Kim, 2004; Kiwh Bidor, 2003).

Despite this success, there also exist datasets for whick Ndés not give an
intuitive decomposition into parts that would correspomdutr idea of the ‘building
blocks’ of the data. It was shown by (Li et al, 2001) that whavilwas applied
to a different facial image database, the representatienghabal rather than local,
qualitatively different from that reported by (Lee and Sgut999). Again, we have
rerun that experiment and confirm those results, see Figduzb). The difference
was mainly attributed to how well the images were hand-a&iifii et al, 2001).

Another case where the decomposition found by NMF does ntithntlae under-
lying elements of the data is shown in Figure 13.2c). In tR{@egiment, natural im-
age patches were whitened and subsequently split intoy®EiON’) and negative
(‘OFF’) contrast channels, simply by separating positinel aegative values into
separate channels (variables). This is somewhat similaowovisual information is
processed by the retina. Each image patch of 12 pixels was thus represented by
a 2x 12x 12= 288 -dimensional vector, each element of which mimics thi-ac
ity of an ON- or OFF-center neuron to the input patch. Thesgors made up the
columns ofX. When NMF is applied to such a dataset, the resulting decsitipo
does not consist of the oriented filters which form the costre of most of visual
models and modern image processing. Rather, NMF repreger#s images using
simple, dull, circular ‘blobs’.
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Fig. 13.2: NMF applied to various image dataseta) Basis images
given by NMF applied to face image data from the CBCL database
(http://cbcl.mt.edul/ cbcl/software-datasets/FaceData2. htmnl),

following (Lee and Seung, 1999). In this case NMF produces eatsibased repre-
sentation of the datab) Basis images derived from the ORL face image database
(http://ww. uk. research. att. cont f acedat abase. ht M), following (Li et al,
2001). Here, the NMF representation is global rather thatsgzasedc) Basis vectors from NMF
applied to ON/OFF-contrast filtered natural image data. Wpights for the ON-channel. Each
patch represents the part of one basis veat@orresponding to the ON-channel. (White pixels
denote zero weight, darker pixels are positive weights.gidi: Corresponding weights for the
OFF-channel. Bottom: Weights for ON minus weights for OFfere, grey pixels denote zero.)
NMF represents this natural image data using simple blobs.

13.2.3 Adding sparseness constraints

Now we show, following (Hoyer, 2004), how explicitly contling the sparseness of
the representation leads to representations that arelp@sedd and match the intu-
itive features of the data. Here we use a sparseness measaadn the relationship
between the sum of absolute values and the sum of squardg@aurcnorm):

V- (51s) /3 ¢
Jm-1

sparseness) =
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wherem is the dimensionality o§. This function evaluates to unity if and only if
s contains only a single non-zero component, and takes a wéleero if and only
if all components are equal (up to signs), interpolating sthly between the two
extremes.

Our aim is to constrain NMF to find solutions with desired aesgr of sparseness.
The first question to answer is then: what exactly should besg® The basis vectors
A or the coefficient$? This is a question that cannot be given a general answer; it
all depends on the specific application in question. Fusfbasttransposing the data
matrix switches the role of the two, so it is easy to see thattivice of which to
constrain (or both, or none) must be made by the experimenter

When trying to learn useful features from images, it mighkesense to require
both A andS to be sparse, signifying that any given objecpresentin few im-
ages andffectsonly a small part of the image. Or, we could take the approach i
Chapter 6 and only require ttgeto be sparse.

These considerations lead us to defining NMF with sparsecasstraints as
follows: Given a non-negative data mati& of sizen x T, find the non-negative
matricesA andS of sizesn x mandmx T (respectively) such that

D(A,S) = ||X —AS||? (13.19)
is minimized, undeoptional constraints

sparseness) = S, Vi
sparseness) = S, Vi,

whereg; is thei-th columnof A ands is thei-th row of S. Here,m denotes the
number of components, ar®] andS; are the desired sparsenesses@&ndsS (re-
spectively). These three parameters are set by the user.

Note that we did not constrain the scalesapbr 5 yet. However, sinceys =
(aA)(s/A) forany A, we are free to arbitrarily fix any norm of either one. In our
algorithm, we thus choose to fix the Euclidean norm (sum o&seg) ofs to unity,
as a matter of convenience.

An algorithm for learning NMF with sparseness constrairgsdescribed in
(Hoyer, 2004). In Figure 13.2c we showed that standard NMplieg to natu-
ral image data produces only circular features, not origfiéatures as have been
observed in the cortex. Now, let us see the result of usingtiaddl sparseness
constraints. Figure 13.3 shows the basis vectors obtaiggalitiing a sparseness
constraint on the coefficient§S{= 0.85) but leaving the sparseness of the basis
vectors unconstrained. In this case, NMF learns orienteloGlke features that
represent edges and lines. This example illustrates ha@mwitén useful to combine
sparseness and non-negativity constraints to obtain aadethich combines the
biologically plausible results of low-level features withe purely additive learn-
ing of NMF. Such combinations may be useful in future modesclv attempt to
go beyond the primary visual cortex, because non-neggativ@tly be an important
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property of complex cell outputs and other higher-ordetuess, as was already
pointed out in Chapter 12.

oF 17 -t | |

— 1 -
- _ =,

Fig. 13.3: Basis vectors from ON/OFF-filtered natural immgbétained using NMF with sparse-
ness constraints. The sparseness of the coefficients wakdix@85, and the sparseness of the
basis images was unconstrained. Top: weights in ON chaMidtlle: weights in OFF channel.
Bottom: weights in ON channel minus weights in OFF channslopposed to standard NMF (cf
Figure 13.2c), the representation is based on orientedoGide, features.
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13.3 Conclusion

In this chapter, we saw two quite different extensions ofthsic linear ICA model.
The model with overcomplete basis is well motivated as a rhofisimple cells,
and the next chapter will show some more implications of ttiegple.

In contrast, the utility of non-negative models for featesdraction is still to
be explored. Possibly, non-negative models can be usefahiming higher-order
features, which can be considered either to be “there” {pesialues) or “not there”
(zero value), negative values being less meaningful. Orother hand, negative
values can often be interpreted as meaning that the featthrerie “less strongly” or
“less likely”, possibly related to some baseline. In faftieaour initial work (Hoyer
and Hyvarinen, 2002) learning the third layer as in Chapusing non-negativity
constraints, we found out that the non-negativity constsahad little effect on the
results, and the results in Chapter 12 do not use any suchedant

Moreover, it is not clear if both the basis vectors and theefticients should
be constrains non-negative: A partly non-negative modelhiich either the basis
vectors or the components are constrained non-negativalsaye more meaning-
ful. Non-negativity may, in the end, find its utility as onetb& many properties of
(some of the) parameters in a statistical model, instea@iofovery useful in itself.






Chapter 14
Lateral interactions and feedback

So far, we have almost exclusively considered a “bottomargéedforward frame-

work, in which the incoming image is processed in a numbewuotsssive stages,
the information flowing in one direction only. However, itisdely appreciated in

visual neuroscience that the brain is doing something muate momplicated than
just feedforward processing. There is a lot of evidence for

1. feedback from “higher” areas to lower areas, e.g., “topsd’ connections from
V2 back to V1, as well as

2. lateral (horizontal) interactions, by which we mean hesanections between
features in the same stage, e.g., connections betweeresieijs.

In this chapter, we will see how such phenomena are ratheralatonsequences
of Bayesian inference in the models we have introducedt, Firs will introduce a
model of feedback based on thresholding, or shrinkage, efficénts in the higher
stage. Second, we will consider a lateral interaction phesron: end-stopping in
simple cells. Finally, we will discuss the relationship bétprinciple of predictive
coding to these phenomena.

14.1 Feedback as Bayesian inference

A central question in visual neuroscience concerns the coatipnal role of feed-
back connections. It has been suggested that the purposedifdck is that of using
information from higher-order units to modulate lowerééwutputs, so as to se-
lectively enhance responses which are consistent with tbeder visual context
(Lamme, 1995; Hupé et al, 1998). In hierarchical genegatiodels, this is natu-
rally understood as part of the inference process: findieghlost likely configura-
tion of the network requires integrating incoming (bottap) sensory information
with priors stored in higher areas (top-down) at each layehe network (Hinton
and Ghahramani, 1997).

307
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Why would this kind of feedback inference be useful? In maases, there can
be multiple conflicting interpretations of the stimulus e\an the lowest level, and
top-down feedback is needed to resolve such conflicts. leness feedback infer-
ence computes the most likely interpretation of the scemdl(&nd Richards, 1996;
Lee and Mumford, 2003; Yuille and Kersten, 2006), combiriogtom-up sensory
information with top-down priors.

14.1.1 Example: contour integrator units

An example of Bayesian feedback inference can be constrbetged on the model
of higher-order units that integrate outputs of complexsgehtroduced in Chap-
ter 12. Basically, the idea is as follows: if enough collineamplex cells are active,
they will activate a higher-order contour-coding unit. Taeivation of such a unit
is then evidence for a contour at that location, and thisexwie will strengthen re-
sponses of all complex cells lying on the contour, espaciatbse whose bottom-up
input is relatively weak.

The structure of the network was depicted in Figure 12.1 iagiér 12. In that
chapter, we interpreted this network as performing feasléod computations only:
first the energy model for complex cells, and then a lineardfarmation. How can
we then simulate the full network inference process to méetdback?

One approach is reduction of noise (Hupé et al, 1998). “&lais this context
refers to any activity that is not consistent with the learsatistical model and
is thus not only neural or photoreceptor noise. Such noideatton essentially
suppresses responses which are not typical of the trairatey @hile retaining re-
sponses that do fit the learned statistical model. Dendtiegomplex cell responses
by ¢, we model them by a linear generative model which includesisenterm:

K
C = ziakis +ng forall k (14.1)
i=

whereny is gaussian noise of zero mean and varianéeThe outputs of higher-
order contour-coding units are still denotedgy

We postulate that the outpugsof higher-order cells are computed by Bayesian
inference in this generative model. Given an image, the dexapell outputs are
first computed in a feedforward manner; these initial valalesdenoted by. (It
is here assumed that the feature weigditshave already been learned.) Next, the
outputs of higher-order cells are computed by finding shehich have the high-
est posterior probability — we use the Bayesian terminolpmsterior probability
(distribution)”, which simply means the conditional prdaiilay given the observa-
tions. Let us denote the computed outputs:as

S=arg mSa>dog p(slc) (14.2)
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As is typical in Bayesian inference (see Section 4.7), wefoanulate the posterior
log-probability as the sum of two terms:

logp(sic) = logp(c|s) + log p(s) — const. (14.3)

wherep(s) is theprior pdf of s. It incorporates our knowledge of the structure of
the world, e.g. that the cell outputs are sparse. The term(ldg) incorporates our
knowledge of the image generation process; an example &iiNen below.

The important point here is that the outpgtsfhigher-order units araonlinear
functions of the complex cell outputs. We will discuss belotw this is so. This
opens up the possibility akducing noisdn the complex cell outputs by recon-
structing them using the linear generative model in Equafiizt.1), ignoring the
noise. The obtained reconstructions, i.e. the outputseottmplex cells after they
have received feedback, are denoteagyahd computed as

K
G = Zakié for all k (14.4)
i=

Nonlinearity is essential in these models. If the outfgutgete simply linear trans-
formations of the complex cell outputs, little would be gadnby such feedback.
This is because the reconstructed valges/éuld still be linear transformations of
the original feed-forwardy. Thus, one could wonder why any feedback would re-
ally be needed to compute thgBecause a linear transformation could certainly be
easily incorporated in the feedforward process which caegpthecy in the first
place. However, the nonlinear computations that emerge fite Bayesian infer-
ence process do need more complicated computing circgibryt is natural that
feedback is needed.

The effect of this inference is that the top-down connedifsom the contour-
coding units to the complex cells seek to adjust the compéxesponses towards
that predicted by the contour units. To be more precise, sucéffect can be ob-
tained, for example, by sending a dynamic feedback signidleoform

K
Uy = [213403] —Ck (14.5)

from the i-th higher-order cell to the k-th complex cell. Whe, is equal to its
denoised estimate, this signal is zero and equilibrium lEeaed. Of course, this
feedback signal is just one possibility and it is not knownvhbis computation
is actually achieved in the visual system. What is importaare is that Bayesian
inference gives an exact proposal on what plueposeof such feedback signals
should be, thus providing a normative model.

In Fig. 14.1, we show a very basic example of how feedbacken@duction in
this model results in the emphasis of smooth contours. Wergésd image patches
by placing Gabor functions at random locations and oriéwrtat (for simplicity,
we consider only a single frequency band here). In one cheeg tvas a collinear
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alignment of three consecutive Gabors; in the other thase $dabors had random
orientations. These image patches are shown in Fig. 14 Mext, we processed
these by our model complex cells, as we had processed thehatage patches in
our experiments in Chapter 12. The resultoygare shown in Fig. 14.1 b). Finally,
we calculated the contour-coding unit activitggthe actual method is discussed
in the next subsection), and plotted the noise-reduced angell activity in Fig.
14.1 c).

Fig. 14.1: Noise reduction and contour integratiah.Two image patches containing Gabors at
random locations and orientations. In the top patch theseelinear set of three Gabors, whereas
in the bottom patch these same Gabors had random oriergatipihe response of the model
complex cells to the images in @) The response of the complex cells after feedback noise reduc
tion using the learned network model. Note that the redaatibnoise has left the activations of
the collinear stimuli but suppressed activity that did notHe learned sparse coding model well.
From (Hoyer and Hyvarinen, 2002), Copyrigiei2002 Elsevier, used with permission.

Note how the noise-reduction step suppresses responseptioidus” edges,
while emphasizing the responses that are part of the callinrangement. Such
response enhancement to contours is the defining chasiicteri many proposed
computational models of contour integration, see for edar{rossberg and Min-
golla, 1985; Li, 1999; Neumann and Sepp, 1999). Compariegdinoised re-
sponses (Fig. 12c) with each other one can also observeeatlicontextual in-
teractions in the model. The response to the central Gabstrasger when it is
flanked by collinear Gabors (upper row) than when the flankave random orien-
tations (bottom row), even though the flankers fall well aeshe receptive field
of the central neuron. This type of contextual interacti@s lheen the subject of
much study recently (Polat and Sagi, 1993; Polat et al, 1B8&t and Tyler, 1999;
Kapadia et al, 1995, 2000; Kurki et al, 2006); see (Fitzpktr2000) for a review. It
is hypothesized to be related to contour integration, altfiosuch a relation is not
certain (Williams and Hess, 1998).
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14.1.2 Thresholding (shrinkage) of a sparse code

What is the nonlinearity in the inference of thdike in Equation (14.2)? Because
the code is sparse, it turns out to be something like a thtdsigoof individual cell
activities, as we will show next.

14.1.2.1 Decoupling of estimates

Inference in an ICA model which contains gaussian noisey &sjuation (14.1), is

a special case of the principle in Section 13.1.3, in whiehdbefficients in an over-
complete basis were estimated. We will see that the noiseedémds to nonlinear
computations even if the basis is not overcomplete as it w&ettion 13.1.3. We
can directly use the posterior pdf we calculated there, ingfign (13.10) on page
293; instead of the original imadethe observed data is the vector of complex cell
outputsc. Thus, we have

logp(sic) = —2%2 Z[ck — Zmlakis]z + _ie(s) +const. (14.6)

whereay; is the matrix of higher-order features weights, and the tatsdoes not
depend ors. Now, let us assume that the number of complex cells equalsitmber
of higher-order features. This is just the classic assumnptiat we usually make
with ICA (with the exception of the overcomplete basis moiseSection 13.1).
Then, the matrixA, which has theay; as its entries, is invertible. Second, let us
make the assumption that the mat#ixs orthogonal. This assumption is a bit more
intricate. It can be interpreted as saying that that theenisisdded on the whitened
data, becausA is orthogonal after whitening. Since the noise is, in oureca
abstract kind of noise whose structure is not very well knawany case, this may
not be an unreasonable assumption.

After these simplifying assumptions, the inference defime&quation (14.6)
becomes quite simple. First, note that the sum of squarestgtrix notation, equal
to ||c — As||?. Because an orthogonal transformation does not changeothg we
can multiply the vectoc — As by AT without changing the norm. Thus, we can
replace the sum of squares in Equation (14.6) Ay c — s||?, obtaining

logp(slc) = 202 21 z AiCk — S ]2+l21G(s)+const. (14.7)

Now we see the remarkable fact that this posterior log-pdfssim of functions
of the form

logp(si|c) = Z AiCk — G(s) +const. (14.8)
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which are functions of singlg (higher-order features) only. Thus, we can maxi-
mize this posterior pdf separately for eaghwe only need to do one-dimensional
optimization. Each such one-dimensional maximum depemds @n zE:lakick.
This means that the estimates of thavhich maximize this pdf are obtained by
applying some one-dimensional nonlinear functfoon linear transformations of
the complex cell outputs:

K
§ = (Y auc) (14.9)
k=1

where the nonlinear functiohdepends o1&, the log-pdf of thes.

14.1.2.2 Sparseness leads to shrinkage

What kind of nonlinearityf does noise reduction lead to? Intuitively, there are two
forces at play in the posterior log-density lp@s|c). The first term, squared error,
says thats should be close tqﬁzlakick, which can be thought of as the feed-
forward linear estimate fog. The really interesting part is the prior given by the
function G in Equation (14.8). Now, for a sparse density, the log-dgnGiis a
peaked function. For example, it equ&sés) = —/2|s| (plus some constant) for
the Laplacian density which we have used previously (seetimu (7.18)). This
peakedness makes the inference nonlinear so that if tharlémimatezleakick
is sufficiently close to zero, the maximum pfs|c) is obtained at zero. This is
illustrated in Figure 14.2.

Actually, the form of the functiori can be obtained analytically for some choices
of G. In particular, assume th& is the log-pdf of the Laplacian distribution. Then,
the functionf becomes what is called a “shrinkage” function:

f(y) = sign(y)max|y| — v202,0) (14.10)

What this function means is that the linear transformatiboamplex cell outputs
TR, ac is “shrunk” towards zero by an amount which depends on nesel |
0. Such a function can be considered a “soft” form of thresimgjdin fact, for
some other choices @&, such as the one in Equation (7.22), which correspond
to much sparser pdf’s, the nonlinearity becomes very closthitesholding. See
Fig. 14.3 for plots of such functions. For more details iniskaeige functions, see
(Hyvéarinen, 1999b; Simoncelli and Adelson, 1996; Johnstand Silverman, 2005)
in a Bayesian context, and (Donoho, 1995) for a related ntetho

The nonlinear behaviour obtained by a sparse prior is ik gt@ntrast to the case
where the distribution 0§ is gaussianthenG is quadratic, and so is Iqys|c).
Minimization of a quadratic function leads to a linear fuoaotof the parameters. In
fact, we can take the derivative of Ipgs |c) = — 52, [T akiCk — ]2 — §/2 with
respect tos and set it to zero, which gives as the solutizi)n:“rla2 SR aick.
This is a simple linear function of the feed-forward estimeBo, we see that it is
sparseness, or non-gaussianity, which leads to integestinlinear phenomena.
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Thus, we see that the function of Bayesian inference in thid bf a model
is to reduce small cell activities in the higher processing areaéra If there is
not enough evidence that the feature encoded by a higher-odll is there, the
cell activity is considered pure noise, and set to zero. Baekl from higher ar-
eas modulates activity in lower areas by suppressing cdllshware not consistent
with the cell activity which is left after noise reduction tre higher level. In other
words, activities of some cells in the lower-level area anepsessed because they
are considered purely noise. At the same time, activitiesoaie cells may even be
enhanced so as to make them consistent with higher-levieitess. Such a mech-
anism can work on many different levels of hierarchy. Howetlee mathematical
difficulties constrain most analysis to a network where #egiback is only between
two levels.

a) 0
-1
-2
_3 /",'
_4/"’ .
E —2;

Fig. 14.2: lllustration of why noise reduction with a spaps®r for 5 leads to shrinkage. In both
plots, the dashed line gives the Laplacian prior @d§) = —+/2|s. The dash-dotted line gives
the squared error term in Equation (14.8). The solid lineegithe sum of these two terms, i.e.
the posterior log-probability log;|c). The variance is fixed t@? = 0.5. a) The case where the
feedforward signal is Wealrg{((:lakick = 0.25. We can see that the peak at zero of the Laplacian
pdf dominates, and the maximum of the posterior is obtairtezeo. This leads to a kind of
thresholdingb) The case where the feedforward signal is strc;_r@;l aick = 1.5. Now, the sparse
prior does not dominate anymore. The maximum of the poste&iobtained at a value which is
clearly different from zero, but a bit smaller than the vagjiien by the feedforward signal.

14.1.3 Categorization and top-down feedback

The shrinkage feedback treated above is only one examplegéddan inference
in a noisy linear generative model. Different variants candbtained depending
on the assumptions of the marginal distributions of thenfat@ariables, and their
dependencies. Actually, even the generative model in Emuét4.1) is applicable
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Fig. 14.3: Plots of the shrinkage functiofisvhich modify the outputs of the higher-order contour
cells. The effect of the functions is to reduce the absolateesof its argument by a certain amount
which depends on the noise level. Small arguments are sefrto This reduces gaussian noise
for sparse random variables. Solid line: shrinkage cooedmg to Laplace density. Dash-dotted
line: a thresholding function corresponding to the highbaise density in Equation (7.22). The
line x =y s given as the dotted line. The linear estimate to whichnbislinearity is applied was
normalized to unit variance, and noise variance was fixe8.to

to any two groups of cells on two levels of hierarchy; theneed not be complex
cells ands need not be contour-coding cells.

For example, consider the latent variabdeas indicatingcategory membership
Each of them is zero or one depending on whether the objedtarvisual field
belongs to a certain category. For example, assume one of, the signals the
category “face”.

Thus, Bayesian inference based on Equation (14.2) can &gairsed to infer
the most probable values for tlog variables fors;. What is interesting here is that
the binary nature of; means that when the visual input is sufficiently close to
the prototype of a face, the most likely value®fwill be exactly 1; at a certain
threshold, it will jump from 0 to 1. This will affect the ders@d estimates of the
complex cell outputsy. The top-down feedback will now say that they should be
similar to the first basis vectdms1, . ..,a1n). Thus, a combination of excitatory and
inhibitory feedback will be sent down to complex cells toverithe complex cell
outputs in this direction.

For example, if the input is a face in which some of the corddwave very low
contrast, due to lighting conditions, this feedback wiltio enhance them (Lee and
Mumford, 2003). Such feedback will be triggered if the evide fors; being 1 is
above the threshold needed. Otherwise, possibly the fe&diman another category
unit is activated.
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14.2 Overcomplete basis and end-stopping

A second kind of phenomenon which emerges from Bayesiameinée and goes
beyond a basic feedforward modeldsmpetitive interactionsThis happens espe-
cially in the model with overcomplete basis, see Sectiord 1@nd can explain the
phenomenon of end-stopping.

End-stopping refers to a phenomenon, already describedibglind Wiesel in
the 1960’s, in which the cell output is reduced when the oatistimulus is made
longer. That is, you first find a Gabor stimulus which gives maxn response in a
simple cell. Then, you simply make that Gabor longer, thahisre elongated, with-
out changing anything else. You would expect that the respofnthe cell does not
change because the new stuff that appears in the stimulussisle of the receptive
field. However, some cells (both simple and complex) agguatiuce their firing
rate when the stimulus is made more elongated. This is witallisd end-stopping.

As discussed in Section 13.1, in an overcomplete basis tereften many
different combinations of coefficiensswhich can give rise to the same image in a
linear generative modelx,y) = 3 Ai(x,y)s. Using Bayesian inference, the most
likely coefficientss can be found, and this may provide a more accurate model for
how simple cells in V1 compute their responses. This is eelab end-stopping
because such Bayesian inference in an overcomplete badste dynamics which
can be conceptualized asmpetition

Here is an example of such competition. Consider only thrakdBshaped ba-
sis vectors which are of the same shape but in slightly diffefocations, so that
together they form an elongated Gabor. It is important that@abors areverlap-
ping; this is necessary for the competition to arise. The threled@sare depicted in
Figure 14.4.

First assume that the stimulus is a Gabor which is exactlgdmee as the feature
coded by the cell in the middle. Then, obviously, the sparsessible representation
of the stimulus is to set the coefficients of the left- and tigtost features to zero
(s1 = s3=0), and use only the feature in the middle. Next, assume lileagttmulus
is a more elongated Gabor, which is actually exactly the stitheotwo Gabors on
the left and the right sides. Now, the sparsest representatisuch that the middle
feature has zero activitygf = 0), and the other two are used with equal coefficients.

Thus, the cell in the middle is first highly activated, but whée stimulus be-
comes more elongated, its activity is reduced, and evegtoatomes zero. We can
interpret this in terms of competition: The three cells asenpeting for the “right”
to represent the stimulus, and with the first stimulus, tHeisdghe middle wins,
whereas when the stimulus is elongated, the other two wiis ddmpetition pro-
vides a perfect example of end-stopping.

This kind of experiments also show that the classical conakpeceptive field
may need to be redefined, as already discussed in Sectiod 1After all, the con-
cept of receptive field is based on the idea that the respdrike oell only depends
on the light pattern in a particular part of the retinal spad¢ew, end-stopping, and
other phenomena such as contrast gain control, show thaetheesponse depends
on stimulation outside of what is classically called theepéve field. Hence, the
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Cell receptive fields

Stimuli

Fig. 14.4: The receptive fields and stimuli used in the eogysing illustration. When the stimulus
on the left is input to the system, the sparsest, i.e. the pros@ble pattern of coefficients is such
that only the cell in the middle is activated> 0. In contrast, when the stimulus is made longer,
i.e. the stimulus on the right is input to the system, therariee leads to a representation in which
only the cells on the left and the right are usgds; > 0 whereas the cell in the middle has zero
activity s, = 0.

expressiorclassicalreceptive field is used for the part which roughly corresmond
to non-zero weights iW(x,y), and the area from which signals of contrast gain
control and end-stopping come is called the non-classezaptive field. See (An-
gelucci et al, 2002) for an investigation of different kirafgeceptive fields.

14.3 Predictive coding

A closely related idea on the relation between feedback eedfbrward processing
is predictive coding. There are actually rather differedgds grouped under this
title.

Firstly, one can consider prediction in tinog in space, where “space” means
different parts of a static image. Some of the earliest waorlptiedictive coding
considered prediction in both (Srivanivasan et al, 1982¢dadly, prediction can be
performed between different processing stages (Mumfd@@21Rao and Ballard,
1999) or inside a single stage (Srivanivasan et al, 1982o¥#ost al, 2005). There
is also a large body of engineering methods in which timealgrsuch as speech,
are predicted in time in order to compress the signal (Spaii@94); we shall not
consider such methods here.

We constrain ourselves here to the case wipeegliction happens between dif-
ferent levels of neural processing and for static stimlihe key idea here is that
each neural level tries to predict the activity in tlogver processing level. This is
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usually coupled with the idea that the lower level sends édtigher level the error
in that prediction.

Prediction of the activities in lower levels is, in fact, iligit in the noisy gen-
erative model we have been using. As we saw in Section 13tilma®n of the
model in Equation (14.1) can be accomplished by maximinatibthe objective
function (the posterior probability) in Equation (14.6)tkvrespect to botlay; and
s. We can interpre§ ; as as the prediction that the higher level makes of lower-
level activities. (In Section 14.1 we interpreted it as aalsed estimate which is
closely related.) Then, the first term in Equation (14.6) lbamterpreted as the pre-
diction that the higher level makes of the lower level atitésic,. Thus, estimation
of the model is, indeed, based on minimization of a predicginor as in predictive
coding.

The idea that the lower level sends only the prediction eidhe higher level
needs some reinterpretation of the model. In Section 14 Ehewed how inference
of 5 can, under some assumptions, be interpreted as shrinkageslapproach the
maximization of the posterior probability in Equation (81by a basic gradient
method. The partial derivative of the objective functionthwiespect ta equals:

m
al%z(qc) = % Zaki[ck - i;akiS] +G'(s) (14.11)
This derivative actually contains the prediction errogs- 3", as of the lower-
level activitiescy, and no other information on tieg. Thus, if the higher level imple-
ments a gradient descent method to infer the most likelthe information which
it needs from the lower level can be conveyed by sending thesdiction errors
(multiplied by the weightsy; which can be considered as feedforward connection
weights).

The main difference between predictive coding and the geiver modelling
framework may thus be small from the viewpoint of statidticéerence. The es-
sential difference is in the interpretation of how the ahatiquantities are computed
and coded in the cortex. In the predictive modelling frameyi is assumed that
the prediction errorsy, — S ; as are actually the activities (firing rates) of the
neurons on the lower level. This is a strong departure froenftamework used in
this book, where they are considered as the activities of the neurons. Which one
of these interpretations is closer to the neural realityni®pen question which has
inspired some experimental work, see (Murray et al, 200@n&bhing like a syn-
thesis of these views is to posit that there are two diffekémds of neurons, each
sending one of these signals (Roelfsema et al, 2002).

14.4 Conclusion

In this chapter, we have shown that, in contrast to the ingiasone might get from
preceding chapters, current models of natural images dratradl bound to a strict
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feed-forward thinking which neglects top-down influencelit® on the contrary,
Bayesian inference in these models leads to different kitateral interactions and
feedback from higher cortical areas.

We have barely scratched the surface here. In many cases a@nections be-
tween latent variables and images are not completely détestic and one-to-one
in both directions, such phenomena emerge. For exampléwthayer generative
model in Section 11.8 would also give rise to such phenomkénlae latent vari-
ables are properly inferred from the input stimuli, somerasting dynamics might
emerge.

Another very important case is contour integration by lat@norizontal) connec-
tions between simple or complex cells. Basic dependeneiggden cells signalling
contours which are typically part of a longer contour wer@anped out in (Kriiger,
1998; Geisler et al, 2001; Sigman et al, 2001; Elder and Golglk2002). Proba-
bilistic models incorporating horizontal connections ba&found in (Garrigues and
Olshausen, 2008; Osindero and Hinton, 2008).

A very deep question related to feedback concerns the véinyititen of natural
images. Any sufficiently sophisticated organism has awaatiechanism, related to
attention, which selects what kind of information it re@s\by its sensory organs.
This introduces a complicated feedback loop between pgareand action. It has
been pointed out that the statistics in those image partshtohapeople attend, or
direct their gaze, are different from the overall statstiReinagel and Zador, 1999;
Krieger et al, 2000); see (Henderson, 2003) for a review. ili@ications of this
difference can be quite deep. A related line of work considentours labelled by
human subjects in natural images (Martin et al, 2004).



Part IV
Time, colour and stereo






Chapter 15
Colour and stereo images

In this chapter, we show how we can model some other visuahfitiss, colour and
stereopsis using ICA. We will see that ICA still finds featutkat are quite similar
to those computed in the visual cortex.

15.1 Colour image experiments

In this section, we extend the ICA image model from grey-es¢achromatic) to
colour (chromatic) images. Thus, for each pixel we haveetvaues (red, green
and blue), instead of one (grey-scale). The correspondidgrnodel is illustrated
in Figure 15.1. First, we discuss the selection of data, theranalyse its second-
order statistics and finally show the features found using.1C

Fig. 15.1: The colour image ICA model. As with grey-scalecpas, we model the data as a linear
combination of feature vector;. Here, each feature vector consists of the three coloureglan
(red, green and blue), shown separately to clearly illtistilze linear model.

