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Preface

Aims and scope

This book is both an introductory textbook and a research monograph on modelling
the statistical structure of natural images. In very simpleterms, “natural images” are
photographs of the typical environment where we live. In this book, their statistical
structure is described using a number of statistical modelswhose parameters are
estimated from image samples.

Our main motivation for exploring natural image statisticsis computational mod-
elling of biological visual systems. A theoretical framework which is gaining more
and more support considers the properties of the visual system to be reflections of
the statistical structure of natural images, because of evolutionary adaptation pro-
cesses. Another motivation for natural image statistics research is in computer sci-
ence and engineering, where it helps in development of better image processing and
computer vision methods.

While research on natural image statistics has been growingrapidly since the
mid-1990’s, no attempt has been made to cover the field in a single book, providing
a unified view of the different models and approaches. This book attempts to do just
that. Furthermore, our aim is to provide an accessible introduction to the field for
students in related disciplines.

However, not all aspects of such a large field of study can be completely covered
in a single book, so we have had to make some choices. Basically, we concentrate
on the neural modelling approaches at the expense of engineering applications. Fur-
thermore, those topics on which the authors themselves havebeen doing research
are, inevitably, given more emphasis.

xvii



xviii Preface

Targeted audience and prerequisites

The book is targeted for advanced undergraduate students, graduate students and re-
searchers in vision science, computational neuroscience,computer vision and image
processing. It can also be read as an introduction to the areaby people with a back-
ground in mathematical disciplines (mathematics, statistics, theoretical physics).

Due to the multidisciplinary nature of the subject, the bookhas been written so
as to be accessible to an audience coming from very differentbackgrounds such as
psychology, computer science, electrical engineering, neurobiology, mathematics,
statistics and physics. Therefore, we have attempted to reduce the prerequisites to a
minimum. The main thing needed are basic mathematical skills as taught in intro-
ductory university-level mathematics courses. In particular, the reader is assumed to
know the basics of

• univariate calculus (e.g. one-dimensional derivatives and integrals)
• linear algebra (e.g. inverse matrix, orthogonality)
• probability and statistics (e.g. expectation, probability density function, variance,

covariance)

To help readers with a modest mathematical background, a crash course on linear
algebra is offered at Chapter 19, and Chapter 4 reviews probability theory and statis-
tics on a rather elementary level.

No previous knowledge of neuroscience or vision science is necessary for reading
this book. All the necessary background on the visual systemis given in Chapter 3,
and an introduction to some basic image processing methods is given in Chapter 2.

Structure of the book and its use as a textbook

This book is a hybrid of a monograph and an advanced graduate textbook. It starts
with background material which is rather classic, whereas the latter parts of the book
consider very recent work with many open problems. The material in the middle is
quite recent but relatively established.

The book is divided into the following parts

Introduction , which explains the basic setting and motivation.
Part I , which consists of background chapters. This is mainly classic material
found in many textbooks in statistics, neuroscience, and signal processing. How-
ever, here it has been carefully selected to ensure that the reader has the right
background for the main part of the book.
Part II starts the main topic, considering the most basic models fornatural image
statistics. These models are based on the statistics of linear features, i.e. linear
combinations of image pixel values.
Part III considers more sophisticated models of natural image statistics, in which
dependencies (interactions) of linear features are considered, which is related to
computing nonlinear features.
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Part IV applies the models already introduced to new kinds of data: colour im-
ages, stereo images, and image sequences (video). Some new models on the tem-
poral structure of sequences are also introduced.
Part V consists of a concluding chapter. It provides a short overview of the book
and discusses open questions as well as alternative approaches to image mod-
elling.
Part VI consists of mathematical chapters which are provided as a kind of an ap-
pendix. Chapter 18 is a rather independent chapter on optimization theory. Chap-
ter 19 is background material which the reader is actually supposed to know; it
is provided here as a reminder. Chapters 20 and 21 provide sophisticated supple-
mentary mathematical material for readers with such interests.

Dependencies of the parts are rather simple. When the book isused as a textbook,
all readers should start by reading the first 7 chaptersin the order they are given
(i.e. Introduction, Part I, and Part II except for the last chapter), unless the reader is
already familiar with some of the material. After that, it ispossible to jump to later
chapters in almost any order, except for the following:

• Chapter 10 requires Chapter 9, and Chapter 11 requires Chapters 9 and 10.
• Chapter 14 requires Section 13.1.

Some of the sections are marked with an asterisk *, which means that they are more
sophisticated material which can be skipped without interrupting the flow of ideas.

An introductory course on natural image statistics can be simply constructed by
going through the firstn chapters of the book, wheren would typically be between
7 and 17, depending on the amount of time available.

Referencing and Exercises

To keep the text readable and suitable for a textbook, the first 11 chapters do not
include references in the main text. References are given ina separate section at
the end of the chapter. In the latter chapters, the nature of the material requires
that references are given in the text, so the style changes toa more scholarly one.
Likewise, mathematical exercises and computer assignments are given for the first
10 chapters.

Code for reproducing experiments

For pedagogical purposes as well as to ensure the reproducibility of the experiments,
the MatlabTM code for producing most of the experiments in the first 11 chapters,
and some in Chapter 13, is distributed on the Internet at

www.naturalimagestatistics.net
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This web site will also include other related material.
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Chapter 1
Introduction

1.1 What this book is all about

The purpose of this book is to present a general theory of early vision and image pro-
cessing. The theory is normative, i.e. it says what is the optimal way of doing these
things. It is based on construction of statistical models ofimages combined with
Bayesian inference. Bayesian inference shows how we can useprior information
on the structure of typical images to greatly improve image analysis, and statistical
models are used for learning and storing that prior information.

The theory predicts what kind of features should be computedfrom the incoming
visual stimuli in the visual cortex. The predictions on the primary visual cortex
have been largely confirmed by experiments in visual neuroscience. The theory also
predicts something about what should happen in higher areassuch as V2, which
gives new hints for people doing neuroscientific experiments.

Also, the theory can be applied on engineering problems to develop more effi-
cient methods for denoising, synthesis, reconstruction, compression, and other tasks
of image analysis, although we do not go into the details of such applications in this
book.

The statistical models presented in this book are quite different from classic sta-
tistical models. In fact, they are so sophisticated that many of them have been devel-
oped only during the last 10 years, so they are interesting intheir own right. The key
point in these models is the non-gaussianity (non-normality) inherent in image data.
The basic model presented is independent component analysis, but that is merely a
starting point for more sophisticated models.

A preview of what kind of properties these models learn is in Figure 1.1. The
figure shows a number of linear features learned from naturalimages by a statistical
model. Chapters 5–7 will already consider models which learn such linear features.
In addition to the features themselves, the results in Figure 1.1 show another visu-
ally striking phenomenon, which is their spatial arrangement, or topography. The
results in the figure actually come from a model called Topographic ICA, which
is explained in Chapter 11. The spatial arrangement is also related to computation

1
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of nonlinear, invariant features, which is the topic of Chapter 10. Thus, the result
in this figure combines several of the results we develop in this book. All of these
properties are similar to those observed in the visual system of the brain.

Fig. 1.1: An example of the results we will obtain in this book. Each small square in the image
is one image feature, grey-scale coded to that middle grey means zero, white positive, and black
negative values. The model has learned local, oriented features which are similar to those computed
by cells in the brain. Furthermore, the model uses the statistical dependencies of the features to
arrange them on a 2D surface. Such a spatial arrangement can also be observed in the visual cortex.
The arrangement is also related to computation of nonlinear, invariant features.

In the rest of this introduction, we present the basic problem of image analysis,
and an overview of the various ideas discussed in more detailin this book.
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1.2 What is vision?

We can define vision as the process of acquiring knowledge about environmental ob-
jects and events by extracting information from the light the objects emit or reflect.
The first thing we will need to consider is in what form this information initially is
available.

The light emitted and reflected by objects has to be collectedand then measured
before any information can be extracted from it. Both biological and artificial sys-
tems typically perform the first step by projecting light to form a two-dimensional
image. Although there are, of course, countless differences between the eye and any
camera, the image formation process is essentially the same. From the image, the
intensity of the light is then measured in a large number of spatial locations, or sam-
pled. In the human eye this is performed by the photoreceptors, whereas artificial
systems employ a variety of technologies. However, all systems share the funda-
mental idea of converting the light first into a two-dimensional image and then into
some kind of signal that represents the intensity of the light at each point in the
image.

Although in general the projected images have both temporaland chromatic di-
mensions, we will be mostly concerned with static, monochrome (grey-scale) im-
ages. Such an image can be defined as a scalar function over twodimensions,I(x,y),
giving the intensity (luminance) value at every location(x,y) in the image. Although
in the general case both quantities (the position(x,y) and the intensityI(x,y)) take
continuous values, we will focus on the typical case where the image has been sam-
pled at discrete points in space. This means that in our discussionx andy take only
integer values, and the image can be fully described by an array containing the inten-
sity values at each sample point.1 In digital systems, the sampling is typicallyrect-
angular, i.e. the points where the intensities are sampled form a rectangular array.
Although the spatial sampling performed by biological systems is not rectangular
or even regular, the effects of the sampling process are not very different.

It is from this kind of image data that vision extracts information. Information
about the physical environment is contained in such images,but only implicitly.
The visual system must somehow transform this implicit information into an explicit
form, for example by recognizing the identities of objects in the environment. This is
not a simple problem, as the demonstration of the next section attempts to illustrate.

1.3 The magic of your visual system

Vision is an exceptionally difficult computational task. Although this is clear to
vision scientists, it might come as a surprise to others. Thereason for this is that we

1 When images are stored on computers, the entries in the arrays also have to be discretized; this is,
however, of less importance in the discussion that follows,and we will assume that this has been
done at a high enough resolution so that this step can be ignored.
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are equipped with a truly amazing visual system that performs the task effortlessly
and quite reliably in our daily environment. We are simply not aware of the whole
computational process going on in our brains, rather we experience only the result
of that computation.

To illustrate the difficulties in vision, Figure 1.2 displays an image in its numer-
ical format (as described in the previous section), where light intensities have been
measured and are shown as a function of spatial location. In other words, if you
were to colour each square with the shade of grey corresponding to the contained
number you would see the image in the form we are used to, and itwould be eas-
ily interpretable. Without looking at the solution just yet, take a minute and try to
decipher what the image portrays. You will probably find thisextremely difficult.

Now, have a look at the solution in Figure 1.4. It is immediately clear what the
image represents! Our visual system performs the task of recognizing the image
completely effortlessly. Even though the image at the levelof our photoreceptors
is represented essentially in the format of Figure 1.2, our visual system somehow
manages to make sense of all this data and figure out the real-world object that
caused the image.

In the discussion thus far, we have made a number of drastic simplifications.
Among other things, the human retina contains photoreceptors with varying sensi-
tivity to the different wavelengths of light, and we typically view the world through
two eyes, not one. Finally, perhaps the most important difference is that we normally
perceive dynamic images rather than static ones. Nonetheless, these differences do
not change the fact that the optical information is, at the level of photoreceptors,
represented in a format analogous to that we showed in Figure1.2, and that the task
of the visual system is to understand all this data.

Most people would agree that this task initially seems amazingly hard. But after a
moment of thought it might seem reasonable to think that perhaps the problem is not
so difficult after all? Image intensity edges can be detectedby finding oriented seg-
ments where small numbers border with large numbers. The detection of such fea-
tures can be computationally formalized and straightforwardly implemented. Per-
haps such oriented segments can be grouped together and subsequently object form
be analyzed? Indeed, such computations can be done, and theyform the basis of
many computer vision algorithms. However, although current computer vision sys-
tems work fairly well on synthetic images or on images from highly restricted en-
vironments, they still perform quite poorly on images from an unrestricted, natural
environment. In fact, perhaps one of the main findings of computer vision research
to date has been that the analysis of real-world images is extremely difficult! Even
such a basic task as identifying the contours of an object is complicated because
often there is no clear image contour along some part of its physical contour, as
illustrated in Figure 1.3.

In light of the difficulties computer vision research has runinto, the computa-
tional accomplishment of our own visual system seems all themore amazing. We
perceive our environment quite accurately almost all the time, and only relatively
rarely make perceptual mistakes. Quite clearly, biology has solved the task of ev-
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Fig. 1.2: An image displayed in numerical format. The shade of grey of each square has been
replaced by the corresponding numerical intensity value. What does this mystery image depict?
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Fig. 1.3: This image of a cup demonstrates that physical contours and image contours are often very
different. The physical edge of the cup near the lower-left corner of the image yields practically no
image contour (as shown by the magnification). On the other hand, the shadow casts a clear image
contour where there in fact is no physical edge.

eryday vision in a way that is completely superior to any present-day machine vision
system.

This being the case, it is natural that computer vision scientists have tried to draw
inspiration from biology. Many systems contain image processing steps that mimic
the processing that is known to occur in the early parts of thebiological visual
system. However, beyond the very early stages, little is actually known about the
representations used in the brain. Thus, there is actually not much to guide computer
vision research at the present.

On the other hand, it is quite clear that good computational theories of vision
would be useful in guiding research on biological vision, byallowing hypothesis-
driven experiments. So it seems that there is a dilemma: computational theory is
needed to guide experimental research, and the results of experiments are needed
to guide theoretical investigations. The solution, as we see it, is to seek synergy by
multidisciplinary research into the computational basis of vision.