1 This chapter was originally published as the article (Hoged Hyvarinen, 2000) in Network:
Computation in Neural Systems. Copyrigbt2000 Institute of Physics, used with permission.
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15.1.1 Choice of data

Obviously we should select as input data as “natural” imaggsossible if we wish
to make any connection between our results and propertieswbns in the visual
cortex. When analysing colours, the spectral compositioth® images becomes
important in addition to the spatial structure.

It is clear that the colour content of images varies widelhwihe environment
in which the images are taken. Thus we do not pretend to findesamiversally
optimal features in which to code all natural colour imageather, we seek the
general qualitative properties of an ICA model of such ingagde other words, we
hope to find answers to questions such as: “How are coloursccodusing such
features; separate from, or mixed with achromatic chafielad “What kind of
spatial configuration do colour-coding feature vectorsa?dv

We hope that, as with grey-scale images, the ICA featuresatréoo sensitive
to the particular choice of colour images, and that our dataalistic enough.

Neurons, of course, receive their information ultimatelyn the outputs of the
photoreceptors in the retina. Colour vision is made possiiyl the existence of
photoreceptors called “cones” which come in three typesh esnsitive to light
of different wavelengths. Thus our data should consist eftthpothetical outputs
of the three types of cones in response to our images. Howanmgrthree linear
combinations of these outputs is just as good an input detee sve are applying
ICA: Linearly transforming the data transforms the featoratrix A, but does not
alter the independent components.

We choose to use standard red/green/blue (RGB) values asjigssuming the
transformation to cone outputs to be roughly linear. This the advantage that the
features found are directly comparable to features cugreéntuse in image pro-
cessing operations such as compression or denoising, ard stwaightforwardly
be applied in such tasks. The drawback of using RGB valuespags is of course
that any nonlinearities inherent in the conversion from RG@Bone responses will
affect the ICA result and a comparison to properties of nesinmay not be war-
ranted. To test the effect of nonlinearities, we have expented with transforming
the RGB values using the well-known gamma-nonline&ritl/cathode ray tubes
used in computer screens. This did not qualitatively chahgeesults, and there-
fore we are confident that our results would be similar if we haed estimated cone
outputs as inputs.

Our main data consists of colour versions of natural scedepi¢ting forest,
wildlife, rocks, etc.) which we have used in previous workvasl. The data is in
the form of 20 RGB images (of size 384256-pixels) in standard TIFF format.

2 The gamma-nonlinearity is the most significant nonlingasitthe CRT monitor. After gamma-
correction the transform from RGB to cone responses is rigugtear; see the appendix in (Wan-
dell, 1995).
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15.1.2 Preprocessing and PCA

From the images, a total of 50,000 12-by-12 pixel image pegetere sampled ran-
domly. Since each channel yields 144 pixels, the dimenstgneas now 3x 144=
432. Next, the mean value of each variable (pixel/colour)paas subtracted from
that component, centering the dataset on the origin. N@&ettile DC component
was not subtracted.

Then, we calculated the covariance matrix and its eigenvectvhich gave us
the principal components. These are shown in Figure 15.8.€ienvectors con-
sist of global features, resembling 2D Fourier feature® Tdriance decreases with
increasing spatial frequency, and when going from greyesta blue/yellow to
red/green featuresThese results were established by (Ruderman et al, 1998) who
used hyperspectral images (i.e. data with many more thatmtae spectral compo-
nent in RGB data) as their original input data.

To analyze the colour content of the PCA filters in more detaéd will show
the pixels of a few filters plotted in a coloured hexagon. Intipalar, each pixel
(RGB-triplet) is projected onto a plane given by

R+ G+ B = constant (15.1)

In other words, the luminance is ignored, and only the colmntent is used in
the display. Figure 15.3 shows the colours in this hexagate that this is a very
simple 2D projection of the RGB colour cube and should natatly be compared
to any neural or psychophysical colour representations.

Figure 15.4 shows a bright/dark filter (no. 3), a blue/yelliker (no. 15), a
red/green filter (no. 432, the last one), and a mixture (nd. Blbst filters are in-
deed exclusively opponent colours, as was found in (Rudemhal, 1998). How-
ever, there are also some mixtures of these in the transiboes of main opponent
colours.

As described earlier, we project the data onto hfrst principal components
before whitening (we have experimented witk- 100, 160, 200, and 250). As can
be seen from Figure 15.2, dropping the dimension mostlyaddscblue/yellow fea-
tures of high spatial frequency and red/green features dfiumeto high frequency.
This already gives a hint as to why the blue/yellow and thégmegn systems have
a much lower resolution than the bright/dark system, as leas lobserved in psy-
chophysical experiments (Mullen, 1985).

15.1.3 ICA results and discussion

The feature vectors; estimated by ICA are shown in Figure 15.5. Examining Fig-
ure 15.5 closely reveals that the features found are verifasito earlier results on

3 It should be noted that chromatic aberration in the eye migive an effect of additionally
reducing signal energy at high spatial frequencies.
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Fig. 15.2: PCA features of colour images. These are the e@gtors of the covariance matrix of
the data, from left-to-right and top-to-bottom in order efdeasing corresponding eigenvalues. As
explained in the main text, we projected the data on the f@8tpkincipal components (top 8 rows)
before performing ICA.

grey-scale image data, i.e. the features resemble Gabotidns. Note that most
units are (mainly) achromatic, so they only represent linghs (luminance) vari-
ations. This is in agreement with the finding that a large pathe neurons in the
primary visual cortex seem to respond equally well to défercoloured stimuli, i.e.
are not selective to colour (Hubel and Wiesel, 1968; Livinge and Hubel, 1984).
In addition, there is a small number of red/green and bldetydeatures. These are
also oriented, but of much lower spatial frequency, sinibethe grey-scale features



15.1 Colour image experiments 325

Fig. 15.3: The colour hexagon used for analyzing the coloatent of the PCA and ICA features.
The hexagon is the projection of the RGB cube onto a plan@gathal to the luminancdR(+ G+

B) vector. Thus achromatic RGB triplets map to the center efttexagon while highly saturated
ones are projected close to the edges.

Fig. 15.4: Colour content of four PCA filters. From left to hig Component no. 3, 15, 432, and
67. All pixels of each filter have been projected onto the aoleexagon shown in Figure 15.3. See
main text for a discussion of the results.
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Fig. 15.5: ICA features of colour images. Each patch coordp to one featuré;. Note that
each feature is equally well represented by its negatiensivitching each pixel to its opponent
colour in any one patch is equivalent to changing the sigm ahd does not change the ICA model
(assuming components with symmetric distributions).
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of lowest frequency. One could think that the low frequereatéires together form
a “colour” (including brightness) system, and the highgirency grey-scale fea-
tures a channel analysing form. Also note that the averalgeic(DC-value) of the
patches is represented by 3 separate feature vectorsgsjtisé @verage brightness
in an ICA decomposition of grey-scale images is usually sgpafrom the other
feature vectors.

We now show typical ICA features plotted in the colour-hexadFigure 15.6),
as we did with the PCA features. The figure shows a bright/feakure, a blue-
yellow feature, and a red/green feature. There were no ‘med’ of the type seen
for PCA, in other words each feature clearly belonged to drieese groups. (Note
that the bright/dark features also contained blue/yelloa guite small degree.)

Fig. 15.6: Colour content of three ICA filters, projected mtte colour hexagon of Figure 15.3.
From left to right: no. 24, 82, and 12.

The dominance of bright/dark features is largely due to flheedsion reduction
performed while whitening. To test the dependence of thejgsizes on the value
of n used, we estimated the ICA features for different values ahd counted the
group sizes in each case. The results can be seen in FiguteCléarly, whem is
increased, the proportion of colour-selective units iases. However, even in the
case of keeping over half of the dimensions of the originalcspfi = 250), the
bright/dark features still make up over 60% of all units.

Another thing to note is that each ICA feature is “double-@pgnt”: For blue-
yellow features stimulating with a blue spot always givesoaposite sign in the
response compared to stimulating with a yellow spot. Regfgrand bright/dark
features behave similarly. This is in fact a direct consegeeof the linear ICA
model. It would be impossible to have completely linearifdtiinction in any other
way.

Although early results (Livingstone and Hubel, 1984) on tieomatic prop-
erties of neurons suggested that most colour-sensitive w&lre unoriented, and
exhibited center-surround receptive fields, more recardiss have indicated that
there are also oriented colour-selective neurons (Ts'oGifleert, 1988). The fact
that our colour features are mostly oriented is thus at iegsartial agreement with
neurophysiological data.
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Fig. 15.7: Percentages of achromatic, blue/yellow, anthredn feature vectors for different num-
bers of retained PCA components (100, 160, 200 and 250)aflh ease, the three features giving
the mean colour have been left out of this count.)

In any case, there is some agreement that most neurons arelective to
chromatic contrast, rather are more concerned about luroeéHubel and Wiesel,
1968; Livingstone and Hubel, 1984; Ts’o and Roe, 1995). @gidis in agreement
with these findings. In addition, the cytochrome oxidasebblavhich have been
linked to colour processing (Livingstone and Hubel, 198#@yéhalso been associ-
ated with low spatial frequency tuning (Tootell et al, 1988pham et al, 1997). In
other words, colour selective cells should be expected tubed to lower spatial
frequencies. This is also seen in our features.

As stated earlier, we do not pretend that our main image sepigsentative of
all natural environments. To check that the results obthdwenot vary wildly with
the image set used, we have performed the same experimeatsotimer dataset:
single-eye colour versions of the 11 stereo images destib8ection 15.2.1. The
found ICA features (not shown) are in most aspects quitelairto that shown in
Figure 15.5: Features are divided into bright/dark, ble#dw and red/green chan-
nels, of which the bright/dark group is the largest, coritajrGabor-like filters of
mostly higher frequency than the features coding coloune. Main differences are
that (a) there is a slightly higher proportion of colour-auglunits, and (b) the oppo-
nent colours they code are slightly shifted in colour spaamfthose found from our
main data. In other words, the qualitative aspects, ansgejiiestions such as those
proposed in Section 15.1.1, are quite similar. Howeverntjtative differences do
exist.
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15.2 Stereo image experiments

Another interesting extension of the basic grey-scale el@\ model can be made
by modelling stereopsis, which means the extraction of ldépfiormation from
binocular disparity. (Binocular disparity refers to thdfelience in image location
of an object seen by the left and right eyes, resulting froenetyies’ horizontal sepa-
ration.) Now, our artificial neurons are attempting to letira dependencies of cor-
responding patches from natural stereo images. The moslebisn in Figure 15.8.

15.2.1 Choice of data

Again, the choice of data is an important step for us to gdist@aresults. Different

approaches are possible here. In some early work, a binoooieelation function

was estimated from actual stereo image data, and subségaeatysed (Li and

Atick, 1994). In addition, at least one investigation ofeptive field development
used artificially generated disparity from monocular ima@®houval et al, 1996).
Here, we have chosen to use 11 images from a commercial tofleaf stereo

images of natural scenes; a typical image is given in Figbr8.1

To simulate the workings of the eyes, we selected 5 focugpairandom from
each image and estimated the disparities at these pointhafeandomly sampled
16 x 16-pixel corresponding image patches in an area 03800 pixels centered
on each focus point, obtaining a total of 50,000 samplesaBsz of the local fluctu-
ations in disparity (due to the 3D imaging geometry) coroggpng image patches
often contained similar, but horizontally shifted featyrthis is of course the basis
of stereopsis.

Note that in reality the “sampling” is quite different. Eachuron sees a certain
area of the visual field which is relatively constant withpest to the focus point.
Thus a more realistic sampling would be to randomly sele¢d®D focus points
and from each take corresponding image patches at some@westant positional
offset. However, the binocular matching is computationslbw and we thus opted
for the easier approach, which should give the same disiibof disparities.

N ]
i:sl-“+32-.+---+sn-

Fig. 15.8: The ICA model for corresponding stereo imagelpegcThe top row contains the patches
from left-eye image and the bottom row corresponding patdtmm the right-eye image. Just as
for grey-scale and colour patches, we model the data asar loeenbination of feature vectofs
with independent coefficients.
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Fig. 15.9: One of the stereo images used in the experimehtsléit image should be seen with
the left eye, and the right image with the right eye (so-chllacrossed viewing).

15.2.2 Preprocessing and PCA

The same kind of preprocessing was used in these experirasrfte colour, in
Section 15.1. Since each sample consisted of correspoteftrand right 16x 16-
patches our original data was 512-dimensional. First, teanmmwas removed from
each variable, to center the data on the origin. Next, weutatied the covariance
matrix of the data, and its eigenvalue decomposition. Ireorit to waste space,
we show here (in Figure 15.10) the principal components foiraow size of 8< 8
pixels (the result for 1& 16 is qualitatively very similar).

The most significant feature is that the principal composi@mne roughly or-
dered according to spatial frequency, just as in PCA on sta@h@inonocular) image
patches. However, in addition early components (low spagguency) are more
binocular than late ones (high frequency). Also note thadbillar components gen-
erally consist of features of identical or opposite phaséss is in agreement with
the binocular correlation function described in (Li andakti 1994).

As before, we select the first 160 principal components fothir analysis by
ICA. Again, this is plausible as a coding strategy for negtdiut is mainly done to
lower the computational expenses and thus running time awrdary consumption.
Due to the structure of the covariance matrix, dropping theethsion to 160 is
similar to low-pass filtering.
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Fig. 15.10: PCA features of stereo images, i.e. the eigéoreof the covariance matrix of the
data, from left-to-right and top-to-bottom in order of deasing corresponding eigenvalues. See
main text for discussion.

15.2.3 ICA results and discussion

Figure 15.11 shows the estimated ICA feature vectpr&ach pair of patches rep-
resents one feature. First, note that pairs have varyingegs®f binocularity. Many
of our “model neurons” respond equally well to stimulationrh both eyes, but
there are also many which respond much better to stimulaticone eye than to
stimulation of the other. This is shown quantitatively irgéie 15.12, which gives
an “ocular-dominance” histogram of the features. Oculamoh@nce thus means
whether the neuron prefers input from one of the eyes (mdaocar combines
information from both eyes (binocular).

The histogram depends strongly on the area of the samplmgndrthe focus
points (which in these experiments was 30800 pixels). Sampling a smaller area
implies that the correlation between the patches is highdraalarger number of
features fall into the middle bin of the histogram. In thedfyve chose to sample
only exactly at the fixation point, we would obtain (ignorifagtors such as occlu-
sion) identical left-right image patches; this would inrtunake all feature vectors
completely binocular with identical left-right patches, there would be no signal
variance in the other directions of the data space. On therdthnd, sampling a
larger area leads to a spreading of the histogram towardsde bins. As the area
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Fig. 15.11: ICA of stereo images. Each pair of patches reptsesone feature vectdy. Note the
similarity of these features to those obtained from stashitmage data (Figure 7.3 on page 169).
In addition, these exhibit various degrees of binoculaaitg varying relative positions and phases.

gets larger, the dependencies between the left and rigbh@siget weaker. In the
limit of unrelated left and right windows, all features faito bins 1 and 7 of the
histogram. This was confirmed in experiments (results notvst).

Taking a closer look at the binocular pairs reveals that fastpairs the left
patch is similar to the right patch both in orientation andtsd frequency. The po-
sitions of the features inside the patches are close, whigderatical. In some pairs
the phases are very similar, while in others they are quiteréint, even completely
opposite. These properties make the features sensitiviéfeécett degrees of binoc-
ular disparity. Identical left-right receptive fields matke feature most responsive
to zero disparity, while receptive fields that are identeedept for a phase reversal
show strong inhibition (a response smaller than the “bame-fesponse given by
an optimal monocular stimulus) to zero disparity.

To analyse the disparity tuning we first estimated several b@ses using dif-
ferent random number seeds. We then selected only rehatingh frequency, well
localized, binocular features which had a clear Gabor fiitarcture. This was nec-
essary because filters of low spatial frequency were notllysuall confined within
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the patch and thus cannot be analysed as complete neurptivecields. The set
of selected feature vectors is shown in Figure 15.13.
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Fig. 15.12: Ocular dominance histogram of the ICA featurEer each pair, we cal-

culated the value of([Alf|| — [[AT™))/(||A®|| + |A€f|), and used the bin boundaries
[-0.85,—0.5,—-0.15,0.15,0.5,0.85] as suggested in (Shouval et al., 1996). Although many units
where quite monocular (as can be seen from Figure 15.11)nite fell into bins 1 or 7. This
histogram is quite dependent on the sampling window arowdidin points, as discussed in the
main text.
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Fig. 15.13: Units selected for disparity tuning analysibe3e were selected from bases such as
the one in Figure 15.11 on the basis of binocularity, freqyerontent and localization (only well-
localized Gabor filters were suitable for further analysis)
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For each stereo pair, we presented an identical stimulugfateht disparities
to both the left and right parts of the filter correspondingfte pair. For each dis-
parity, the maximum over translations was taken as the respof the pair at that
disparity. This gave a disparity tuning curve. For stimuéi used the feature vectors
themselves, first presenting the left patch of the pair ttnbeyes”, then the right.
The tuning curves were usually remarkably similar, and vk tine mean of these
as the final curve.

We then classified each curve as belonging to one of the typesd excitatory”,
“tuned inhibitory”, “near”, or “far”, which have been ideified in physiological ex-
periments (Poggio and Fischer, 1977; Fischer and Krugét9;119%Vay and \oigt,
1988). Tuned excitatory units showed a strong peak at zetmlly with smaller
inhibition at either side. Tuned inhibitory units on the etihand showed a marked
inhibition (cancelling) at zero disparity, with excitati@at small positive or nega-
tive disparities. Features classified as “near” showedar glesitive peak at crossed
(positive) disparity while those grouped as “far” a peakdocrossed (negative) dis-
parity. Some tuning curves that did not clearly fit any of thelsses were grouped
into “others”.

In Figure 15.14 we give one example from each class. Shownharéeature
vectors and the corresponding tuning curves. It is fairlyyei@ see how the orga-
nization of the patches gives the tuning curves. The tunedatgry (top) unit has
almost identical left-right profiles and thus shows a strpneference for stimuli
at zero disparities. The tuned inhibitory (second) unit hearly opposite polarity
patches which implies strong inhibition at zero dispaiitye near (third) unit’s right
receptive field is slightly shifted (positional offset) twetleft compared with the left
field, giving it a positive preferred disparity. On the otleand, the far unit (bottom)
has an opposite positional offset and thus responds besttatine disparities.

Figure 15.15 shows the relative number of units in the diffiéclasses. Note that
the most common classes are “tuned excitatory” and “neane @ould perhaps
have expected a greater dominance of the tuned excitat@nytbe other groups.
The relative number of tuned vs. untuned units probably dépéo a great deal on
the performance of the disparity estimation algorithm ia #ampling procedure.
We suspect that with a more sophisticated algorithm (we liaeel a very simple
window-matching technique) one would get a larger numbetuogd cells. The
clear asymmetry between the “near” and “far” groups is pbipdue to the much
larger range of possible disparities for near than for fangli: Disparities for ob-
jects closer than fixation can in principle grow arbitraldyge whereas disparities
for far objects are limited (Barlow et al, 1967).

It is important to note that completely linear units (simplels) cannot have
very selective disparity tuning. Also, since the dispatitying curves vary with the
stimulus, the concept “disparity tuning curve” is not vergliadefined (Zhu and
Qian, 1996). However, disparity tuning is still measuratelong as one keeps in
mind that the curve depends on the stimulus. Our tuning cLawe “simulations” of
experiments where a moving stimulus is swept across thetigedield at differ-
ent binocular disparities, and the responses of the neargaéstion is measured.
As such, it is appropriate to use the estimated feature ¥&et® input. To obtain
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Fig. 15.14: Disparity tuning curves for units belonging tffetent classes. Top row: A “tuned
excitatory” unit (no. 4 in Figure 15.13). Second row: a “tdri@hibitory” unit (12). Third row:
a “near” unit (38). Bottom row: a “far” unit (47). Crossed davity (“near”) is labelled positive
and uncrossed (“far”) negative in the figures. The horizbdtdted line gives the “base-line” re-
sponse (the optimal response to one-eye only) and the afedititted line the position of maximum
deviation from that response.

0 . . . . . . . .
-10 -8 -6 -4 -2 0 2 4 6 8 10

stimulus-invariant disparity tuning curves (as well as emoomplex binocular inter-
actions than those seen here) one would need to model nan{itmmplex) cells.
Overall, the properties of the found features corresporikguell to those of re-

ceptive fields measured for neurons in the visual cortex.féatires show varying
degrees of ocular dominance, just as neuronal receptivasf{glubel and Wiesel,
1962). Binocular units have interocularly matched oriéntes and spatial frequen-
cies, as has been observed for real binocular neurons (Bkatid Freeman, 1984).
It is easy by visual inspection to see that there exist ba#racular position and
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Fig. 15.15: Disparity tuning histogram. The histogram s&dhe relative amounts of “tuned exci-
tatory” (44), “near” (44), “far” (17) units (in black) and tined inhibitory” units (25) in white. Not
shown are those which did not clearly fit into any of thesegaies (15).

phase differences, which seems to be the case for receigs fif cortical neurons
(Anzai et al, 1999a). Finally, simulated disparity tuning\es of the found features
are also similar to tuning curves measured in physiologigperiments (Poggio and
Fischer, 1977).

15.3 Further references

15.3.1 Colour and stereo images

Work concerning the second-order statistics of colounidel(Atick et al, 1992; van
Hateren, 1993; Ruderman et al, 1998). In addition, coloimpdt was used in (Bar-
row et al, 1996) to emerge a topographic map of receptivediddgain, that work
basically concerns only the second-order structure of tta,das the correlation-
based learning used relies only on this information. Agilan of ICA on colour
images has been reported in (Hoyer and Hyvarinen, 2000htéacet al, 2001;
Doi et al, 2003; Caywood et al, 2004; Wachtler et al, 2007)atee work on LGN
neurons can be found in (Mante et al, 2005).

In addition to learning chromatic receptive fields, it iscafgssible to investigate
the statistical properties of the chromatic spectra if Engxels (Wachtler et al,
2001). That is, one measures the spectral content of simgispvith a high reso-
lution which gives more than the conventional three dimamsi This can shed light
on the optimality of the three-cone dimensionality reductised in the retina.

Emerging receptive fields from stereo input has been coreside (Li and Atick,
1994; Shouval et al, 1996; Erwin and Miller, 1996, 1998). Aishwcolour, most
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studies have explicitly or implicitly used only second-erdtatistics (Li and Atick,

1994; Erwin and Miller, 1996, 1998). The exception is (Shalwat al, 1996) which

used the BCM learning rule (Bienenstock et al, 1982) whichtigpe of projection

pursuit learning closely linked to ICA. The main differertoetween their work and
the one reported in this chapter is that here we use data fobnalastereo images
whereas they used horizontally shifted (misaligned) dedenfregular images. In
addition, we estimate a complete basis for the data, whétegstudied only single
receptive fields.

15.3.2 Other modalities, including audition

Further investigations into the statistical structure thfey sensory modalities have
been made especially in the context of audition, in which I@élds interesting
receptive fields whether applied on raw audio data (Bell aaph@vski, 1996;
Lewicki, 2002; Cavaco and Lewicki, 2007) or spectrogramiii et al, 2003).
See also (Schwartz et al, 2003) for work related to musicggeion, and (Schwartz
and Simoncelli, 2001b) for work on divisive normalizatiar fauditory signals.

Further topics which have been addressed using the statistructure of the
ecologically valid environment include visual space (Yamgl Purves, 2003), so-
matosensory system (Hafner et al, 2003), and place cetisntz and Buzsaki,
2000). Motion in image sequences is considered in Sectidh 16

For some work on multimodal integration and natural imagéstics, see (Hurri,
2006; Kruger and Worgotter, 2002) (the latter is on imagguences). An image-
processing application combining spatial, temporal, d@rdmatic information is in
(Bergner and Drew, 2005).

15.4 Conclusion

In this chapter, we have investigated the use of indeperwenponent analysis for
decomposing natural colour and stereo images. ICA appiedlour images yields
features which resemble Gabor functions, with most feataehromatic, and the
rest red/green- or blue/yellow-opponent. When ICA is aggblon stereo images
we obtain feature pairs which exhibit various degrees ofaradominance and are
tuned to various disparities. Thus, ICA seems to be a pl&usibdel also for these
modalities and not just grey-scale images.



Chapter 16
Temporal sequences of natural images

Up to this point this book has been concerned with staticrahimnages. However,
in natural environments the scene changes over time. Iniaddihe observer may
move, or the observer may move its eyes. Temporal sequeficegwal images,

temporal properties of the visual system, and temporal isaxfgprocessing are the
topics of this chapter.

16.1 Natural image sequences and spatiotemporal filtering

Fig. 16.1: An example of an image sequence (van Hateren addrRan, 1998) with 5 frames.
Here time proceeds from left to right.

In digital systems, dynamical (time-varying) images atewoprocessed asmage
sequencesvhich consist oframes each frame being one static image. Figure 16.1
shows an example of an image sequence with lateral cameramem.

Previous chapters have made clear the importance of linesaeators as tools and
models in image processing. In the case of image sequenagetdatfundamental
linear operation ispatiotemporal linear filteringwhich is a straightforward exten-
sion of the spatial linear filtering discussed in Chapter @niember that in spatial
linear filtering a two-dimensional filter is slid across tmeage, and the output is
formed by computing a weighted sum of the pixels in the aretheffilter, with
the weights given by the elements of the filter. In spatioteraplinear filtering, a

337
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three-dimensiondilter is slid across the image sequence, and the outputrisedr
by computing a weighted sum of the pixels in the spatiotemlpamea of the filter,
with the weights given by the elements of the filter.

Mathematically, leW(x,y,t) denote the filter weights(x,y,t) denote the input
image sequence, ard(x,y,t) denote the output image sequence. The indix
time. Then linear spatiotemporal filtering is given by

00 [ee]

Oo(x,y,t) = Z z z W (X, Vi, b (X X, Y+ Vi, t 1), (16.1)

&=—WW=—wU —

where the upper and lower limits of the sums are in practitaaons finite. Typ-
ically only filters which do not use future time points are dismathematically we
will denote thiscausalityrestriction byW(x,y,t) = 0 whent > 0.

The concepts of frequency-based representations, pesserbection 2.2 (p. 29)
are applicable also in the three-dimensional, spatioteedpzase. An image se-
guence can be represented as a sum of spatiotemporal siabsomponents

TG =3 5 Awcay.a COS(@X+ @Y + @t + Powy.a) (16.2)
o @ @

wherewy and wy, are spatial frequencies and is a temporal frequenc, w,.wm
is the amplitude associated with the frequency triple, dlge, . is the phase
of the frequency triple. You may want to compare EquationZ)1@ith its spatial
counterpart, Equation (2.9) on page 33. A spatiotemponaV@ition operation is
defined by

0 0 00

H(xy,t) «1(xy,t) = Z z Z [(X— Xy, Y — Vi, t — t)H (X, Vs, 1), (16.3)

Xy=—00Y,=—00t, =—00

whereH (x,y,t) is the impulse response, which has a straightforward oelatiip
with the linear filte’W(x,y,t)

H(xy,t) =W(—x, -y, ). (16.4)

This impulse response has a complex-valued three-dimesisttiscrete Fourier
transformH (u,v,w), the magnitude of which reveals the amplitude response of the
filter, and the angle reveals the phase response.

16.2 Temporal and spatiotemporal receptive fields

With the inclusion of time, we get two new kinds of receptivaddis:spatiotemporal
andtemporal these are illustrated in Figure 16.2 in the case of a newamn the
lateral geniculate nucleus. A spatiotemporal receptivd ¥(x,y,t) (Figure 16.2a)
corresponds to a causal spatiotemporal filter: it definessmlimodel that relates the



16.2 Temporal and spatiotemporal receptive fields 339
a)
t (ms)
-15.6 -31.2 -46.8 -62.4 -78.0 -93.6 -109.2 -124.8 -140.4 -156.0 -171.6

b) c)

0.5

0.4

w(t)

-50 -100 -150 -200
t (ms)

Fig. 16.2: Spatiotemporal and temporal receptive fields oéaron in the lateral geniculate nu-
cleus (LGN), estimated from measurement data from the mewp A spatiotemporal recep-
tive field W(x,y,t), the equivalent of a causal linear spatiotemporal filbgrA two-dimensional
visualization of the RF in a), obtained by summing the spatipporal RF along the-axis:
W(x,t) = 3y W(x,y,t). c) A temporal receptive field, which is a single time-slice af gpatiotem-
poral RF:W(t) =W (Xconst Yeonst t). For the description of the original measurement data and
source see (Dayan and Abbott, 2001; Kara et al, 2000).

history of all pixels in the image sequence to the output oéaran. These inher-
ently three-dimensional spatiotemporal receptive fielésadten visualized in two
dimensions with one spatial dimension and a temporal difoai¥(x,t) by taking
either a slice at wherg is constanty = Ycons) OF summing over thg-dimension
(Figure 16.2b)- A temporal receptive field (Figure 16.2c) is the time courbe o
single spatial location in a spatiotemporal receptive fiélt) =W (Xconst Yconss t)-
It defines a linear model that relates the history of a singtelpio the output of a
neuron.

Spatiotemporal receptive fields are divided into two gaéirely different types
based on whether or not they can be described as a cascadeatichand a tempo-
ral filtering operation. In the case where this is possilile,dpatiotemporal filter is

its

called is calledspace-time separahleet us denote again the output of the filtering

by O(x,y;t), the spatial filter by\spa(X, y) and the temporal filter bWemp(t). Then,
the cascade can be combined into a single spatiotempoealdgtfollows:

1 When the RF is selective to a certain spatial orientatiomefstimulus, this visualization can be
improved by rotating the RF spatially so that the preferradraation becomes theaxis.
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Z Wiemp(ti )l (X4 Xs, Y + Vi, t + 1)

_ Z > Z Wepa(X., Yo )\Weemplt) | (X X0,y + Vi t L) (46 9

=W (X, Y b))

z W (X, Vi, b (X4 X, Y+ Vi, t L.

Thus, the spatiotemporal filter is obtained as a productefsiatial and temporal
parts as
W(X,y,t) = Wspaf X, Y)Wemp(t) (16.6)

By changing the ordering of the sums in Equation (16.5) itasyeto see that in
the space-time separable case, the order in which the kpatiahe temporal fil-

tering are done is irrelevant. A spatiotemporal receptigkelfthat is not space-time
separable is callesbace-time inseparahle

a) b)
w,
Wspat(x’y) 1 Sl

0.8

(®

0.6
0.4]

0.2

-50 -100 -150 -200
t(ms)

c)

-15.6 -31.2 -46.8 -62.4 -78.0 -93.6 -109.2 -124.8 -1404 -156.0 -171.6

Fig. 16.3: A space-time-separable representation of tla¢ictpmporal RF of Figure 16.2),

b) The optimal spatial RPAspa(x,y) and temporal RPMemp(t), estimated using the sep-
arability conditionW(x,y,t) = WepafX,¥)Wemp(t). €) The resulting space-time-separable RF
Wspat(X, Y)Wemp(t); comparison of this with Figure 16.2a) demonstrates thelgoatch provided
by the separable model for this neuron.

The spatiotemporal receptive field shown in Figure 16.2 graximately space-
time separable: Figure 16.3 shows the decomposition ofgbeptive field into the
spatial part and the temporal part, and the resulting sfigmseparable approxi-
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mation? This suggests that the linear model of the neuron can beatiiitto a spa-

tial filter and a temporal filter. Intuitively speaking, sjgattme separability means
that the RF does not contain anything that “moves” from ore@lo another, be-
cause the spatial profile is all the time in the same places ihimagnitude (and

possibly sign) changes.

16.3 Second-order statistics

16.3.1 Average spatiotemporal power spectrum

Now, we begin the investigation of the statistical struetof natural image se-
quences by characterizing the spatiotemporal correlstmtween two pixels in
an image sequence. As was discussed in Section 5.6 on p. ¢iéacterization of
the average power spectrum is equivalent to an examinafititese second-order
statistics. Therefore, following (Dong and Atick, 1995a proceed to analyze the
average spatiotemporal power spectrum of natural imageese®s.

The natural image sequences used as data were a subseteofifeakin (van
Hateren and Ruderman, 1998). The original data set codsi§#16 monochrome,
non-calibrated video clips of 192 seconds each, taken fedavision broadcasts.
More than half of the videos feature wildlife, the rest shaavigus topics such as
sports and movies. Sampling frequency in the data is 25 fsgoee second, and
each frame had been block-averaged to a resolution ofx1P33 pixels. For our
experiments this data set was pruned to remove the effeairmbh-made objects
and artifacts. First, many of the videos feature human-no@gects, such as houses,
furniture etc. Such videos were removed from the data savjidg us with 129
videos. Some of these 129 videos had been grabbed fromdiele\iroadcasts so
that there was a wide black bar with height 15 pixels at theofaggach image, prob-
ably because the original broadcast had been in wide scoearat. Our sampling
procedure never took samples from this topmost part of tteos.

The results of this section are based on the following prooed\e first took
10,000 samples of size 6464 x 64 = Ax x Ay x At from the natural image se-
quence. We then computed the spatiotemporal power spedafugach of these
samples by computing the squared amplitudes of three-diimeal discrete Fourier
transform of the sample. These power spectra were averaggdb of the sam-
ples to obtain the average power spectrRoy, wy, ). Image data is often as-
sumed to be approximately rotationally invariant (isotopsee Section 5.7), so
a two-dimensional average power spectrum was computed ascidn of spa-

tial frequencyws = /W + w@ by averaging over all spatial orientations, yielding

2 The decomposition has been obtained by minimizing the squBuclidean distance between the
original RF and its space-time-separable version. Thisbeasolved by employing the singular-
value decomposition approximation of matrices.
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Fig. 16.4: One-dimensional slices of the two-dimensionakage spatiotemporal power spectrum
R(ws, ax) of natural image sequences). Plots in whicha is held constantb) Plots in whichos
is held constant.
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Fig. 16.5: The average spatiotemporal power spectrum afralaimage sequence®(ws, w) is
not well approximated by a space-time separd®jeus)R: (). These plots show the observed
curves plotted in Figure 16.4 along with plots from the begiasable spatiotemporal spectrum
(here “best” is defined by minimal least mean square disdaiite uppermost curves contain both
the observed and best separated curves on almost exactlp ofi¢ach other, which shows that in
the case of the lowest frequencies, the approximation is geod.

One way to visualize the resulting two-dimensional funefRics, w ) is to plot
curves of the function while keeping one of the variablesdixéhis has been done in
Figures 16.4a) and b), keeping constant in the former ans in the latter. In order
to analyze the form of this power spectrum in more detail, caefirst fit a space-
time separable power spectrufg(ws)R:(w); the best fit (in terms of least mean
square) is visualized in Figure 16.5 in similar plots as éhiog-igures 16.4, but this
time plotting curves from both the observed and the bestesfiate separable power
spectrum. As can be seen, at higher frequencies the besabéppower spectrum
provides a relatively poor match to the observed one.
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Fig. 16.6: In the frequency-based representation ofstespace, the direction of the frequency
vectorw = [ cq}T is equivalent to the speed of the pixels of a moving spatetiigg in the image
sequence. This is illustrated here for two differéat, ay)-pairs (a, b), for which the frequency-
based representation is shown on the left, andstheepresentation on the right. One can see that
the pixels in the spatial gratings move with the same speedxample, looking at the pixel which
starts at the corner positids,t) = (64, 1), it can be seen that in both cases (a, b), the pixel moves
across the whole image when timneuns from 1 to 64, indicating similar speed of movement.

In order to proceed to a more accurate model of the spatiateshpower spec-
trum of natural image sequences, let us reconsider the drexyurepresentation
of the s—t-space. Referring to our presentation of the two-dimeraifnequency-
based representation in Section 2.2.2 — in particular, gpeé€2.5 on page 32 — let
W= [ws m]T . The vectorw has two important properties: direction and magnitude
(length). Now consider the direction of the vector. In theeaf a two-dimensional
spatial frequency-based representation, the directicthefector{cw wy]T deter-
mines the spatial orientation of the sinusoidal in tkg-space. Analogously, in the
spatiotemporal case, the direction of the veans [ws m]T determines the ori-
entation of the sinusoidal in thet-space. We are able to provide a more intuitive
interpretation for orientation in the-t-space: it is thespeedof the spatial pattern
that is moving. Figure 16.6 illustrates this. Points in the, « )-space that have the
same speed (direction) lie on a ling¢ = caxs, wherec is a constant. Therefore, the
set of (ws, wr)-points have the same speed whén= constant

It was observed by Dong and Atick (1995b) that the power spethas a par-
ticularly simple form as a function of spatial frequenay when the spee(% is
held constant. Figure 16.7a) shows plot&R0dus, «r ) as a function of spatialx for
different constant values of spe%. As can be seen, in this log-log-plot all the
curves are similar to straight lines with the same slope [fterént intercepts for
different values o%. Denoting the common slope bya, a > 0, and the intercepts

by b (%) , this suggests that
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Fig. 16.7: The average spatiotemporal power spectRim, «}) of natural image sequences can
be separated into functions depending on spatial freques@nd speec&. a) Log-log plots of

R(ws, ax) as a function oftw are straight lines, suggesting tHatws, w) ~ w; 2 f (%) , where
a>0andf (%) is a function of speed) A plot of f (%) ~ W 'R(ws, w ). See text for details.

logR(ws, ) ~ —alogw5+b< ) (16.7)

Rlws, ) ~ ws exp{( )} (16.8)
=f %

Riea) ~ s °f (1), (16.9)

wheref(-) is an unknown function of speed. When an estimate of the sidyes
been computed (e.g., from the data shown in Figure 16.7approximate plot of
function f(-) can be obtained from

f (%) ~ wlR(ws, w); (16.10)

this plot is shown in Figure 16.7b) far= 3.7.

Dong and Atick (1995a) went two steps further in the charaa@on of R(cws, & ).
First, they derived Equation (16.9) from the average powecsum of static images
and a model in which objects move with different velocitiesli#ferent distances.
Second, by assuming a distribution of object velocitiey thlso derived a para-
metric form for functionf (-) which agrees well with the observéws, cx) with
reasonable parameter values. See their paper for morésdetai

The spatiotemporal power spectrum seems to exhibit sonsetropies (see Sec-
tion 5.7, i.e. it is not the same in all orientations). This & used to explain some
psychophysical phenomena (Dakin et al, 2005).
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16.3.2 The temporally decorrelating filter

In Section 5.9 (page 126) we saw that the removal of linearetations — that is,
whitening — forms the basis of a model that results in the gerae of spatial
center-surround receptive fields from natural data. In $leistion we apply similar
theory to the case of temporal data and temporal receptidsfisee Figure 16.2c on
page 339). We are examining the statistical properties dlptemporal data here,
that is, samples consisting of time courses of individugéls (which are sampled
from different spatial locations in the image sequences).

We proceed similarly as in the spatial case. Rgta ) denote the temporal power
spectrum of natural image sequence data (time courses igfdaél pixels). As in
the spatial case, we assume that noise p&yém ) is constant, and given by

Ra(w) = w forall a, (16.112)

whereaw ¢ is the characteristic frequency at which the data and naise the same
power. As in the spatial case (see Equation (5.49) on pagg We3define the am-
plitude response of the fiItéVNV(wt)\ as the product of the amplitude responses of a
whitening filter and a noise-suppressive filter:

1 R(a)-Ri(w)
Ri() Ri(w)

As was mentioned in Section 5.9, a shortcoming of the delativa theory is that
it does not predict the phase response of the filter. Here wethes principle of
minimum energy delayhe phases are specified so that the energy in the impulse
response of the resulting causal filter is delayed the |&&&.phase response of a
minimum energy delay filter is given by thdilbert transformof the logarithm of
the amplitude response; see (Oppenheim and Schafer, 1878gtails. After the
amplitude and the phase responses have been defined, therabfilfer itself can
be obtained by taking the inverse Fourier transform.

The filter properties that result from the application of Btjons (16.11) and
(16.12) and the minimum energy delay principle are illustdain Figure 16.8 for
a characteristic frequency value @k; = 7Hz (the same value was used in (Dong
and Atick, 1995b)). For this experiment, 100,000 signalspzttial size I 1 pixels
and a duration of 64 time points«(2.5s) were sampled from the image sequence
data of van Hateren and Ruderman (1998). The average tehpgmovar spectrum
of these signals was then computed and is shown in Figur@)L&.Be squared am-
plitude response of the whitening filter, obtained from Bopra(16.12), is shown in
Figure 16.8b). The power spectrum of the filtered data is shioviFigure 16.8c); it
is approximately flat at lower frequencies and drops off ghtirequencies because
of the higher relative noise power at high frequencies. Esailting filter is shown
in Figure 16.8d); for comparison, a measured temporal téeefield of an LGN
neuron is shown in Figure 16.8e). Please observe the diiera the time scales
in Figures 16.8d) and e). Here the match between the tworlfileas is only qual-

W (e)| =

(16.12)
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Fig. 16.8: The application of the whitening principle, camdx with noise reduction and minimum
energy delay phase response, leads to the emergence af fdgambling the temporal receptive
fields of neurons in the retina and the LG&). The temporal power spectrul («) of natural
image sequence dat) The squared amplitude response of a whitening filter whigipsesses
noise: this curve follows the inverse of the data power spettt low frequencies, but drops off
at high frequencies, because the proportion of noise i®feaghigh frequencies) The power
spectrum of the resulting (filtered) data, showing appratety flat (white) power at low frequen-
cies, and dropping off at high frequencieh. The resulting filter which has been obtained from
the amplitude response in b) and by specifying a minimumggndelay phase response; see text
for details.e) For comparison, the temporal receptive field of an LGN neuRiease note the
differences in the time scales in d) and e).
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itative; in experimental animals, the latencies of LGN £skkem to vary from tens
to hundreds milliseconds (Saul and Humphrey, 1990). Sirtelaporal processing
properties are often attributed to retinal ganglion célleister and Berry 1, 1999),
although Dong and Atick (1995a) argue that the temporaldeegy response of
retinal cells is typically flat when compared with the resperf neurons in the
LGN.

Dong and Atick (1995a) proceed by showing that when combinigl basic
neural nonlinearities (rectification), the temporally deelating filter theory yields
response properties that match the timing and phase respuoperties of LGN
neurons. For additional experimental evaluation of the ehazbe (Dan et al, 1996b).

Here we have used a linear neuron model with a constant ftati¢ receptive
field). In reality the temporal receptive field of a visual r@umay change, and this
adaptation may be related to the short-term changes in ktsmstatistics (Hosoya
et al, 2005).

16.4 Sparse coding and ICA of natural image sequences

To analyze the spatiotemporal statistics beyond covaemrtbe ICA model can be
applied directly to natural image sequences. Instead abvigtng image patches
(windows), and using them as data in the ICA model, spatipteal image se-
quence blocks can be vectorized to form the datAfter a spatiotemporal feature
detector weight vectaw or, alternatively, a spatiotemporal feature veetbias been
learned from the data, it can be visualized as an image sequdter “unvectoriz-
ing” it, just like in the basic spatial case.

Results of estimating spatiotemporal features by ICA aogshn in Figure 16.9.
The data consisted of image sequence blocks of(4izel 1,9), where the two first
values are in pixels and the third value is in time steps. V& wwo different sam-
pling rates, 25Hz and 3.125Hz because that parameter habgevnfluence on the
results. The number of spatiotemporal patches was 200ab@the dimension was
reduced by approximately 50% by PCA. The data set was the samélateren
and Ruderman (1998) dataset as used above. FastICA was tha symmetric
mode with nonlinearitg(a) = tanh(a), which corresponds to the familiar log cosh
measure of sparseness (see Section 18.7).

The estimated features shown in Figure 16.9 are spatiallyoGlke, some of
them are separable and other are not. The results clearndepn the sampling
rate: if the sampling rate is high (a), the features tend tstagc, i.e., there is hardly
any temporal change. This is intuitively comprehensildi¢hé time resolution in
the data is too high, there is simply not enough time for arangjes to occur. When
the sampling rate is lower (b), there is much more temporahgke in the features.

The results are thus quite well in line with those measuresirigle-cell record-
ings, in e.g. (DeAngelis et al, 1993a,b, 1995).

Further results on estimating spatiotemporal featuretoveobtained by apply-
ing FastiCA to natural image sequence data can be found at
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htt p://hl ab. phys. rug. nl / denos/i cal/i ndex. ht i, and the paper
(van Hateren and Ruderman, 1998).
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Fig. 16.9: Spatiotemporal features estimated by ICA. Eaghin each display (a or b) corresponds
to one feature vector, i.e. one column of the matixn the ICA model. On a given row, each
frame corresponds to one spatial frame with time index figsectthat time goes from left to right.
Thus, each feature is basically obtained by “playing” tlzrfes on one row one after the otreer.
Sampling rate 25Hz, i.e., sampled every 40h)sSampling rate 3.125Hz, i.e. sample every 320ms.
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16.5 Temporal coherence in spatial features

16.5.1 Temporal coherence and invariant representation

Our visual environment has inertia: during a short timervag the scene we see
tends to remain similar in the sense that the same objectispér our field of
vision, the lighting conditions usually change slowly efmuld our visual system
utilize this property of our environment?

In particular, it has been proposed that those propertieshwbhange more
quickly are often less important for pattern recognitiomeTidentities of the ob-
jects in our visual field change slower than their appearaRoe example, when
you talk with somebody, you see the same face for a long timeitdappearance
undergoes various transformations due to the change imthea £xpression and the
muscle actions related to speech. So, if you consider tresteries which change
the slowest, they might be directly related to the identityhe interlocutor.

Thus, it has been proposed that a good internal represemfati sensory input
would be one that changes slowly. The telemporal coherenceefers to a repre-
sentation principle in which, when processing temporaliinthe representation in
the computational system is optimized so that it changekwadysas possible over
time (Hinton, 1989; Foldiak, 1991).

In this section, we will take a look at a model of temporal aeimee which
results in the emergence of simple-cell-like RF’s from matimage sequence data.
In the next section, this will be extended to a model that leixlsomplex-cell-like
behaviour and topographical organization of RF’s.

16.5.2 Quantifying temporal coherence

It has been argued that the neural output in the visual syst@tmaracterized tem-
porally as short, intense firing events, or bursts of spikesrfagel, 2001). Here we
present a model which optimizes a measure of such tempdnarence of activity
levels — or energy — and which, when applied to a set of natomadje sequences,
leads to the emergence of RF’s which resemble simple-céd.RF

We use a set of spatial feature detectors (weight vecters)., wg to relate in-
put to output. While it may first sound weird to use purely sgddeatures with
spatiotemporal data, this simplification will make bettense below when we in-
troduce the temporal filtering used in preprocessing; thimlzination of temporal
and spatial features is equivalent to space-time sepaspiliiotemporal features
(see Section 16.2, page 339). Let vect@r denote the (preprocessed) input to the
system at timé. The output of thekth feature detector at timg denoted bys, (t),

is given bys,(t) = wl x(t). Let matrix W = [wi---wk]" denote a matrix with all

3 This section is based on the article (Hurri and Hyvarind¥@3&) originally published in Neural
Computation. Copyrigh®©)2003 MIT Press, used with permission.
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the feature detector weights as rows. Then the input-ougationship can be ex-
pressed in vector form bg(t) = Wx (t), where vectos(t) = [s(t)--- s« (t)]" .

To proceed to the objective function, we first define a nomliftg g(-) that mea-
sures the strength (amplitude) of the feature, and empéstirge responses over
small ones: we require thatis strictly convex, even-symmetric (rectifying), and
differentiable. Examples of choices for this nonlineastgg; (x) = x?, which mea-
sures the energy of the response, gpk) = log coshx, which is a robustified ver-
sion of g; (less sensitive to outliers). Let the symh@i denote a delay in time.
Temporal response strength correlatjghe objective function, is defined by

M =

T
fW)=3 5 gs0)ust-an) (16.13)
t=1+At

k=1

A set of feature detectors which has a large temporal regpsinength correlation
is such that the same features often respond strongly akecotige time points,
outputting large (either positive or negative) values.sTimeans that the same fea-
tures will respond strongly over short periods of time, #iBrexpressing temporal
coherence of activity levels in the neuronal population.

To keep the outputs of the features bounded we enforce thevariance
constraint on each of the output signalst), that is, we enforce the constraint
E: {s2(t) } = wj Cxwy = 1 for allk, whereCy is the covariance matrig {x (t)x" (t)},
andE; means average overAdditional constraints are needed to keep the feature
detectors from converging to the same solution. Standatbads are either to force
the set of feature weights to be orthogonal, or to force thetputs to be uncorre-
lated, from which we choose the latter, as in preceding @rapthis introduces
additional constraintwiTCij =0,i=1..K,j=1..K, j#i. These uncorre-
latedness constraints limit the number of featu¢ese can find so that if the image
data has spatial siz€ x N pixels, thenK < N2. The unit variance constraints and
the uncorrelatedness constraints can be expressed byla siagix equation

WC,WT =1. (16.14)

Note that if we use a nonlinearity(x) = x?, andAt = 0, the objective function
becomesf (W) = 5K | E {s¢(t)}. In this case the optimization of the objective
function under the unit variance constraint is equivalenbptimizing the sum of
kurtoses of the outputs. As was discussed in Section 6.2daga 139, kurtosis is
a commonly used measure in sparse coding. Similarly, in #se of nonlinearity
g(x) = logcoshx and At = 0, the objective function can be interpreted as a non-
gquadratic measure of the non-gaussianity of features.

Thus, the receptive fields are learned in the model by maximithe objective
function in Equation (16.13) under the constraint in Equat{16.14). The opti-
mization algorithm used for this constrained optimizatmoblem is a variant of
the gradient projection method described in Section 18 optimization ap-
proach employs whitening, that is, a temporary change ofdinates, to transform
the constraint (16.14) into an orthogonality constrairttei a gradient projection
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algorithm employing optimal symmetric orthogonalizatman be used. See (Hurri
and Hyvarinen, 2003a) for detalils.

16.5.3 Interpretation as generative model *

An interpretation of maximization of objective functiong13) as estimation of a
generative model is possible, based on the concept of sbwitle non-stationary

(non-constant) variances (Matsuoka et al, 1995; Pham artb€a, 2001 ; Hyvarinen,
2001a). The linear generative model fdt) is similar to the one in previous chap-

ters:
X(t) = As(t). (16.15)

HereA = [a; - - - ax| denotes a matrix which relates the image sequence pétgh
to the activities of the simple cells, so that each colugrk = 1,...,K, gives the
feature that is coded by the corresponding simple cell. Tieedsion ofx(t) is
typically larger than the dimension sft), so that (16.15) is generally not invertible.
A one-to-one correspondence betwa®nand A can be established by using the
pseudo-inverse solution (see Section 19.8):

A=wTwwT)=1, (16.16)
a) b)
37 9
= 0 =9
At 8, 3
_3 — { 0
0 200 400 0 200 400
time index time index

Fig. 16.10: lllustration of non-stationarity of variancg). A temporally uncorrelated signalt)
with non-stationary variancé) Plot of s2(t).

The non-stationarity of the variances of soursgés means that their variances
change over time, and the variance of a signal is correldte@arby time points.
An example of a signal with non-stationary variance is shawfRigure 16.10. It
can be shown (Hyvarinen, 2001a) that optimization of a damitbased criterion,
similar to Equation (16.13), can separate independentcesuwrith non-stationary
variances. Thus, the maximization of the objective furctian also be interpreted
as estimation of generative models in which the activityelswf the sources vary
over time, and are temporally correlated over time. Thigatibn is analogous to
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the application of measures of sparseness to estimate eearative models with
independent non-gaussian sources, i.e. the ICA modettieatChapter 7.

16.5.4 Experiments on natural image sequences

16.5.4.1 Data and preprocessing

The natural image data used in the experiments was desdrnb®&dction 16.3.1
(page 341). The final, preprocessed (see below) data sastamhef 200,000 pairs
of consecutive 1k 11 image patches at the same spatial position,Aiuinil-
liseconds apart from each other. In the main experimgént: 40 ms; other values
were used in the control experiments. However, becauseeofetimporal filtering
used in preprocessing, initially 200,000 longer image seqgas with a duration of
At + 400 ms and the same spatial size ¥111, were sampled with the same sam-
pling rate.

The preprocessing in the main experiment consisted of thregs: temporal
decorrelation, subtraction of local mean, and normalizatThe same preprocess-
ing steps were applied in the control experiments; whengneprocessing was var-
ied in control experiments it is explained separately beltemporal decorrelation
can be motivated in two different ways. First, as was disediss Section 16.3.2
(page 345) it can be motivated biologically as a model of terapprocessing in
the early visual system. Second, as discussed abovAt ferO the objective func-
tion can be interpreted as a measure of sparseness. Tleeitafoimportant to rule
out the possibility that there is hardly any change in shatgrivals in video data,
since this would imply that our results could be explaineteims of sparse cod-
ing or ICA. To make the distinction between temporal respamsisength correlation
and measures of sparseness clear, temporal decorrela®applied because it en-
hances temporal changes. Note, however, that this sti$ doé remove all of the
static part in the video — this issue is addressed in the abetperiments below.

Temporal decorrelation was performed with the temporatrfighown in Fig-
ure 16.8d (page 346). As was already mentioned above, thefsseh a temporal
filter in conjunction with the learned spatial features nmsakee overall model spa-
tiotemporal (to be more exact, space-time separable).

16.5.4.2 Results and analysis

In the main experiment, nonlinearityin objective function (16.13) was chosen to
beg(x) = logcostx. A set of feature detector weights (rows\tf) learned by the
model is shown in Figure 16.11a). The features resemble Gabctions. They are
localized, oriented, and have different scales, and thus ttee main properties of
simple-cell receptive fields.
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Fig. 16.11: Simple-cell-like filters emerge when tempoegdponse strength correlation is opti-
mized in natural image sequencea}Feature weightas, k=1, ..., 120 which maximize temporal
response strength correlation (Equation (16.13)); hezentinlinearityg(x) = log costx. The fea-
tures have been ordered according td §s,(t))g(s (t — At))}, that is, according to their “con-
tribution” into the final objective value (features with dgst values top leftp) A corresponding
set of feature vectorg, k=1,...,120 from a generative-model-based interpretation of the tesul
(see Equations (16.15) and (16.16)).
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Fig. 16.12: Comparison of properties of receptive fieldsaotzd by optimizing temporal response
strength correlation (left column, histograms a, ¢, e ané) estimating ICA (right column,
histograms b, d, f and h). See text for details.

To compare the results obtained with this model againsetbbgained with ICA,
we ran both this algorithm and the symmetric version of E2&tvith nonlinear-
ity tanh 50 times with different initial values and compatbd resulting two sets
of 6000 & 50 x 120) features against each other. The results are showrgin Fi
ure 16.12. The measured properties were peak spatial finregEigures 16.12a and
16.12b, note logarithmic scale, units cycles/pixel), pea&ntation (Figures 16.12c
and 16.12d), spatial frequency bandwidth (Figures 16.12e1&.12f), and orienta-
tion bandwidth (Figures 16.12g and 16.12h). Peak oriestiaind peak frequency
are simply the orientation and frequency of the highestezatuthe Fourier power
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spectrum. Bandwidths measure the sharpness of the tunihgene computed from
the tuning curve as the full width at at the point were half ti@ximum response
was attained (full width at half maximum, FWHM); this measis widely used in
vision science. See (van Hateren and van der Schaaf, 1998)f@ details.

Although there are some differences between the two featts the most im-
portant observation here is the similarity of the histogsaithis supports the idea
that ICA / sparse coding and temporal coherence are compl@mnyetheories, in
that they both result in the emergence of simple-cell-li&eeptive fields. As for
the differences, the results obtained using temporal respastrength correlation
have a slightly smaller number of high-frequency receptfigkls. Also, temporal
response strength correlation seems to produce recepids that are somewhat
more localized with respect to both spatial frequency amehtation?

16.5.5 Why Gabor-like features maximize temporal coherenc

A simplified intuitive illustration of why the outputs of Gablike feature have such
strong energy correlation over time is shown in Figure 16M@st transformations
of objects in the 3D world result in something similar to lIbttanslations of lines
and edges in image sequences. This is obvious in the case w&B8ations, and
is illustrated in Figure 16.13a) for two other types of tfamsations: rotation and
bending. In the case of a local translation, a suitably eei@simple-cell-like RF re-
sponds strongly at consecutive time points, but the sighefésponse may change.
Note that when the output of a feature detector is considasea continuous sig-
nal, the change of sign implies that the signal reaches zesorae intermediate
time point, which can lead to a weak measured correlationsTa better model of
the dependencies would be to consider dependencies ohvasgdMatsuoka et al,
1995; Pham and Cardoso, 2001), as in the generative-mdegdiatation described
above. However, for simplicity, we consider here the magtétthat is a crude ap-
proximation of the underlying variance.

In order to further visualize the correlation of rectifiedpenses at consecutive
time points, we will consider the interaction of featureime dimension (orthog-
onal to the orientation of the feature). This allows us tosider the effect of local
translations in a simplified setting. Figure 16.14 illugtsy in a simplified case, why
the temporal response strengths of lines and edges cerpaaitively as a result of
Gabor-like feature structure. Prototypes of two differgmges of image elements
— the profiles of a line and an edge — which both have a zero DGpoaent, are
shown in the topmost row of the figure. The leftmost columnushthe profiles of

4 When these results are compared against the results in (a@rdh and van der Schaaf, 1998),
the most important difference is the peak at zero bandwidtRigures 16.12e and 16.12f. This
difference is probably a consequence of the fact that no méimeality reduction, anti-aliasing or

noise reduction was performed here, which results in theammce of very small, checkerboard-
like receptive fields. This effect is more pronounced in I@/ijch also explains the stronger peak
at the 438 angle in Figure 16.12d).
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Fig. 16.13: A simplified illustration of temporal activityevel dependencies of simple-cell-like
features when the input consists of image sequeraebtansformations of objects induce local
translations of edges and lines in local regions in imageieeces: rotation (left) and bending
(right). The solid line shows the position/shape of a linéhi@ image sequence at tirhe At, and

the dotted line shows its new position/shape at timEhe dashed square indicates the sampling
window. b) Temporal activity level dependencies: in the case of a leaklation of an edge or a
line, the response of a simple-cell-like features with aadilé position and orientation is strong at
consecutive time points, but the sign may change. The fidwesa translating line superimposed
on an oriented and localized receptive field at two diffeténe instances (time— At, solid line,
left; timet, dotted line, right).

three different features with unit norm and zero DC compdénaiGabor-like fea-
ture, a sinusoidal (Fourier basis -like) feature, and anilsgfeature. The rest of the
figure shows the square rectified responses of the featuthe toputs as functions
of spatial displacement of the input.

Consider the rectified response of the Gabor-like featutkadine and the edge,
thatis, the first row of responses in Figure 16.14. The squ@sponse at time— At
(spatial displacement zero) is strongly positively catetl with response at tinte
even if the line or edge is displaced slightly. This shows tsomall local transla-
tions of basic image elements still yield large values ofggeral response strength
correlation for Gabor-like features. If you compare thepmsses of the Gabor-like
feature to the responses of the sinusoidal feature — théttessecond row of re-
sponses in Figure 16.14 — you can see that the responsesdimtiseidal feature
are typically much smaller. This leads to a lower value of m@asure of temporal
response strength correlation that emphasizes largestallso, in the third row of
responses in Figure 16.14 we can see that while the respbasdampulse feature
to an edge correlates quite strongly over small spatialaigments, when the input
consists of a line even a very small displacement will taleedbrrelation to almost
zero.

Thus we can see that when considering three important clasfsteatures —
features which are maximally localized in space, maximlalbalized in frequency,
or localized in both — the optimal feature is a Gabor-liketfiea, which is localized
both in space and in frequency. If the feature is maximaltalized in space, it fails
to respond over small spatial displacements of very loedlimage elements. If the
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Fig. 16.14: A simplified illustration of why a Gabor-like fese, localized in both space and fre-
guency, yields larger values of temporal response strerwtielation than a feature localized only
in space or only in frequency. Top row: cross sections of @ (left) and an edge (right) as func-
tions of spatial position. Leftmost column: cross sectiofihree features with unit norm and zero
DC component — a Gabor-like feature (top), a sinusoidalfeagmiddle), and an impulse feature
(bottom). The other plots in the figure show the responsebefdature detectors to the inputs as
a function of spatial displacement of the input. The Gallafleature yields fairly large positively
correlated values for both types of input. The sinusoidatuee yields small response values. The
impulse feature yields fairly large positively correlateslues when the input consists of an edge,
but when the input consists of a line even a small displacéwielus a correlation of almost zero.

the feature is maximally localized in frequency, its respamito the localized image
features are not strong enough.

Figure 16.15 shows why we need nonlinear correlations austd linear ones:
raw output values might correlate either positively or riegdy, depending on the
displacement. Thus we see why ordinary linear correlationdt maximized for
Gabor-like features, whereas the rectified (nonlineanetation is.
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filter raw output

Fig. 16.15: A simplified illustration of why nonlinear colagion is needed for the emergence of
the phenomenon. Raw response values of the Gabor-likeréetatthe line and edge may correlate
positively or negatively, depending on the displacemesee(Figure 16.14 for an explanation of
the layout of the figure.)

16.5.6 Control experiments

To validate the novelty of the results obtained with this mlaghen compared with
ICA and sparse coding, and to examine the effect of diffefietors in the results, a
number of control experiments were made. These experinmeatimmarized here,
details can be found in (Hurri and Hyvarinen, 2003a). Theti experiments show
that

e the results are qualitatively similar when the static parthe video is removed
altogether by employing Gram-Schmidt orthogonalizatiamich strengthens the
novelty of this model when compared with static models

e the results are qualitatively similar when no temporal deglation is performed

e the results are qualitatively similar wheft = 120ms; wherA is further in-
creased ta\t = 480 ms and\t = 960 ms the resulting features start to lose their
spatial localization and gradually also their orientats@tectivity; finally, when
the consecutive windows have to temporal relationship feontive windows
chosen randomly), the resulting features correspond teeratterns

e the results are qualitatively similar when observer (capenovement is com-
pensated by a tracking mechanism in video sampling.