1.4 Importance of prior information

1.4.1 Ecological adaptation provides prior information

A very promising approach for solving the difficult problemsin vision is based on
adaptation to the statistics of the input. An adaptive representation is one that does
not attempt to represent all possible kinds of data; instead, the representation is
adapted to a particular kind of data. The advantage is that then the representation
can concentrate on those aspects of the data that are useful for further analysis. This
is in stark contrast to classic representations (e.g. Fourier analysis) that are fixed
based on some general theoretical criteria, and completelyignore what kind of data
is being analyzed.
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Fig. 1.4: The image of Figure 1.2. It is immediately clear that the image shows a male face. Many
observers will probably even recognize the specific individual (note that it might help to view the
image from relatively far away).
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Thus, the visual system is not viewed as a general signal processing machine or
a general problem-solving system. Instead, it is acknowledged that it has evolved to
solve some very particular problems that form a small subsetof all possible prob-
lems. For example, the biological visual system needs to recognize faces under dif-
ferent lighting environments, while the people are speaking, possibly with differ-
ent emotional expressions superimposed; this is definitelyan extremely demanding
problem. But on the other hand, the visual system doesnotneed to recognize a face
when it is given in an unconventional format, as in Figure 1.2.

What distinguished these two representations (numbers vs.a photographic im-
age) from each other is that the latter isecologically valid, i.e. during the evolution
of the human species, our ancestors have encountered this problem many times,
and it has been important for their survival. The case of an array of numbers does
definitely not have any of these two characteristics. Most people would label it as
“artificial”.

In vision research, more and more emphasis is being laid on the importance of
the enormous amount of prior information that the brain has about the structure of
the world. A formalization of these concepts has recently been pursued under the
heading “Bayesian perception”, although the principle goes back to the “maximum
likelihood principle” by Helmholtz in the 19th century. Bayesian inference is the
natural theory to use when inexact and incomplete information is combined with
prior information. Such prior information should presumably be reflected in the
whole visual system.

Similar ideas are becoming dominant in computer vision as well. Computer vi-
sion systems have been used on many different kinds of images: “ordinary” (i.e.
optical) images, satellite images, magnetic resonance images, to name a few. Is it
realistic to assume that the same kind of processing would adequately represent all
these different kinds of data? Could better results be obtained if one uses methods
(e.g. features) that are specific to a given application?

1.4.2 Generative models and latent quantities

The traditional computational approach to vision focuses on how, from the image
dataI , one can compute quantities of interest calledsi , which we group together
in a vectors. These quantities might be, for instance, scalar variablessuch as the
distances to objects, or binary parameters such as signifying if an object belongs to
some given categories. In other words, the emphasis is on a function f that trans-
forms images into world or object information, as ins= f(I). This operation might
be called imageanalysis.

Several researchers have pointed out that the opposite operation, imagesynthesis,
often is simpler. That is, the mappingg that generates the image given the state of
the world

I = g(s), (1.1)
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is considerably easier to work with, and more intuitive, than the mappingf. This
operation is often calledsynthesis. Moreover, the framework based on a fixed ana-
lyzing functionf does not give much room for using prior information. Perhaps, by
intelligently choosing the functionf, some prior information on the data could be
incorporated.

Generative models use Eq. (1.1) as a starting point. They attempt to explain ob-
served data by some underlying hidden (latent) causes or factorssi about which we
have only indirect information.

The key point is that the models incorporate a set ofprior probabilities for the
latent variables si . That is, it is specified how often different combinations oflatent
variables occur together. For example, this probability distribution could describe,
in the case of a cup, thetypical shape of a cup. Thus, this probability distribution
for the latent variables is what formalizes the prior information on the structure of
the world.

This framework is sufficiently flexible to be able to accommodate many different
kinds of prior information. It all depends on how we defined the latent variables,
and the synthesis functiong.

But how does knowingg help us, one may ask. The answer is that one may
then search for the parametersŝ that produce an imagêI = g(ŝ) which, as well as
possible, matches the observed imageI . In other words, a combination of latent
variables that is the “most likely”. Under reasonable assumptions, this might lead to
a good approximation of the correct parameterss.

To make all this concrete, consider again the image of the cupin Figure 1.3.
The traditional approach of vision would propose that an early stage extracts local
edge information in the image, after which some sort of grouping of these edge
pieces would be done. Finally, the evoked edge pattern wouldbe compared with
patterns in memory, and recognized as a cup. Meanwhile, analysis of other scene
variables, such as lighting direction or scene depth, wouldproceed in parallel. The
analysis-by-synthesis framework, on the other hand, wouldsuggest that our visual
system has an unconscious internal model for image generation. Estimates of object
identity, lighting direction, and scene depth are all adjusted until a satisfactory match
between the observed image and the internally generated image is achieved.

1.4.3 Projection onto the retina loses information

One very important reason why it is natural to formulate vision as inference of
latent quantities is that the world is three dimensional whereas the retina is only
two-dimensional. Thus, the whole 3D structure of the world is seemingly lost in the
eye! Our visual system is so good in reconstructing a three-dimensional perception
of the world that we hardly realize that a complicated reconstruction procedure is
necessary. Information about the depth of objects and the space between is only
implicit in the retinal image.
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We do benefit from having two eyes which give slightly different views of the
outside world. This helps a bit in solving the problem of depth perception, but it
is only part of the story. Even if you close one eye, you can still understand which
object is in front of another. Television is also based on theprinciple that we can
quite well reconstruct the 3D structure of the world from a 2Dimage, especially if
the camera (or the observer) is moving.

1.4.4 Bayesian inference and priors

The fundamental formalism for modelling how prior information can be used in
the visual system is based on what is called Bayesian inference. Bayesian inference
refers to statistically estimating the hidden variabless given an observed imageI .
In most models it is impossible (even in theory) to know the precise values ofs,
so one must be content with a probability densityp(s|I). This is the probability of
the latent variablesgiventhe observed image. By Bayes’ rule, which is explained in
Section 4.7, this can be calculated as

p(s|I) =
p(I |s)p(s)

p(I)
. (1.2)

To obtain an estimate of the hidden variables, many models simply find the particu-
lar swhich maximize this density,

ŝ= argmax
s

p(s|I). (1.3)

Ecological adaptation is now possible by learning the priorprobability distri-
bution from a large number of natural images. Learning refers, in general, to the
process of constructing a representation of the regularities of data. The dominant
theoretical approach to learning in neuroscience and computer science is the prob-
abilistic approach, in which learning is accomplished by statistical estimation: the
data is described by a statistical model that contains a number of parameters, and
learning consists of finding “good” values for those parameters, based on the input
data. In statistical terminology, the input data is a samplethat contains observations.

The advantage of formulating adaptation in terms of statistical estimation is very
much due to the existence of an extensive theory of statistical theory and inference.
Once the statistical model is formulated, the theory of statistical estimation imme-
diately offers a number of tools to estimate the parameters.And after estimation of
the parameters, the model can be used in inference accordingto the Bayesian theory,
which again offers a number of well-studied tools that can bereadily used.
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1.5 Natural images

1.5.1 The image space

How can we apply the concept of prior information about the environment in early
vision? “Early” vision refers to the initial parts of visualprocessing, which are usu-
ally formalized as the computation of features, i.e. some relatively simple functions
of the image (features will be defined in Section 1.8 below). Early vision does not
yet accomplish such tasks as object recognition. In this book, we consider early
vision only.

The central concept we need here is the image space. Earlier we described an
image representation in which each image is represented as anumerical array con-
taining the intensity values of its picture elements, orpixels. To make the following
discussion concrete, say that we are dealing with images of afixed size of 256-by-
256 pixels. This gives a total of 65536= 2562 pixels in an image. Each image can
then be considered as a point in a 65536-dimensionalspace, each axis of which spec-
ifies the intensity value of one pixel. Conversely, each point in the space specifies
one particular image. This space is illustrated in Figure 1.5.

Image space

I(2,1)

I(1,1)

I(1,2)

1

I(x,y)

Image pixels

2

2

4

1 4

Fig. 1.5: The space representation of images. Images are mapped to points in the space in a one-to-
one fashion. Each axis of the image space corresponds to the brightness value of one specific pixel
in the image.

Next, consider taking an enormous set of images, and plotting each as the corre-
sponding point in our image space. (Of course, plotting a 65536-dimensional space
is not very easy to do on a two-dimensional page, so we will have to be content with
making a thought experiment.) An important question is: howwould the points be
distributed in this space? In other words, what is the probability density function of



12 1 Introduction

our images like? The answer, of course, depends on the set of images chosen. Astro-
nomical images have very different properties from holidaysnapshots, for example,
and the two sets would yield very different clouds of points in our space.

It is this probability density function of the image set in question that we will
model in this book.

1.5.2 Definition of natural images

In this book we will be specifically concerned with a particular set of images called
natural imagesor images ofnatural scenes. Some images from our data set are
shown in Figure 1.6. This set is supposed to resemble the natural input of the visual
system we are investigating. So what is meant by “natural input”? This is actually
not a trivial question at all. The underlying assumption in this line of research is
that biological visual systems are, through a complex combination of the effects
of evolution and development, adapted to process the kind ofsensory input that
they receive. Natural images is thus some set that we believehas similar statistical
structure to that which the visual system is adapted to.

Fig. 1.6: Three representative examples from our set of natural images.

This poses an obvious problem, at least in the case of human vision. The human
visual system has evolved in an environment that is in many ways different from
the one most of us experience daily today. It is probably quite safe to say that im-
ages of skyscrapers, cars, and other modern entities have not affected our genetic
makeup to any significant degree. On the other hand, few people today experience
nature as omnipresent as it was tens of thousands of years ago. Thus, the input on
the time-scale of evolution has been somewhat different from that on the time-scale
of the individual. Should we then choose images of nature or images from a modern,
urban environment to model the “natural input” of our visualsystem? Most work
to date has focused on the former, and this is also our choice in this book. Fortu-
nately, this choice of image set does not have a drastic influence on the results of
the analysis: Most image sets collected for the purpose of analysing natural images
give quite similar results in statistical modelling, and these results are usually com-
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pletely different from what you would get using most artificial, randomly generated
data sets.

Returning to our original question, how wouldnatural imagesbe distributed in
the image space? The important thing to note is that they would not be anything like
uniformly distributed in this space. It is easy for us to drawimages from a uniform
distribution, and they do not look anything like our naturalimages! Figure 1.7 shows
three images randomly drawn from a uniform distribution over the image space. As
there is no question that we can easily distinguish these images from natural images
(Figure 1.6) it follows that these are drawn from separate, very different, distribu-
tions. In fact, the distribution of natural images is highlynon-uniform. This is the
same as saying that natural images contain a lot ofredundancy, an information-
theoretic term that we turn to now.

Fig. 1.7: Three images drawn randomly from a uniform distribution in the image space. Each pixel
is drawn independently from a uniform distribution from black to white.

1.6 Redundancy and information

1.6.1 Information theory and image coding

At this point, we make a short excursion to a subject that may seem, at first sight, to
be outside of the scope of statistical modelling: information theory.

The development of the theory of information by Claude Shannon and others is
one of the milestones of science. Shannon considered the transmission of a message
across a communication channel and developed a mathematical theory that quan-
tified the variables involved (these will be presented in Chapter 8). Because of its
generality the theory has found, and continues to find, a growing number of appli-
cations in a variety of disciplines.

One of the key ideas in information theory is that the amount of memory needed
to store an image is often less than what is needed in a trivialrepresentation (code),
where each pixel is stored using a fixed number of bits, such as8 or 24. This is
because some of the memory capacity is essentially consumedby redundant struc-
ture in the image. The more rigid the structure, the less bits is really needed to code
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the image. Thus, the contents of any image, indeed any signal, can essentially be
divided into information and redundancy. This is depicted in Figure 1.8.

Memory bits in trivial code

Bits needed

Information

for an efficient code

Redundancy

Fig. 1.8: Redundancy in a signal. Some of the memory consumedby the storage of a typical image
is normally unnecessary because of redundancy (structure)in the image. If the signal is optimally
compressed, stripping it of all redundancy, it can be storedusing much less bits.

To make this more concrete, consider the binary image of Figure 1.9. The image
contains a total of 32×22= 704 pixels. Thus, the trivial representation (where the
colour of each pixel is indicated by a ‘1’ or a ‘0’) for this image requires 704 bits.
But it is not difficult to imagine that one could compress it into a much smaller
number of bits. For example, one could invent a representation that assumes a white
background on which black squares (with given positions andsizes) are printed.
In such a representation, our image could be coded by simply specifying the top-
left corners of the squares ((5,5) and (19,11)) and their sizes (8 and 6). This could
certainly be coded in less than 704 bits.2

The important thing to understand is that this kind of representation is good for
certain kinds of images (those with a small number of black squares) but not oth-
ers (that do not have this structure and thus require a huge amount of squares to be
completely represented). Hence, if we are dealing mostly with images of the former
kind, and we are using the standard binary coding format, then our representation is
highly redundant. By compressing it using our black-squares-on-white representa-
tion we achieve an efficient representation. Although natural images are much more
variable than this hypothetical class of images, it is nonetheless true that they also
show structure and can be compressed.

Attneave was the first to explicitly point out the redundancyin images in 1954.
The above argument is essentially the same as originally given by Attneave, al-
though he considered a ‘guessing game’ in which subjects guessed the colour of
pixels in the image. The fact that subjects perform much better than chance proves
that the image is predictable, and information theory ensures that predictability is
essentially the same thing as redundancy.

Making use of this redundancy of images is essential for vision. But the same
statistical structure is in fact also crucial for many othertasks involving images.

2 The specification of each square requires three numbers which each could be coded in 5 bits,
giving a total of 30 bits for two squares. Additionally, a fewbits might be needed to indicate how
many squares are coded, assuming that we do not knowa priori that there are exactly two squares.
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Fig. 1.9: A binary image containing a lot of structure. Images like this can be coded efficiently; see
main text for discussion.

Engineers who seek to find compact digital image formats for storing or transmitting
images also need to understand this structure. Image synthesis and noise reduction
are other tasks that optimally would make use of this structure. Thus, the analysis
of the statistical properties of images has widespread applications indeed, although
perhaps understanding vision is the most profound.