Finally, one further control experiment was made in which timear correlation
fo(wi) = E {s(t)s(t — At) } was maximized. The unit variance constraint is used
here again, so the problem is equivalent to minimizimi&k(t) —s(t —At))z}

with the same constraint; we will return to this objectiveadtion below in Sec-
tion 16.8. The resulting features resemble Fourier basitove, and not simple-cell

receptive fields. This shows that nonlinear, higher-ordematation is indeed needed
for the emergence of simple-cell-like features.
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16.6 Spatiotemporal energy correlations in linear featurs

16.6.1 Definition of the model

Temporal response strength correlation, defined in Equdfi6.13) on page 350,
maximizes the “temporal coherence” in the outputs of irglial simple cells. Note
that in terms of the generative model described above, tfextive functions says
nothing about the interdependencies in differgyit)’s — that is, different cells.
Thus, there is an implicit assumption of independence inntloelel, at least if it
is interpreted as a probabilistic generative model. In g@stion we add another
layer to the generative model to extend the theory to sinapleinteractions, and to
the level of complex cells.

abs(s(t)) s(t)

v(t)  —m-| abs(s(t)) = Mabs(s(t — At)) +v(t) — @ —»| X(t)=As(t) — X(t)

sign generation
P(s(t) > 0[5, (t—At) > 0) = Prey

Fig. 16.16: The two layers of the generative model. &bs(s(t)) = [|sy(t)|---|s« (t)[]” denote
the amplitudes of simple cell responses. In the first layer,driving noise signa¥(t) generates
the amplitudes of simple cell responses via an autoregeessodel. The signs of the responses
are generated randomly between the first and second layéeltbsigned responsest). In the
second layer, natural videq(t) is generated linearly from simple cell responses. In adlitd
the relations shown here, the generationv(f) is affected byMabs(s(t — At)) to ensure non-
negativity ofabs(s(t)) . See text for details.

Like in the many generative models discussed in this boakptitput layer of
the new model (see Figure 16.16) is linear, and maps celbresgss(t) to image
featuresx(t), but we do not assume that the components(bf are independent.
Instead, we model the temporal dependencies between thegmoents in the first
layer of our model. Leabs(s(t)) = [|si(t)]--- |sK(t)|]T denote the activities of the
cells, and letv(t) denote a driving noise signal amdl denote &K x K matrix; the
modelled interdependencies will be “coded’Nh. Our model is anultidimensional
first-order autoregressive procestefined by

abs(s(t)) = Mabs(s(t — At)) + v(t). (16.17)

Again, we also need to fix the scale of the latent variablesgfinohg & {sf((t)} =1
fork=1,....K.

5 This section is based on the article (Hurri and Hyvarin@®3b) originally published in Network:
Computation in Neural Systems. Copyrigbt2003 Institute of Physics, used with permission.
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There are dependencies between the driving ne{sge and output strengths
abs(s(t)), caused by the non-negativity abs(s(t)). To take these dependencies
into account, we use the following formalism. Ligt) denote a random vector with
components which are statistically independent of eackroffo ensure the non-
negativity ofabs(s(t)), we define

v(t) = max(—Mabs(s(t — At)),u(t)), (16.18)

where, for vectoraandb, max(a, b) = [maxay, by) --- maxan,bn)]" . We assume
thatu(t) andabs(s(t)) are uncorrelated. The point in this definition is to make sure
that the noise does not drive the absolute values o§tlig negative, which would
be absurd.

To make the generative model complete, a mechanism for géngthe signs
of cell responses(t) must be included. We specify that the signs are generated ran
domly with equal probability for plus or minus after the stgghs of the responses
have been generated. Note that one consequence of thig thehdifferents, (t)’s
are uncorrelated. In the estimation of the model this uredatedness property is
used as a constraint. When this is combined with the uniawag (scale) constraints
described above, the resulting set of constraints is thes sein the approach de-
scribed above in Section 16.5 (page 349).

In Equation (16.17), a large positive matrix elem®h(, j), or M (],i), indicates
that there is strong temporal dependency between the ostteuigths of cellsand
j. Thinking in terms of grouping temporally coherent cellsetter, matrixM can
be thought of as containing similarities (reciprocals aftances) between different
cells. We will use this property below to derive a topographsimple-cell receptive
fields fromM.

16.6.2 Estimation of the model

To estimate the model defined above we need to estimateévbatihdA. Instead of
estimatingA directly, we estimat®/ which maps image sequence data to responses

s(t) = Wx(t), (16.19)

and use the pseudo-inverse relationship — that is, Equélt&t6) on page 351 —to
computeA. In what follows, we first show how to estimal, givenW. We then
describe an objective function which can be used to estiMatgiven M. Each
iteration of the estimation algorithm consists of two stdpgring the first stefM is
updated, andlV is kept constant; during the second step these roles areseslie

First, regarding the estimation ®fi, consider a situation in whickV is kept
constant. It can be shown (Hurri and Hyvarinen, 2003b) khatan be estimated by
using approximative method of moments, and that the estimagiven by
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M ~ BE, { (abs(si(t)) — E {abs(s(t))}) (abs(s(t - At)) — E {abs(s(t))}) |
« E{ (abs(s(t)) — E: {abs(s(1))}) (abs(s(t)) — Ec {abs(st) )T} .

where 3 > 1. Since this multiplier does not change the relative stremgththe
elements oM, and since it has a constant linear effect in the objectivetfan of
W given below, its value does not affect the optitdél so we can simply sg® =1
in the optimization. The resulting estimator fior is the same as the optimal least
mean squares linear predictor in the case of unconstraifi¢d

The estimation ofV is more complicated. A rigorous derivation of an objec-
tive function based on well-known estimation principlevé&y difficult, because
the statistics involved are non-gaussian, and the prosésse difficult interdepen-
dencies. Therefore, instead of deriving an objective fiamctrom first principles,
we derived an objective function heuristically (Hurri angtrinen, 2003b), and
verified through simulations that the objective functiorapable of estimating the
two-layer model. The objective function is a weighted sunth& covariances of
feature output strengths at times At andt, defined by

K K
f(W,M):lelM(i,j)cov{|s(t)|,|sj(t—At)\}. (16.20)
i=1j=

In the actual estimation algorithiw is updated by employing a gradient projection
approach to the optimization df in Equation (16.20) under the constraints. The
initial value of W is selected randomly.

The fact that the algorithm described above is able to egtirtiee two-layer
model has been verified through extensive simulations. & biesulations show that
matrix W can be estimated fairly reliably, and that the relative eofche estimate
of matrixM also decreases reliably in the estimation, but the remgigiror forM
is larger than in the case of mati¥. This difference is probably due to the approx-
imation made in the estimation & ; see (Hurri and Hyvarinen, 2003b). However,
the simulations suggest that the error in the estimaté o§ largely due to a sys-
tematic, monotonic, nonlinear element-wise bias, whicesdwot affect greatly our
interpretation of the elements df, since we are mostly interested in their relative
magnitudes. See (Hurri and Hyvarinen, 2003b) for detalsery closely related
model which can be analyzed in detail is in (Hyvarinen andri12004), which
shows that a rigorous justification for our objective funatabove can be found in
the case where we use the quadratic function instead of $wwb value function.
See also (Valpola et al, 2003) for related theoretical work.

16.6.3 Experiments on natural images

The estimation algorithm was run on the same data set as ddpdkic temporal
coherence model in Section 16.5 to obtain estimated/foand A. Figure 16.17
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Fig. 16.17: The estimation of the two-layer generative nhdaen natural visual stimuli results
in the emergence of localized, oriented receptive fields witlltiple scales. The feature vectors
(columns ofA) shown here are in no particular order.

shows the resulting feature vectors — that is, column# ofs can be seen, the
resulting features are localized, oriented, and have plalticales, thereby fulfilling
the most important defining criteria of simple-cell receegtfields. This suggests
that, as far as receptive-field structure is concerned, tethod yields receptive
fields with similar qualitative properties to those obtaiéth sparse coding, ICA,
or temporal response strength correlation.

What is truly novel in this model is the estimation of matkik which captures
the temporal and spatiotemporal activity-level depenaenbetween the feature
vectors shown in Figure 16.17. The extracted matrideand M can be visual-
ized simultaneously by using the interpretationhdfas a similarity matrix (see
page 360). Figure 16.18 illustrates the feature vectoratish columns ofA — laid
out at spatial coordinates derived frdvhin a way explained below. The resulting
feature vectors are again oriented, localized and mulésea in the basic temporal
coherence model in Section 16.5.

In the resulting planar representation shown in Figure 8GHe temporal coher-
ence between the outputs of two célland j is reflected in the distance between
the corresponding receptive fields: the larger the elemiritsj) andM (j,i) are,
the closer the receptive fields are to each other. We can s¢éotal topography
emerges in the results: those basis vectors which are dasach other seem to be
mostly coding for similarly oriented features at nearbytspdaositions. This kind
of grouping is characteristic of pooling of simple cell outp at complex cell level
(Palmer, 1999). Some global topography also emerges: thasis vectors which
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Fig. 16.18: Results of estimating the two-layer generathalel from natural image sequences.
Features (columns o&) plotted at spatial coordinates given by applying multidimional scal-
ing to M. Matrix M was first converted to a non-negative similarity matks by subtracting
min; ;M (i, j) from each of its elements, and by setting each of the diageleatents at value 1.
Multidimensional scaling was then appliedNbs by interpreting entriedl (i, j) andMs(j,i) as
similarity measures between cellsind j. Some of the resulting coordinates were very close to
each other, so tight cell clusters were magnified for purpaseisual display. Details are given in
(Hurri and Hyvarinen, 2003b).

code for horizontal features are on the left in the figure,levtfiose that code for
vertical features are on the right.

Thus, the estimation of our two-layer model from naturalg@aequences yields
both simple-cell-like receptive fields, and grouping santio the pooling of simple
cell outputs. Linear receptive fields emerge in the secoperlématrixA), and cell
output grouping emerges in the first layer (maty. Both of these layers are es-
timated simultaneously. This is an important property whempared with other
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statistical models of early vision, because no a priori fixaf either of these lay-
ers is needed. The results thus compare with the two-layeetador static images
discussed in Section 11.8 and (Koster and Hyvarinen, 2Z2008). The main differ-
ence is that herdyl describes “lateral” interactions between the featggewhereas
in Section 11.8 considered another stage in hierarchicagssing.

16.6.4 Intuitive explanation of results

The results shown in Figure 16.18 suggest that featureshwirefer similar orien-
tation but different spatial location have spatiotempardivity dependencies. Why
is this the case?

t— At

spatial spatiotemporal

A
|
|
|
|
|
|
!
y

Fig. 16.19: A simplified illustration of static and shonrig activity-level dependencies of simple-
cell-like receptive fields. For a translating edge or lithe, tesponses of two similar receptive fields
with slightly different positions (cell 1, top row; cell 2pktom row) are large at nearby time in-
stances (time — At, solid line, left column; time, dotted line, right column). Each subfigure
shows the translating line superimposed on a receptive fléld magnitudes of the responses of
both cells are large aboth time instances. This introduces three types of activityelelepen-
dencies: temporal (in the output of a single cell at nearlnetinstances), spatial (between two
different cells at a single time instance) and spatiotemip@etween two different cells at nearby
time instances). The multivariate autoregressive modslugised in this section includes temporal
and spatiotemporal activity-level dependencies (markit solid lines). Spatial activity-level de-
pendency (dashed line) is an example of energy dependemacidslled in work on static images
in Chapters 9-11.

Temporal activity-level dependencies, illustrated infg16.13, are not the only
type of activity-level dependencies in a set of simple-tkd# features. Figure 16.19
illustrates how twddifferentcells with similar receptive field profiles — having the
same orientation but slightly different positions — respp@t consecutive time in-
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stances when the input is a translating line. The receptlgsfiare otherwise iden-
tical, except that one is a slightly translated version efather. It can be seen that
both cellsare highly active aboth time instancegut again, the signs of the outputs
vary. This means that in addition to temporal activity degencies (the activity of
a cell is large at timé — At and timet), there are two other kinds of activity-level
dependencies.

spatial (static) dependencies Both cells are highly aetivzesingle time instance.
This kind of dependency is an example of the energy depeieteaarlier mod-
elled in static images in Chapters 9-11.

spatiotemporal dependencies The activity levels of diffécells are also related
overtime. For example, the activity of cell 1 at titne At is related to the activity
of cell 2 at timet.

What makes these dependencies important is that they sebmriflected in
the structure of the topography in the primary visual corfExe results presented
in this section suggest that combining temporal activityeledependencies with
spatiotemporal dependencies yields both simple-cedlédceptive fields and a set
of connections between these receptive fields. These cbongcan be related to
both the way in which complex cells seem to pool simple-cetpats, and to the
topographic organization observed in the primary visuateoq in the same way
as described in Chapter 11. Therefore, the principle ol/éigtievel dependencies
seems to explain both receptive field structure and theammation.

16.7 Unifying model of spatiotemporal dependencies

In order to motivate the development of a model which unifiesraber of statistical
properties in natural image sequences, let us summarizketheesults on proba-
bilistic modelling of the properties of the neural represgion at the simple-cell
level.

1. Results obtained using sparse coding / independent cuenpanalysis suggest
that, on the average, at a single time instant relativelydeaple cells are active
on the cortex (see Chapter 6); furthermore, each cell is@ctily rarely.

2. In this chapter, we have described a complementary madiéth suggests that
simple cells tend to be highly active at consecutive timeaims — that is, their
outputs are burst-like (see Section 16.5).

3. Models on static dependencies between simple-cellféikéures, and the rela-
tionship between these dependencies and cortical toplograpggest that the
active cells tend to be located close to each other on thexcas in Chapter 11.

4. As we saw in the preceding section, temporal correlatalee lead to topo-
graphic properties resembling cortical topography, based model which uti-
lizes temporal correlations between the outputs of difiefeatures.

These four different principles — sparseness, temporatieite of activity levels,
spatial activity level dependencies, and spatiotempatality level dependencies —
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are not conflicting. That is, none of the principles exclutifesexistence of another.
Perhaps, then, each of these models offers just a limited tdea more complete
model of cortical coding at the simple-cell level. In fadtetfollowing description
of simple-cell activation is in accordance with all of théngiples: when an animal
is viewing a natural scene, a relatively small number of Ipascof cortical area are
highly active in the primary visual cortex, and the activiitythese areas tends to be
sustained for a while. That is, activity is sparse, and guadus both in space and
time. This is thébubble codingnodel (Hyvarinen et al, 2003).

In the bubble coding model, the final generative mapping fiadent components
to natural image sequence data is linear, like in the prevgaationsx(t) = As(t).
The main idea in the bubble coding model is generation ofsthe so that they
have bubble-like activity. This is accomplished by introohg a bubble-like vari-
ance signal fos(t), as illustrated by an example in Figure 16.20. The spatiotem-
poral locations of the variance bubbles are determined byaass process(t)
(Figure 16.20a). A temporal filtep and spatial pooling functioh, both of which
are fixed a priori in the model, spread the variance bubblegpetgally and spa-
tially (Figures 16.20b and c). The resulting variance bebldan also overlap each
other, in which case the variance in the overlapping arediaioed as a sum of
the variances in each bubble; in Figure 16.20, however, #i@ance bubbles are
non-overlapping for illustrative purposes. It is also pbkesthat at this point a fixed
static nonlinearityf is applied to rescale the magnitudes of the variance bubbles
These steps yield the variance signals

v (t) = f(;h(k,é) [(p(t)*Ug(t)]) (16.21)

wherex denotes temporal convolution. The burst-like oscillatiagure of the com-
ponents inside the bubbles is introduced through a gaussigporally uncorrelated
(white noise) process(t) (Figure 16.20d). Thus, the componenrt&) are gener-
ated from the variance bubbles and the noise signals bypiyiltg the two together
(Figure 16.20e):

Sc(t) = Wi ()7 (). (16.22)

Note that all three different types of activity level dependies — temporal, spatial,
and spatiotemporal (see Figure 16.19 on page 364) — arenpriesthe bubble-
coding model, as well as sparseness. To complete this dimeenzodel, thes(t)
are finally linearly transformed to the image using a lineansformation, as in
almost all models in this book.

An approximative maximum likelihood scheme can be usedtimese the bub-
ble coding model; details can be found in (Hyvarinen et@03. Note that because
the pooling functiorh is fixed, it enforces the spatial pooling, while in the twyda
model described in the previous section, this pooling wasiked from the data. The
temporal smoothing (low-pass) filteris also fixed in the model.

Figure 16.21 shows the resulting spatial basis vectorsjioéd when the bubble
coding model was estimated from natural image sequence Hagabasis consists
of simple-cell-like linear receptive-field models, sinmita those obtained by topo-
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graphic ICA from static images (Figure 11.4 on page 258),sngithe temporal
models in Section 16.6. The orientation and the locatiorheffeature coded by
the vectors change smoothly when moving on the topographiclgow-frequency
basis vectors are spatially segregated from the other ko there also seems to
be some ordering based on preferred spatial frequency. &uadnganization with
respect to orientation, location, and spatial frequenginslar to the topographic
ordering of simple cells in the primary visual cortex, as Wasussed in Chapter 11.

One can also estimate spatiotemporal features with thissiméd animated ex-
ample of the resulting spatiotemporal features can be fouat
www. ¢s. hel sinki . fi/group/nis/animtions/bubbl eani mation. gif.

The features obtained by the bubble coding models are thndg/remy different
from what were obtained by the topographic ICA model, forrapée. The signifi-
cance of the model is mainly theoretical in the sense thatesga unified framework
for understanding the different models involved.

16.8 Features with minimal average temporal change

16.8.1 Slow feature analysis

16.8.1.1 Motivation and history

All of the models of temporal coherence discussed above -paesh response
strength correlation, the two-layer autoregressive modetl the bubble-coding
model — are based on temporal patterns in output energieaifeas)s’(t). What
happens if we just minimize a measure of the temporal chantfesioutputs of the
model neurons? That is, sft) is the output of a model at tinteandw is our vector
of model parameters, we could for example minimize the seplidifference of the
output at close-by time points

fsra(W) = E; {(s(t) St —At))z}. (16.23)

An explicit formalization of this principle was given by Mhiison (1991) who sim-
ply described it as “removal of time variation” (see alsor{tdin, 1989; Foldiak,
1991; Stone, 1996)). The principle was also used in blindc®sgeparation, in
which a number of sophisticated methods for its algorithmmplementation have
been developed (Tong et al, 1991; Belouchrani et al, 199¥aHiyen et al, 2001b).
Recently the principle has been given the natosv feature analysiéWiskott and
Sejnowski, 2002), thus the subscript SFA in the definitiothefobjective function.

In order to relate the SFA objective function to the modelshage discussed
above, let us analyze it in more detail. Expanding the sqaadetaking the expec-
tations of the resulting terms we get
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fsra(W) = Et {S(t) — 25(t)s(t — At) + S2(t — At) }
= E {(t)} — 2B {s(t)s(t — At)} + B {S(t - At)}
~—_————
=E{L0)}

(16.24)

=2(EA{S()} — E{sV)s(t - A1)})

The objective function is non-negative, and a trivial waynimimize it is to compute
a zero outpus(t) = O for allt. A standard way to avoid this anomaly is to constrain
the “energy” (second moment) of the output signal to uniitgf is, define constraint

E{$t)} =1, (16.25)
in which case the objective function become simpler:
fsra(W) = 2(1— E {s(t)s(t — At)}), (16.26)

which shows that under the unit energy constraint, SFA isvadgnt to maximiza-
tion of the linear temporal correlation in the output. Ttgsn contrast to the model
in Section 16.5 (page 349), which was based on maximizatiaroolineartem-
poral correlation. Also note that if mean output is zerottisaif E {s(t)} =0,
then the unit energy constraint is equivalent to the unitavare constraint, since

var(s(t)) = E {S2(t) } — (B {s(t)}).
16.8.1.2 SFAin a linear neuron model
In Section 16.5 (page 349) we mentioned that in a linear menmodel, maximiza-

tion of linear temporal correlation results in receptivddgewhich resemble fre-
quency components and not simple-cell-like receptive sieldGabor functions. In

Fig. 16.20: ppposite pagglllustration of the generation of componersigt) in the bubble coding
model. For simplicity of illustration, we use a one-dimemsl topography instead of the more
conventional two-dimensional ona) The starting point is the set of sparse signgl$). b) Each
sparse signal, (t) is filtered with a temporal low-pass filter(t), yielding signalsp(t) = u,(t). In

this example, the filtep(t) simply spreads the impulses uniformly over an interejlln the next
step, a neighbourhood functidik, ¢) is applied to spread the bubbles spatially; this is like diapa
low-pass filter. A static nonlinearity may also be applied at this point to rescale the magnitudes
of the variance bubbles. This yields variance bubble sigwdt) = f (3, h(k,£) [@(t) U, (t)]). In

this example, the neighbourhood functibris simply 1 close-by and 0 elsewhere, and the static
nonlinearityf is just the identity mappind(a) = a. d) Next, we generate gaussian temporally un-
correlated (white noise) signats(t). ) Linear components (responses) are defined as products of
the gaussian white noise signals and the spatiotempogaiad bubble signals; (t) = z (t)v, (t).
These are transformed linearly by the matixo give the observed image data (not shown). (Note
that in subfigures a)—c), white denotes value zero and blaoktés value 1, while in subfigures
d) and e), medium grey denotes zero, and black and white eleregative and positive values,
respectively.)
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Fig. 16.21: A set of spatial features, estimated from natorage using the bubble coding estima-
tion method, and laid out at spatial coordinates defined &ydhographic grid in the bubble coding
model. The topographic organization of the features ekhiidering with respect to orientation,
location, and spatial frequency of the vectors, being vanilar to that obtained by topographic
ICA.

such a linear model, slow feature analysis can be analyzétematically in detail.
Lets(t) denote the output of the unit at tinhe

s(t) =wTx(t). (16.27)

Assume that the inpu(t) has zero mean (Ex(t)} = 0), and that we impose the
unit variance constraint to avoid the trivial solutien= 0. Then the unit energy
constraint also holds, and instead of minimizing the SFAeotiye function (16.26)
we can just maximize linear temporal correlation

firc(w) = E {S(t)s(t — At)} = B {wTx(t)x(t — At)"w}

=wTE {X()x(t—At)" }w (16.28)
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with the constraint
E{L)}=1ewE{x{t)xt) w=1 (16.29)

A solution can be derived by adapting the mathematics of PEgciibed in Sec-
tion 5.8.1. The connection becomes clear if we first whitendhtax(t) (spatially,
i.e. in the same way as in Chapter 5, ignoring the temporatdeégncies). For sim-
plicity, we denote the whitened data kft) in the following. For the whitened data,
the constraint of unit variance is equivalent to the comstrthatw has unit norm,
because £ x(t)x(t)" } is the identity matrix.

Thus, we have a maximization of a quadratic function undé@marm constraint,
justas in PCA. There is a small difference, though: The md&i{ x (t)x(t — At)T}
defining the quadratic function is not necessarily symmefortunately, it is not
difficult to prove that actually, this maximization is eqaignt to maximization using
a symmetric version of the matrix:

fre(w) = wT %Et{x(t)x(t—At)T}+%Et{x(t—At)x(t)T} W (16.30)

Thus, the same principle of computing the eigenvalue decoaitipn applies here
(Tong et al, 1991). The optimal vectaris obtained as the one corresponding to the
largest eigenvalue of this matrix. If we want to extract acfdRF’s, we can use the
following result: assuming that the output of the next silddRF has to be uncor-
related with the outputs of the previously selected ones) the next maximum is
the eigenvector with the next largest eigenvalue.

Figure 16.22 shows the filters that result from such optitiozan a linear neu-
ron model. The data set and preprocessing in this experimastidentical to the
one in Section 16.5. As can be seen, the resulting filtereespand to frequency
(Fourier) features, and not the localized RF's in the eaidyal system.

16.8.2 Quadratic slow feature analysis

As shown above, SFA in the case of a linear neuron model dagsraduce very
interesting results. In contrast, application of the piptein the nonlinear case has
proven more promising, although results for real naturage sequences have not
been reported.

A straightforward and computationally simple way to desigmlinear models
is the basis expansiompproach. As a simple example, assume that out original
input data is a single scalar This data can be expanded by computing the square
of the data poink?. We can then design a model that is linear in the parameters
a=(ajap)"

y=aix+ax’=a' (;é) (16.31)
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Fig. 16.22: The set of filters which optimize the objectivedtion in slow feature analysis from
natural image data in the case of a linear neuron model. Abeaeen, the resulting filters do not
resemble localized receptive fields of either retina/LGN/@&r

but obviously nonlinear in the data(here, it is quadratic). A very nice property
of this approach is that the analysis developed for the ticage is immediately
applicable: all we need to do is to replace the original ddth the expanded data.
In the SFA case, left(x(t)) = [f1(x(t)) f2(x(t)) --- fw(x(t))]" denote a nonlinear
expansion of the data. Then the outputis

s(t) =w'f(x(t)), (16.32)

and all of the optimization results apply aftet) is replaced witH (x(t)) .

The form of basis expansion we are particularly interestés ihat of a quadratic
basis. Lek (t) = [x1(t) X(t) --- X« (t)]" denote our original data. Then a data vector
in our quadratic data sé{x(t)) includes, in addition to the original components
x1(t),%2(t), ..., Xk (1), the products of all pairs of componemgt)x,(t), k=1,...,K,
¢=1,...,K; note that this also includes the squax&),x3(t), ..., X2 (t).
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While the computation of the optimum in the case of basisaekied SFA is
straightforward, the interpretation of the results is mdiféicult: unlike in the case
of linear data, the obtained parameters can not simply leepréted as a template
of weights at different positions in the image, because suofittee parameters corre-
spond to the quadratic termg(t)x,(t), k=1,....K, ¢/ =1,...,K. One way to analyze
the learned parameter vectaws, ..., wy is to compute the input images that elicit
maximal and minimal responses, while constraining the n@nergy) of the im-
ages to make the problem well-posed; that is, ¥ O is a constant

Xmax = argmay_w' f(x) (16.33)
Xmin = argmir“X”:Cwa(x). (16.34)

A procedure for findingmax andxmin is described in (Berkes and Wiskott, 2007).

2
ASNNZE B
REDSENE

AES UL

S

EEEAMMN

-
-

SESVZEES
ZN0DNE

SS2A0NS 2
2aBEZNE2@2
B2ZEZRNNE
ZNNEBESEDN
ZENNENZ
RSRENMZAMNE
SN2 Qms
IREEZ @M

&
&%

Fig. 16.23: Quadratic SFA of image sequence dgpnerated from static image data) Input
imagesxmax that correspond to maximum outpu) Input imageS<min that correspond to min-
imum output. The maximum and minimum input images are atesponding locations in the
lattices. Most of the optimal input images are oriented aaaddpass, and also spatially localized
to some degree. The maximum and minimum input images of the bave interesting relation-
ships; for example, they may have different preferred d&gons, different locations, or one can
be orientation-selective while the other is not.

Berkes and Wiskott (2005) applied quadratic SFAimulatedimage sequence
data: the image sequenocg$) were obtained from static natural images by selecting
an initial image location, obtaining ag0) from the location with random orienta-
tion and zoom factor, and then obtainix@), t > O, by applying all of the following
transformations at the location &ft — 1) : translation, rotation, and zooming. An
important property of the results obtained by Berkes andkditg2005) using SFA
with simulated image sequence data is the phase invaridribe quadratic units.
This has lead to an association between SFA and complex icelést, Berkes and
Wiskott (2005) report a number of observed properties indgatic SFA models
that match those of complex cells. See Figure 16.23 for abdption of those re-
sults. However, the results by Berkes and Wiskott were abthbysimulatedmage
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sequences, whose temporal correlations were basicalgrrdated by the experi-
menters themselves. Thus, they do not really provide a basisaking conclusions
about the connection between ecologically valid stimutl gisual processing.

Hashimoto (2003) applied quadratic SFArgal natural image sequences. She
found that the obtained features were only weakly relatedotmplex cells, and
proposed that better results could be found Isparsevariant of SFA. This will be
treated next.

16.8.3 Sparse slow feature analysis

In sparse SFA, the measure of change is changed to one thatsings sparse-
ness. In the original objective in Equation (16.23), it i necessary to take the
squared error. The squared error is used here for algebmdicamputational sim-
plicity only: it allows us to maximize the objective funatiauising the eigenvalue
decomposition. In general, we can consider objective fandif the form

fSSFA(W) =k {G (S(t) — S(t — At))} . (16.35)

whereG is some even-symmetric function. A statistically optimhbice of G is
presumably one that corresponds to a sparse pdf, becausgeshian images are
usually abrupt, as in edges. We call resulting model SpaF#e Fhe statistical
justification is based on modelling the data with an aut@sgjve model in which
the driving noise term (innovation process) is super-ganssr sparse (Hyvarinen,
2001b).

The same sparse model (usinGavhich is not the square function) can be used
in the context of quadratic SFA because quadratic SFA simpgns defining the
input data in a new way. This leads to the concept of sparsdrgtia SFA. It is
important not to confuse the two ways in which an SFA modellmaguadratic: It
can use squared error (i.e. ta&u) = u?), or it can use a quadratic expansion of
the input data (using products of the original input vargsds new input variables).

Using sparse quadratic SFA, Hashimoto (2003) obtainedygroetectors which
seem to be much closer to quadrature-phase filter pairs angdlea cells than those
obtained by ordinary quadratic SFA. Those results wereionétaon real natural
image sequences, from which ordinary quadratic SFA doese®wn to learn very
complex-cell like energy detectors.

Thus, we see how sparseness is ubiquitous in natural imagstiss modelling,
and seems to be necessary even in the context of SFA.
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16.9 Conclusion

Different models of temporal coherence have been applisthtalated and natural
visual data. The results that emerge from these models agtie@europhysiologi-
cal observations to varying degrees. Thus far the prindipke mostly been applied
to model V1 cells — that is, simple and complex cells. In thiamter we focused
on models which have resulted in the emergencspatially localizedfilters with
multiple scales (responding to different frequenciesirfreatural image sequence
data. That is, we required that the spatial localization iatsbeen forced in the
model, but emerges from learning, as happened in all thessparding and ICA-
related models treated in this book so far; this is in contaasome temporal coher-
ence models, in which spatial localizatioreisforcedoy sampling with a gaussian
weighting window, so that the RF’s are then necessarilyliped in the center of
the patch. Also, we required that the image sequences camedrvideo camera
or a similar device, which is in contrast to some work in whiete takes static im-
ages and then artificially creates sequence by samplingtliem. Further work on
temporal coherence, in addition to the work already citeavabinclude (Kohonen,
1996; Kohonen et al, 1997; Bray and Martinez, 2003; Kaysat,&003; Kording
et al, 2004; Wyss et al, 2006).