1.6.2 Redundancy reduction and neural coding

Following its conception, it did not take long before psychologists and biologists
understood that information theory was directly relevant to the tasks of biological
systems. Indeed, the sensory input is a signal that carriesinformation about the
outside world. This information iscommunicatedby sensory neurons by means of
action potentials.

In Attneave’s original article describing the redundancy inherent in images, At-
tneave suggested that the visual system recodes the inputs to reduce redundancy,
providing an ‘economical description’ of the sensory signals. He likened the task
of the visual system to that of an engineer who seeks to represent pictures with the
smallest possible number of bits. It is easy to see the intuitive appeal of this idea.
Consider again the image of Figure 1.9. Recoding images of this kind using our
black-squares-on-white representation, we reduce redundancy and obtain an effi-
cient representation. However, at the same time we havediscovered the structurein
the signal: we now have the concept of ‘squares’ which did notexist in the origi-
nal representation. More generally: to reduce redundancy one must first identify it.
Thus, redundancy reductionrequiresdiscovering structure.
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Although he was arguably the first to spell it out explicitly,Attneave was certainly
not the only one to have this idea. Around the same time, Barlow, in 1961, provided
similar arguments from a more biological/physiological viewpoint. Barlow has also
pointed out that the idea, in the form of ‘economy of thought’, is clearly expressed
already in the writings of Mach and Pearson in the 19th century. Nevertheless, with
the writings of Attneave and Barlow, the redundancy reduction (or efficient coding)
hypothesis was born.

1.7 Statistical modelling of the visual system

1.7.1 Connecting information theory and Bayesian inference

Earlier we emphasized the importance of prior information and Bayesian modelling,
but in the preceding section we talked about information theory and coding. This
may seem a bit confusing at first sight, but the reason is that the two approaches are
very closely related.

Information theory wants to find an economical representation of the data for
efficient compression, while Bayesian modelling uses priorinformation on the data
for such purposes as denoising and recovery of the 3D structure. To accomplish their
goals, both of these methods fundamentally need the same thing: a good model of
the statistical distribution of the data. That is the basic motivation for this book. It
leads to a new approach to normative visual modelling as willbe discussed next.

1.7.2 Normative vs. descriptive modelling of visual system

In visual neuroscience, the classic theories of receptive field structure3 can be called
descriptivein the sense that they give us mathematical tools (such as Fourier and
Gabor analysis, see Chapter 2) that allow us to describe parts of the visual system
in terms of a small number of parameters.

However, the question we really want to answer is:Why is the visual system
built the way neuroscientific measurements show? The basic approach to answer
such a question in neuroscience is to assume that the system in question has been
optimizedby evolution to perform a certain function. (This does not mean that the
system would be completely determined genetically, because evolution can just have
designed mechanisms for self-organization and learning that enable the system to
find the optimal form.)

Models based on the assumption of optimality are often called normativebecause
they tell how the systemshouldbehave. Of course, there is no justification to assume

3 i.e., the way visual neurons respond to stimulation, see Section 3.3
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that evolution has optimized all parts of the organism; mostof them may be far from
the optimum, and such an optimum may not even be a well-definedconcept.

However, in certain cases it can be demonstrated that the system is not far from
optimal in certain respects. This happens to be the case withthe early cortical visual
processing system (in particular, the primary visual cortex, see Chapter 3 for a brief
description of the visual system). That brain area seems to function largely based
on principles of statistical modelling, as will be seen in this book. Thus, there is
convincing proof that parts of the system are optimal for statistical inference, and it
is this proof that justifies these normative models.

Previous models of the early visual system did not provide satisfactory norma-
tive models, they only provided practical descriptive models. Although there were
some attempts to develop a normative theory, the predictions were too vague.4 The
statistical approach is the first one to give exact quantitative models of visual pro-
cessing, and these have been found to provide a good match with neuroscientific
measurements.

1.7.3 Towards predictive theoretical neuroscience

Let us mention one more important application of this framework: a mode of mod-
elling where we are able to predict the properties of visual processing beyond the
primary visual cortex. Then, we obtain quantitative predictions on what kinds of
visual processing should take place in areas whose functionis not well understood
at this point.

Almost all the experimental results in early visual processing have concerned
the primary visual cortex, or even earlier areas such as the retina. Likewise, most
research in this new framework of modelling natural image statistics has been on
very low-level features. However, the methodology of statistical modelling can most
probably be extended to many other areas.

Formulating statistical generative models holds great promise as a framework
that will give new testable theories for visual neuroscience, for the following rea-
sons:

• This framework is highly constructive. From just a couple ofsimple theoretical
specifications, natural images lead to the emergence of complex phenomena, e.g.
the forms of the receptive fields of simple cells and their spatial organization in
Fig. 1.1.

• This framework is, therefore, less subjective than many other modelling ap-
proaches. The rigorous theory of statistical estimation makes it rather difficult
to insert the theorist’s subjective expectations in the model, and therefore the

4 The main theory attempting to do this is the joint space-frequency localization theory leading to
Gabor models, see Section 2.4.2. However, this does not provide predictions on how the parameters
in Gabor models should be chosen, and what’s more serious, itis not really clear why the features
should be jointly localized in space and frequency in the first place.
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results are strongly determined by the data, i.e. the objective reality. Thus, the
framework can be called data-driven.

• In fact, in statistical generative models we often see emergence of new kinds of
feature detectors — sometimes very different from what was expected when the
model was formulated.

So far, experiments in vision research have been based on rather vague, qualita-
tive predictions. (This is even more true for other domains of neuroscience.) How-
ever, using the methodology described here, visual neuroscience has the potential of
starting a new mode of operation where theoretical developments directly give new
quantitativehypotheses to be falsified or confirmed in experimental research. Be-
coming theory-driven would be a real revolution in the way neuroscience is done. In
fact, this same development is what gave much of the driving force to exact natural
sciences in the 19th and 20th centuries.

1.8 Features and statistical models of natural images

1.8.1 Image representations and features

Most statistical models of natural images are based on computing features. The word
“feature” is used rather loosely for any function of the image which is to be used in
further visual processing. The same word can be used for the output (value) of the
function, or the computational operation of which computesthat value.

A classic approach to represent an image is a linear weightedsum of features.
Let us denote each feature byAi(x,y), i = 1, . . . ,n. These features are assumed to
be fixed. For each incoming image, the coefficients of each feature in an image are
denoted bysi . Algebraically, we can write:

I(x,y) =
n

∑
i=1

Ai(x,y)si (1.4)

If we assume for simplicity that the number of featuresn equals the number of
pixels, the system in Eq. (1.4) can be inverted. This means that for a given imageI ,
we can find the coefficientssi that fulfill this equation. In fact, they can be computed
linearly as

si = ∑
x,y

Wi(x,y)I(x,y) (1.5)

for certain inverse weightsW. The terminology is not very fixed here, so eitherAi ,
Wi , or si can be called a “feature”. TheWi can also be called afeature detector.

There are many different sets of features that can be used. Classic choices include
Fourier functions (gratings), wavelets, Gabor functions,features of discrete cosine
transform, and many more. What all these sets have in common is that they attempt
to represent all possible images, not just natural images, in a way which is “optimal”.



1.8 Features and statistical models of natural images 19

What we want to do is tolearn these features so that they are adapted to the
properties ofnatural images. We do not believe that there could be a single set of
features which would be optimal for all kinds of images. Also, we want to use the
features to build a statistical model of natural images. Thebasis for both of these is
to consider the statistics of the featuressi .

1.8.2 Statistics of features

The most fundamental statistical properties of images are captured by the his-
tograms of the outputssi of linear feature detectors. Let us denote the output of
a single linear feature detector with weightsW(x,y) by s:

s= ∑
x,y

W(x,y)I(x,y) (1.6)

Now, the point is to look at the statistics of the output when the input of the detector
consists of a large number of natural image patches. Naturalimage patches means
small subimages (windows) taken in random locations in randomly selected natural
images. Thus, the features is a random variable, and for each input patch we get
a realization (observation) of that random variable. (Thisprocedure is explained in
more detail in Section 4.1).

Now we shall illustrate this with real natural image data. Let us consider a couple
of simple feature detectors and the histograms of their output when the input consists
of natural images. In Fig. 1.10 we show three simple feature detectors. The first is a
Dirac detector, which means that all the weightsW(x,y) are zero except for one. The
second is a simple one-dimensional grating. The third is a basic Gabor edge detector.
All three feature detectors have been normalized to unit norm, i.e.∑x,yW(x,y)2 = 1.

The statistics of the output are contained in the histogram of the outputs. In
Fig. 1.11, we show the output histograms for the three different kinds of linear detec-
tors. We can see that the histograms are rather different. Inaddition to the different
shapes, note that their variances are also quite different from each other.

Thus, we see that different feature detectors are characterized by different statis-
tics of their outputs for natural image input. This basic observation is the basis for
the theory in this book. We canlearn featuresfrom image data by optimizing some
statistical properties of the featuressi .

1.8.3 From features to statistical models

The Bayesian goal of building a statistical (prior) model ofthe data, and learning
features based on their output statistics are intimately related. This is because the
most practical way of building a statistical model proceedsby using features and
building a statistical model for them. The point is that the statistical model for fea-
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a) b) c)

Fig. 1.10: Three basic filters.a) a Dirac feature, i.e. only one pixel is non-zero.b) a sinusoidal
grating.c) Gabor edge detector.
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Fig. 1.11: The histograms of the outputs of the filters in Fig.1.10 when the input is natural images
with mean pixel value subtracted.a) output of Dirac filter, which is the same as the histogram of
the original pixels themselves.b) output of grating feature detector.c) output of edge detector.
Note that the scales of both axes are different in the three plots.

tures can be much simpler than the corresponding model for the pixels, so it makes
sense to first transform the data into a feature space.

In fact, a large class of model buildsindependentmodels for each of the features
si in Equation (1.5). Independence is here to be taken both in anintuitive sense,
and in the technical sense of statistical independence. Most models in Part II of this
book are based on this idea. Even if the features are not modelled independently, the
interactions (dependencies) of the features are usually much simpler than those of
the original pixels; such models are considered in Part III of this book.

Thus, we will describe most of the models in this book based onthe principle
of learning features. Another reason for using this approach is that the most inter-
esting neurophysiological results concern usually the form of the features obtained.
In fact, it is very difficult to interpret or visualize a probability distribution given
by the model; comparing the distribution with neurophysiological measurements is
next to impossible. It is the features which give a simple andintuitive idea of what
kind of visual processing these normative models dictate, and they allow a direct
comparison with measured properties (receptive fields) of the visual cortex.
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1.9 The statistical-ecological approach recapitulated

This chapter started with describing the difficulty of vision, and ended up proposing
one particular solution, which can be called the statistical-ecological approach. The
two basic ingredients in this approach are

• Ecology: The visual system is only interested in propertiesthat are important
in a real environment. This is related to the concept ofsituatednessin cognitive
sciences.

• Statistics: Natural images have regularities. The regularities in the ecologically
valid environment could be modelled by different formal frameworks, but statis-
tical modelling seems to be the one that is most relevant.

Thus, we take the following approach to visual modelling:

1. Different sets of features are good for different kinds ofdata.
2. The images that our eyes receive have certain statisticalproperties (regularities).
3. The visual system has learned a model of these statisticalproperties.
4. The model of the statistical properties enables (close to) optimal statistical infer-

ence.
5. The model of the statistical properties is reflected in themeasurable properties of

the visual system (e.g. receptive fields of the neurons)

Most of this book will be concerned on developing different kinds of statistical
models for natural images. These statistical models are based on very few theoretical
assumptions, while they give rise to detailed quantitativepredictions. We will show
how these normative models are useful in two respects:

1. They provide predictions that are largely validated by classic neuroscientific
measurements. Thus, they provide concise and theoretically well-justified ex-
planations of well-known measurements. This is the evidence that justifies our
normative modelling.

2. Moreover, the models lead to new predictions of phenomenawhich have not yet
been observed, thus enabling theory-driven neuroscience.This is the big promise
of natural image statistics modelling.

Another application of these models is in computer science and engineering.
Such applications will not be considered in detail in this book: We hope we will
have convinced the reader of the wide applicability of such methods. See below for
references on this topic.

1.10 References

For textbook accounts of computer vision methods, such as edge detection algo-
rithms, see, e.g. (Marr, 1982; Sonka et al, 1998; Gonzales and Woods, 2002); for
information theory, see (Cover and Thomas, 2006). The approach of generative
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models is presented in, e.g. (Grenander, 1976–1981; Kersten and Schrater, 2002;
Mumford, 1994; Hinton and Ghahramani, 1997).

For short reviews on using natural image statistics for visual modelling, see
(Field, 1999; Simoncelli and Olshausen, 2001; Olshausen, 2003; Olshausen and
Field, 2004; Hyvärinen et al, 2005b). For reviews on engineering applications of
statistical models, see (Simoncelli, 2005).

Historical references include (Mach, 1886; Pearson, 1892;Helmholtz, 1867;
Shannon, 1948; Attneave, 1954; Barlow, 1961). See also (Barlow, 2001a,b) on a
discussion on the history of redundancy reduction.
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Chapter 2
Linear filters and frequency analysis

This chapter reviews some classical image analysis tools: linear filtering, linear
bases, frequency analysis, and space-frequency analysis.Some of the basic ideas
are illustrated in Figure 2.1. These basic methods need to beunderstood before the
results of statistical image models can be fully appreciated. The idea of processing
of different frequencies is central in the reviewed tools. Therefore, a great deal of the
following material is devoted to explaining what afrequency-based representation
of images is, and why it is relevant in image analysis.

2.1 Linear filtering

2.1.1 Definition

Linear filtering is a fundamental image-processing method in which afilter is ap-
plied to an input image to produce an output image.

Figure 2.2 illustrates the way in which the filter and the input image interact to
form an output image: the filter is centered at each image location (x,y), and the
pixel value of the output imageO(x,y) is given by the linear correlation of the filter
and the filter-size subarea of the image at coordinate(x,y). (Note that the word
“correlation” is used here in a slightly different way than in the statistical context.)
LettingW(x,y) denote a filter with size(2K+1)×(2K +1), I(x,y) the input image,
andO(x,y) the output image, linear filtering is given by

O(x,y) =
K

∑
x∗=−K

K

∑
y∗=−K

W(x∗,y∗)I(x+x∗,y+y∗). (2.1)

An example of linear filtering is shown in Figure 2.3.
What Equation (2.1) means is that we “slide” the filter over the whole image and

compute a weighted sum of the image pixel values, separatelyat each pixel location.

25
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a)

b) c)

d) e)

Fig. 2.1: The two classical image analysis tools reviewed inthis chapter are linear filtering b)-c) and
space-frequency analysis d)-e).a) An input image.b) An example output of linear filtering of a); in
this case, the filter has retained medium-scaled vertical structures in the image. A more complete
description of what a linear filtering operation does is provided by the frequency representation
(Section 2.2).c) An example of how the outputs of several linear filters can be combined in image
analysis. In this case, the outputs of four filters have been processed nonlinearly and added together
to form an edge image: in the image, lighter areas correspondto image locations with a luminance
edge. This kind of a result could be used, for example, as a starting point to locate objects of a
certain shape.d)–e) An example of space-frequency analysis, where the main ideais to analyze
the magnitude of a frequency d) at different locations. The end result e) reflects the magnitude of
this frequency at different points in the input image a). From the point of view of image analysis,
this result suggests that the upper part of the image is of different texture than the lower part.
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output imageO(x,y)

O(x,y) = W(−1,−1)I(x−1,y−1)+ · · ·+W(1,1)I(x+1,y+1)

= ∑1
x∗=−1∑1

y∗=−1W(x∗,y∗)I(x+x∗,y+y∗)

Fig. 2.2: Linear filtering is an operation that involves a filter (denoted here byW(x,y)) an input
image (hereI(x,y)) and yields an output image (hereO(x,y)). The pixel value of the output im-
age at location(x,y), that is,O(x,y), is given by the linear correlation of the filterW(x,y) and a
filter-size subarea of the input imageI(x,y) centered at coordinate(x,y). a) A 3× 3 linear filter
(template)W(x,y). b) An imageI(x,y) and a 3×3 subarea of the image centered at location(x,y).
c) The output pixel valueO(x,y) is obtained by taking the pixel-wise multiplication of the filter a)
and image subarea b), and summing this product over bothx- andy-dimensions. Mathematically,
O(x,y) = ∑x∗ ∑y∗W(x∗,y∗)I(x+x∗ ,y+y∗).
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a) b) c)

Fig. 2.3: An example of linear filtering.a) An input image.b) A filter. c) An output image.

Visual inspection of a filter alone is usually not sufficient to interpret a filtering
operation. This is also the case in the example in Figure 2.3:what does this filtering
operation actually accomplish? For a complete interpretation of a filtering opera-
tion a different type of mathematical language is needed. This language utilizes a
frequency-based representation of images, as explained inSection 2.2 below.

2.1.2 Impulse response and convolution

The impulse responseH(x,y) is the response of a filter to an impulse

δ (x,y) =

{

1, if x = 0 andy = 0

0, otherwise,
(2.2)

that is, to an image in which a single pixel is “on” (equal to 1)and the others are
“off” (equal to 0). The impulse response characterizes the system just as well as
the original filter coefficientsW(x,y). In fact, in frequency-based analysis of lin-
ear filtering, rather than filtering with a filter, it is customary to work with im-
pulse responses and an operation calledconvolution. This is because the frequency-
modifying properties of the linear filter can be read out directly from the frequency-
based representation of the impulse response, as will be seen below. (In general, this
holds for any linear shift-invariant system, which are defined in Section 20.1.)

Based on the definition of filtering in Equation (2.1), it is not difficult to see that

H(x,y) = W(−x,−y) (2.3)

Thus, the impulse responseH(x,y) is a “mirror image” of the filter weightsW(x,y):
the relationship is simply that of a 180◦ rotation around the center of the filter. This
is due to the change of signs ofx∗ andy∗; the impulse response is equal to one only if
x+x∗= 0, which implies that only at pointsx∗ =−x we have one and elsewhere the
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impulse response is zero. For a filter that is symmetric with respect to this rotation,
the impulse response is identical to the filter.

The convolution of two imagesI1 andI2 is defined as

I1(x,y)∗ I2(x,y) =
∞

∑
x∗=−∞

∞

∑
y∗=−∞

I1(x−x∗,y−y∗)I2(x∗,y∗) (2.4)

The only real difference to the definition of a filtering operation in Eq. (2.1) is that
we have minus signs instead of plus signs. Note that convolution is symmetric in
the sense that we can change the order ofI1 andI2, since by making the change in
summation indexx′∗ = x−x∗ andy′∗ = y−y∗ we get the same formula with the roles
of I1 andI2 interchanged (this is left as an exercise).

Therefore, we can express the filtering operation using the impulse response
(which is considered just another image here) and the convolution simply as

O(x,y) = I(x,y)∗H(x,y) (2.5)

which is a slight modification of the original definition in Eq. (2.1). Introduction
of this formula may seem like splitting hairs, but the point is that convolution is
a well-known mathematical operation with interesting properties, and the impulse
response is an important concept as well, so this formula shows how filtering can be
interpreted using these concepts.

2.2 Frequency-based representation

2.2.1 Motivation

Frequency-based representation is a very useful tool in theanalysis of image-
processing systems. In particular, a frequency-based representation can be used to
interpret what happens during linear filtering: it describes linear filtering as modifi-
cation of strengths (amplitudes) and spatial locations (phases) of frequencies (sinu-
soidal components) that form the input image. As an example and sneak preview,
Figures 2.8a)–d) on page 36 show how the filtering operation of Figure 2.3 can be
interpreted as attenuation of low and high frequencies, which can be seen in the
output image as disappearance of large- and fine-scale structures or, alternatively,
preservation of medium-scale structures. This interpretation can be read out from
Figure 2.8d), which shows the frequency amplification map for this filter: this map,
which is called theamplitude responseof the filter, shows that both low frequen-
cies (in the middle of the figure) and high frequencies (far from the middle) are
attenuated; in the map, higher grey-scale value indicates larger amplitude response.

In what follows we will first describe the frequency-based representation, and
then demonstrate its special role in the analysis and designof linear filters.
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2.2.2 Representation in one and two dimensions

Figure 2.4 illustrates the main idea of the frequency-basedrepresentation in the case
of one-dimensional data. In the usual (spatial) representation (Figure 2.4a), a signal
is represented by a set of numbers at each pointx = 0, ...,N−1; in this example,
N = 7.Therefore, to reconstruct the signal in Figure 2.4a), we need 7 numbers. In the
frequency-based representation of this signal we also use 7numbers to describe the
contents of the signal, but in this case the numbers have a totally different meaning:
they are theamplitudesandphasesof sinusoidal components, that is, parametersA
andψ of signals of the formAcos(ωx+ ψ), whereω is the frequency parameter,
see Figure 2.4c.

The theory of thediscrete Fourier transform(treated in detail in Chapter 20)
states thatanysignal of length 7 can be represented by the four amplitudes and the
three phases of the four frequencies; the phase of the constant signal correspond-
ing to ω = 0 is irrelevant because the constant signal does not change when it is
shifted spatially. For a family of signals of given lengthN, the set of frequencies
ωu, u = 0, ...,U −1, employed in the representation is fixed; in our example, these
frequencies are listed in the second column of the table in Figure 2.4b). Overall, the
frequency-based representation is given by the sum

I(x) =
U−1

∑
u=0

Aucos(ωux+ ψu), (2.6)

whereωu are the frequencies andAu their amplitudes andψu their phases.
In the case of images – that is, two-dimensional data – the sinusoidal components

are of the form
Acos(ωxx+ ωyy+ ψ), (2.7)

whereωx is the frequency in thex-direction andωy in they-direction. In order to
grasp the properties of such a component, let us define vectorω = (ωx,ωy), and
denote the dot-product by〈.〉. Then, the component (2.7) can be written as

Acos(ωxx+ ωyy+ ψ) = Acos(〈(x,y),ω〉+ ψ)

= Acos( ‖ω‖
︸︷︷︸

“frequency”

〈(x,y), ω
‖ω‖〉

︸ ︷︷ ︸

projection

+ψ), (2.8)

which shows that computation of the argument of the cosine function can be inter-
preted as a projection of coordinate vector(x,y) onto the direction of the vectorω ,
followed by a scaling with frequency‖ω‖ . Figure 2.5 illustrates this dependency of
the frequency and the direction of the sinusoidal componenton ωx andωy.

Figure 2.5 also illustrates why it is necessary to consider both positive and nega-
tive values of eitherωx or ωy: otherwise it is not possible to represent all directions
in the(x,y)-plane. However, there is a certain redundancy in this representation. For
example, the frequency pairsω = (ωx,ωy) and−ω = (−ωx,−ωy) represent sinu-
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Fig. 2.4: In frequency-based representation, a signal is represented as amplitudes and phases of
sinusoidal components.a) A signal.b) A table showing how the signal in a) can be constructed
from sinusoidal components. In the table, the number of sinusoidal components runs from 1 to
4 (frequency indexu runs from 0 to 3), and the rightmost column shows the cumulative sum
of the sinusoidal components with frequenciesωx,u having amplitudesAu and phasesφu. In the
fifth column, the grey continuous lines show the continuous frequency components from which
the discrete versions have been sampled. Here the frequencycomponents are added in increasing
frequency, that is,ωx,u1 >ωx,u2 if u1> u2. c) A frequency-based representation for the signal in a):
the signal is represented by the set of frequency amplitudesAu, which is also called the amplitude
spectrum (on the left), and the set of frequency phasesψu (on the right) of the corresponding
frequenciesωx,u, u = 0, ...,3. Note that the phase of the constant componentu = 0 corresponding
to frequencyωx,0 = 0 is irrelevant; thus 7 numbers are needed in the frequency-based representation
of the signal, just as in the usual representation a).
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soidal components that have the same direction and frequency, becauseω and−ω
have the same direction and length. So, it can be seen that anyhalf of the(ωx,ωy)-
plane suffices to represent all directions. In practice it has become customary to use
a redundant frequency representation which employs the whole (ωx,ωy)-plane, that
is, negative and positive parts ofboththeωx- andωy-axis.1

ω = (ωx,ωy) ‖ω‖ ω
‖ω‖ I(x,y)

( 1
10,

1
10)

√
2

10 ≈ 0.14
ωx

ωy

ω

‖ω‖

( 1
10,− 1

10)
√

2
10 ≈ 0.14 ωx

ωy

ω

‖ω‖

( 6
10,

3
10) 3

√
5

10 ≈ 0.67
ωx

ωy

ω

‖ω‖

Fig. 2.5: In an equationI(x,y) = cos
(
ωxx+ ωyy

)
of a two-dimensional sinusoidal image, the fre-

quenciesωx andωy determine the direction and the frequency of the component.More specifically,
if ω = (ωx,ωy), then the length ofω determines the frequency of the component, and the direction
of ω determines the direction of the component. This is illustrated here for three different(ωx,ωy)
pairs; the sinusoidal components are of size 128×128 pixels. Notice that in the plots in the third
column,ωy runs from top to bottom because of the convention that in images they-axis runs in this
direction. See equation (2.8) on page 30 for details.

1 In fact, because cosine is an even function — that is, cos(−α) = cos(α) — the frequency com-
ponents corresponding to these two frequency pairs are identical whenAcos[ 〈(x,y),ω〉+ψ] =
Acos[−(〈(x,y),ω〉+ψ)] = Acos[〈(x,y), (−ω)〉+(−ψ)] , that is, when their amplitudes are the
same and their phases are negatives or each other. Therefore, when employing the whole(ωx,ωy)-
plane, the amplitude of a frequency component are customarily split evenly among the frequency
pairsω and−ω with phasesψ and−ψ.
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Figure 2.6 shows an example of the resulting frequency representation. Again,
the theory of discrete Fourier transform (see Chapter 20) states thatany image of
size 3×3 pixels can be represented by five amplitudes and four phases, a total of
9 numbers as in the usual spatial representation; the phase of the constant signal
corresponding toω = (0,0) is irrelevant as before.

Note on terminology The square of the amplitudeA2 is also called theFourier
energyor power, and when it is computed for many different frequencies, we get
what is called thepower spectrum. The power spectrum is a classic way of charac-
terizing which frequencies are present and with which “strengths” in a given signal
or image. If the original amplitudes are used, we talk about the amplitude spectrum
(Fig. 2.4 c). It should be noted that the terminology of frequency-based analysis is
not very well standardized, so other sources may use different terminology.

2.2.3 Frequency-based representation and linear filtering

Sinusoidals also play a special role in the analysis and design of linear filters. What
makes sinusoidals special is the fact that when a sinusoidalis input into a linear
filter, the response is a sinusoidalwith the same frequency, but possibly different
amplitude and phase. Figure 2.7 illustrates this phenomenon. Furthermore, both the
amplification factor of the amplitude and the shift in the phase depend only on the
frequency of the input, and not its amplitude or phase (see Chapter 20 for a detailed
discussion).