A more philosophical question concerns the priorities lestwmodels of static
images and image sequences. We have seen models which @rgdite similar
results in the two cases. For example, simple cell RF’s caledmed by sparse
coding and ICA from static natural images, or, alternagivaking temporal coher-
ence from natural image sequences. Which model is, there fimdgeresting”? This
is certainly a deep question which depends very much of théfigation of the
assumptions in the models. Yet, one argument can be put fdriwegeneral: We
should always prefer the simpler model, if both models haeesame explanatory
power. This is a general principle in modelling, called jrany, or Occam’s ra-
zor. In our case, it could be argued that since static imagesecessarily simpler
than image sequences, we should prefer models which ugeistages—at least
if the models have similar conceptual simplicity. Thus, cnald argue that models
on image sequences are mainly interesting if they enabieifepof aspects which
cannot be learned with static images. This may not have beznase with many
models we considered in this chapter; however, the priasipitroduced may very
well to lead to discoveries of new properties which cannotasly, if at all, found
in static images.

An important related question concerns learning imagesfamations (Memi-
sevic and Hinton, 2007). One can view image sequences frolewguint where
each image (frame) is a transformation of the preceding ®hés is, in a sense,
complementary to the viewpoint of temporal coherence, ifictvione tries to cap-
ture features which are not transformed. It also seems tddsely related to the
idea of predictive coding, see Section 14.3.
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Chapter 17
Conclusion and future prospects

In this chapter, we first provide a short overview of this bodken, we discuss
some open questions in the field, as well as alternative aphes to natural image
statistics which we did not consider in detail in this boole ¥énclude with some
remarks on possible future developments.

17.1 Short overview

We started this book in Chapter 1 by motivating the researchatural image
statistics from an ecological-statistical viewpoint: Thsual system is assumed to
be adapted to the statistical structure of natural imagesatse it needs to use
Bayesian inference. Next, we prepared the reader by intiodwell-known math-
ematical tools which are needed in natural image statistmdels (Part |, i.e. Chap-
ters 2—4). The rest of the book, up to this chapter, was maislyccession of differ-
ent statistical models for natural images.

Part 1l was dedicated to models using purely linear recepifiglds. The first
model we considered was principal component analysis imp@ha. It is an im-
portant model for historical reasons, and also becauseitigies a preprocessing
method (dimension reduction accompanied by whitening)ctviis used in most
subsequent models. However, it does not provide a propeehf@deceptive fields
in the primary visual cortex (V1).

In Chapter 6, the failure of principal component analysis waplained as the
failure to consider the sparse, non-gaussian structurbeofiata. In fact, natural
images have a very sparse structure; the outputs of tygroadd filters all have
strongly positive kurtosis. Based on this property, we tigyed a method in which
we find the feature weights by maximizing the sparsenessebttiput when the
input to the feature detectors is natural images. Thus, wairdd a fundamental
result: sparse coding finds receptive fields which are quitélar to those in V1
simple cells in the sense that they are spatially localinegnted, and band-pass
(localized in Fourier space).

379
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Chapter 7 further elaborated on the linear sparse codingetrentt brought it
firmly into the realm of generative probabilistic modelsalso brought the view-
point of independence: instead of maximizing the sparseoksingle features, we
can maximize their statistical independence. A most furetaal theoretical results
says that these two goals are equivalent for linear feattites resulting model has
been named independent component analysis (ICA) in thalsggocessing litera-
ture. An information-theoretic interpretation of the mbdes considered Chapter 8,
as an alternative to the Bayesian one.

Part Il took a clear step forward by introducing nonlineaature detectors. It
turns out that independent component analysis is not aldartoel all the depen-
dencies between the components, despite the name of thednédthve measure
the dependencies of components given by ICA by computirigreéifit kinds of cor-
relations, we see that the squares of the components tereldtsdngly correlated
(Chapter 9). Such squares are called “energies” for histbreasons. We can model
such dependencies by introducing a random variable whiclrals the variances
of all the components at the same time. This enables the tieduaf the depen-
dencies based on processing which is quite similar to ndwsiplogical models of
interactions between cells in V1, based on divisive nornadiion.

In Chapter 10, we used the same kind of energy dependenaiesdel strongly
nonlinear features. Here, the nonlinearities took the fofroomputing the squares
of linear feature detectors and summing (“pooling”) suchasgs together. Just as
with linear features, we can maximize the sparseness of sanlinear features
when the input is natural images. The resulting featureguaite similar to complex
cells in V1. Again, we can build a probabilistic model, inéedent subspace anal-
ysis, based on this maximization of sparseness. Integggtihe model can also be
considered a nonlinear version of independent componeatysis.

The same idea of maximization of sparseness of energiesxesded to model
the spatial (“topographic”) arrangement of cells in thetewrin Chapter 11. This
model is really a simple modification of the complex cells raloaf the preceding
chapter. We order the simple cells or linear feature detsco a regular grid, which
thus defines which cells are close to each other. Then, wemizethe sparsenesses
of energy detectors which pool the energies of close-by k&roplls; we take the
sum of such sparsenesses over all grid locations. This teaaspatial arrangement
of linear features which is similar to the one in V1 in the setisat preferred ori-
entations and frequencies of the cells change smoothly wieemove on the grid
(or cortex); the same applies to the locations of the cemtfréze features. Because
of the close connection to the complex cell model, the poselestgies of close-by
cells (i.e. sums of squares of feature detectors which asedo each other on the
grid) have the properties of complex cells just like in thegading chapter.

In Chapter 12 even more complicated nonlinear features lgareed, although
we didn’t introduce any new probabilistic models. The trigks to fix the initial
feature extraction to computation of energies as in compékmodels. Then we
can just estimate a linear model, basic ICA, of the outpusich nonlinear feature
detectors. Effectively, we are then estimating a hieraalthree-layer model. The
results show that there are strong dependencies betwepuatsutf complex cells
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which are collinear, even if they are in different frequehands. Thus, the learned
features can be interpreted as short line segments whic¢lnacentrast to the fea-

tures computed by simple or complex cells, not restricteaismgle frequency band
(and they are also more elongated).

Chapter 13 we went back to the basic linear models such asd@dintroduced
two important extensions. First, we considered the caseenine number of com-
ponents is arbitrarily large, which results in what is cdlEn overcomplete basis.
Overcomplete bases seem to be important for building a goaloigbilistic model,
although the receptive fields learned are not unlike thosen&xl by basic ICA. A
related extension is Markov random fields which may alloveaston of the models
to whole images instead of image patches.

To conclude Part Ill, we showed how the concept of feedbaakrges naturally
from Bayesian inference in models of natural image stasstChapter 14). Feed-
back can be interpreted as a communication between diffézature sets to com-
pute the best estimates of the feature values. Computingatlnes of the features
was straightforward in models considered earlier, but iagsume that there is noise
in the system or we have an overcomplete basis, things are maoe complicated.
The features are interpreted latent (hidden) random viesabnd computing the op-
timal Bayesian estimates of the features is a straightfahapplication of Bayesian
inference. However, computationally it can be quite congikd, and requires up-
dating estimates of some features based on estimates o$olieece the need for
feedback from one cortical area to another, or between grofigells inside the
same cortical area. This topic is not yet well developed halds great promise to
explain the complicated phenomena of cortical feedbacklwhare wide-spread in
the brain.

Part IV considered images which are not simple static goajesimages. For
colour images and stereo images (mimicking the capturesafatiinformation by
the two eyes), ICA gives features which are similar to theeggonding processing
in V1, as shown in Chapter 15. For motion (Chapter 16), theesigrtrue, at least to
some extent; more interestingly, motion leads to a comiyletw kind of statistical
property, or learning principle. This is temporal coherermr stability, which is
based on finding features which change slowly.

17.2 Open, or frequently asked, questions

Next, we consider some questions on the general framewatlamdamental as-
sumptions adopted in this book.
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17.2.1 What is the real learning principle in the brain?

There has been some debate on what is the actual learnirgipbeinvhich the vi-
sual cortex “follows”, or which it should follow. There areally two questions
here: What is the learning principle which the brahlouldfollow according to the
ecological-statistical approach, and what is the learingciple which best ex-
plains the functioning of the brain. Answering the latteegtion seems impossible
considering our modest knowledge of the workings of thealisortex, but the for-
mer question needs some comment because it may seem tliegetkisbry provides
several contradictory answers.

In fact, in this book, we saw a few different proposals for legrning principle:
sparseness in Chapter 6, independence in Chapter 7, andr@nspherence in
Chapter 16. However, in our view, there is no need to arguehvbne of these is
the best since they are all subsumed under the greater penai describing the
statistical structure of natural images as well as possible

Having a good statistical model of the input is what the Visyatem needs in
order to perform Bayesian inference. Yet, it is true that &agn inference may
not be the only goal for which the system needs input stegistsparse coding,
as well as topography, may be useful for reducing metaboktsc(Section 6.5 and
Section 11.5). Information theoretic approaches (Ch&)tassume that the ultimate
goal is to store and to transmit the data in noisy channelismtidd capacity — the
limited capacity being presumably due to metabolic costs.

Our personal viewpoint is that the image analysis and pategognition are so
immensely difficult tasks that the visual system needs togienized to perform
them. Metabolic costs may not be such a major factor in th@ydes the brain.
However, we admit that this is, at best, an educated gueddugure research may
prove it to be wrong.

In principle, we can compare different models and learniriggiples as the the-
ory of statistical estimation gives us clear guidelines ow o measure how well a
model describes a data set. There may not be a single angeayse one could use,
for example, either the likelihood or the score matchindatise. However, these
different measures of model fit are likely to give very simimswers on which
models are good and which are not. In the future, such cdlonlmay shed some
light on the optimality of various learning principles.

17.2.2 Nature vs. nurture

One question which we have barely touched is whether thedtiom of receptive
fields is governed by genes or the input from the environm@ne answer to this
question is simply that we don’t care: the statistical medek modelling the final
result of genetic instructions and individual developmemd we don’t even try
to figure out which part has what kind of contribution. The sfien of nature vs.
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nurture seems to be highly complex in the case of the visusesy, and trying to
disentangle the two effects has not produced very condussults.

What makes the situation even more complicated in visiosenesh is that there is
ample evidence thatre-natalexperience in the uterus has an important effect on the
receptive field properties, see (Wong, 1999) for a reviedatt, the retinal ganglion
cells exhibit spontaneous activity which is characteribgdsynchronised bursts,
and they generate waves of activity that periodically swa@pss the retina. If such
“travelling waves” are disrupted by experimental manipiolas, the development
of the visual cortex suffers considerably (Cang et al, 2005)

Spontaneous retinal waves may, in fact, be considered @méipe form of vi-
sual stimuli from which the visual cortex might learn in rettsimilar ways as it
learns from natural images. Application of ICA on such tthmg waves can gen-
erate something similar to ICA of natural images. Thus,dlavwgy waves may be
a method of enabling the rudimentary learning of some basieptive field prop-
erties even before the eyes receive any input. One mighu$gtedhat such waves
are a clever method, devised by evolution, of simulatingesafthe most funda-
mental statistical properties of natural images. Suchiegrwould bridge the gap
between nature and nurture, since it is both innate (preddaith) and learned from
“stimuli” external to the visual cortex (Albert et al, 2008)

17.2.3 How to model whole images

Our approach was based on the idea of considering imagea@smavectors. This
means, in particular, that we neglect their two-dimendistaicture, and the fact
that different parts of the image tend to have rather sinstatistical regularities.
Our approach was motivated by the desire to be sure that thgegies we esti-
mate are really about the statistics of images and not duart@ssumptions. The
downside is that this is computationally a very demandingegch: the number of
parameters can be very large even for small image patchéshwieans that we
need large amounts of data and the computational resoueeeled can be near the
limit of what is available — at the time of this writing.

The situation can be greatly simplified if we assume that thgeddencies of
pixels are just the same regardless of whether the pixelsidered are in, say, the
upper-left corner of the image, or in the centre. We haveaalyeconsidered one
approach based on this idea, Markov random fields in Secoh 7, and wavelet
approaches to be considered below in Section 17.3.2 arbemot

Wavelet theory has been successfully used in many pra&iggiheering tasks
to model whole images. A major problem is that it does notlyeaiswer the ques-
tion of what are the statistically optimal receptive fieltlse receptive fields are
determined largely by mathematical convenience, the elésiimitate V1 receptive
fields, or, more recently, the desire to imitate ICA results.

On the other hand, the theory of Markov random fields offersoanising alter-
native in which we presumably can estimate receptive fielols hatural images, as
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well as obtain a computationally feasible probability midde Bayesian inference.
However, at present, the theory is really not developed ghdo see whether that
promise will be fulfilled.

17.2.4 Are there clear-cut cell types?

There has been a lot of debate about the categorization oEVWd.into simple and
complex cells. Some investigators argue that the cells aalo@ meaningfully di-
vided into two classes. They argue that there is a continuurelbtypes, meaning
that there are many cells which are between the stereotygimple cells and com-
plex cells.

Consider some quantity (such as phase-variance) which eandasured from
cells in the primary visual cortex. The basic point in the atelis whether we can
find a quantity such that its distribution is bimodal. Thidlisstrated in Figure 17.1.
In some authors’ view, only such bimodality can justify clifisation to simple and
complex cells. Thus, there is not much debate on whetheg irersome cells which
fit the classical picture of simple cells, and others whichhf& complex cell cate-
gory. The debate is mainly on whether there is a clear distinor division between
these two classes.

Number of cells

Value of quantity

Fig. 17.1: Hypothetical histogram of some quantity for s@flthe primary visual cortex. Some au-
thors argue that the histogram should be bimodal (solidejuivjustify classification of cells into
simple and complex cells. On the other hand, even if theibigton is flat (dashed curve), charac-
terizing the cells at the two ends of the distribution may berdgeresting approach, especially in
computational models which always require some level ofrabgon.



17.2 Open, or frequently asked, questions 385

This debate is rather complicated because there are vdeyatit dimensions in
which one could assume simple and complex cells to be fornttasses. One can
consider, for example, their response properties as medfyrphase-invariance, or
some more basic physiological or anatomical quantitieténcells. It has, in fact,
been argued that even marked differences in response pisspeeed not imply any
fundamental physiological difference which would justifgnsidering two different
cell types (Mechler and Ringach, 2002).

A related debate is on the validity of the hierarchical modewhich complex
cell responses are computed from simple cell responsessltken argued that
complex cell responses might be due to lateral connectioassiystem with no hi-
erarchical distinction between simple and complex cellsai@e et al, 1999). This
dimension, hierarchy vs. lateral connections, might besered another dimen-
sion along which the bimodality or flatness of the distribatcould be considered.

We would argue that this debate is not necessarily very aelefor natural image
statistics. Even if the distribution of simple and compledsis not bimodal with
respect to any interesting quantity, it still makes sensaddel the two ends of the
distribution. This is a useful abstraction even if it negéethe cells in the middle
of the distribution. Furthermore, if we have models of théiscat the ends of the
“spectrum”, it may not be very difficult to combine them intoeoto provide a more
complete model. In any case, mathematical and computétiooielling always re-
quire some level of abstraction; this includes classifazatf objects into categories
which are not strictly separated in realtty.

17.2.5 How far can we go?

So far, the research on natural image statistics has magsy modelling V1, using
the classic distinction of simple and complex cells. ChapPepresented an attempt
to go beyond these two processing layers. How far is it pésddogo with this
modelling approach?

A central assumption in natural image statistics researtiat learning isinsu-
pervised In the terminology of machine learning, this means leagrimwhich we
do not know what is good and what is bad; nor do we know whatasitiht output
of the system in contrast to classic regression methodss,Tihthe system knows
that bananas are good (in the sense of increasing someiebjiaiction), we are
in a domain which is perhaps outside of natural image siezgisgo, the question
really is: How much of the visual system is involved in praiag which applies
equally to all stimuli, and does not require knowledge of ttha organism needs?

Unsupervised learning may be enough for typical signatessing tasks such
as noise reduction and compression. Noise reduction shmellthken here in a

1 In fact, when we talk about response properties of a celtetigalways a certain amount of
abstraction involves since the response properties ch@ugpt) depending on various parame-
ters. For example, the contrast level may change the cleatsiin of a cell to simple or complex
(Crowder et al, 2007).
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very general sense, including operations such as contoopletion. More sophisti-
cated tasks which may be possible in an unsupervised séithgle segmentation,
amodal completion (completion of occluded contours), aibus kinds of filling-
in of image areas which are not seen due to anatomical réstricor pathologies.

Certainly, there need not be any clear-cut distinction leetwprocessing based
on unsupervised learning and the rest. For example, thersystight be able to
perform a rudimentary segmentation based on generic kualgelef natural image
statistics; if that results in recognition of, say, a banadhe prior knowledge about
the banana can be used to refine the segmentation. That vglddge of the general
shapes of objects can be complemented by knowledge abaifispdjects, the
latter being perhaps outside of the domain of natural iméafestcs.

The greatest obstacle in answering the question in thedtitiris section is our
lack of knowledge of the general functioning of the visuatsyn. We simply don’t
know enough to make a reasonable estimate on which partd beunodelled by
natural image statistics. So, it may be better to leave théstion entirely to future
research.

17.3 Other mathematical models of images

In this book, data-driven analysis was paramount: We todlrahimages and an-
alyzed them with models which are as general as possible.ptEmentary ap-
proach is to construct mathematical models of images basezbme theoretical
assumptions, and then find the best representation. Thewbeidvantage is that
the features can be found in a more elegant mathematical, @though usually
not as a simple formula. The equally obvious disadvantatieigthe utility of such
a model crucially depends on how realistic the assumpticeisn ancestor of this
line of research is Fourier analysis, as well as the moreoetdb Gabor analysis,
which were discussed in Chapter 2.

In this section, we consider some of the most important nedeVeloped using
this approach.

17.3.1 Scaling laws

Most of the mathematical models in this section are relatextaling laws, which
are one of the oldest observations of the statistical sireaf natural images. Scal-
ing laws basically describe the approximatefyf # behaviour of the power spectrum
which we discussed in Section 5.6.1. As reviewed in (Sraxaset al, 2003), they
were first found by television engineers in the 1950’s (Dginiy 1956; Kretzmer,
1952).

The observed scaling is very closely related to scale-iamae. The idea is to
consider how natural image statistics change when you lbo&taral images at dif-
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ferent scales (resolutions). The basic observation, amagson, is that they don't:
natural images look just the same if you zoom in or zoom outhSgale-invariance
is one of the basic motivations of a highly influential theofysignal and image
analysis: wavelet theory, which we consider next.

17.3.2 Wavelet theory

Beginning from the 1980’s the theory of wavelets became peoyninent in signal
and image processing. Wavelets provide a basis for onerdiimeal signals; the
basis is typically orthogonal. The key idea is that all theifaectors (or functions,
since the original formulation uses a continuous formajiane based on single
prototype function called the mother wavelgfx). The functions in the wavelet
basis are obtained by translatiop&c+ 1) and “dilations” (rescalingsp(2—°x):

@1 (x) = 2752925~ 1) (17.1)

wheresandl| are integers that represent scale and translation, regglgcihe fun-
damental property of a wavelet basissslf-similarity, which means that the same
function is used in different scales without changing itphaThis is motivated
by the scale-invariance of natural images. Wavelet theary lme applied on sig-
nals sampled with a finite resolution by considering diszeet versions of these
functions, just like in Fourier analysis we can move from atocwious-time repre-
sentation to a discretized one.

Much of the excitement around wavelets is based on matheahatialysis which
shows that the representation is optimal for several $iEisignal-processing tasks
such as denoising (Donoho et al, 1995). However, such thealeesults always as-
sume that the input data comes from a certain theoreticalllition (in this case,
from certain function spaces defined using sophisticatedtional analysis theory).
Another great advantage is the existence of fast algorifiomsomputing the coef-
ficients in such a basis (Mallat, 1989).

This classic formulation of wavelets is for one-dimensiosignals, which is
a major disadvantage for image analysis. Although it isigitforward to apply a
one-dimensional analysis on images by first doing the aisdlyssay, the horizontal
direction, and then, the vertical direction, this is notyeatisfactory because then
the analysis does not properly contain features of diffeogientations. In practical
image processing, the fact that basic wavelets form an gahal basis may also
be problematic: It implies that the number of features egjtled number of pixels,
whereas in engineering applications, an overcompletslmasually required. Var-
ious bases which are similar to wavelets, but better for imsabave therefore been
developed. In fact, the theory of multiresolution deconifimss of images was one
of the original motivations for the general theory of waveléBurt and Adelson,
1983).
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Wavelet-like bases specifically developed for images slpidnclude features
of different orientations, as well as some overcompletent&teerable pyramids”
are based on steerable filters, and therefore provide iitiplall possible orienta-
tions, see, e.g. (Freeman and Adelson, 1991; Simoncelli 4982). One of the
most recent systems is “curvelets”. Curvelets can be shownavide an optimally
sparse representation of edges (Candeés et al, 2005),1thnigipg a basis set which
is mathematically well-defined and statistically optintébwever, such strong theo-
retical optimality results only come at the cost of consiaigedge representation in
an artificial setting, and their relevance to natural imagesains to be investigated.
In any case, such ready-made bases may be very useful ineemigig applications.

An interesting hybrid approach is to use a wavelet basis wisipartly learned
(Olshausen et al, 2001; Sallee and Olshausen, 2003), thilggriayy the wavelet the-
ory and the theory in this book; see also (Turiel and PargaQR0

17.3.3 Physically inspired models

Another line of research models the process which generatdal images in the
first place. As with wavelet analysis, scale-invariancegkavery important role in
these models. In the review by (Srivastava et al, 2003) ethesdels were divided
into two classes, superposition models and occlusion nsodel

In the superposition models (Mumford and Gidas, 2001; Qrdaaand Srivas-
tava, 2001), it is assumed that the images are a linear sumanj imdependent
“objects”. In spirit, the models are not very different fratre linear superposition
we have encountered ever since the ICA model in Chapter 7t Wi#ferent from
ICA is that first, the objects come from a predefined model Wismot learned, and
second, the predefined model is typically richer than theus®al in ICA. In fact,
the objects can be from a space which defines different siteges and textures
(Grenander and Srivastava, 2001). One of the basic resutltssi line of research is
to show that such superposition models can exhibit bottesoghriance and non-
gaussianity for well-chosen distributions of the sizeshaf objects (Mumford and
Gidas, 2001).

In occlusion models, the objects are not added linearlyy tiea occlude each
other if placed close to each other. An example is the “deadel® model, which
was originally proposed in mathematical morphology, se&/#éStava et al, 2003).
It can be shown that scale-invariance can be explained higictass of models as
well (Ruderman, 1997; Lee et al, 2001).

17.4 Future work

Modern research in natural statistics essentially startetde mid-1990’s with the
publication of the seminal sparse coding paper by Olshaaiséifrield (1996). It co-
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incided with a tremendous increase of interest in indepencd@mponent analysis
(Comon, 1994; Bell and Sejnowski, 1995; Delfosse and Lauhat995; Cardoso
and Laheld, 1996; Amari et al, 1996; Hyvarinen and Oja, 3@3id the highly in-
fluential work by Donoho, Johnstone and others on applinatfavavelets to statis-
tical signal processing (Donoho et al, 1995; Donoho, 199%)dho and Johnstone,
1995). What we have tried to capture in this book is the dewekents of these ideas
in the last 10-15 years.

What might be the next wave in natural image statistics? iMykr models are
seen by many as the Holy Grail, especially if we were able tionase an arbitrary
number of layers, as in classical multilayer perceptronatkdv random fields may
open the way to new successful engineering applications gwuheir impact of
neuroscientific modelling may be modest. Some would argaiEithage sequences
are the key because their structure is much richer than thiostatic images.

People outside of the mainstream natural image statig#=arch might put for-
ward arguments in favour of embodiment, i.e., we cannobdisge information pro-
cessing from behaviour, and possibly not from metaboliadsesther. This would
mean we need research on robots, or simulated robot-liketagehich interact
with their environment. On the other hand, science has @thanced faster when
it hasdissociated one problem from the rest; it may be that usifptmakes
modelling technically too difficult.

Whatever future research may bring, natural image stegisttems to have con-
solidated its place as the dominant functional explanaifavhy V1 receptive fields
are as they are. Hopefully, it will lead to new insights on hbw rest of the visual
system works. Combined with more high-level theories otgratrecognition by
Bayesian inference, it has the potential of providing a fgrainified theory” of
visual processing in the brain.
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Chapter 18
Optimization theory and algorithms

In this book, we have considered features which are definesobye optimality

properties, such as maximum sparseness. In this chaptdrriefty explain how

those optimal features can be numerically computed. Thatisak are based ei-
ther on general-purpose optimization methods, such asegriaethods, or specific
tailor-made methods such as fixed-point algorithms.

18.1 Levels of modelling

First, itis important to understand the different levelsirich we can model vision.
A well-known classification is due to Marr (1982), who digfinshed between the
computational, algorithmic, and implementation levetsour context, we can actu-
ally distinguish even more levels. We can consider, at Jéhstfollowing different
levels:

1. Abstract principle The modelling begins by formulating an abstract optingalit
principle for learning. For example, we assume that thealisystem should
have a good model of the statistical properties of the typigaut, or that the
representation should be sparse to decrease metabokc cost

2. Probabilistic model Typically, the abstract principle leads to a number of con-
crete quantitative models. For example, independent coemtaanalysis is one
model which tries to give a good model of the statistics ofdgpinput.

3. Objective functionBased on the probabilistic model, or sometimes directly us
ing the abstract principle, we formulate an objective fimrtivhich we want to
optimize. For example, we formulate the likelihood of a mblhistic model.

4. Optimization algorithmThis is the focus of this Chapter. The algorithm allows
us to find the maximum or minimum of the objective function.

5. Physical implementatiomhis is the detailed physical implementation of the op-
timization algorithm. The same algorithm can be impleméimnedifferent kinds
of hardware: a digital computer or a brain, for example. A&diiy this level is

393
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quite complex and could be further divided into a number gtls: the phys-
ical implementation can be described at the level of netaosingle cells, or
molecules, whereas the detailed implementation of the niced@perations (e.g.
matrix multiplication and nonlinear scalar functions) rsiateresting issue in it-
self. We will not go into details regarding this level.

Some of the levels may be missing in some cases. For examplbeeibasic
sparse coding approach in Chapter 6, we don’t have a prog@bihodel: We go
directly from the level of principles to the level of objeaifunctions. However,
the central idea of this book is that veé@ouldinclude the probabilistic modelling
level—which was one motivation for going from sparse codm¢CA.

An important choice made in this book is that the level of ohje function is
alwayspresent. All our learning was based on optimization of ofdjedunctions—
which are almost always based on probabilistic modellinggples. In some other
approaches, one may go directly from the representatioiradiple to an algorithm.
The danger with such an approach is that it may be difficultndeustand what
such algorithms actually do. Going systematically throtighlevels of probabilis-
tic modelling, and objective function formulation, we gairdeeper understanding
of what the algorithm does based on the theory of statisfitso, this approach
constrains the modelling because we have to respect theatifgobabilistic mod-
elling, and avoids completely ad hoc methods.

Since we always have an objective function, we always needpéimization
algorithm. In preceding chapters, we omitted any discussiohow such optimiza-
tion algorithms can be constructed. One reason for thisasiths possible to use
general-purpose optimization methods readily impleneimtenany scientific com-
puting environments. So, one could numerically optimize tibjective functions
without knowing anything, or at least not much, on the theadrgptimization.

However, it is of course very useful to understand optimaratheory when do-
ing natural image statistics modelling for several reasons

e One can better choose a suitable optimization method, aedudime its parame-
ters.

e Some optimization methods have interesting neurophygicdd interpretations
(in particular, Hebbian learning in Section 18.4).

e Some methods have tailor-made optimization methods (EAst Section 18.7).

That is why in this chapter, we review the optimization theneeded for under-
standing how to optimize the objective functions obtaimethis book.
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18.2 Gradient method

18.2.1 Definition and meaning of gradient

The gradient method is the most fundamental method for miakigha continuous-
valued, smooth function in a multidimensional space.

We consider the general problem of finding the maximum of ation that takes
real values in am-dimensional real space. Finding the minimum is just finchney
maximum of the negative of the function, so the same theodyretly applicable
to both cases. We consider here maximization because thdtaswe needed in
preceding chapters. Let us denote the function to be maguniy f(w) where
w = (W1,...,Wy) is just ann-dimensional vector. The function to be optimized is
usually called the objective function.

The gradient off, denoted by 1f is defined as the vector of the partial deriva-

tives:
af(w)

Of(w)=|[ (18.1)
af(w)

The meaning of the gradient is that it points in the directidmere the function
grows the fastest. More precisely, suppose we want to fina#ke which is such
thatf(w+v) is as large as possible when we constrain the norrtote fixed and
very small. Then the optimal is given by a suitably short vector in the direction
of the gradient vector. Likewise, the vector that reducesvlue off as much as
possible is given by-Of (w), multiplied by a small constant. Thus, the gradient is
the direction of “steepest ascent”, andf (w) is the direction of steepest descent.

Geometrically, the gradient is always orthogonal to thevearin a contour plot
of the function (i.e. to the curves that show whéneas the same value), pointing in
the direction of growind .

For illustration, let us consider the following function:

f(w) = exp(—5(x— 1) — 10(y — 1)?) (18.2)

which is, incidentally, like a gaussian pdf. The functiomplstted in Figure 18.1 a).
Its maximum is at the point (1,1). The gradient is equal to

—~10(x— 1) exp(~5(x— 1)2 — 10y — 1>2>> (18.3)

Of (w) = (—ZO(y— 1) exp(—5(x— 1) — 10(y — 1)?)

Some contours where the function is constant are shown inl8ig. b). Also, the
gradient at one point is shown. We can see that taking a steallis the direction
of the gradient, one gets closer to the maximizing point. e\ay, if one takes a big
enough step, one actually misses the maximizing point, satép really has to be
small.
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05 1 15 2

Fig. 18.1: The geometrical meaning of the gradient. Comside function in Equation (18.3),
plotted ina). In b), the closed curves are the sets where the functibias a constant value. The
gradient at point (0.5,1.42) is shown and it is orthogondhtocurve.

18.2.2 Gradient and optimization

The gradient method for finding the maximum of a function éstissof repeatedly
taking small steps in the direction of the gradiénf,(w), recomputing the gradient
at the current point after each step. We have to take smalt gtecause we know
that this direction leads to an increase in the valud ainly locally — actually,
we can be sure of this only when the steps are infinitely sriak. direction of the
gradient is, of course, different at each point and needs twomputed again in the
new point. The method can then be expressed as

W —w+ uOf (w) (18.4)

where the parameteu is a small step size, typically much smaller than 1. The
iteration in (18.4) is repeated over and over again untilglg®rithm converges to

a point. This can be tested by looking at the change imetween two subsequent
iterations: if it is small enough, we assume the algorithm ¢@nverged.

When does such an algorithm converge? Obviously, if it egiat a point where
the gradient it zero, it will not move away from it. This is n&trprising because
the basic principles of optimization theory tell that at theximizing points, the
gradientis zero; this is a generalization of the elemerntalyulus result which says
that in one dimension, the minima or maxima of a function daimed at those
points where the derivative is zero.

If the gradient method is used farinimizationof the function, as is more con-
ventional in the literature, the sign of the increment in.&)8s negative, i.e.

w—w— uOf(w) (18.5)

Choosing a good step size parametas crucial. If it is too large, the algorithm
will not work at all; if it is too small, the algorithm will beao slow. One method,
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which we used in the ISA and topographic ICA experimentsis ook, is to adapt
the step size during the iterations. At each step, we congfigestep size used in
the previous iteration (sayp), and a larger one (say8) and a smaller ong.p/2).
Then, we compute the value of the objective function thatiltegrom using any
of these three step sizes in the current step, and chooséeihsize which gives
the largest value for the objective function, and use it authin the next iteration.
Such adaptation makes each step a bit slower, but it makedisairthe step sizes
are reasonable.

18.2.3 Optimization of function of matrix

Many functions we want to maximize are actually functiongahatrix. However,
in this context, such matrices are treated just like vecfbngt is, an x n matrix is
treated as an ordinary-dimensional vector. Just like we vectorize image patches
and consider them as very long vectors, we consider the gdesirmatrices as if
they had been vectorized. In practice, we don’t need to &ielyr vectorize the
parameter matrices we optimize, but that is the underlydleg.i

For example, the gradient of the likelihood of the ICA modeEquation (7.15)
is given by (see (Hyvarinen et al, 2001b) for derivation):

.
Zg(Vzt)th +(vhHT (18.6)
=

where the latter term is the gradient of latgtV|. Here,g is a function of the pdf
of the independent components:= p;/p; wherep; is the pdf of an independent
component. Thus, a gradient method for maximizing theiliaeld of ICA is given
by:

;
Y <—V+I.1[Zig(VZt)Z;r+(V_l)T] (18.7)
t=

whereu is the learning rate, not necessarily constant in time. Alguin this case
it is possible to use a very simple trick to speed up computaif the gradient is
multiplied byVTV from the right, we obtain a simpler version

.
VeVtu Z[l +a(y)yf V. (18.8)
=

wherey; = Vz;. This turns out to be a valid method for maximizing likeliltbo
Simply, the algorithm can be assumed to converge to the samésgas the one in
Equation (18.7) because'V is invertible, and thus the points where the change
in V is zero are the same. A more rigorous justification of thisuredtor relative
gradient method is given in (Cardoso and Laheld, 1996; AmM&98).
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18.2.4 Constrained optimization

It is often necessary to maximize a function under some caings. That is, the
vectorw is not allowed to take any value in timedimensional real space. The most
common constraint that we will encounter is that the nornwas$ fixed to be con-
stant, typically equal to onélw/|| = 1. The set of allowed values is called the con-
straint set. Some changes are needed in the gradient mettadctsuch constraints
into account, but in the cases that we are interested in hieges are actually quite
simple.

18.2.4.1 Projecting back to constraint set

The basic idea of the gradient method can be used in the eimestrcase as well.
Only a simple modification is needed: after each iteratio(il8f4), we projectthe
vectorw onto the constraint set. Projecting means going to the pothe constraint
set which is closest. Projection to the constraint setustihted in Figure 18.2 a).

a) 15 b) 15
1
1
05
05
0
45 0 05 1 05

Fig. 18.2: Projection onto the constraint set (a), and ptaa of the gradient (b). A function (not
shown explicitly) is to be minimized on the unit sphea Starting at the point marked with “0”, a
small gradient step is taken, as shown by the arrow. Themdim is projected to the closest point
on the unit sphere, which is marked by “x”. This is one itevatof the methodb) The gradient
(dashed arrow) points in a direction in which is it dangertmgake a big step. The projected
gradient (solid arrow) points in a better direction, whisttiangential” to the constraint set. Then,
a small step in this projected direction is taken (the stetsshown here).

In general, computing the projection can be very difficulif In some special
cases, it is a simple operation. For example, if the comdtsat consists of vectors
with norm equal to one, the projection is performed simplythy division:

W w/[|wl| (18.9)
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Another common constraint is orthogonality of a matrix.hatcase, the projec-
tion onto the constraint set is given by

W — (WwWT)~ 2w (18.10)

Here, we see arather involved operation: the inverse ofgbare root of the matrix.

We shall not go into details on how it can be computed; suffitiesay that most nu-

merical software can compute it quite efficientiJhis operation often called sym-
metric orthogonalization, and it is the way that symmeticatrelation in sparse
coding and other algorithms is usually implemented.

18.2.4.2 Projection of the gradient

Actually, an even better method is obtained if we first projee gradient onto the
“tangent space” of the constraint set, and then take a stdmtrdirection instead
of the ordinary gradient direction. What this means is thataompute a direction
that is “inside” the constraint set in the sense that infipisenall changes along that
direction do not get us out of the constraint set, yet the mmam@ in that direction
maximally increases the value of the objective functionisTimproves the method
because then we can usually take larger step sizes and tdrgnincreases in the
objective function without going in a completely wrong ditien as is always the
danger when taking large steps. The projection onto thetinsset has to done
even in this case. Projection of the gradient is illustrateligure 18.2 b).

This is quite useful in the case where we are maximizing wepect to a pa-
rameter matrix that is constrained to be orthogonal. Thgeptmn can be shown to
equal (Edelman et al, 1998):

Of(W) = 0f(W) —WTOf(W)WT (18.11)

where[Jf (W) is the ordinary gradient of the functidn
In Section 18.5 below we will see an example of how these idéasnstrained
optimization are used in practice.

18.3 Global and local maxima

An important distinction is between global and local maxir@ansider the one-
dimensional function in Figure 18.3. The global maximumha function is at the
point x = 6; this is the “real” maximum point where the function attits very
largest value. However, there are also two local maxima-af andx = 9. A local

1 1f you really want to know: the inverse square r@@¢W T )~1/2 of the symmetric matristhVwW T
is obtained from the eigenvalue decompositiomal/ T = Ediag(As, ..., An)ET as(Ww ) 1/2 =
Ediag(1/v/A1,...,1/vAn)ET. Itis easy to see that if you multiply this matrix with itsejou get
the inverse of the original matrix. See also Section 5.9.2
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maximum is a point in which the function obtains a value whghreater than the
values in all neighbouring points close-by.

An important point to understand is that the result of a gratialgorithm de-
pends on thenitial point, that is, the point where the algorithm starts in the first
iteration. The algorithm only sees the local behaviour effimction, so it will find
the closest local maximum. Thus, if in Figure 18.3, the atyan is started in the
point marked by circles, it will find the global maximum. Inrdeast, if it is started
in one of the points marked by crosses, it will converge to @intbe local maxima.

In many cases, we are only interested in the global maximumenTthe be-
haviour of the gradient method can be rather unsatisfacbhmgause it only finds
a local optimum. This is, actually, the case with most optetibn algorithms. So,
when running optimization algorithms, we have to alwayspkeemind that that
algorithm only gives a local optimum, not the global one.

167
15;
14
13;
12

11

1% 2 4 6 8 10

Fig. 18.3: Local vs. global maxima. The function has a glabakimum atx = 6 and two local
maxima atx = 2 andx = 9. If a gradient algorithm starts near one of the local maxieng. at the
points marked by crosses), it will get stuck at one of thellowxima and it will not find the global
maximum. Only if the algorithm starts sufficiently close betglobal maximum (e.g. at the points
marked by circles), it will find the global maximum.

18.4 Hebb’s rule and gradient methods

18.4.1 Hebb's rule

Hebb’s rule, or Hebbian learning, is a principle which isttahin modern research
on learning and memory. It attempts to explain why certaimagyic connections get
strengthened as a result of experience, and others doististicalledplasticity in
neuroscience, anigéarningis a more cognitive context. Donald Hebb proposed in
1949 that
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When an axon of cell A (...) excites cell B and repeatedly asigéently takes part in firing
it, some growth process of metabolic change takes place énoorboth cells so that A's
efficiency as one of the cells firing B is increased. (Quote@imndel et al, 2000))

This proposal can be readily considered in probabilisticite A statistical analysis
is about things which happen “repeatedly or persistently”.

A basic interpretation of Hebb’s rule is in terms of tbevarianceof the firing
rates of cells A and B: the change in the synaptic connectionlsl be proportional
to that covariance. This is because if the firing rates of A Brnare both high at
the same time, their covariance is typically large. The devee interpretation is
actually stronger because it would also imply that if botlscare silent (firing rate
below average) at the same time, the synaptic connectitreisggthened. Even more
than that: if one of the cells is typically silent when theetbne fires strongly, this
has a negative contribution to the covariance, and the signagnnection should be
decreased. Such an extension of Hebb'’s rule seems to beigliite with Hebb'’s
original idea (Dayan and Abbott, 2001).

Note a difference between this covariance interpretatiomhich only the cor-
relation of the firing rates matters, and the original foratidn, in which cell A is
assumed to “take part in firing [cell B]", i.e. to havecausalinfluence on cell B’'s
firing. This difference may be partly resolved by recent agsk which shows that
the exact timing of the action potentials in cell A and cellBimportant, a phe-
nomenon calledpike-timing dependent plasticiffpan and Poo, 2004), but we will
not consider this difference here.

18.4.2 Hebb’s rule and optimization

Hebb’s rule can be readily interpreted as an optimizatiamctess, closely related
to gradient methods. Consider an objective function of trenfwhich we have
extensively used in this book:

J(w) = ZG(iWiXi (1) (18.12)

To compute the gradient, we use two elementary rules. Bistlerivative of a sum

is the sum of the derivatives, so we just need to take theat@ra/ofG( 3, wixi(t))

and take its sum over Second, we use the chain rule which gives the deriva-
tive of a compound functior; (f2(w)) as f5(w) f;(f2(w)). Now, the derivative of
Y1 Wixi (t) with respect taw; is simplyx;(t), and we denote by = G’ the deriva-
tive of G. Thus, the partial derivatives are obtained as

% = Zm(t)g(iwm(t)) (18.13)

So, a gradient method to maximize this function would be effdrm
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n
Wi — W +uin (t)g(Zwixi(t)), for all i. (18.14)
i=

Now, let us interpret the terms in Equation (18.14). Assula t

. thexi(t) are the inputs to thieth dendrite of a neuron at time point

. thew; are the strengths of the synapses at those dendrites, and

. the firing rate of the neuron at time potris equal toy ! ; wix; (t)

. the inputsq; have zero mean, i.e. they describe changes around the miegn fir
rate.

A WN P

Further, let us assume that the functipis increasing.

Then, the gradient method in Equation (18.14) is quite sintd a Hebbian learn-
ing process. Consider the connection strength of one ofythepses. Then, the
connectionw; is increased ik (t) is repeatedly high at the same time as the firing
rate of the neuron in question. In fact, the term multipligdie learning ratg: is
nothing else that the covariance between the input totheéendrite and an increas-
ing function of the firing rate of the neuron, as in the covacie-based extension of
Hebb’s rule.

Such a “learning rule” would be incomplete, however. Thesaogais that we
have to constrainv somehow, otherwise it might simply go to zero or infinity. In
preceding chapters, we usually constrained the norm tf be equal to unity. This
is quite a valid constraint here as well. So, we assume thaddition to Hebb’s
rule, some kind of normalization process is operating ihBel

18.4.3 Stochastic gradient methods

The form of Hebb’s rule in Equation (18.14) uses the staistif the data in the
sense that it computes the correlation over many obsengdtitx. This is not very
realistic in terms of neurobiological modelling. A simplelstion for this problem
is offered by the theory of stochastic gradient methods fikes and Clark, 1978).
The idea in a stochastic gradient is simple and very gengsslime we want to
maximize some expectation, seyg(w, x) } wherex is a random vector, and is a
parameter vector. The gradient method for maximizing thth wespect tov gives

w — w+ HE{Owg(w,Xx)} (18.15)

where the gradient is computed with respeatt@s emphasized by the subscript in
thel operator. Note that we have taken the gradient inside theaapon operator,
which is valid because expectation is basically a sum, amdéhnivative of a sum is
the sum of the derivatives as noted above.

The stochastic gradient method now proposes that we doed teecompute the
expectation before taking the gradient step. &ach observatiox, we can use the
gradient iteration given that single observation:
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W — W+ uOwg(w,X) (18.16)

So, when given a sample of observationsxpfve compute the update in Equa-
tion (18.16) for each observation separately. This is neabte because the update
in the gradient will bepn the averageequal to the update in the original gradient
with the expectation given in Equation (18.15). The step b&s to be much smaller,
though, because of the large random fluctuations in thigdimtaneous” gradient.
So, we can consider Hebbian learning in Equation (18.14habthe sum over
t is omitted, and each incoming observation, i.e. stimulsigmmediately used in
learning:

W e+ um(t)g(_iwixi ) (18.17)

Such a learning method still performs maximization of thgeotive function, but
is more realistic in terms of neurophysiological modelliagy each time point, the
input and output of the neuron make a small change in the signapights.

18.4.4 Role of the Hebbian nonlinearity

By changing the nonlinearity in the learning rule, and thus tt&in the objective
function, we see that Hebb’s rule is quite flexible and alldifferent kinds of learn-
ing to take place. If we assume tlgis linear the original functionG is quadratic.
Then, Hebb's rule is actually doing PCA (Oja, 1982), sinde #imply maximizing
the variance o' x under the constraint that has unit norm.

On the other hand, i is nonlinearG is non-quadratic. Then, we can go back to
the framework of basic sparse coding in Chapter 6. There,see the expression
h(s?) instead ofG(s) in order to investigate the convexity bf So, if G is such that
it corresponds to a convdx Hebb’s rule can be interpreted as doing sparse coding!
The is no contradiction in that almost same rule is able toatb PCA and sparse
coding, because in Chapter 6 we also assumed that the dat#énad. So, we see
that the operation of Hebb’s rule depends very much on thprpoessing of the
data.

What kind of nonlinearities does sparse coding require?s{cien the widely-
used choic& (s) = —logcosts. This would give

gi(s) = —tanhs (18.18)

This function (plotted in Fig. 18.4) would be rather odd t@ s such in Hebb'’s
rule, because it is decreasing, and the whole idea of Hebl#swould be inverted.
(Actually, such “anti-Hebbian” learning has been obsemvesome contexts (Bell
et al, 1993), and is considered important in some computakimodels (Foldiak,
1990)).

However, because the data is whitened, we can find a way apieténg this
maximization as Hebbian learning. The point is that for whéd data, we can add
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a quadratic term t&, and consider
1
Gy(s) = Esz —logcosts (18.19)
Since the data is whitened amdis constrained to unit norm, the expectation of
s = (w'x)? is constant, and thus the maximization®jf produces just the same
result as maximization db;. Now, the derivative oG, is
g2(s) = s—tanhs (18.20)

which is an increasing function, see Fig. 18.4.

Fig. 18.4: Two nonlinearitiesy; in Equation (18.18), dash-dotted line, agdin Equation (18.20),
solid line. For comparison, the line=y is given as dotted line.

So, using a nonlinearity such gs, sparse coding does have a meaningful inter-
pretation as a special case of Hebb's rule. The nonlineggisven makes intuitive
sense: it is a kind of a thresholding function (actually, a@rdtage function, see
Section 14.1.2.2), which ignores activations which arelsma

18.4.5 Receptive fields vs. synaptic strengths

In the Hebbian learning context, the feature weigifsare related to synaptic
strengths in the visual cells. However, the visual inputhes the cortex only after
passing through several neuronsin the retina and the thslahhus, th&\ actually
model the compound effect of transformations in all thos®pssing stages. How
can we then interpret optimization of a function suchGi§ ,, W(x,y)I(x,y)) in
terms of Hebb’s rule?

In Section 5.9 we discussed the idea that the retina and LGMrpe some-
thing similar to a whitening of the data. Thus, as a rough eppnation, we could
consider thecanonically preprocessedata as the input to the visual cortex. Then
maximization of a function such &(v'z), wherez is the preprocessed data, is in



18.5 Optimization in topographic ICA * 405

fact modelling the plasticity of synapses of the cells thenpry visual cortex. So,
Hebbian learning in that stage can be modelled just as weldidea

18.4.6 The problem of feedback

In the Hebbian implementation of ICA and related learningsuthere is one more
problem which needs to be solved. This is the implementaifahe constraint of

orthogonality. The constraint is necessary to prevent theaons from all learning
the same feature. A simple approach would be to consider thievzation of some

measure of the covariance of the outputs (assuming the slathitened as a pre-
processing stage):

Q(v1,....Vn) = ~M ¥ [E{ss 12 =-M Z[E{(viTz)(vaz)}]z (18.21)
J#1 i)

whereM is a large constant (saly] = 100). We can add this function as a so-called
penaltyto the measures of sparseness. If we then consider the gtadtb respect
tovj, this leads to the addition of a term of the form

0y Q=—2M ;E{ZSJ}E{SSJ'} (18.22)
IEA]

to the learning rule fow;. BecauseM is large, after maximization the sum of the
[E{ss;j}]? will be very close to zero—corresponding to the case whezs thre all
uncorrelated. Thus, this penalty approximately reinferite constraint of uncorre-
latedness.

The addition ofQ to the sparseness measure thus results in the addition of a
feedbackerm of the form in Equation (18.22).

18.5 Optimization in topographic ICA *

As an illustration of the gradient method and constrainetindpation, we con-
sider in this section maximization of likelihood of the tapaphic ICA in Equa-
tion (11.5). This section can be skipped by readers notested in mathematical
details.

Because independent subspace analysis is formally a spas&of topographic
ICA, obtained by a special definition of the neighbourhoaakction, the obtained
learning rule is also the gradient method for independeloggace analysis.

First note that we constram to be orthogonal, so dgtis constant (equal to one),
and can be ignored in this optimization. Another simplettasimplify the problem
is to note is that we can ignore the sum olvand just compute the “instantaneous
gradient as in stochastic gradient methods. We can alwaypsgoto the sum over
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t by just summing the gradient overbecause the gradient of a sum is the sum of
the gradients. In fact, we can simplify the problem evenhfertoy computing the
gradient of the likelihood for each term of in the sum oven the likelihood in
Equation (11.5), and taking the sum afterwards.

So, the computation of the gradient is essentially reducexinputing the gra-

dient of
n

Li(va,...,vn) = (Y (i, Hviz)?) (18.23)
=1

Denote byv'k thel-th component of. By the chain rule, applied twice, we obtain

=}

Z—_zg (K (vEz)N (S mi(i, ) (v z0)?) (18.24)
=1

This can be written in vector form by simply collecting thegsatial derivatives for
alll in a single vector:

]

Oy Li = 2z 71(i, k) (vgz )W (Y (i, ) (v] z2)?) (18.25)
=1

(This is not really the whole gradient because it is just thgigl derivatives with
respect to some of the entries\i) but the notation using! is still often used.)
Since the log-likelihood is simply the sum of thgs we obtain

Oy, logL = Zizimvkl_l _ZZzt Vi z) zim k) i )(v]z)?) (18.26)

We can omit the constant 2 which does not change the direcfitire gradient.
So, the algorithm for maximizing the likelihood in topoghapICA is finally as
follows:

1. Compute the gradients in Equation (18.26) forkalCollect them in a matrix
Oy logL which has thélvylogL as its rows.

2. Compute the projection of this matrix on the tangent spafcthe constraint
space, using the formula in Equation (18.11). Denote thgepted matrix as
G. (This projection step is optional, but usually it speedshepalgorithm.)

3. Do a gradient step as ~

V —V+4+uG (18.27)

4. Orthogonalize the matri¥. For example, this can be done by the formula in
Equation (18.10).

To see a connection of such an algorithm with Hebbian legtrdansider a gra-
dient update for each separately. We obtain the gradient learning rule

;
Vic— Vi + U Zizt(VIZt)rtk (18.28)
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where

n n
k=S (i (V] z2)?). 18.29
t i; Z t) ( )

Equally well, we could use a stochastic gradient methodyrigiy the sum ovet.

In a neural interpretation, the Hebbian learning rule in.283 can be considered a
“modulated” Hebbian learning, since the ordinary Hebbearhing ternz (vk z)

is modulated by the terrrf This term could be considered as top-down feedback,
since it is a function of the local energies which could bedbgputs of higher-order
neurons (complex cells).

18.6 Beyond basic gradient methods *

This section can be skipped by readers not interested inemedtical theory. Here,
we briefly describe two further well-known classes of optiation methods. Actu-
ally, in our context, these are not very often better thanbhsic gradient method,
S0 our description is very brief.

18.6.1 Newton’s method

As discussed above, the optima of an objective function@ued in points where
the gradient is zero. So, optimization can be approacheleagroblem of solving
a system of equations given by

ot

;W) =0 (18.30)
(18.31)

;V\'; (W) =0 (18.32)

A classic method for solving such a system of equations isthiew method. It
can be used to solve any system of equations, but we consdethre case of the
gradient only.

Basically, the idea is to approximate the function lineaidjng its derivatives. In
one dimension, the idea is simply to approximate the grapgheofunction using its
tangent, whose slope is given by the derivative. That isafgeneral functiog:

g(w) ~ g(Wo) + g'(Wo) (W — o) (18.33)

This very general idea of finding the point where the funcattains the value zero
is illustrated in Figure 18.5.
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Fig. 18.5: lllustration of Newton's method for solving anuedjion (which we use in optimization

to solve the equation which says that the gradient is zet flinction is linearly approximated by

its tangent. The point where the tangent intersects witl-fods is taken as the next approximation
of the point where the function is zero.

In our caseg corresponds to the gradient, so we use the derivatives afrtu-
ents, which are second partial derivatives of the originakttionf. Also, we need
to use a multidimensional version of this approximationisidives

Of (w) = Of (wo) + H(wo)(w —wp) (18.34)

where the functiorH, called the Hessian matrix, is the matrix of second partial
derivatives:
0% f

Hij = ———
' ow; Ow;

(18.35)
Now, we can at every step of the method, find the new point asriedor which
this linear approximation is zero. Thus, we solve

Of (wg) +H(wo)(w—wgp) =0 (18.36)

which gives
W = wo — H(wp) " }(Of (wp)) (18.37)

This is the idea in the Newton iteration. Starting from a mmdooint, we iteratively
updatew according to Equation (18.37), i.e. compute the right-hside for the
current value ofv, and take that as the new valuevaefUsing the same notation as
with the gradient methods, we have the iteration

w—w—H(w)"}Of(w)) (18.38)

Note that this iteration is related to the gradient methéthé matrixH (wg) *
in Equation (18.37) is replaced by a scalar step size/e actually get the gradient
method. So, the difference between the methods is threefold

1. In Newton’s method the direction where“moves” is not given by the gradient
directly, but the gradient multiplied by the inverse of theddian.
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2. This “step size” is not always very small: It is directlywgn by the inverse of the
Hessian matrix, and can be quite large.

3. In the gradient method, one can choose between miniraizaid maximiza-
tion of the objective function, by choosing the sign in thgasithm (cf. Equa-
tions (18.4) and (18.5)). In the Newton method, no such eh@ipossible. The
algorithm just tries to find a local extremum in which the gesd is zero, and
this can be either a minimum or a maximum.

The Newton iteration has some advantages and disadvarteggsred to the
basic gradient method. It usually requires a smaller nunolbeteps to converge.
However, the computations needed at each step are much eroending, because
one has to first compute the Hessian matrix, and then contpig —1(0f (w))
(which is best obtained by solving the linear systdifw)v = Of (w)).

In practice, however, the main problem with the Newton mdtisothat its be-
haviour can be quite erratic. There is no guarantee any eraiibn gives av which
increasesf (w). In fact, a typical empirical observation is that for somedtions
this does not happen, and the algorithm may completely gievere. go to arbitrary
values ofw, eventually reaching infinity. This is because the step s@ebe arbi-
trarily large, unlike in the gradient methods. This lackabustness is why Newton’s
method is not often used in practice.

As an example of this phenomenon, consider the function

f(w) = exp(—%wz) (18.39)
which has a single maximum ag = 0. The first and second derivatives, which

are the one-dimensional equivalents of the gradient antH#ssian, can be easily
calculated as

f/(w) = —Wexp(—%vvz) (18.40)
(W) = (W2 — 1) exp(—%wz) (18.41)

which gives the Newton iteration as
W — W+ 1 (18.42)

Now, assume that we start the iteration at any point wherel. Then, the change
ﬁ is positive, which means that is increased and it moves further and further
away from zero! In this case, the method fails completely angbes to infinity
without finding the maximum at zero. (In contrast, a gradimethod, with a rea-
sonably small step size, would find the maximum.)

However, different variants of the Newton method have pnowseful. For ex-
ample, methods which do something between the gradientadethd Newton’s
method (e.g. the Levenberg-Marquardt algorithm) have @navseful in some ap-
plications. In ICA, the FastICA algorithm (see below) uses basic iteration of
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Newton’s method but with a modification which takes the salesfructure of the
objective function into account.

18.6.2 Conjugate gradient methods

Conjugate gradient methods are often considered as the effagent general-
purpose optimization methods. The theory is rather corafgid and non-intuitive,
so we do not try to explain it in detail.

Conjugate gradient methods try to find a direction which igdyehan the gra-
dient direction. The idea is illustrated in Figure. 18.6. Whhe gradient direction
is good for a very small step size (actually, it is still thesbfor an infinitely small
step size), it is not very good for a moderately large step.sthe conjugate gra-
dient method tries to find a better direction based on infeionaon the gradient
directions in previous iterations. In this respect, thehodtis similar to Newton’s
method, which also modifies the gradient direction.

Fig. 18.6: A problem with the gradient method. The gradiergalion may be very bad for anything

but the very smallest step sizes. Here, the gradient goesrrabmpletely in the wrong direction

due to the strongly non-circular (non-symmetric) struetaf the objective function. The conjugate
gradient method tries to find a better direction.

In fact, conjugate gradient methods do not just take a stagiréd size in the di-
rection they have found. An essential ingredient, whictcisially necessary for the
method to work, is a one-dimensitine search This means that once the direction,
sayd, in whichw should move has been chosen (using the complicated theory of
conjugate gradient methods), many different step sizage tried out, and the best
one is chosen. In other words, a one-dimensional optinumas performed on the
functionh(u) = f(w+ ud), andpy maximizing this function is chosen. (Such line
search could also be used in the basic gradient method. Howewthe conjugate
gradient method it is completely necessary.)

Conjugate gradient methods are thus much more complicaseddrdinary gra-
dient methods. This is not a major problem if one uses a sienbmputing en-
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vironment in which the method is already programmed. Samegj the method is
much more efficient than the ordinary gradient methods, fistis not always the
case.

18.7 FastICA, a fixed-point algorithm for ICA

Development of tailor-made algorithms for solving the apation problems in
ICA is a subject of an extensive literature. Here we explaiefly one popular
algorithm for performing the maximization, more infornmai and details can be
found in the ICA book (Hyvarinen et al, 2001b).

18.7.1 The FastICA algorithm

Assume thatthe datat =1,...,T, is whitened and has zero mean. The basic form
of the FastICA algorithm is as follows:

. Choose an initial (e.g. random) weight vector
. Letw « S zgw'z) —wy, g (W' z)

. Letw —w/|w]|

. If not converged, go back to 2.

A WN P

Note that the sign ofv may change from one iteration to the next; this is in line
with the fact that the signs of the components in ICA are ndt-defined. Thus,
the convergence of the algorithm must use a criterion whsdmimune to this. For
example, one might stop the iteratiorf" wog| is sufficiently close to one, where
Woiq iS the value ofv at the previous iteration.

To use FastICA foiseveralfeatures, the iteration step 2 is applied separately
for the weight vector of each unit. After updating all the glati vectors, they are or-
thogonalized (assuming whitened data). This means piogeitte matriX\W, which
contains the vectors; as its rows, on the space of orthogonal matrices, which can be
accomplished, for example, by the classical method inmglvhatrix square roots,
givenin Eq. (18.10). See Chapter 6 of (Hyvarinen et al, 2)@dr more information
on orthogonalization.

18.7.2 Choice of the FastICA nonlinearity

The FastICA algorithm uses a nonlinearity, usually dented. This comes from
a measure of non-gaussianity. Non-gaussianity is measisEqG(s)} for some
non-quadraticfunction. The functiory is then the derivative oB.
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Note that in Chapter 6 we measured non-gaussianity (orepess) ag{h(s)}.
Then, we haves(s) = h(s?) which impliesg(s) = 2h'(s?)s. So, we must make a
clear distinction between the nonlineariteand the function§& andg; they are all
different functions but they can be derived from one another

The choice of the measure of non-gaussianity, or the naalitye is actually
quite free in FastICA. We are not restricted to functionshstiat maximization of
G corresponds to maximization of sparseness, or suct@catresponds to the log-
pdf of the components. We can use, for example, measureswhslss, i.e. the lack
of symmetry of the pdf.

In practice, it has been found th@ts) = log costs works quite well in a variety
of domains; it corresponds to the tanh nonlinearityga@in FastICA, it makes no
difference if we take tanh or tanh, the algorithm is immune to the change of sign.)

18.7.3 Mathematics of FastICA *

Here, we present the derivation of the FastICA algorithna, simow its connection
to gradient methods. This can be skipped by readers noestet in mathematical
details.

18.7.3.1 Derivation of the fixed-point iteration

To begin with, we shall derive the fixed-point algorithm @orefeature, using an ob-
jective function motivated by projection pursuit, see (Hymnen, 1999a) for details.
Denote the weight vector corresponding to one feature tetbgw, and the canon-
ically preprocessed input k% The goal is to find the extrema &{G(w'z)} for
a given non-quadratic functio®, under the constrair{(w'z)?} = 1. According
to the Lagrange conditions (Luenberger, 1969), the extraraabtained at points
where

E{zgw'z)} —BCw=0 (18.43)

whereC = E{zz"}, and is a constant that can be easily evaluated to @ive
E{w{zg(w{z)}, wherewy is the value ofv at the optimum. Let us try to solve this
equation by the classical Newton’s method, see Section1l8ive. Denoting the
function on the left-hand side of (18.43) By we obtain its Jacobian matrix, i.e. the
matrix of partial derivatives]JF(w) as

JF(w) =E{zZ"g'(w"2)} - BC (18.44)

To simplify the inversion of this matrix, we decide to appimate the first term in
(18.44). A reasonable approximation in this context seene€ {zz'g'(w'z)} ~
E{zz"}E{d(w"2)} = E{d'(w"2)}C. The obtained approximation of the Jacobian
matrix can be inverted easily:
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JF(w)t~CH/(E{d(W'2)} - B). (18.45)

We also approximatg using the current value af instead ofwgy. Thus we obtain
the following approximative Newton iteration:

wew—[CE{zgw'2)} - Bw]/[E{g(W'2)} ~B]  (18.46)

wherew™ denotes the new value of, andf = E{w"zg(w"z)}. After every step,

wT is normalized by dividing it by,/(w*)TCw to improve stability. This algo-
rithm can be further algebraically simplified (see (Hywiém, 1999a)) to obtain the
original form the fixed-point algorithm:

w— ClE{zgw"2)} —E{d'(W'2)}w. (18.47)

These two forms are equivalent. Note that for whitened dzita,disappears, giving
an extremely simple form of the Newton iteration. In (Hywm#&n and Oja, 1997),
this learning rule was derived as a fixed-point iteration gradient method max-
imizing kurtosis, hence the name of the algorithm. Howeweage analysis must
use the more general form in (Hyvarinen, 1999a) becaudeeofivn-robustness of
kurtosis.

18.7.3.2 Connection to gradient methods

There is a simple an interesting connection between thd Gastlgorithm and
gradient algorithms for ICA.

Let us assume that the number of independent componentegtibeted equals
the number of observed variables, ire= m and A is square. Denote bW the
estimate of the inverse @.