For a linear filter with impulse responseH(x,y), let
∣
∣H̃(ωx,ωy)

∣
∣ denote the am-

plitude magnification factor of the system for horizontal frequencyωx and vertical
frequencyωy, and∠H̃(ωx,ωy) denote the phase shift of the filter. Then if the input
signal has frequency-based representation

I(x,y) = ∑
ωx

∑
ωy

Aωx,ωy cos
(
ωxx+ ωyy+ ψωx,ωy

)
, (2.9)

where the sum overωx andωy is here and below taken over both positive and nega-
tive frequencies, the response of the linear filter has the following frequency-based
representation

O(x,y) = H(x,y)∗ I(x,y)

= ∑
ωx

∑
ωy

∣
∣H̃(ωx,ωy)

∣
∣Aωx,ωy

︸ ︷︷ ︸

amplitude

cos
(
ωxx+ ωyy+ ψωx,ωy +∠H̃(ωx,ωy)

︸ ︷︷ ︸

phase

)
.

(2.10)

The amplitude magnification factor
∣
∣H̃(ωx,ωy)

∣
∣ is called theamplitude response

of the linear system, while the phase shift∠H̃(ωx,ωy) is called thephase response.
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Fig. 2.6: An example of a two-dimensional frequency representation.a) The grey-scale (left) and
numerical (right) representation of an image of size 3× 3 pixels.b) Amplitude information of
the frequency representation of the image in a): the grey-scale (left) and numerical (right) repre-
sentation of the amplitudes of the different frequencies. Notice the symmetries/redundancies: the
amplitude of frequencyω is the same as the amplitude of frequency−ω. c) Phase information of
the frequency representation of the image in a); the axis of this representation are the same as in b).
Notice the symmetries/redundancies: the phase ofω is the negative of the phase of−ω. d) Four
examples of the actual sinusoidal components that make up the image in a) in the frequency repre-
sentation. In each column, the first row shows the location ofthe component in the(ωx,ωy)-plane,
while the second row shows the actual component. The leftmost component is the constant com-
ponent corresponding toω = (0,0). The second component is a horizontal frequency component.
Because of the symmetry in the frequency representation, the third and the fourth components are
identical. Notice that the second component (the horizontal frequency component) is stronger than
the other components, which can also be seen in the amplituderepresentation in b).
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a)

I(x) H(x) H(x)∗ I(x)

x x x

x x x

b)

I(x,y) H(x,y) H(x,y)∗ I(x,y)

Fig. 2.7: Sinusoidal components play a special role in the analysis and design of linear systems,
because if a sinusoidal is input into a linear filter, the output is a sinusoidal with the same frequency
but possibly different amplitude and phase.a) Two examples of this phenomenon are shown here
in the one-dimensional case, one on each row. The left columnshows the input signal, which is
here assumed to be a sinusoidal of infinite duration. The middle column shows a randomly selected
impulse response, and the column on the right the response ofthis linear system to the sinusoidal.
Notice the different scale in the output signals, which is related to the amplitude change taking
place in the filtering.b) An illustration of the two-dimensional case, with a 64×64 -pixel input on
the left, a random 11×11 -pixel impulse response in the middle, and the output on the right.

The way these quantities are determined for a linear filter isdescribed shortly below;
for now, let us just assume that they are available.

Figure 2.8 shows an example of the insight offered by the frequency representa-
tion of linear filtering (equation (2.10)). The example shows how a linear filter can
be analyzed or designed by its amplitude response (the phaseresponse is zero for
all frequencies in this example). Notice that while relating the forms of the filters
themselves (Figures 2.8b and f) to the end result of the filtering is very difficult,
describing what the filter does is straightforward once the frequency-based repre-
sentation (Figures 2.8d and e) is available.

How can the amplitude and phase responses of a linear system be determined?
Consider a situation where we feed into the system a signal which contains a mixture
of all frequencies with unit amplitudes and zero phases:
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Fig. 2.8: An example of the usefulness of frequency-based representation in the analysis and design
of linear filters.a) An input image.b) A filter of size 17×17 pixels.c) The output of linear filtering
of image a) with filter b).d) The amplitude response of the filter in b); in this representation dark
pixels indicate amplitude response values close to zero andbright pixels values close to one. The
amplitude response shows that the filterattenuates low and high frequencies, that is, frequencies
which are either close to the origin(ωu,ωv) = (0,0) or far away from it. This can be verified in
c), where medium-scaled structures have been preserved in the image, while details and large-
scale grey-scale variations are no longer visible. The phase response of the filter is zero for all
frequencies.e) Assume that we want to design a filter that has a reverse effectthan the filter shown
in b): our new filter attenuates medium frequencies. The filter can be designed by specifying its
amplitude and phase response. The amplitude response is shown here, the phase response is zero
for all frequencies.f) The filter corresponding to the frequency-based representation e). g) The
result obtained when the filter f) is applied to the image in a). The results is as expected: the filter
preserves details and large-scale grey-scale variations,while medium-scale variations are no longer
visible. Notice that just by examining the filters themselves (b and f) it is difficult to say what the
filters do, while this becomes straightforward once the frequency-based representations (d and e)
are available.

I(x,y) = ∑
ωx

∑
ωy

cos
(
ωxx+ ωyy

)
. (2.11)

Then, applying equation (2.10), the frequency-based representation of the output is

O(x,y) = H(x,y)∗ I(x,y) = ∑
ωx

∑
ωy

∣
∣H̃(ωx,ωy)

∣
∣

︸ ︷︷ ︸

amplitude

cos
(
ωxx+ ωyy+∠H̃(ωx,ωy)

︸ ︷︷ ︸

phase

)
.

(2.12)
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Fig. 2.9: An image containing all frequencies with unit amplitudes and zero phases is an impulse.
Here, the different frequency components are being added from left to right; the right-most image
is an impulse response.

In other words, the amplitude and phase responses of the linear system can be read
from the frequency-based representation of the outputO(x,y). What remains to be
determined is what kind of a signal the signalI(x,y) in Equation (2.11) is. The theory
of the Fourier transform states that the image obtained whenall frequencies with
identical amplitudes and zero phases are added together is an impulse. Figure 2.9
illustrates this when image size is 3× 3 pixels. To summarize, when we feed an
impulse into a linear filter,

• from the point of view of frequency-based description, we are giving the system
an input with equal amplitudes of all frequencies at phase zero

• the linear system modifies the amplitudes and phases of thesefrequencies ac-
cording to the amplitude and phase response of the system

• the amplitude and phase response properties can be easily read out from the im-
pulse response, since the amplitudes of the input were equaland phases were all
zero.

In other words, theamplitude and phase responses of a linear filter are obtained
from the frequency-based representation of the impulse response: the amplitude
responses are the amplitudes of the frequencies, and the phase responses are the
phases of the frequencies.An example of this principle is shown in Figure 2.8: the
amplitude response images d) and e) are in fact the amplitudes of the frequency-
based representations of the impulse responses b) and f).

2.2.4 Computation and mathematical details

Above we have outlined the nature of the frequency-based representation in the one-
and two-dimensional case, and the usefulness of this representation in the design
and analysis of linear systems. The material presented so far should therefore pro-
vide the reader with the knowledge needed to understand whatthe frequency-based
representation is, and why it is used.
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However, a number of questions have been left unanswered in the text above,
including the following:

• What exactly are the values of the frequenciesω used in the frequency-based
representation?

• How is the frequency-based representation computed?
• What guarantees that a frequency-based representation exists?

The set of mathematical tools used to define and analyze frequency-based rep-
resentations are part of mathematics calledFourier analysis. In particular,Fourier
transformsare used to convert data and impulse responses to and from frequency-
based representation. There are different types of Fouriertransforms for different
purposes: continuous/discrete and finite/infinite data. When working with digital im-
ages, the most important Fourier transform is thediscrete Fourier transform (DFT),
which is particularly suited for representation of discrete and finite data in comput-
ers. The basics of DFT are described in Chapter 20. The computational implementa-
tion of DFT is usually through a particular algorithm calledFast Fourier Transform,
or FFT.

The DFT has fairly abstract mathematical properties, because complex numbers
are employed in the transform. The results of the DFT are, however, quite easily un-
derstood in terms of the frequency-based representation: for example, Figure 2.8d)
was computed by taking the DFT of the filter in Figure 2.8b), and then showing the
magnitudes of the complex numbers of the result of the DFT.

A working knowledge of the frequency-based representationis not needed in
reading this book: it is sufficient to understand what the frequency-based represen-
tation is and why it is used. If you are interested in working with frequency-based
representations, then studying the DFT is critical, because the DFT has some coun-
terintuitive properties that must be known when working with results of transforms;
for example, the DFT assumes that the data (signal or image) is periodic, which
causes periodicity effects when filtering is done in the frequency-based representa-
tion.

2.3 Representation using linear basis

Now we consider a general and widely-used framework for image representation: a
linear basis. We will also see how frequency-based representation can be seen as a
special case in this framework.

2.3.1 Basic idea

A traditional way to represent grey-scale images is the pixel-based representation,
where the value of each pixel denotes the grey-scale value atthat particular loca-
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a) b) c)

Fig. 2.10: Three different 3×2 images consisting of vertical lines:a) f1 b) f2 c) I3. Here black
denotes a grey-scale value of zero, light grey a grey-scale value of 4, and the darker grey a grey-
scale value of 2.

tion in the image. For many different purposes, more convenient representations of
images can be devised.

Consider the three 3× 2 imagesf1, f2 andI3 shown in Figure 2.10. The tradi-
tional pixel-based representations of the images are

f1 =

[
4 0 0
4 0 0

]

f2 =

[
0 0 4
0 0 4

]

I3 =

[
2 0 2
2 0 2

]

These images consist of vertical lines with different grey-scale values. A com-
pact way to describe a set of images containing only verticallines is to define the
following basis images

B1 =

[
1 0 0
1 0 0

]

B2 =

[
0 1 0
0 1 0

]

B3 =

[
0 0 1
0 0 1

]

,

and then represent each image as aweighted sumof these basis images. For example,
f1 = 4B1, f2 = 4B3 andI3 = 2B1 + 2B3. Such a representation could convey more
information about the inherent structure in these images. Also, if we had a very
large set of such images, consisting of only vertical lines,and were interested in
compressing our data, we could store the basis images, and then for each image just
save the three coefficients of the basis images.

This simple example utilized a special property of the images f1, f2 andI3, that
is, the fact that in this case each image contains only vertical lines. Note that not
every possible 3×2 image can be represented as a weighted sum of the basis im-
agesB1, B2 andB3 (one example is an image with a single non-zero pixel at any
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image location). This kind of a basis is called anundercompletebasis. Usually the
word basisis used to refer to acomplete basis, a basis which – when used in the
form of a weighted sum – can be used to represent any image. Forthe set of 3×2
images, one example of a complete basis is the set of 6 images with a single one at
exactly one image location(x,y). This basis is typically associated with the tradi-
tional pixel-based image representation: each pixel valuedenotes the coefficient of
the corresponding basis image.

A particularly important case is anorthogonalbasis. Then, the coefficients in the
basis simply equal the dot-products with the basis vectors.For more on bases and
orthogonality, see Section 19.6.

The use of different bases in the representation of images has several important
areas of application in image processing. Two of these were mentioned already: the
description and analysis of the structure of images, and image compression. Other
important applications are in the domain of image processing systems: different
image representations are central in the analysis of these systems (including the
analysis of the visual system), design of such systems, and in their efficient imple-
mentation.

2.3.2 Frequency-based representation as a basis

Now we consider how frequency-based representation can be rephrased as finding
the coefficients in a basis. Consider the situation where we want to analyze, in a
given signal, the amplitudeA and phaseψ of a sinusoidal component

Acos(ωx+ ψ). (2.13)

The key point here is that instead of determiningA andψ directly, we can determine
the coefficientsC andSof a cosine and sine signal with (centered) phase zero:

Ccos(ωx)+Ssin(ωx). (2.14)

To show this we will demonstrate that there is a one-to-one correspondence between
signals of the form (2.13) and of the form (2.14). First, a given sinusoidal of the
form (2.13) can be represented in form (2.14) as follows:

Acos(ωx+ ψ) = A(cos(ωx)cosψ−sin(ωx)sinψ)

= Acosψ
︸ ︷︷ ︸

=C

cos(ωx)+A(−sinψ)
︸ ︷︷ ︸

=S

sin(ωx)

= Ccos(ωx)+Ssin(ωx).

(2.15)

Conversely, if we are given a signal in form (2.14), the derivation (2.15) can be
reversed (this is left as an exercise), so that we get
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A =
√

C2 +S2, (2.16)

ψ =−atan
S
C
. (2.17)

Thus, to analyze the amplitude and phase of frequencyω in a given signal, it suffices
to find coefficientsC andS in equationCcos(ωx)+Ssin(ωx); after the coefficients
have been computed, equations (2.16) and (2.17) can be used to compute the am-
plitude and phase. In particular, the square of the amplitude (“Fourier power” or
“Fourier energy”) is obtained as the sum of squares of the coefficients.

The formula in Equation (2.16) is also very interesting froma neural modelling
viewpoint because it shows how to compute the amplitude using quite simple op-
erations, since computation of the coefficients in a linear basis is a linear operation
(at least if the basis is complete). Computation of Fourier energy in a given fre-
quency thus requires two linear operations, followed by squaring, and summing of
the squares. As we will see in Chapter 3, something similar tolinear Fourier op-
erators seems to be computed in the early parts of visual processing, which makes
computation of Fourier energy rather straightforward.

How are the coefficientsC andS then computed? The key is orthogonality. The
signals cos(ωx) and sin(ωx) are orthogonal, at least approximately. So, the coeffi-
cientsC andS are simply obtained as the dot-products of the signal with the basis
vectors given by the cos and sin functions.