Now, consider the preliminary form of the algorithm in (18)4To avoid the
inversion of the covariance matrix, we can approximate i€a$ ~ WTW, since
C =AAT. Thus, collecting the updates for all the rowsWfinto a single equation,
we obtain the following form of the fixed-point algorithm:

W — W + D[diag — ) + E{g(y)y}|W (18.48)

wherey = Wz, B = E{yig(yi)}, andD = diag1/(8 — E{d'(yi)})). This can be
compared to the natural gradient algorithm for maximizatid the likelihood in
Eqg. (18.8). We can see that the algorithms are very closédyee First, the expec-
tation in (18.48) is in practice computed as a sample avesage (18.8). So, the
main difference is that in the natural gradient algorithhe B; are all set to one,
andD is replaced by identity times the step szeSo,D is actually like a step size,
although in the form of a matrix here, but it does not affectite point where the
algorithm converges (i.e. the update is zero). So, the ady difference is the;.
Now, it can be proven that if thgreally is the derivative of the log-likelihood, then
the B, are also (for infinite sample) equal to one (Hyvarinen e2@Q1b). In theory,
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then, even this difference vanishes and the algorithméyreahverge to the same
points.

It must be noted that the FastICA algorithm does not maximparseness but
non-gaussianity. Thus, in the case of sub-gaussian fegitireay actually be min-
imizing sparseness, see Section 7.9.3.



Chapter 19
Crash course on linear algebra

This chapter explains basic linear algebra on a very eleangigvel. This is mainly
meant as a reminder: The readers hopefully already knowrthierial.

19.1 Vectors

A vector in ann-dimensional real space is an ordered collection ofal numbers.
In this book, a vector is typically either the grey-scalewe of pixels in an image
patch, or the weights in a linear filter or feature detecttre humber of pixels is
nin the former case, and the number of weights is the latter case. We denote
images byl (x,y) and the weights of a feature detector typically \Wyx y). It is
assumed that the indentakes values from 1 toy and the indey takes values from
1 to ny, where the dimensions fulfii = ny x ny. In all the sums that follow, this is
implicitly assumed and not explicitly written to simplifyotation.

One of the main points in linear algebra is to provide a notaiih which many
operations take a simple form. In linear algebra, the vecsuch ad (x,y) and
W(x,y) are expressed as one-dimensional columns or rows of nunmibeus, we
need to index all the pixels by a single indekat goes from 1 to. This is obviously
possible by scanning the image row by row, or column by colsee Section 4.1
for details on such vectorization). It does not make anyedé#iice which method is
used. A vector is usually expressed in column form as

Vi
V2
v=| . (19.2)
Vin
In this book, the vector containing image data (typicallieatome preprocessing
steps) will be usually denoted lzyand the vector giving the weights of a feature de-

415
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tector byv. In the following, we will use both the vector- and image-désaotations
side-by-side.
The (Euclideanphormof a vector is defined as

WY =[S WxY)2 or|vll= /5 v (19.2)
Xy |

The norm gives the length (or “size”) of a vector. There amoabther ways of
defining the norm, but the Euclidean one is the most common.
Thedot-product(or inner productbetween two vectors is defined as

(W, 1) = ZW(x,y)I (%,Y) (19.3)
Xy

If W is a feature detector, this could express the value of therfeavhen the input
image isl. It basically computes matchbetween andW. In vector notation, we
use the transpose operator, giverMdy to express the same operation:

n
Viz=YS viz (19.4)
2"

If the dot-product is zero, the vectovg andl are calledorthogonal The dot-
product of a vector with itself equals the square of its norm.

19.2 Linear transformations

A linear transformation is the simplest kind of transforioatin ann-dimensional
vector space. A vectdris transformed to a vectdrby taking weighted sums:

J(xy) = %m(x,y,x’,)/)l(x’,)/), for all x,y (19.5)

The weights in the sum are different for every pdixty). The indices< andy take
all the same values &sandy. Typical linear transformations include smoothing and
edge detection.

We can compound linear transformations by taking a lineargformation of)
using weights denoted by(x,y,X,y'). This gives the new vector as
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K(x,y) = Z n(xy,x",y")I(x",y")

X"y’
= n(x,y,x",)/') m(X",)//aX’a)/)l(X’,)/)
XZ' )%'

- Zy <Z/n(x,y,%I,y/)m(g',y'7>(7y)> 1(X,y) (19.6)

Defining
p(x.y.X,y) = > n(x,y,x",y" )mx",y",x,y) (19.7)
X U
we see that the compounded transformation is a linear wamsftion with the
weights given byp.

19.3 Matrices

In matrix algebra, linear transformations and linear systef equations (see below)
can be succinctly expressed by products (multiplicatiohs}his book we avoid
using too much linear algebra to keep things as simple aslpessiowever, it
is necessary to understand how matrices are used to expreastransformation,
because in some cases, the notation becomes just too categliand also because
most numerical software takes matrices as input.

A matrix M of sizen; x ny is a collection of real numbers arranged imtorows
andny columns. The single entries are denotedrpywherei is the row and is the
column. We can convert the weightgx,y,x,y') expressing a linear transformation
by the same scanning process as was done with vectors. Thus,

M1 M2 ... Mim
M= : : (19.8)
Mn1 Mh2 ... Mhm

The linear transformation of a vectois then denoted by
y=Mz (19.9)

which is basically a short-cut notation for

N2

Vi = Z m;zj, foralli (19.10)
=1

This operation is also the definition of the product of a nxedirid a vector.
If we concatenate two linear transformations, defining
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s=Ny (19.11)

we get another linear transformation. The maRithat expresses this linear trans-
formation is obtained by

ny
Pij = > MM (19.12)

K=1
This is the definition of the product of two matrices: the newatrix P is denoted by
P=MN (19.13)

This is the matrix version of Equation (19.7). The definitisquite useful, because
it means we can multiply matrices and vectors in any ordemake computes. In
fact, we have

s=Ny=N(Mz)=(NM)z (19.14)

Another important operation with matrices is the transpdsgee transposé!
of a matrixM is the matrix where the indices are exchangedi tih entry ofM T
is mji. A matrix M is called symmetric ifry; = mj;, i.e., if M equals its transpose.

19.4 Determinant

The determinant answers the question: how are volumes eldawgen the data
space is transformed by the linear transformatighThat is, ifl takes values in a
cube whose edges are all of length one, what is the volumesafehof the valued
in Equation (19.5)?. The answer is given by the absoluteevafithe determinant,
denoted by detM)| whereM is the matrix form ofm.

Two basic properties of the determinant are very useful.

1. The determinant of a product is the product of the deteamtist defMN ) =
detM)det(N). If you think that the first transformation changes the voéulny
a factor or 2 and the second by a factor of 3, it is obvious tHemyou do both
transformation, the change in volume is by a factor of 2= 6.

2. The determinant of a diagonal matrix equals the produttefliagonal elements.
If you think is two dimensions, a diagonal matrix simply $tfees one coordinate
by a factor of, say 2, and the other coordinate by a factorayf,35 so the volume
of a square of area equal to 1 then becomgs32= 6.

(In Section 19.7 we will see a further important result on tlegerminant of an
orthogonal matrix).
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19.5 Inverse

If a linear transformation in Equation (19.5) does not chatige dimension of the
data, i.e. the number of pixels, the transformation can lysba inverted. That is,
Equation (19.5) can usually be solved foiif we know J andm, we can compute
what was the origindl. This is the case if the linear transformation is invertiblea
technical condition that is almost always true. In this bosk will always assume
that a linear transformation is invertible if not otherwisentioned.

In fact, we can then find a matrix of coefficiemts y), so that

1(x,y) = Zyln(x,y,x’,)/).)(x’,)/), for all x,y. (19.15)

This is the inverse transformation of. In matrix algebra, the coefficient are ob-
tained by computing the inverse of the matkix denoted byM ~1. So, solving for
y in (19.9) we have

y=M"1z (19.16)

A multitude of numerical methods for computing the inver§éhe matrix exist.

Note that the determinant of the inverse matrix is simplyitiverse of the deter-
minant: detM —1) = 1/detM). Logically, if the transformation changes the volume
by a factor of 5 (say), then the inverse must change the volneefactor of ¥5.

The product of a matrix with its inverse equals ttlentity matrixl:

MM t=M"IM =1 (19.17)

The identity matrix is a matrix whose diagonal elements drerees and the off-
diagonal elements are all zero. It corresponds to the igerdhsformation, i.e., a
transformation which does not change the vector. This mearnsave

lz=z (19.18)

for anyz.

19.6 Basis representations

An important interpretation of the mathematics in the pd#oeg sections is the rep-
resentation of an image in a basis. Assume we have a numbeatfrésA;(X,y)
wherei goes from 1 ta. Given an imagé(x,y), we want to represent it as a linear
sum of these feature vectors:

H(xy) = Zf”’ (xy)s (19.19)
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Thes are thecoefficientof the feature vectorsy. They can be considered as the
values of the features in the imafbesince they tell “to what extent” the features are
in the image. If, for examples; = 0, that means that the featukg is not present in
the image.

Using vector notation, the basis representation can begise

zZ= ia;s (19.20)

Interestingly, this equation can be further simplified bytimg all thes into a single
vectors, and forming a matriXA so that the columns of that matrix are the vectors
aj, that is:

an ai2 ain
A=la,ay,...,an) = : N P (19.21)
an1 an2 an3
Then we have equivalently
z=As (19.22)

From this equation, we see how we can apply all the linearbsggemachinery to
answer the following questions:

e How do we compute the coefficierg® This is done by computing the inverse
matrix of A (hoping that one exists), and then multiplyimgvith the inverse,
sinces= A1z

e When is it possible to represent amyusing the giverg;? This question was
already posed in the preceding section. The answer is: ihtleber of basis
vectors equals the dimension nfthe matrixA is invertible practically always.
In such a case, we say that tagor theA;) form a basis.

A further important question is: What happens then if the hanof vectors is
smallerthan the dimension of the vects? Then, we cannot represent all the possi-
ble z's using those features. However, we can find the best pesaggroximation
for anyz based on those features, which is treated in Section 19.8.

The opposite case is when we hawmerevectorsg; than the dimension of the
data. Then, we can represent any vea@arsing those features; in fact, there are
usually many ways of representing amyand the coefficients are not uniquely
defined. This case is callesvercomplete basisnd treated in Section 13.1.

19.7 Orthogonality

A linear transformation is calledrthogonalif it does not change the norm of the
vector. Likewise, a matriA is called orthogonal if the corresponding transformation
is orthogonal. An equivalent condition for orthogonaliy i
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ATA = (19.23)

If you think about the meaning of this equation in detail, ydlirealize that it says
two things: the column vectors of the matAxare orthogonal, and all normalized to
unit norm. This is because the entries in the matbA are the dot-products a;
between the column vectors of the matfix

An orthogonal basis is nothing else than a basis in which #sésbvectors are
orthogonal and have unit norm; in other words, if we coll&éet basis vectors into a
matrix as in Equation (19.21), that matrix is orthogonal.

Equation (19.23) shows that the inverse of an orthogonaixtat an orthogonal
transformation) is trivial to compute: we just need to raage the entries by taking
the transpose. This means tlsat a1-Tz, or

Xy

So, in an orthogonal basis we obtain the coefficients as siohpt-products with the
basis vectors. Note that thisi®t true unless the basis is orthogonal.

The compound transformation of two orthogonal transforamats orthogonal.
This is natural since if neither of the transformations afsithe norm of the image,
then doing one transformation after the other does not ahérmgnorm either.

The determinant of an orthogonal matrix is equal to plus onusione. This
is because because an orthogonal transformation does aogelvolumes, so the
absolute value has to be one. The change in sign is relatedl¢éations. Think of
multiplying one-dimenasional data byl: This does not change the “volumes”, but
“reflects” the data with respect to 0, and corresponds to erdetbant of—1.

19.8 Pseudo-inverse *

Sometimes transformations change the dimension, and ¥Resion is more com-
plicated. If there are more variables ynthan inz in Equation (19.9), there are
basically more equations than free variables, so there sohdion in general. That
is, we cannot find a matri¥ so that for any givery, z= My is a solution for
Equation (19.9). However, in many cases it is useful to aersan approximative
solution: Find a matrixM* so that forz = My, the error|ly — Mz|| is as small
as possible. In this case, the optimal “approximative isg&matrix can be easily
computed as:

Mt =MTM)"IMT (19.25)

On the other hand, if the matrM has fewer rows than columns (fewer variables
in y than inz), there are more free variables than there are constraggogtions.
Thus, there are many solution$or (19.9) for a givery, and we have to choose one
of them. One option is to choose the solution that has thelest&uclidean norm.
The matrix that gives this solution 8™y is given by
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MT=MT(MMT)~1 (19.26)

The matrixM ™ in both of these cases is called the (Moore-Penrose) psievdcse
of M. (A more sophisticated solution for the latter case, uspayseness, is consid-
ered in Section 13.1.3.)



Chapter 20
The discrete Fourier transform

This chapter is a mathematically sophisticated treatmétte theory of Fourier
analysis. It concentrates on the discrete Fourier transfohich is the variant used
in image analysis practice.

It is not necessary to know this material to understand tiveldpments in this
book; this is meant as supplementary material.

20.1 Linear shift-invariant systems

Let us consider a systemt” operating on one-dimensional input signkls). The
system idinear if for inputs 11 (x) andl»(x), and scalao

H{11(X) +12(x)} = A {110} + 7 {12(x)} (20.1)
A{al()} = aA {l1(x)}; (20.2)

similar definitions apply in the two-dimensional case. Ateys.7Z is shift-invariant
if a shift in the input results in a shift of the same size in theéput; that is, if
{1 (x)} = O(x), then for any integem

H{1(x+m)} = O(x+ m); (20.3)
or, in the two-dimensional case, for any integerandn,
A1 (x+my+n)}=O(X+my+n). (20.4)

A linear shift-invariant systerns?” operating on signals (or, in the two-dimensional
case, onimages) can be implemented by either linear figavith a filter, or another
operation, theonvolutionof the input and thémpulse responsef the system. The
impulse responsk (X) is the response of the system to an impulse

423
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s = Tx=0 (20.5)
0, otherwise,

that is
H(x) =s¢{d0(X)}. (20.6)

By noting thatl(x) = S¢__. 1(k)d(x—k), and by applying linearity and shift-
invariance properties (Equations (20.1)—(20.3)) it isyedasshow that

O(x) = 2 {1(X)} = i L(K)H (x— k) = 1 (x) % H(X), (20.7)

k=—0c0

where the last equality sign defines convolutiorNote that convolution is a sym-
metric operator since by making the change in summatiornxifigex — k (implying
k=x-10)

I0+HX = 3 HRHK-K = 3 HOIx—0)=HX (9. (208)
k=—00 (=—00

20.2 One-dimensional discrete Fourier transform

20.2.1 Euler’s formula

For purposes of mathematical convenience, in Fourier aisathe frequency rep-
resentation is complex-valued: both the basis images amdvéights consist of
complex numbers; this is called the representation of algéatheFourier space
The fundamental reason for this is Euler’s formula, whictes that

e¥ = cosa+isina (20.9)

wherei is the imaginary unit. Thus, a complex exponential conthots the sin and
cos function in a way that turns out to be algebraically vesgnenient. One of the
basic reasons for this is that the absolute value of a complexber contains the

sum-of-squares operation:
|a+bi| = Va2 +b? (20.10)

which is related to the formula in Equation (2.16) on page #ictvgives the power
of a sinusoidal component. We will see below that we can iddeempute the
Fourier power as the absolute value (modulus) of some coomuimbers.

In fact, we will see that the argument of a complex number ercttimplex plane
is related to the phase in signal processing. The argumentomplex numbet is
a real numbep € (—m, 11 such that

c=|cle? (20.11)
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We will use here the signal-processing notatitmfor the argument.

We will also use the complex conjugate of a complex nunekbera+ bi, denoted
by ¢, which can be obtained either as- bi or, equivalently, ascle ?. Thus, the
complex conjugate has the same absolute value, but oppogitenent (“phase”).

20.2.2 Representation in complex exponentials

In signal processing theory, sinusoidals are usually sepreed in the form of the
following complex exponential signal

€ = coqwx) +isin(wx), x=1,...,M, (20.12)

A fundamental mathematical reason for this is that theseasigareeigensignals
of linear shift-invariant systems. An eigensignal is a gatigation of the concept
of an eigenvector in linear algebra (see Section 5.8.1)oBebyH (x) the impulse
response of a linear shift-invariant systeifi. Then

AU} =HX)+¥ = § H(KW N = § H(ke '
e o (2013
=H(w)

=H(w)e?,

where we have assumed that the s§fh_, H(k)e '“k converges, and have de-
noted this complex number By (w). Equation (20.13) shows that when a complex
exponential is input into a linear shift-invariant systehe output is the same com-
plex exponential multiplied by (w); the complex exponential is therefore called
an eigensignal of the system.

To illustrate the usefulness of the representation in cempkponentials in an-
alytic calculations, let us derive the response of a lingé#t-gvariant system to a
sinusoidal. This derivation uses the identity

cog @) = % (€2 +e79), (20.14)

which can be verified by applying Equation (20.12). L&t be a linear shift-
invariant system, andcog wx+ ) be an input signal; then

S {Acogwx+ )} = g;; {ei<wx+w) _|_efi(wx+l,U)}
= 2 (€Yo (™} +eVor (e (20.15)

= g (€¥H (w)e +e VH(—w)e ).
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By the definition o (w) (see Equation 20.13(—w) = H(w) = |F (w)| e 14H(®),
Thus

2 {Acos X+ )} Ifl(w)|A% (ei(wx+w+4H”(w)) +e—i(wx+w+4|:|(w)))

H ()| Acog wx+ g+ ZA(w)). (20.16)
————

amplitude phase

Equation (20.16) is a one-dimensional formal version oftthe statements made
in Section 2.2.3 (page 33):

e When a sinusoidal is input into a linear shift-invariantteys, the output is a
sinusoidal with the same frequency.
e The change in amplitude and phase depend only on the fregquenc

Furthermore, the equation contains another importantitiasamely that both the
amplitude and the phase response can be read outHran) : the amplitude re-
sponse is{I:I (w)|, and the phase respongél (w). This also explains the notation
introduced for amplitude and phase responses on page 33.

In order to examine further the use of complex exponend4f§ let us derive
the representation of a real-valued signal in terms of tlteseplex-valued signals.
Thus, the imaginary parts have to somehow disappear in thie@presentation. De-
riving such a representation from the representation insidals (Equation (2.6),
page 30) can be done by introducinggative frequencie® < 0, and using Equa-
tion (20.14). Let us denote the coefficient of the complexosantiale ®* by Il(w).
The representation can be calculated as follows:

wWm oM . '
1(X)= Y ApCogwx+ i) = 3 % (e|<wx+ww> _|_e*|(wx+‘l’w>)
w=0 w=0

. Po (ghoder 4 gv0gl-0x)

=0 (20.17)
- Ay + £ meisgr(w)w\m\eiwx_ T f(w)eiwx
o~~~ _Z 2 B ,z : '
» wEmom ==ty
=l.(0) w#0 —.(w)
whenw # 0

Note the following properties of the coefficielﬁzwi) :

e In general, the coefficienis(w) are complex-valued, except for(0) which is
always real.

e Forw > 0, a coefficient’, (w) contains the information about both the amplitude
and the phase of the sinusoidal representation — amplinfdemation is given
by the magnitudél, (w)| and phase information by the angié, (w) :
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I.(0), if =0
= - 20.18
Ao {Z\I*(w)| , otherwise ( )
= urldeflned if w= O (20.19)
(), otherwise.

e Acloserlook at the derivation (20.17) shows that the magidtand the angle of
the positive and negative frequencies are related to edeh as follows:

i (—w)| = |1 (w)| (20.20)
L (—w) = 20 (w) (20.21)

Thusi,(w) andi.(—w) form a complex-conjugate pair. This also means that
knowing only the coefficients of the positive frequenciesr-ooly the coeffi-
cients of the negative frequencies — is sufficient to recaosthe whole rep-
resentation. (This is true only for real-valued signalsprie wants to represent
complex-valued signals, the whole set of coefficients islede However, such
representations are not needed in this book.)

Above it was assumed that a frequency-based representditisignall (x) ex-
ists:

v
I(x) = z Ay Cog WX+ Yg). (20.22)
w=0
From that we derived a representation in complex exponentia
v .
I(x) = z I ()™ (20.23)
w==twm
~ Ao whenw =0
I (w) = , 20.24
) {ATME' SU@Ya  otherwise (20.24)

This derivation can be reversed: assuming that a repragamia complex expo-
nentials exists — so that the coefficients of the negativepmsitive frequencies are
complex-conjugate pairs — a frequency-based representalso exists:

w r i w ~ . ~
I(x) = z (w)d = z ||*(w)|el(wx+él*(w))
o aY o (20.25)
=L+ 3 2|ii(w)|cos(wx+ i (w)).
W=ty
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20.2.3 The discrete Fourier transform and its inverse

Next, we introduce the discrete Fourier transform (DFT) @adnverse, which are
the tools that are used in practice to convert signals ta theresentation in com-
plex exponentials and back. We will first give a definition bé ttransforms, and
then relate the properties of these transforms to the dismusve had above.

The word “discrete” refers here to the fact that the signairftage) is sampled
at a discrete set of points, i.e. the indeis not continuous. This is in contrast to
the general mathematical definition of the Fourier transfevhich is defined for
functions which take values in a real-valued space. Angplért is that the DFT
is in a sense closer to what is called the Fourier series itemaatics because the
set of frequencies used is discrete as well. Thus, the thefddf T has a number of
differences to the general mathematical definitions uselifierential calculus.

The discrete Fourier transformation is used to compute tredficients of the
signal’s representation in complex exponentials: thissfebefficients is called the
discrete Fourier transform. The inverse discrete Fouremgformation (IDFT) is
used to compute the signal from its representation in comei@onentials. Let
I (x) be a signal of lengtN. The discrete Fourier transform pair is defined by

N-1

DFT: f(u)= zol(x)e*i%”v”“, u=0,..,N—1. (20.26)
X—=
1 N71~ i 21U

IDFT: 1(x)=— Z)I(u)e'TX, x=0,...,N—1, (20.27)
N &

Notice that the frequencies utilized in the representati@momplex exponentials of

the IDFT (20.27) are
2mu

N
The fact that Equations (20.27) and (20.26) form a validgfarm pair — that
is, that the IDFT off (k) is I (x) — can be shown as follows. Létu) be defined as
in Equation (20.26). Then — redefining the sum in EquationZ@pto be ovex,
instead ofk to avoid using the same index twice — the IDFT gives

=" u=0,..N—1 (20.28)

N-1

N_l~( )eiZnu
} [(UWeNX=
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If X, =X, then term A in Equation (20.29) equals whenx, # X, the value of this
geometric sum is

=1

N
27TT(X—Xx
e (e%F) -1
z( ) =m0 (20.30)
u=0 - N —
Therefore, the IDFT gives
1 N— 1
N 20 I(x)N =1(x). (20.31)

We now discuss several of the properties of the discretei€iomansform pair.

Negative frequencies and periodicity in the DFT The representation in complex
exponentials in the DFT employs the following frequencies:

w=>—,u=0,.N-1 (20.32)

In the previous section we discussed the use of negativadrezies in represen-
tations based on complex exponentials. At first sight it blike no negative fre-
quencies are utilized in the DFT. However, the represemtaised by the DFT
(Equation 20.27) iperiodic as a function of the frequency index both the
complex exponentials and their coefficients have a peridd.dfhat is, for any
integer/, for the complex exponentials we have

g N g X gamix _ o Fx (20.33)

iy

and for the coefficients

2mx
u €N Z | 'Tr (U+¢N) Z | |—Wu —i2mul
— (20.34)

= Z]ux)e—'w’“uzuu).

Therefore, for example, the coefficieﬁ(tN — 1) corresponding to frequency
2mN-Y) is the same as the coefficieF(t—l) corresponding to frequencs;r,ﬁ—7T
would be. In general, the latter half of the DFT can be coneidéo correspond
to the negative frequencies. To be more precise, for a r@akedl (x), the DFT
equivalent of the complex-conjugate relationships (2Pa2@ (20.21) is
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N-1 —

f(N—u):X;I(x eI RN zﬁ "Z"Xd

N-1

= %I(X)e*i%nvxu =T(u).

X=

(20.35)

This relation also explains why the DFT seems to have “tooynmarmbers” for
real-valued signals. It consists bf complex-valued numbers, which seems to
contain twice the amount of information as the original sigmhich has\ real-
valued numbers. The reason is that half the information it BFedundant, due
to the relation in Equation (20.35). For example, if you knalwvthe values of
i (u) for ufrom 0 to (N — 1) /2 (assuming\ is odd), you can compute all the rest
by just taking complex conjugates.

Periodicity of the IDFT and the convolution theorem The Fourier-transform
pair implicitly assumes that the sigridk) is periodic: applying a derivation sim-
ilar to (20.34) to the IDFT (20.27) gives

L(x+ ¢N) = 1 (x). (20.36)

This assumption of periodicity is also important for perbidipe most important
mathematical statement about the discrete Fourier tramsftamelythe convo-
lution theoremLoosely speaking, the convolution theorem states thefdhier
transform of the convolution of two signals is the producthad discrete Fourier
transforms of the signals. To be more precise, we have tolaicer effects into
account, i.e. what happens near the beginning and the ergnaiis, and this is
where the periodicity comes into play.

Now we shall derive the convolution theorem. LLet) andH (x) be two signals of
the same lengtN (if they initially have different lengths, one of them camwal/s
be extended by “padding” zeros, i.e. adding a zero signaiag. Denote bfl(u)
andH (u) the Fourier transforms of the signals. Then the product efftburier
transforms is

H(u)i(u) = Ci:H( —|2m’u/N> <z I(k —|2nku/N>

R i2m(¢+k)u/N
= H(£)1 (Kk)e P2HOUN,
22

Making a change of index= /¢ + kyields

(20.37)
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N—1¢+N-1 )
H (u)(u) = ;} S H(O(x—p)e 2l
=0 x=¢
_/Z)[x_ (=gt (20.38)

(+N-1

+ ZN H ()l (x— ¢)e 2PN

sum A

If we assume thdt(x) is periodic with a period oN, then what has been denoted
by sum A in equation (20.38) can be made simpler: since ingbatH (¢) is
constant ané "2™YN js periodic with a period oN, the lower and upper limits
in the sum can simply be changed to O &nrd1, respectively, yielding

~ ~ N—-1rN-1 .
Awit= 5 [ 3 HOlx- e
+ Z{)H((ﬂ (X_g)eIZTIXu/N:|
N71N71X: .
B /Za Z)H(é)l (= et (20.39)
N:ll)\j:l
20 ; (x—0)e —i2mxu/N _ 200 —|2nxu/N
(X)
=O(u),

whereO(u) is the discrete Fourier transform @{x). Notice thaiO(x) is obtained
as a convolution oH(x) andl (x) under the assumption of periodicity. That is,
we define the values of the signal outside of its actual raggesbuming that it is
periodic. (If we want to use the basic definition of convaatiwe actually have
to define the values of the signal up to infinite values of tlikces, because the
definition assumes that the signals have infinite length.g&llesuch an operation
cyclicconvolution.

Equation (20.39) proves the cyclic version of the conveolutheoremthe DFT

of the cyclic convolution of two signals is the product of Bi#€Ts of the signals.
Note that the assumption of cyclicity is not needed in theegaincontinuous-
space version of the convolution theorem; it is a specigberty of the discrete
transform.

In practice, when computing the convolution of two finitedgh signals, the
definition of cyclic convolution is often not what one wartiscause it means that
values of the signals near= 0 can have an effect on the values of the convolution
nearx = N — 1. In most cases, one would like to define the convolution ab th
the effect of finite length is more limited. Usually, this isrte by modifying the
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signals so that the difference between cyclic convolutiat ether finite-length
versions disappear. For example, this can lead to addiregiffing”) zeros at the
edges. Such zero-padding makes it simple to compute caimadusing DFT'’s,
which is usually much faster than using the definitton.

Real- and complex-valued DFT coefficients In general, the coefficienigu) are
complex-valued, except fd?(O) which is always real-valued. However, if the
signal has an even length so t%ts an integer, then

where in the last step we have applied Equation (20.35).€foes, whenN is
even,i () is also real-valued.

The sinusoidal representation from the DFT If N is odd, then starting from
Equation (20.27), a derivation similar to (20.25) gives

(0 Z 2|i(u 27U B

|(x):%+ ‘I\(I ) Cos( ~ <t Zi(u) ) (20.41)
~— Ul - \:wu ,
o wh;ﬁ;u;e 0 Whgn‘;p o  Whenu#0

\l\/l./ u=1 \ N \ ~
=Ag whenu £0 whenu #0 V;:cejrdl;;é_o
andu# 3 andu# § 2 (20.42)
%)
N X
+ N coq T X)
N :wu
=AN 2
2

Comparing Equation (20.41) to Equation (20.25), we can katthe magni-
tudes of the DFT coefficients are divided biyto get the amplitudes of the si-
nusoidals. This corresponds to tlﬁecoefﬁcient in front of the IDFT (20.27),
which is needed so that the DFT and the IDFT form a valid tramsfpair. How-
ever, the placement of this coefficient is ultimately a gesbf convention: the
derivation in Equations (20.29)—(20.31) is still valid fifet coefficientﬁ would
be moved in front of the DFT in Equation (20.26), or even iffbtite IDFT and
DFT equations would have a coeﬁicient% in front. The convention adopted

here in the DFT-IDFT equation pair (equations (20.27) artidd®)) is the same
asin MATLAB.

1 See, for example, the MLAB reference manual entry for the functiconv for details.
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The basis is orthogonal, perhaps up to scaling In terms of a basis representa-
tion, the calculations in Equation (20.29) show that the plex basis vectors
used in DFT are orthogonal to each other. In fact, the dothpecbof two basis
vectors with frequenciesandu, is

N-1 o, o *_N—l 21 X
XZOe U U — XZO (eI-N—(U u)) (20.43)

where we have taken the conjugate of the latter term bechasethow the dot-
product of complex-valued vectors is defined. Now, this st like the “term
A’ in Equation (20.29) with the roles af andx exchanged (as well as the signs
of uandu, flipped and the scaling afchanged). So, the calculations given there
can be simply adapted to show that €o# u., this dot-productis zero. However,
the norms of these basis vectors are not equal to one in tfirgtd®. This does
not change much because it simply means that the inversddramrescales the
coefficients accordingly. The coefficients in the basis giteabtained by just
taking dot-products with the basis vectors (and some riggc#l needed). As
pointed out above, different definitions of DFT exist, andame of them, the
basis vectors are normalized to unit norm, so the basis istlgxarthogonal. (In
such a definition, it is the convolution theorem which neesisading coefficient.)

DFT can be computed by the Fast Fourier Transformation A basic way of
computing the DFT would be to use the definition in Equatiod.Z8). That
would mean that we have to do something |IKé operations, because com-
puting each coefficient needs a sum witherms, and there afd coefficients.
A most important algorithm in signal processing is the Famtrier Transform
(FFT), which computes the DFT using operations which arbefrdeiNlogN,
based on a recursive formula. This is much faster thabecause the logarithm
grows very slowly as a function dfl. Using FFT, one can compute the DFT
for very long signals. Practically all numerical softwaneglementing DFT use
some variant of FFT, and usually the function is cafiéd .