In fact, Discrete Fourier Transform can be viewed as defininga basis with such
cos and sin functions with many different frequencies, and those frequencies are
carefully chosen so that the sinusoidals are exactly orthogonal. Then, the coefficients
for all the sin and cos functions, in the different frequencies, canbe computed as the
dot-products

∑
x

I(x)cos(ωx) and∑
x

I(x)sin(ωx) (2.18)

The idea generalizes to two dimensions (images) in the same way as frequency-
based analysis was shown to generalize above. More details on the DFT can be
found in Chapter 20.

2.4 Space-frequency analysis

2.4.1 Introduction

The frequency representation utilizes global sinusoidal gratings, that is, components
which span the whole image (see, e.g., Figure 2.5). This is particularly useful for the
analysis and design of linear filters. However, because of the global nature of sinu-
soidals, the frequency representation tells us nothing about the spatial relationship
of different frequencies in an image. This is illustrated inFigures 2.11a) and b),
which show an image and the amplitudes of its frequency representation. The upper
part of the image contains grass, which tends to have a more vertical orientation
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Fig. 2.11: The main idea in space-frequency analysis is to consider the amplitudes/phases of differ-
ent frequenciesat different locations in an image. a) An image. Notice how different areas of the
image differ in their frequency contents.b) The standard frequency representation: the amplitudes
of the different frequencies that make up the frequency representation of the image in a). Note that
while this representation suggests that fairly high horizontal frequencies are present in the image,
it does not convey information about the spatial location ofdifferent frequencies. For purposes of
visibility, the amplitudes of different frequencies have been transformed with logarithmic mapping
before display.c) A spatially localized non-negative windowing function.d) A localized area of
the image can be obtained by multiplying the image a) with thewindowing function c).e) In this
example the amplitude (strength) of this horizontal frequency is analyzed at each point in the im-
age.f) Applying the weighting scheme c)-d) at each point in the image a), and then analyzing the
amplitude of the frequency e) at each of these points resultsin this spatial map of the amplitude of
the frequency. As can be seen, the frequency tends to have larger amplitudes in the upper part of
the image, as can be expected.

and sharper structure than the lower part of the image. The amplitudes of the fre-
quency representation (Figures 2.11b) show that many horizontal or near-horizontal
frequencies – that is, frequencies in the vicinity of axisωy = 0 – have a relatively
large amplitude, even at fairly high frequencies. (Notice that structures with vertical
lines correspond tohorizontalfrequencies.) From the amplitude spectrum there is,
however, no way to tell the spatial location of these frequencies.

The spatial locations of different frequencies can containimportant information
about the image. In this example, if we are able to locate those areas which tend to
have more horizontal frequencies, we can use that information, for example, to facil-
itate the identification of the grass area in the image. How can the spatial locations
of these frequencies be found? A straightforward way to do this is to analyze the fre-
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quency contents oflimited spatial areas. Figures 2.11c)–f) illustrate this idea. The
original image (Figure 2.11a) is multiplied with a non-negativewindowing function
(Figure 2.11c) to examine the frequency contents of a spatially localized image area
(Figure 2.11d). For example, for the horizontal frequency shown in Figure 2.11e), a
spatial map of the amplitude of this frequency is shown in Figure 2.11f); the map has
been obtained by applying the weighting scheme (Figure 2.11c and d) atevery point
of the image, and analyzing the amplitude of the frequency inthe localized image
area. Now, we see that in Figure 2.11f) that the different areas (grass vs. water) are
clearly separated by this space-frequency analysis.

In the case of space-frequency analysis, the computationaloperations underlying
the analysis are of great interest to us. This is because someimportant results ob-
tained with statistical modelling of natural images can be interpreted as performing
space-frequency analysis, so the way the analysis is computed needs to be under-
stood to appreciate these results. Because of this connection, we need to delve a
little deeper into the mathematics.

Before going into the details, we first state the main result:space-frequency anal-
ysis can be done by the method illustrated in Figure 2.12: by filtering the image
with two different localized sinusoidal filters, and computing the amplitudes and
phases (in this example only the amplitudes) from the outputs of these two filters.
The following section explains the mathematics behind thismethod.

2.4.2 Space-frequency analysis and Gabor filters

Consider a situation where we want to analyze the local frequency contents of an
image: we want to compute the amplitude and phase for each location(x0,y0). Al-
ternatively, we could compute a set of coefficientsC(x0,y0) andS(x0,y0) as in Sec-
tion 2.3.2, which now are functions of the location. The analysis is made local by
applying a weighting function, sayW(x,y), centered at(x0,y0) before the analysis.

We can simply modify the analysis in Section 2.3.2 by centering the signalf
around the point(x0,y0) and weighting it byw before the analysis. Thus, we get a
formula for the coefficientC at a given point:

C(x0,y0)≈∑
x

∑
y

I(x,y)W(x−x0,y−y0)cos(ωx(x−x0)+ ωy(y−y0)). (2.19)

and similarly forS(x0,y0). Note that the order in which we multiply the three images
(imagef , weighting imagew, sinusoidal cos) inside the sum is irrelevant. Therefore
it does not make any difference whether we apply the weighting to the imageI(x,y)
or to the sinusoidal cos(ωx(x− x0) + ωy(y− y0)). If we define a new weighting
function

W2(x,y) = W(x,y)cos(ωxx+ ωyy), (2.20)

equation (2.19) becomes
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C(x0,y0)≈∑
x

∑
y

I(x,y)W2(x−x0,y−y0). (2.21)

Equations (2.20) and (2.21) show that computation of coefficientsC(x0,y0) can be
approximated by filtering the image with a filter that is the product of a sinusoidal
cos(ωxx+ ωyy) and the weighting window. Similar analysis applies to coefficients
S(x0,y0), except that in that case the sinusoidal is sin(ωxx+ωyy). Because the mag-
nitude of the weighting functionW(x,y) typically falls off quite fast from the origin
(x,y) = (0,0), computational savings can be obtained by truncating the filter to zero
for (x,y) far away from the origin.

To summarize the result in an example, Figure 2.12 shows how the ampli-
tude map of Figure 2.11f on page 42 was computed:C(x0,y0) andS(x0,y0) were
computed by filtering the image with weighted versions of cos(ωxx+ ωyy) and
sin(ωxx+ ωyy), respectively, and the amplitude mapA(x0,y0) was obtained by
A(x0,y0) =

√

C(x0,y0)2 +S(x0,y0)2.
The two filters used in the computation ofC(x0,y0) andS(x0,y0) are often called

a quadrature-phase pair. This is because sin(x+ π
2 ) = cos(x), so the two filters are

W(x,y)cos(ωxx+ ωyy) andW(x,y)cos(ωxx+ ωyy+ π
2 ), that is, they are otherwise

identical expect for a a phase difference of one quarter of a whole cycle:2π
4 = π

2 .
When the weighting function is a gaussian window, which in the one-dimensional

case is of the form

Wσ (x) =
1
d

e
− x2

σ2 , (2.22)

the resulting filter is called aGabor filter; parameterσ determines the width of
the window, and the scaling constantd is typically chosen so that∑xWσ (x) = 1.
Overall, a one-dimensional Gabor function

Wσ ,ω,ψ (x) = Wσ (x)cos(ωx+ ψ) (2.23)

has three parameters, widthσ , frequencyω and phaseψ . One-dimensional Gabor
functions are illustrated in Fig. 2.13.

In the two-dimensional case, a Gabor filter has a few additional parameters that
control the two-dimensional shape and orientation of the filter. When the sinusoidal
in the filter has vertical orientation the filter is given by the following equation

Wσx,σy,ω,ψ (x,y) =
1
d

e
−
(

x2

σ2
x

+ y2

σ2
y

)

cos(ωx+ ψ); (2.24)

hereσx andσy control the width of the weighting window in thex- andy-directions,
respectively. A Gabor-filter with orientationα can be obtained by rotating the orig-
inal (x,y) coordinate system by−α to yield a new coordinate system(x∗,y∗) (this
rotation is equivalent to the rotation of the filter itself byα). The equations that
relate the two coordinate systems are

x = x∗ cosα +y∗sinα (2.25)

y = −x∗sinα +y∗cosα. (2.26)
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a)

b) c)

d) e)

f)

Fig. 2.12: An example showing how the spatial map of amplitudes of Figure 2.11 f) on page 42
was computed.a) The analyzed image.b) The spatial filter (called a Gabor filter) obtained by
multiplying cos(ωxx+ ωyy) with the weighting windowW(x,y); the filter has been truncated to
a size of 33× 33 pixels.c) The spatial filter obtained by multiplying sin(ωxx+ ωyy) with the
weighting windowW(x,y). d) CoefficientsC(x0,y0), obtained by filtering image a) with filter b).
e) CoefficientsS(x0,y0), obtained by filtering image a) with filter c).f) The spatial amplitude map
A(x0,y0) =

√

C(x0,y0)2 +S(x0,y0)2.
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a)

× =

b)

Fig. 2.13: Illustration of one-dimensional Gabor functions. a) Construction of the function by
multiplication of the envelope with a sinusoidal function.b) Two Gabor functions in quadrature
phase.

Substituting equations (2.25) and (2.26) into equation (2.24) gives the final form
(not shown here).

Examples of two-dimensional Gabor functions were already given in Fig. 2.12b)-
c); two more will be given in the next section, Fig. 2.15.

2.4.3 Spatial localization vs. spectral accuracy

Above we have outlined a scheme where the frequency contentsof an image at a
certain point is analyzed by first multiplying the image witha localized weighting
window, and then analyzing the frequency contents of the weighted image. How
accurate is this procedure, that is, how well can it capture the localized frequency
structure?

The answer is that there is a trade-off between spatial localization and spectral
(frequency) accuracy, because the use of a weighting windowchanges the spectral
contents. Figure 2.14 illustrates this phenomenon by showing how the results of
space-frequency analysis of a pure sinusoidalI(x) = cos

(
1
2x
)

depend on the degree
of spatial localization. The mathematical theory behind this phenomenon goes un-
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Fig. 2.14: In space-frequency analysis, there is a trade-off between spatial localization and spectral
accuracy. This example shows how the use of a weighting window W(x) (second column) changes
the spectral (frequency) contents of a pure sinusoidalI(x) = cos

( 1
2x
)
, x= 0, ...,127. The rightmost

column shows the amplitude spectrum of the localized signalW(x)I(x), which in turn is plotted
in the third column. With no spatial localization (window width σ = ∞; top row), the amplitude
spectrumA(ω) shows a clear peak at the locationω = 1

2 . As window widthσ decreases, spatial
localization increases, but accuracy in the spectral domain decreases: the two peaks inA(ω) spread
out and eventually fuse so thatA(ω) is a unimodal function whenσ = 1.

der the nametime-bandwidth product theoremin signal processing , oruncertainty
principle in physics. These theories state that there is a lower bound on the product
of the spread of the energy in the spatial domain and the frequency domain. See
References at the end of this chapter for more details.

With images, the extra dimensions introduce another factor: uncertainty about
orientation. This parameter behaves just like frequency and location in the sense
that if we want to have a filter which is very localized in orientation, we have to give
up localization in the other parameters. This is illustrated in Fig. 2.15, in which we
see that a basic Gabor which is very localized in space a) responds to a wider range
of different orientations than the Gabor in b). The Gabor in b) has has been designed
to respond only to a small range of orientations, which was only possible by making
it more extended in space.
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a) b)

Fig. 2.15: Uncertainty in two dimensions. Compared with a “basic” Gabor function ina), the
Gabor inb) is very localized in orientation, that is, it responds to only a small range of different
orientations. The thin black lines show the orientations ofthin lines which still fall on the white
(positive) area of the function: a line which is more obliquewill partly fall on the black (negative)
areas and thus the response of the filter will the reduced. We can see that in b), the range of
orientations producing very large responses (falling on the white area only) is much smaller than in
a). This illustrates that in order to make the basic Gabor function in a) more localized in orientation,
it is necessary to make it longer, and thus to reduce its spatial localization.

2.5 References

Most of the material covered in this chapter can be found in most image-processing
textbooks. A classic choice is (Gonzales and Woods, 2002), which does not, how-
ever, consider space-frequency analysis. A large number oftextbooks explain time-
frequency analysis, which is the one-dimensional counterpart of space-frequency
analysis, for example (Cohen, 1995). Related material can also be found in text-
books on wavelets, which are a closely related method (see Section 17.3.2 for a very
short introduction), for example (Vetterli and Kovačevi´c, 1995; Strang and Nguyen,
1996).

2.6 Exercices

Mathematical exercises

1. Show that convolution is a symmetric operation.
2. Show Eq. (2.3).
3. Prove Equation (2.17). Hint: Find two different values for x so that you get the

two equations

Acosψ = C (2.27)

−Asinψ = S (2.28)

Now, solve forA andψ as follows. First, take the squares of both sides of both
equations (2.27) and (2.28) and sum the two resulting equations. Recall the sum
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of squares of a sine and a cosine function. Second, divide both sides of the equa-
tions (2.27) and (2.28) with each other.

Computer assignments

The computer assignments in this book are designed to be madewith MatlabTM.
Most of them will work on Matlab clones such as Octave. We willassume that you
know the basics of Matlab.

1. The commandmeshgrid is very useful for image processing. It creates two-
dimensional coordinates, just like a command such as[5:.01:5] creates a one-
dimensional coordinate. Give the command[X,Y]=meshgrid([-5:0.1:5]); and
plot the matricesX andY usingimagesc.

2. Create Fourier gratings bysin(X), sin(Y), sin(X+Y). Plot the gratings.
3. Create a gabor function using theseX andY, simply by plugging in those matri-

ces in the formula in Eq. 2.24. Try out different values for the parameters until
you get a function which looks like the one in Fig. 2.12b).

4. Change the roles ofX andY to get a Gabor filter in a different orientation.
5. Try out a Gabor function of a different orientation by plugging inX+Y instead of

X andX-Y instead ofY.
6. Linear filtering is easily done with the functionconv2 (the “2” means two-

dimensional convolution, i.e. images). Take any image, import it to Matlab, and
convolve it with the three Gabor functions obtained above.





Chapter 3
Outline of the visual system

In this chapter, we review very briefly the structure of the human visual system. This
exposition contains a large number of terms which are likelyto be new for readers
who are not familiar with neuroscience. Only a few of them areneeded later in this
book; they are given in italics for emphasis.

3.1 Neurons and firing rates

Neurons The main information processing workload of the brain is carried by
nerve cells, orneurons. Estimates of the number of neurons in the brain typically
vary between 1010 and 1011. What distinguishes neurons from other cells are their
special information-processing capabilities. A neuron receives signals from other
neurons, processes them, and sends the result of that processing to other neurons. A
schematic diagram of a neuron is shown in Fig. 3.1, while a more realistic picture is
given in Fig. 3.2.

Axons How can such tiny cells send signals to other cells which may be far away?
Each neuron has one very long formation called anaxonwhich connects it to other
cells. Axons can be many centimeters or even a couple of metres long, so they can
reach from one place in the brain to almost any other. Axons have a sophisticated
biochemical machinery to transmit signals over such relatively long distances. The
machinery is based on a phenomenon calledaction potential.

Action potentials An action potential is a very short (1 ms) electrical impulse
travelling via the axon of the neuron. Action potentials areillustrated in Fig. 3.3.
Due to their typical shape, action potential are also calledspikes. Action potentials
are fundamental to the information processing in neurons; they constitute the signals
by which the brain receives, analyzes, and conveys information.

51
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Fig. 3.1: A schematic diagram of information-processing ina neuron. Flow of information is from
right to left.

Fig. 3.2: Neurons (thick bodies, some lettered), each with one axon (thicker line going up) for send-
ing out the signal, and many dendrites (thinner lines) for receiving signals. Drawing by Santiago
Ramón y Cajal in 1900.
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Action potentials are all-or-none, in the sense that they always have the same
strength (a potential of about 100mV) and shape. Thus, a key principle in brain
function is that the meaning of a spike is not determined by what the spike is like
(because they are all the same), but rather,whereit is, i.e. which axon is it travelling
along, or equivalently, which neuron sent it. (Of course, the meaning also depends
onwhenthe spike was fired.)

Time
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Fig. 3.3: An action potential is a wave of electrical potential which travels along the axon. It travels
quite fast, and is very short both in time and its spatial length (along the axon). The figure shows
the potentials in different parts of the axon soon after the neuron has emitted two action potentials.

Signal reception and processingAt the receiving end, action potentials are input
to neurons via shorter formations called dendrites. Typically, an axon has many
branches, and each of them connects to a dendrite of another neuron. Thus, the axon
could be thought of as output wires along which the output signal of the neuron is
sent to other neurons; dendrites are input wires which receive the signal from other
neurons. The site where an axon meets a dendrite is called a synapse. The main cell
body, or soma, is often thought of as the main “processor” which does the actual
computation. However, an important part of the computationis already done in the
dendrites.

Firing rate The output of the neuron consists of a sequence of spikes emitted
(a “spike train”). To fully describe such a sequence, one should record the time
intervals between each successive spike. To simplify the situation, most research in
visual neuroscience has concentrated on the neurons’firing rates, i.e. the number of
spikes “fired” (emitted) by a neuron per second. This gives a single scalar quantity
which characterizes the activity of the cell. Since it is these action potentials which
are transmitted to other cells, the firing rate can also be viewed as the “result” of the
computation performed by the neuron, in other words, its output.

Actually, most visual neurons are emitting spikes all the time, but with a rela-
tively low frequency (of the order of 1 Hz). The “normal” firing rate of the neuron
when there is no specific stimulation is called thespontaneous firing rate. When the
firing rate is increased from the spontaneous one, the neuronis said to be active or
activated.
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Computation by the neuron How is information processed, i.e. how are the in-
coming signals integrated in the soma to form the outcoming signal? This question
is extremely complex and we can only give an extremely simplified exposition here.

A fundamental principle of neural computation is that the reception of a spike at a
dendrite can either excite (increase the firing rate) of the receiving neuron, or inhibit
it (decrease the firing rate), depending on the neuron from which the signal came.
Furthermore, depending on the dendrite and the synapse, some incoming signals
have a stronger tendency to excite or inhibit the neuron. Thus, a neuron can be
thought of as an elementary pattern-matching device: its firing rates is large when
it receives input from those neurons which excite it (strongly), and no input from
those neurons which inhibit it. A basic mathematical model for such an action is to
consider the firing rate as a linear combination of incoming signals; we will consider
linear models below.

Thinking in terms of the original visual stimuli, it is oftenthought that a neuron
is active when the input contains a feature for which the neuron is specialized — but
this is a very gross simplification. Thus, for example, a hypothetical “grandmother
cell” is one that only fires when the brain perceives, or perhaps thinks of, the grand-
mother. Next we will consider what are the actual response properties of neurons in
the visual system.

3.2 From the eye to the cortex

Figure 3.4 illustrates the earliest stages of the main visual pathway. Light enters
the eye, reaching theretina. The retina is a curved, thin sheet of brain tissue that
grows out into the eye to provide the starting point for neural processing of visual
signals. The retina is covered by a more than a hundred million photoreceptors,
which convert the light into an electric signal, i.e. neuralactivity.

From the photoreceptors, the signal is transmitted througha couple of neural
layers. The last of the retinal processing layer consists ofganglion cells, which
send the output of the retina (in form of action potentials) away from the eye using
their very long axons. The axons of the ganglion cells form the optic nerve. The
optic nerve transmits the visual signals to the lateral geniculate nucleus (LGN) of
the thalamus. The thalamus is a structure in the middle of thebrain through which
most sensory signals pass on their way from the sensory organs to the main sensory
processing areas in the brain.

From the LGN the signal goes to various other destinations, the most important
being the visual cortex at the back of the head, where most of the visual processing
is performed. Cortex, or cerebral cortex to be more precise,means here the surface
of the two cerebral hemispheres, also called the “grey matter”. Most of the neurons
associated with sensory or cognitive processing are located in the cortex. The rest of
the cerebral cortex consists mainly of axons connecting cortical neurons with each
other, or the “white matter”.
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The visual cortex contains some 1/5 of the total cortical area in humans, which
reflects the importance of visual processing to us. It consists of a number of distinct
areas. Theprimary visual cortex, or V1 for short, is the area to which most of the
retinal output first arrives. It is the most widely-studied visual area, and also the
main focus in this book.

Fig. 3.4: The main visual pathway in the human brain.

3.3 Linear models of visual neurons

3.3.1 Responses to visual stimulation

How to make sense of the bewildering network of neurons processing visual infor-
mation in the brain? Much of visual neuroscience has been concerned with measur-
ing the firing rates of cells as a function of some properties of a visual input. For
example, an experiment might run as follows: An image is suddenly projected onto a
(previously blank) screen that an animal is watching, and the number of spikes fired
by some recorded cell in the next second are counted. By systematically changing
some properties of the stimulus and monitoring the elicitedresponse, one can make
a quantitative model of the response of the neuron. An example is shown in Fig. 3.5.
Such a model mathematically describes the response (firing rate)r j of a neuron as a
function of the stimulusI(x,y).

In the early visual system, the response of a typical neuron depends only on
the intensity pattern of a very small part of the visual field.This area, where light
increments or decrements can elicit increased firing rates,is called the (classical)
receptive field(RF) of the neuron. More generally, the concept also refers to the
particular light pattern that yields the maximum response.
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Fig. 3.5: A caricature of a typical experiment. A dark bar on awhite background is flashed onto
the screen, and action potentials are recorded from a neuron. Varying the orientation of the bar
yields varying responses. Counting the number of spikes elicited within a fixed time window fol-
lowing the stimulus, and plotting these counts as a functionof bar orientation, one can construct a
mathematical model of the response of the neuron.

So, what kind of light patterns actually elicit the strongest responses? This of
course varies from neuron to neuron. One thing that most cells have in common is
that they don’t respond to a static image which consists of a uniform surface. They
respond to stimuli in which there is some change, either temporally or spatially;
such change is calledcontrastin vision science.

The retinal ganglion cells as well as cells in the lateral geniculate nucleus typi-
cally have circular center-surround receptive field structure: Some neurons are ex-
cited by light in a small circular area of the visual field, butinhibited by light in a
surrounding annulus. Other cells show the opposite effect,responding maximally to
light that fills the surround but not the center. This is depicted in Figure 3.6a).

3.3.2 Simple cells and linear models

The cells that we are modelling are mainly in the primary visual cortex (V1). Cells
in V1 have more interesting receptive fields than those in theretina or LGN. The so-
calledsimple cellstypically have adjacent elongated (instead of concentric circular)
regions of excitation and inhibition. This means that thesecells respond maximally
to orientedimage structure. This is illustrated in Figure 3.6b).

Linear models are the ubiquitous workhorses of science and engineering. They
are also the simplest successful neuron models of the visualsystem. A linear model
for a visual neuron1 means that the response of a neuron is modelled by a weighted

1 Note that there are two different kinds of models one could develop for a visual neuron. First,
one can model the output (firing rate) as a function of theinput stimulus, which is what we do here.
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Fig. 3.6: Typical classical receptive fields of neurons early in the visual pathway. Plus signs de-
note regions of the visual field where light causes excitation, minuses regions where light inhibits
responses.a) Retinal ganglion and LGN neurons typically exhibit center-surround receptive field
organization, in one of two arrangements.b) The majority of simple cells in V1, on the other hand,
have oriented receptive fields.

sum of the image intensities, as in

r j = ∑
x,y

Wj(x,y)I(x,y)+ r0, (3.1)

whereWj(x,y) contains the pattern of excitation and inhibition for lightfor the neu-
ron j in question. The constantr0 is the spontaneous firing rate. We can define the
spontaneous firing rate to be the baseline (zero) by subtracting it from the firing rate:

r̃ j = r j − r0, (3.2)

which will be done in all that follows.
Linear receptive-field models can be estimated from visual neurons by employ-

ing a method called reverse correlation. In this method, a linear receptive field is
estimated so that the mean square error between the estimated r j in equation (3.1),
and the actual firing rate is minimized, where the mean is taken over a large set of
visual stimuli. The name “reverse correlation” comes from the fact that the general
solution to this problem involves the computation of the time-correlation of stimu-
lus and firing rate. However, the solution is simplified when temporally and spatially
uncorrelated (“white noise”, see Section 4.6.4) sequencesare used as visual stim-
uli – in this case, the optimalWj is obtained by computing an average stimulus
over those stimuli which elicited a spike. Examples of estimated receptive fields are
shown in Fig. 3.7.

Alternatively, one could model the output as a function of thedirect inputsto the cell, i.e. the rates
of action potentials received in its dendrites. This latterapproach is more general, because it can
be applied to any neuron in the brain. However, it is not usually used in vision research because it
does not tell us much about the function of the visual system unless we already know the response
properties of those neurons whose firing rates are input to the neuron via dendrites, and just finding
those cells whose axons connect to a given neuron is technically very difficult.
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Fig. 3.7: Receptive fields of simple cells estimated by reverse correlation based on single-cell
recordings in a macaque monkey. Courtesy of Dario Ringach, UCLA.

3.3.3 Gabor models and selectivities of simple cells

How can we describe the receptive field of simple cells in mathematical terms? Typ-
ically, this is based on modelling the receptive fields by Gabor functions, reviewed in
Section 2.4.2. A Gabor function consists of an oscillatory sinusoidal function which
generates the alternation between the excitatory and inhibitory (“white/black”) ar-
eas, and a gaussian “envelope” function which determines the spatial size of the
receptive field. In fact, when comparing the receptive field in Fig. 3.7 with the Ga-
bor functions in Fig. 2.12b)-c), it seems obvious that Gaborfunctions provide a
reasonable model for the receptive fields.

Using a Gabor function, the receptive field is reduced to a small number of pa-
rameters:

• Orientation of the oscillation
• Frequency of oscillation
• Phase of the oscillation
• Width of the envelope (in the direction of the oscillation)
• Length of the envelope (in the direction orthogonal to the oscillation). The ratio

of the length to the width is called the aspect ratio.
• The location in the image (on the retina)
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These parameters are enough to describe the basic selectivity properties of simple
cells: a simple cell typically gives a strong response when the input consists of a
Gabor function with approximately the right (“preferred”)values for all, or at least
most, of these parameters (the width and the length of the envelope are not criti-
cal for all simple cells). Thus, we say that simple cells are selective for frequency,
orientation, phase, and location.

In principle, one could simply try to find a Gabor function which gives the best
fit to the receptive field estimated by reverse correlation. In practice, however, more
direct methods are often used since reverse correlation is rather laborious. Typi-
cally, what is computed aretuning curvesfor some of these parameters. This was
illustrated in Fig. 3.5. Typical stimuli include two-dimensional Fourier gratings (see
Fig. 2.5) and simple, possibly short, lines or bars. Examples of such analyses will
be seen in Chapters 6 and 10.

3.3.4 Frequency channels

The selectivity of simple cells (as well as many other cells)to frequency is related
to the concept of “frequency channels” which is widely used in vision science. The
idea is that in the early visual processing (something like V1), information of differ-
ent frequencies is processed independently. Justificationfor talking about different
channels is abundant in research on V1. In fact, the very point in using Gabor models
is to model the selectivity of simple cells to a particular frequency range.

Furthermore, a number of psychological experiments point to such a division
of early processing. For example, in Figure 3.8, the information in the high- and
low-frequency parts are quite different, yet observes haveno difficulty in process-
ing (reading) them separately. This figure also illustratesthe practical meaning of
frequency selectivity: some of the cells in V1 respond to the“yes” letters but do
not respond to the “no” letters, while for other cells, the responses are the other
way round. (The responses depend, however, on viewing distance: stimuli which
are low-frequency when viewed from a close distance will be high-frequency when
viewed from far away.)