20.3 Two- and three-dimensional discrete Fourier transfoms

The two- and three-dimensional discrete Fourier transéoare conceptually similar
to the one-dimensional transform. The inverse transform loa thought of as a
representation of the image in complex exponentials

1M1

100 = g 3

N-1 ,
20 [(u,v)e2m(W+ ),
V=

x=0,.,M—1,y=0,...N—1, (20.44)
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and the coefficientﬁ(u,v) in this representation are determined by the (forward)
transform

M—1N-1

[(u,v) Z}Zﬁlxy 2§+ )

u=0,..,M—1,v=0,...N—1 (20.45)

The horizontal and vertical frequencies (see Section 28.gage 30) in the repre-
sentation in complex exponentials (Equation (20.44)) are

u =S U=0, M1 (20.46)
2
a&v:%\’, v=0,.. N—1, (20.47)

and the amplitudé,y and phasel, v of the corresponding frequency components
AyyCos Wy uX+ wyy+ Yuy), u=0,....M—-1, v=0,.. ,N—-1, (20.48)

can be “read out” from the magnitude and angle of the compédned coefficient
I(u,v). Ina basis interpretation, the DFT thus uses a basis withrifft frequencies,
phasesand orientations.

Computationally, the two-dimensional DFT can be obtainedadlows. First,
compute a one-dimensional DFT along for each row, i.e. ferdhe-dimensional
slice given by fixingy. For each row, replace the original valu€s, y) by the DFT
coefficients. Denote these bgu,y). Then, just compute a one-dimensional DFT for
each column, i.e. for each fixed This gives the final two-dimensional DRTu, V).
Thus, the two-dimensional DFT is obtained by applying the-dmensional DFT
twice; typically, an FFT algorithm is used. The reason whig ik possible is the
following relation, which can be obtained by simple reagament of the terms in
the definition in Equation (20.45):

f(u,v) = ME: [Nz: (X, y)e—iZ"“NX] e 12y (20.49)
y=0 | %=

in which the term in brackets is just the one-dimensional BéTa fixedy.
The three-dimensional discrete Fourier transform paieifsreéd similarly:

M IN-1T-1
ux, VY wt
S 3 3 T i),
u=0 v=

x=0,.,M—-1,y=0,.,.N—-1,t=0,..T—1, (20.50)

HO6y.) MNT
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M—1IN-1T-1

[(u,v,w) Z)zozjlxy, —i2n(§f )

=0,.,M—1,v=0,...N—1,w=0,...,T—1, (20.51)

The two- and three-dimensional discrete Fourier transfoemjoy a number of
similar properties as the one-dimensional transform. kangle, the properties of
two-dimensional transform pair include:

Complex-conjugate symmetry i (—u, —v) = I (u,V)

Convolution theorem holds when the convolution is definethasyclic variant
Periodicity of the transform 1(u,v) = [(u+M,v) = i (u,v+N) =i (u+N,v+M)
Periodicity of the inverse 1(x,y) =1(x+M,y) =[(X,y+N) =1(x+N,y+M)






Chapter 21
Estimation of non-normalized statistical models

Statistical models are often based on non-normalized ibityadensities. That
is, the model contains an unknown normalization constardsetcomputation is
too difficult for practical purposes. Such models were emtered, for example, in
Sections 13.1.5 and 13.1.7. Maximum likelihood estimaignot possible with-
out computation of the normalization constant. In this ¢Bapve show how such
models can be estimated using a different estimation method

It is not necessary to know this material to understand tiveldpments in this
book; this is meant as supplementary material.

21.1 Non-normalized statistical models

To fix the notation, assume we observe a random vectdR" which has a probabil-
ity density function (pdf) denoted bgy(.). We have a parametrized density model
p(.;0), where6 is anm-dimensional vector of parameters. We want to estimate the
parameted from observations af, i.e. we want to approximatg (.) by p(.; 8) for
the estimated parameter val@e(To avoid confusion between the random variable
and an integrating variable, we u&eas the integrating variable insteadxoifh what
follows.)

The problem we consider here is that we only are able to coenet pdf given
by the model up to a multiplicative constantZl(0):

1
2(6)

That is, we do know the functional form a@f as an analytical expression (or any
form that can be easily computed), but we rtat know how to easily computg
which is given by an integral that is often analytically axdtable:

p(é.8) = q(é;e)

1 This chapter is based on (Hyvarinen, 2005), first publistredournal of Machine Learning
Research. Copyright retained by the author.

437
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2(0)= | a(&:0)de
EeRN

In higher dimensions (in fact, for almost any> 2), the numerical computation of
this integral is practically impossible as well.

Thus, maximum likelihood estimation cannot be easily penfed. One solution
is to approximate the normalization constZnising Monte Carlo methods, see e.g.
(Mackay, 2003). In this chapter, we discuss a simpler metlatidd score matching.

21.2 Estimation by score matching

In the following, we use extensively the gradient of the tnsity with respect to
the data vector. For simplicity, we call this the score fimtt although according
the conventional definition, it is actually the score fuantiith respect to a hypo-
thetical location parameter (Schervish, 1995). For theehddnsity, we denote the
score function byp(&;0):

PEET (w(E0)
W(E;8) = : = : = Uglogp(&;6)
%ﬁ Un(&;0)

The point in using the score function is that it does not depemnZ(0). In fact we
obviously have

W(§;6) =0glogq(é;6) (21.1)

Likewise, we denote by, (.) = Og logpx(.) the score function of the distribution
of observed data. This could in principle be estimated by computing the geatli
of the logarithm of a non-parametric estimate of the pdf—beill see below that
no such computation is necessary. Note that score funcii@sappings fronk"
toR".

We now propose that the model is estimated by minimizing ¥peeted squared
distance between the model score functjdiy 8) and the data score functign(.).
We define this squared distance as

06) =5 [ pE)I0(E:0) — wy(6)Pae (212)

EecRN

Thus, ourscore matchingstimator off is given by
6 =arg minJ(6)

The motivation for this estimator is that the score functiam be directly com-
puted fromq as in Equation (21.1), and we do not need to computelowever,
this may still seem to be a very difficult way of estimatifigsince we might have to
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compute an estimator of the data score functigrirom the observed sample, which
is basically a non-parametric estimation problem. Howaveisuch non-parametric
estimation is needed. This is because we can use a simpetpartial integration
to compute the objective function very easily, as shown leyfttiowing theorem:

Theorem 1. Assume that the model score functip(€; ) is differentiable, as well
as some weak regularity conditiofs.
Then, the objective function J in Equation (21.2) can beesged as

J(6) = (5)2{&%(5;9)4-%%(5;9)2 d& + const. (21.3)

- EeRn =
where the constant does not dependdon

dlogq(é; )
d2¢

is the i-th element of the model score function, and

dyi(&;0)  9%logq(&;0)
723 B dfiz

Yi(&;0)=

oY (&;0) =

is the partial derivative of the i-th element of the modelredanction with respect
to the i-th variable.

The proof, given in (Hyvarinen, 2005), is based on a simité bf partial integra-
tion.

The theorem shows the remarkable fact that the squaredhdéstaf the model
score function from the data score function can be computesd mple expecta-
tion of certain functions of the non-normalized model pdlfve have an analytical
expression for the non-normalized density functgrthese functions are readily
obtained by derivation using Equation (21.1) and takinghfer derivatives.

In practice, we haveTl observations of the random vectar denoted by
X(1),...,X(T). The sample version afis obviously obtained from Equation (21.3)
as

Je) = % ii {6; gi(X(t); 0) + %wi (x(t); 8)?| + const. (21.4)
t=1i=

which is asymptotically equivalent tbdue to the law of large numbers. We propose
to estimate the model by minimization #in the case of a real, finite sample.

One may wonder whether it is enough to minimiz& estimate the model, or
whether the distance of the score functions can be zero fiereint parameter val-
ues. Obviously, if the model is degenerate in the sensewladifferent values 0®
give the same pdf, we cannot estimétdf we assume that the model is not degen-

2 Namely: the data pdfpy(&) is differentiable, the expectation&{|w(x;0)|?} and
Ex{|| Wy (X)||} are finite for anyd, andpy (£)W(&; 8) goes to zero for ang when||& || — .
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erate, and thaq > 0 always, we have local consistency as shown by the following
theorem and the corollary:

Theorem 2. Assume the pdf of follows the model: g.) = p(.;0*) for someb*.
Assume further that no other parameter value gives a pdfisnequaf to p(.; 8*),
and thatd&;6) > Oforall £,6. Then

J(0)=0<6=0"
For a proof, see (Hyvarinen, 2005).

Corollary 1. Under the assumptions of the preceding Theorems, the saichimg
estimator obtained by minimization dfs consistent, i.e. it converges in probability
towards the true value & when sample size approaches infinity, assuming that the
optimization algorithm is able to find the global minimum.

The corollary is proven by applying the law of large numifers.

This result of consistency assumes that the global minimudisfound by the
optimization algorithm used in the estimation. In practités may not be true, in
particular because there may be several local minima. Tihenconsistency is of
local nature, i.e., the estimator is consistent if the oftation iteration is started
sufficiently close to the true value.

21.3 Example 1: Multivariate gaussian density

As a very simple illustrative example, consider estimatibthe parameters of the
multivariate gaussian density:

1 1
XM, )= ————exp(—=(x— ) M (x—
POGM. H) = Zag Ty R 5 (X = 1) M (X = 4))
whereM is a symmetric positive-definite matrix (the inverse of tlgariance ma-
trix). Of course, the expression f@ris well-known in this case, but this serves as
an illustration of the method. As long as there is no chanamafusion, we us&
here as the generaidimensional vector. Thus, here we have

a06) = expl—3 (x— 1) M (x — 1) (215)

and we obtain
YXM, p) = -M(x—p)

3 In this theorem, equalities of pdf’s are to be taken in thessesf equal almost everywhere with
respect to the Lebesgue measure.

4 As sample size approaches infinifiyconverges td (in probability). Thus, the estimator con-
verges to a point wher&is globally minimized. By Theorem 2, the global minimum idaue and
found at the true parameter value (obvioudlgannot be negative).
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and
AP (X;M, ) = —m
Thus, we obtain

]
3w = < 53 -m+ SO -WTMM () )] (21.6)
t= 1

To minimize this with respect ta, it is enough to compute the gradient

- 1T
Opd=MM pt— MM = Zx(t)
t=

which is obviously zero if and only ift is the sample averagey [ ; x(t). This is
truly a minimum because the matti#M that defines the quadratic form is positive-
definite.

Next, we compute the gradient with respecMowhich gives

T 1 T

Omd=—1+M %t (X(t) = ) (x(t) = )T + T [t;(x(t) —W)(X(t) — )M

which is zero if and only ifM is the inverse of the sample covariance matrix
1501 (x(t) — u)(x(t) — u)T, which thus gives the score matching estimate.

Interestingly, we see that score matching gives exactlystrae estimator as
maximum likelihood estimation. In fact, the estimatorsidentical for any sample
(and not just asymptotically). The maximum likelihood esitor is known to be
consistent, so the score matching estimator is consissenet.

This example also gives some intuitive insight into the @pfe of score match-
ing. Let us consider what happened if we just maximized themarmalized log-
likelihood, i.e., log ofg in Equation (21.5). It is maximized when the scale param-
eters inM are zero, i.e., the model variances are infinite and the pcibiispletely
flat. This is because then the model assigns the same prityp&iall possible val-
ues ofx(t), which is equal to 1. In fact, the same applies to the secomd ile
Equation (21.6), which thus seems to be closely connectethtamization of the
non-normalized log-likelihood.

Therefore, the first term in Equation (21.3) and Equationg§®involving second
derivatives of the logarithm ofl, seems to act as a kind of a normalization term.
Here it is equal to- 3; mj. To minimize this, them; should be made as large (and
positive) as possible. Thus, this term has the oppositeteftethe second term.
Since the first term is linear and the second term polynomikl j the minimum of
the sum is different from zero.

A similar interpretation applies to the general non-gaarssiase. The second
term in Equation (21.3), expectation of the norm of scorecfiom, is closely re-
lated to maximization of non-normalized likelihood: if therm of this gradient is
zero, then in fact the data point is in a local extremum of the-normalized log-
likelihood. The first term then measures what kind of an ewtrm this is. If it is



442 21 Estimation of non-normalized statistical models

a minimum, the first term is positive and the valueJaé increased. To minimize

J, the first term should be negative, in which case the extrensuanmaximum.

In fact, the extremum should be as steep a maximum (as opposeélat maxi-
mum) as possible to minimizk This counteracts, again, the tendency to assign the
same probability to all data points that is often inhererthi maximization of the
non-normalized likelihood.

21.4 Example 2: Estimation of basic ICA model

Next, we show how score matching can be used in the estimatitire basic ICA
model, defined as

logp(x) = i G(Wp X) +Z (W, ..., Wp) (21.7)
=1

Again, the normalization constant is well-known and eqaabg|detwW| where the
matrix W has the vectors; as rows, but this serves as an illustration of our method.
Here, we choose the distribution of the component® be so-called logistic

with /3
T 4/3
G(s) = —2logcosti——=s) — —
(5 = ~2logeosit—=s) — =
This distribution is normalized to unit variance as typiicathe theory of ICA. The
score function of the model in (21.7) is given by

POGW) = 5 wig(wix) (21.8)
k=1

where the scalar nonlinear functigns given by

o(s) = —%tanr(;%s)

The relevant derivatives of the score function are given by:
c T
A(x) = 3 wWig (Wix)

k=1

and the sample version of the objective functiois given by
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g(wex(t)g(wix(t) (21.9)

21.5 Example 3: Estimation of an overcomplete ICA model

Finally, we how score matching can be applied in the casesobtercomplete basis
model in Section 13.1.5. The likelihood is defined almosnasduation (21.7), but
the number of components is larger than the dimension of the dataand we
introduce some extra parameters. The likelihood is given by

3

logp(x) = § axG(WEX) +Z(W1,...,Wn, d1,...,0n) (21.10)
1

where the vectorsv, = (W, . ..,Wkn) are constrained to unit norm (unlike in the
preceding example), and tlog are further parameters. We introduce here the extra
parametersr, to account for different distributions for different preojgons. Con-
strainingax = 1 andm = n and allowing thewy to have any norm, this becomes the
basic ICA model.

We have the score function

m
WOGW, a1, om) = 3 awig(Wlx)
k=1

whereg is the first derivative of5. Going through similar developments as in the
case of the basic ICA model, the sample version of the olgétinctionJ can be
shown to equal

B m 1 T T 1 m - 1 T . -
J=3 acq 3 G0x0)+5 5 a3 axO)gu]x)

(21.11)
Minimization of this function thus enables estimation of thvercomplete ICA
model using the energy-based formulation. This is how weaiabt the results in
Figure 13.1 on page 298.

21.6 Conclusion

Score matching is a simple method to estimate statisticalatsdn the case where
the normalization constant is unknown. Although the edfiomeof the score func-
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tion is computationally difficult, we showed that the distarof data and model
score functions is very easy to compute. The main assungiiothe method are:
1) all the variables are continuous-valued and defined BYeR) the model pdf is
smooth enough.

We have seen how the method gives an objective function winisienization
enables estimation of the model. The objective functiorysctlly given as an
analytical formula, so any classic optimization methodihsas gradient methods,
can be used to minimize it.

Two related methods are contrastive divergence (Hintoi®22@nd pseudo-
likelihood (Besag, 1975). The relationships between timesthods are considered
in (Hyvarinen, 2007).
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action potential, 51
aliasing, 355
and rectangular sampling grid, 111
of phases of highest frequencies, 112
reducing it by dimension reduction, 113
amodal completion, 386
amplitude, 29
amplitude response, 33, 426
analysis by synthesis, 8
anisotropy, 121, 152, 240, 258, 344
argument (of Fourier coefficient), 424
aspect ratio, 58, 275
attention, 318
audition, 336
autocorrelation function, 119
axon, 51

basis
definition, 419
illustration, 39
orthogonal, 40
overcompleteseeovercomplete basis
undercomplete, 40

basis vector, 290

Bayes’ rule, 85

Bayesian inference, 10
and cortical feedback, 307
as higher-order learning principle, 382
definition, 83
in overcomplete basis, 292

blue sky effect, 216

bottom-up, 307, 308

bubble coding, 366

canonical preprocessinggepreprocessing,
canonical
category, 314

causal influence, 401
central limit theorem, 178, 231
channel
colour (chromatic), 322
frequencyseefrequency channels
information, 192
limited capacity, 193, 203
ON and OFF, 301
chromatic aberration, 323
coding, 13, 185
bubble, 366
predictive, 316
sparseseesparse coding
collator units, 284
collector units, 284
colour, 321
colour hexagon, 323
competitive interactions, 315
complex cells, 62, 223, 226, 228
energy modelseeenergy model
hierarchical model critisized, 385
in ISA, 238
in topographic ICA, 254, 259
interactions between, 63
complex exponentials, 425
compression, 13, 185
cones, 322
contours, 284, 308
contrast, 56
contrast gain control, 64, 236
and normalization of variance, 214
relationship to ISA, 234
contrastive divergence, 296
convexity, 172, 173, 227, 245
definition, 141
convolution, 28, 423
correlation
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and Hebb's rule, 401

between pixels, 99

of squares (energiesjeeenergy correlations
correlation coefficient, 80
cortex, 54

extrastriate, 273

striate,seeV1
covariance

and Hebb's rule, 401

definition, 80
covariance matrix, 80

and PCA, 104

connection to power spectrum, 119
curvelets, 388
cytochrome oxidase blobs, 250, 327

DC component, 97
is not always sparse, 176, 180
removal, 65, 97, 214
as part of canonical preprocessing, 113
dead leaves model, 388
decorrelation
deflationary, 146
symmetric, 147
dendrite, 53
derivatives, 395, 408
determinant
considered constant in likelihoods, 171
definition, 418
in density of linear transform, 167
dimension reduction
as part of canonical preprocessing, 114
by PCA, 108
Dirac filter, 19
discrete cosine transform, 194
disparity, 328
divisive normalization, 65, 215, 236
dot-product, 416
double opponent, 326

ecological adaptation, 6
eigensignal, 425
eigenvalue decomposition
and Fourier analysis, 125
and PCA, 106, 123
and translation-invariant data, 125
definition, 123
finds maximum of quadratic form, 124
of covariance matrix, 123
eigenvectors / eigenvaluesgeeigenvalue
decomposition
embodiment, 389
end-stopping, 315
energy correlations, 211, 230, 245, 355

Index

spatiotemporal, 359, 365
temporal, 350
energy model, 62, 253, 274
as subspace feature in ISA, 225
learning by sparseness, 227
entropy
and coding length, 189
definition, 188
differential, 191
as measure of non-gaussianity, 192
maximum, 192
minimum, 194
of neuron outputs, 197
estimation, 89
maximum a posteriori (MAP), 90
maximum likelihood,seelikelihood,
maximum
Euler's formula, 424
excitation, 54
expectation
definition, 79
linearity, 80
exponential distribution, 176
extrastriate cortex, 66, 307, 385

FastICA, 150, 347
definition, 411
feature, 18
output statistics, 19
feedback, 307, 405
FFT, 433
filling-in, 386
filter
linear, 25
spatiotemporal, 337
temporally decorrelating, 345
firing rate, 53
modelled as a function of stimulus, 55
spontaneous, 53
Fourier amplitudegeepower spectrum)
1/f behaviour, 116, 386
Fourier analysisseeFourier transform
Fourier energy, 33, 63
Fourier power spectrunseepower spectrum
Fourier space, 424
Fourier transform, 29, 38, 423
connection to PCA, 107
definition, 423
discrete, 38, 428
fast, 433
spatiotemporal, 338
two-dimensional, 433
frame (in image sequences), 337
frequency
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negative, 426 independence
frequency channels, 59, 279, 285 as nonlinear uncorrelatedness, 160
produced by ICA, 182 definition, 77
frequency-based representation, 29, 338 implies uncorrelatedness, 81
as a basis, 40 increased by divisive normalization, 218
function of components, 161
log cosh, 143, 150, 172, 198, 276, 297, 299,independent component analysis, 159
347, 350, 403, 412 after variance normalization, 217
neighbourhood, 250 and Hebb's rule, 402
nonlinear,seenonlinearity and mutual information, 195
tanh,seenonlinearity, tanh and non-gaussianity, 161
and optimal sparseness measures, 172
Gabor filter, 44, 274 connection to sparse coding, 170
Gabor function, 44, 58, 285, 324, 355 definition, 161
in complex cell model, 63 for preprocessed data, 162
gain control, contrasgeecontrast gain control image synthesis, 169
gain control, luminance, 65 impossibility for gaussian data, 164
ganglion cells, 54, 65, 127 indeterminacies, 161
learning receptive fields, 130 likelihood, seelikelihood, of ICA
number compared to V1, 290 maximum likelihood, 167
receptive fields, 56 need not give independent components, 209
gaussian distribution nonlinear, 234
and PCA, 115 of complex cell outputs, 276
and score matching estimation, 440 of colour images, 323, 330
generalized, 173 of image sequences, 347
multidimensional, 115 of natural images, 168
one-dimensional, 72 optimization in, 405
spherical symmetry when whitened, 164 pdf defined by, 166
standardized, 72, 81 score matching estimation, 442
uncorrelatedness implies independence, 165 topographic, 252
gaze direction, 318 vs. whitening, 163
gradient, 395 independent subspace analysis, 223
gradient method, 396 as nonlinear ICA, 234
conjugate, 410 generative model definition, 229
stochastic, 402 image synthesis, 241
with constraints, 398 of natural images, 235
Gram-Schmidt orthogonalization, 156 special case of topographic ICA, 254
grandmother cell, 54 special case of two-layer model, 266
superiority over ICA, 243
Hebb’s rule, 400 infomax, 196
and correlation, 401 basic, 197
and orthogonality, 405 nonlinear neurons, 198
Hessian, 408 with non-constant noise variance, 199
horizontal interactions information flow
seelateral interactions 307 maximization seeinfomax
information theory, 13, 185
ice cube model, 249 critique of application, 202
image, 3 inhibition, 54
image space, 11 integrating out, 266
image synthesis invariance
by ICA, 169 modelling by subspace features, 224
by ISA, 241 not possible with linear features, 223
by PCA, 116 of features, importance, 242

impulse response, 28, 423 of ISA features, 238
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rotational (of image)seeanisotropy
shift (of a system), 423
to orientation, 229, 247
to phase, of a feature
and sampling grid, 113
in complex cells, 63
in ISA, 228, 235
to position, 224, 242
to scale, 386, 388
and 1/ f2 power spectrum, 118
to translation, of an image, 125
and relation to PCA, 106
inverse of matrix, 419

kurtosis, 173, 174, 350
and classification of distributions, 175
and estimation of ICA, 180
definition, 140

Laplacian distribution, 172, 312
generalized, 173
two-dimensional generalization, 230
lateral geniculate nucleuseelL GN
lateral interactions, 307, 315, 318, 364, 385
LGN, 54, 203
learning receptive fields, 130, 345
receptive fields characterized, 56
likelihood, 89, 91, 167
and divisive normalization, 215
maximum, 90, 382, 438
obtained by integrating out, 267
of ICA, 168, 183
and infomax, 198
and differential entropy, 195
and optimal sparseness measures, 172
as a sparseness measure, 170
optimization, 397
of ISA, 229
of topographic ICA, 253, 256
of two-layer model, 267
used for deciding between models, 244
linear features
cannot be invariant, 223
linear-nonlinear model, 61
local maximum, 399
local minimum, 399
localization
simultaneous, 47
log cosh,seefunction, log cosh

Markov random field, 297, 384, 389
matrix

definition, 417

identity, 419

Index

inverse, 419
of orthogonal matrix, 421
optimization of a function of, 397
orthogonal, 111
matrix square root, 129
and orthogonalization, 399
and whitening, 130
maximum entropy, 192
maximum likelihoodseelikelihood, maximum
metabolic economy, 155, 382
minimum entropy, 194
coding in cortex, 196
model
descriptive, 16
different levels, 393
energy,seeenergy model
energy-based, 264, 294
generative, 8, 264
normative, 16, 309, 382
physically inspired, 388
predictive, 273, 285
statistical, 88, 393
two-layer, 264
multilayer models, 389
multimodal integration, 336
music, 336
mutual information, 192, 195, 197

natural images
as random vectors, 69
definition, 12
sequences of, 337
transforming to a vector, 69
nature vs. nurture, 382
neighbourhood function, 250
neuron, 51
Newton’s method, 407
noise
added to pixels, 291
reduction and feedback, 308
reduction by thresholding, 311
white, seewhite noise
non-gaussianity
and independence, 178
different forms, 175
maximization and ICA, 177
non-negative matrix factorization, 300
with sparseness constraints, 302
nonlinearity, 139
convex, 141, 172, 173, 227, 232
gamma, 322
Hebbian, 403
in FastICA, 276, 411
in overcomplete basis, 293
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in three-layer model, 309

square root, 142, 172, 236

tanh, 276, 347, 403, 412
norm, 416
normal distributionseegaussian distribution
normalization constant, 270, 295, 438

objective function, 394
ocular dominance, 330
optimization, 393
constrained, 398
under orthogonality constraint, 398
orientation columns, 250
orthogonality
and Hebb's rule, 405
equivalent to uncorrelatedness, 111
of matrix or transformation, 420
of vectors, 416
of vectors vs. of matrix, 111
prevents overcompleteness, 289
orthogonalization
as decorrelation, 146
Gram-Schmidt, 156
symmetric, 399
orthonormality, 111
overcomplete basis
and end-stopping, 315
and PCA, 291
definition, 291
energy-based model, 294
score matching estimation, 443
generative model, 290

partition function,seenormalization constant
PCA, seeprincipal component analysis
pdf, 71

non-normalized, 437
phase, 29, 424

its importance in natural images, 120
phase response, 33, 426
photoreceptors, 54

and colour, 322
pinwheels, 258, 271
place cells, 336
plasticity, 400

spike-time dependent, 401
pooling, 226, 254

frequency, 277
positive matrix factorization, 300
posterior distribution, 84, 85, 308
power spectrum, 33

1/ 2 behaviour, 116, 386

and covariances, 119

and gaussian model, 120
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and PCA, 120
its importance in natural images, 120
of natural images, 116
spatiotemporal, 341
Wiener-Khinchin theorem, 119
preprocessing
by DC removal seeDC component, removal
canonical, 113, 146, 150, 181, 227, 236, 253
how it changes the models, 162
in sparse coding, 144
input to visual cortex, 404
inversion of, 181
primary visual cortexseeV1
principal component analysis
and Hebb's rule, 403
and whitening, 109
as anti-aliasing, 111, 113
as dimension reduction, 108
as generative model, 115
as part of canonical preprocessing, 113
as preprocessing, 107
components are uncorrelated, 124
computation of, 104, 122
connection to Fourier analysis, 107
definition, 100
definition is unsatisfactory, 103
lack of uniqueness, 103, 125
mathematics of, 122
of colour images, 323
of natural images, 102, 104
of stereo images, 329
principal subspace, 108
prior distribution, 6, 10, 85, 86, 166, 292
non-informative, 86
prior information,seeprior distribution
probabilistic modelseemodel, statistical
probability
conditional, 75
joint, 73
marginal, 73
probability density (function)seepdf
products of experts, 296
pseudoinverse, 421
pyramids, 387

quadrature phase, 44, 150, 274
in complex cell model, 63

random vector, 70

receptive field, 55, 57
center-surround, 56, 127, 326, 345
classical and non-classical, 316
definition is problematic, 294, 315
Gabor model, 58
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linear model, 56
space-time inseparable, 340
space-time separable, 339
spatiotemporal, 338
temporal, 338
vs. feature (basis) vector, 180
Vs. synaptic strength, 404
rectification, 65, 347, 355
half-wave, 61
redundancy, 13, 190
as predictability, 14
problems with, 190
reduction, 15
representation, 18
frequency-basedseefrequency-based
representation
linear, 18, 38
retina, 54
learning receptive fields, 130
receptive fields characterized, 56
retinotopy, 65, 250
reverse correlation, 57
RGB data, 322

sample, 88
two different meanings, 88
sampling, 3, 111, 328, 347
saturation, 61, 217
scale mixture, 177, 266
scaling laws, 386
score matching, 296, 382, 438
segmentation, 386
selectivities
of ISA features, 238
of simple cells, 58
of sparse coding features, 152
sequences
of natural images, 337
shrinkage, 312, 404
simple cells, 56, 254
distinct from complex cells?, 384
Gabor models, 58
interactions between, 63
linear models, 56
nonlinear responses, 59
selectivities, 58
sinusoidal, 425
skewness, 175, 176
in natural images, 176
slow feature analysis, 367
linear, 369
quadratic, 371
sparse, 374
space-frequency analysis, 41

Index

sparse coding, 137
and compression, 194
and Hebb's rule, 402, 403
connection to ICA, 170
metabolic economy, 155, 382
optimization in, 405
results with natural images, 145, 150
special case of ICA, 179
utility, 155
sparseness
as non-gaussianity, 175
definition, 137
lifetime vs. population, 148
measure, 139
absolute value, 143
by convex function of square, 141
kurtosis, 140
log cosh, 143
optimal, 159, 172
relation to tanh function, 403
minimization of, 180
of feature vs. of representation, 148
why present in images, 175
spherical symmetry, 231
spike, 51
square root
of a matrix,seematrix square root
statistical-ecological approach, 21
steerable filters, 229, 247, 388
step size, 396, 408
stereo vision, 328
stereopsis, 328
striate cortexseeV1
sub-gaussianity, 175
subgaussianity
in natural images, 176
subspace features, 224, 225
super-gaussianity, 175

temporal coherence, 349
and spatial energy correlations, 359, 365
temporal response strength correlatisag
temporal coherence
thalamus, 54
theorem
central limit, 178, 231
of density of linear transform, 167
Wiener-Khinchin, 119
three-layer model, 276, 308
thresholding
and feedback, 312, 314
in simple cell response, 61
top-down, 307, 308
topographic grid, 250
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topographic ICA, 252
connection to ISA, 254
optimization in, 405

topographic lattice, 250

topographic organization, 65, 249
utility, 254

transmission
of data, 187

transpose, 418

tuning curve, 59
disparity, 333
of ISA features, 236
of sparse coding features, 152

two-layer model
energy-based, 270
fixed, 274
generative, 264

uncertainty principle, 47
uncorrelatedness
definition, 80
equivalent to orthogonality, 111
implied by independence, 81
nonlinear, 160
uniform distribution, 78
is sub-gaussian, 176
maximum entropy, 192
unsupervised learning, 385

V1, see alsasimple cellsandcomplex cells, 55
V2, 203, 286, 307
V4, 66
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V5, 66
variance
as basis for PCA, 100
changing (non-constant), 177, 199, 213,
231, 265, 351
definition, 80
variance variable, 177, 213, 231, 265
vector, 415
vectorization, 70
vision, 3
visual space, 336

wavelets, 221, 387
learning them partly, 388

waves
retinal travelling, 383

white noise, 57, 197, 198, 281, 366
definition, 82

whitening, 109
and center-surround receptive fields, 126
and LGN, 126, 130
and retina, 126, 130
as part of canonical preprocessing, 114
by matrix square root, 130
by PCA, 109
center-surround receptive fields, 130
filter, 130
patch-based and filter-based, 127
symmetric, 130

Wiener-Khinchin theorem, 119

wiring length minimization, 135, 254
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