3.4 Nonlinear models of visual neurons

3.4.1 Nonlinearities in simple-cell responses

Linear models are widely used in modelling visual neurons, but they are definitely a
rough approximation of the reality. Real neurons exhibit different kinds of nonlinear
behaviour. The most basic nonlinearities can be handled by adding a simple scalar
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a)

b) c)

Fig. 3.8: A figure with independent (contradictory?) information in different frequency channels.a)
the original figure,b) low-frequency part of figure in a), obtained by taking the Fourier transform
and setting to zero all high-frequency components (whose distance from zero is larger than a certain
threshold) ,c) high-frequency part of figure in a). The sum of the figures in b)and c) equals a).



3.4 Nonlinear models of visual neurons 61

nonlinearity to the model, which leads to what is simply called alinear-nonlinear
model.

In the linear-nonlinear model, a linear stage is followed bya static nonlinearity
f :

r̃ j = f

(

∑
x,y

Wj(x,y)I(x,y)

)

. (3.3)

A special case of the linear-nonlinear model ishalf-wave rectification, defined by

f (α) = max{0,α} . (3.4)

One reason for using this model is that if a neuron has a relatively low spontaneous
firing rate, the firing rates predicted by the linear model maythen tend to be negative.
The firing rate, by definition, cannot be negative.

We must distinguish here between two cases. Negative firing rates are, of course,
impossible by definition. In contrast, it is possible to havepositive firing rates that
are smaller than the spontaneous firing rate; they give a negative r̃ j in Equation (3.2).
Such firing rates correspond to the sum term in Eq. (3.1) beingnegative, but not so
large that ther j becomes negative. However, in V1, the spontaneous firing rate tends
to be rather low, and the models easily predict negative firing rates for cortical cells.
(This is less of a problem for ganglion and LGN cells, since their spontaneous firing
rates are relatively high.)

Thus, half-wave rectification offers one way to interpret the purely linear model
in Eq. (3.1) in a more physiologically plausible way: the linear model combines the
outputs of two half-wave rectified (non-negative) cells with reversed polarities into
a single outputr j – one cell corresponds to linear RFWj and the other to RF−Wj .

The linear-nonlinear model is flexible and can accommodate anumber of other
properties of simple cell responses as well. First, when thelinear model predicts
small outputs, i.e., the stimulus is weak, no output (increase in firing rate) is actually
observed in simple cells. In other words, it seems there is athresholdwhich the
stimulus must attain to elicit any response. This phenomenon, combined with half-
wave rectification, could be modelled by using a nonlinearity such as

f (α) = max(0,α−c) (3.5)

wherec is a constant that gives the threshold.
Second, due to biological properties, neurons have a maximum firing rate. When

the stimulus intensity is increased above a certain limit, no change in the cell re-
sponse is observed, a phenomenon calledsaturation. This is in contradiction with
the linear model, which has no maximum response: if you multiply the input stimu-
lus by, say, 1,000,000, the output of the neuron increases bythe same factor. To take
this property into account, we need to use a nonlinearity that saturates as well, i.e.
has a maximum value. Combining the three nonlinear properties listed here leads us
to a linear-nonlinear model with the nonlinearity

f (α) = min(d,max(0,α−c)) (3.6)
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whered is the maximum response. Figure 3.9 shows the form of this function.
Alternatively, we could use a smooth function with the same kind of behaviour,

such as

f (α) = d
α2

c′+ α2 . (3.7)

wherec′ is another constant that is related to the thresholdc.

Fig. 3.9: The nonlinear function in (3.6).

3.4.2 Complex cells and energy models

Although linear-nonlinear models are useful in modelling many cells, there are also
neurons in V1 calledcomplex cellsfor which these models are completely inade-
quate. These cells do not show any clear spatial zones of excitation or inhibition.
Complex cells respond, just like simple cells, selectivelyto bars and edges at a par-
ticular location and of a particular orientation; they are,however, relatively invariant
to the spatial phase of the stimulus. An example of this is that reversing the contrast
polarity (e.g. from white bar to black bar) of the stimulus does not markedly alter
the response of a typical complex cell.

The responses of complex cells have often been modelled by the classical ‘energy
model’. (The term ‘energy’ simply denotes the squaring operation.) In such a model
(see Figure 3.10) we have

r j =

(

∑
x,y

Wj1(x,y)I(x,y)

)2

+

(

∑
x,y

Wj2(x,y)I(x,y)

)2

whereWj1(x,y) andWj2(x,y) are quadrature-phase Gabor functions, i.e., they have
a phase-shift of 90 degrees, one being odd-symmetric and theother being even-
symmetric. It is often assumed that V1 complex cells pool theresponses of simple
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cells, in which case the linear responses in the above equation are outputs of simple
cells.

The justification for this model is that since the two linear filters are Gabors in
quadrature-phase, the model is computing the local Fourier“energy” in a particular
range of frequencies and orientations, see Equation (2.16). This provides a model of
a cell which is selective for frequency and orientation, andis also spatially localized,
but does not care about the phase of the input. In other words it is phase-invariant
(This will be discussed in more detail in Chapter 10.)

The problem of negative responses considered earlier suggests a simple modifi-
cation of the model, where each linear RF again corresponds to two simple cells.
The output of a linear RF is divided to the positive and negative parts and half-wave
rectified. In this case, the half-wave rectified outputs are further squared so that they
compute the squaring operation of the energy model. In addition, complex cells sat-
urate just as simple cells, so it makes sense to add a saturating nonlinearity to the
model as well.
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Fig. 3.10: The classic energy model for complex cells. The response of a complex cell is modelled
by linearly filtering with quadrature-phase Gabor filters (Gabor functions whose sinusoidal com-
ponents have a 90 degrees phase difference), taking squares, and summing. Note that this is purely
a mathematical description of the response and should not bedirectly interpreted as a hierarchical
model summing simple cell responses.

3.5 Interactions between visual neurons

In the preceding models, V1 cells are considered completelyindependent units:
each of them just takes its input and computes its output. However, different kinds
interactions between the cells have been observed.

The principal kind of interaction seems to beinhibition: when a cellj is active,
the responses of another celli is reduced from what they would be without that cell
j being active. To be more precise, let us consider two simple cells whose receptive
fieldsWi andWj are orthogonal (for more on orthogonality see Chapter 19). Take,
for example, two cells in the same location, one with vertical and the other with
horizontal orientation). Take any stimulusI0 which excites the cellWj . For example,
we could take a stimulus which is equal to the receptive fieldWj itself. Now, we add
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another stimulus pattern, sayI1, to I0. This simply means that we add the intensities
pixel-by-pixel, showing the following stimulus to the retina:

I(x,y) = I0(x,y)+ I1(x,y) (3.8)

The added stimulusI1 is often called a mask or a pedestal.
The point is that by choosingI1 suitably, we can demonstrate a phenomenon

which is probably due to interaction between the two cells. Specifically, let us
choose a stimulus which is equal to the receptive field of celli: I1 = Wi . This is
maximally excitatory for the celli, but it is orthogonal to the receptive field of cell
j. With this kind of stimuli, the typical empirical observation is that the cellj has a
lower firing rate for the compound stimulusI = I0+ I1 than forI0 alone. This inhibi-
tion cannot be explained by the linear models (or the linear-nonlinear models). The
maskI1 should have no effect on the linear filter stage, because the mask is orthog-
onal to the receptive fieldWj . So, to incorporate this phenomenon in our models,
we must include some interaction between the linear filters:The outputs of some
model cells must reduce the outputs of others. (It is not completely clear whether
this empirical phenomenon is really due to interaction between the cells, but that is
a widely-held view, so it makes sense to adopt it in our models.)

a) b) c)

Fig. 3.11: Interaction between different simple cells.a) Original stimulusI0 of a simple cell, cho-
sen here as equal the receptive field ofWj . b) Masking patternI1 which is orthogonal toI0. c)
Compound stimulusI . The response toI is smaller than the response toI0 although the linear
models predicts that the responses should be equal.

This phenomenon is typically called “contrast gain control”. The idea is that
when there is more contrast in the image (due to the addition of the mask), the
system adjusts its responses to be generally weaker. It is thought to be necessary
because of the saturating nonlinearity in the cells and the drastic changes in illumi-
nation conditions observed in the real world. For example, the cells would be re-
sponding with the maximum value most of the time in bright daylight (or a brightly
lit part of the visual scene), and they would be responding hardly at all in a dim
environment (or a dimly lit part of the scene). Gain control mechanisms alleviate
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this problem by normalizing the variation of luminance overdifferent scenes, or
different parts of the same scene. For more on this point, seeSection 9.5.2

This leads us to one of the most accurate currently known simple-cell models, in
terms of predictive power, the divisive normalization model. Let W1, . . . ,WK denote
the receptive fields of those cells whose receptive fields areapproximately in the
same location, andσ a scalar parameter. In the divisive normalization model, the
output of the cell corresponding to RFWj is given by

r j =
f
(

∑x,yWj(x,y)I(x,y)
)

∑K
i=1 f

(

∑x,yWi(x,y)I(x,y)
)
+ σ2

, (3.9)

where f is again a static nonlinearity, such as the half-wave rectification followed
by squaring. This divisive normalization model provides a simple account of con-
trast gain control mechanisms. In addition, it also automatically accounts for such
simple-cell nonlinearities as response saturation and threshold. In fact, if the input
stimulus is such that it only excites cellj, and the linear responses in the denomi-
nator are all zero expect for the one corresponding to cellj, the model reduces to
the linear-nonlinear model in Section 3.4.1. If we further define f to be the square
function, we get the nonlinearity in Equation 3.7.

3.6 Topographic organization

A further interesting point is how the receptive fields of neighbouring cells are re-
lated. In the retina, the receptive fields of retinal ganglion cells are necessarily linked
to the physical position of the cells. This is due to the fact that the visual field
is mapped in an orderly fashion to the retina. Thus, neighbouring retinal ganglion
cells respond to neighbouring areas of the visual field. However, there is nothing to
guarantee the existence of a similar organization further up the visual pathway.

But the fact of the matter is that, just like in the retina, neighbouring neurons in
the LGN and in V1 tend to have receptive fields covering neighbouring areas of the
visual field. This phenomenon is calledretinotopy. Yet this is only one of several
types of organization. In V1, the orientation of receptive fields also tends to shift
gradually along the surface of the cortex. In fact, neurons are often approximately
organized according to several functional parameters (such as location, frequency,
orientation) simultaneously. This kind oftopographic organizationalso exists in
many other visual areas.

Topographical representations are not restricted to cortical areas devoted to vi-
sion, but are present in various forms throughout the brain.Examples include the

2 In fact, different kinds of gain control mechanisms seem to be operating in different parts of
the visual system. In the retina, such mechanisms normalizethe general luminance level of the
inputs, hence the name “luminance gain control”. Contrast gain control seems to be done after that
initial gain control. The removal of the mean grey-scale value (DC component) that we do in later
chapters can be thought to represent a simple luminance gaincontrol mechanism.
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tonotopic map (frequency-based organization) in the primary auditory cortex and
the complete body map for the sense of touch. In fact, one might be pressed to find
a brain area that would not exhibit any sort of topography.

3.7 Processing after the primary visual cortex

From V1, the visual signals are sent to other areas, such as V2, V4, and V5, called
extrastriateas another name for V1 is the “striate cortex”. The function of some
of these areas (mainly V5, which analyzes motion) is relatively well understood,
but the function of most of them is not really understood at all. For example, it
is assumed that V2 is the next stage in the visual processing,but the differences
in the features computed in V1 and V2 are not really known. V4 has been vari-
ously described as being selective to long contours, corners, crosses, circles, “non-
Cartesian” gratings, colour, or temporal changes (see the references section below).
Another problem is that the extrastriate cortex may be quitedifferent in humans
and monkeys (not to mention other experimental animals), soresults from animal
experiments may not generalize to humans.

3.8 References

Among general introductions to the visual system, see, e.g., (Palmer, 1999). A most
interesting review of the state of modelling of the visual cortex, with extensive ref-
erences to experiments, is in (Carandini et al, 2005).

For a textbook account of reverse correlation, see e.g. (Dayan and Abbott, 2001);
reviews are (Ringach and Shapley, 2004; Simoncelli et al, 2004). Classic application
of reverse correlation for estimating simple cell receptive fields is (Jones and Palmer,
1987b; Jones et al, 1987; Jones and Palmer, 1987a). For spatiotemporal extensions
see (DeAngelis et al, 1993a,b). LGN responses are estimated, e.g., in (Cai et al,
1997), and retinal ones, e.g. in (Davis and Naka, 1980).

The nonlinearities in neuron responses are measured in (Anzai et al, 1999b;
Ringach and Malone, 2007); theoretical studies include (Hansel and van Vreeswijk,
2002; Miller and Troyer, 2002). These studies concentrate on the “thresholding”
part of the nonlinearity, ignoring saturation. Reverse correlation in the presence of
nonlinearities is considered in (Nykamp and Ringach, 2002).

A review on contrast gain control can be found in (Carandini,2004). The divisive
normalization model is considered in (Heeger, 1992; Carandini et al, 1997, 1999).
More on the interactions can be found in (Albright and Stoner, 2002). For review
of the topographic organization in different parts of the cortex, see (Mountcastle,
1997).

A discussion on our ignorance of V2 function can be found in (Boynton and
Hedgé, 2004). Proposed selectivities in V4 include long contours (Pollen et al,
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2002), corners and related features (Pasupathy and Connor,1999, 2001), crosses,
circles, and other non-Cartesian gratings (Gallant et al, 1993; Wilkinson et al, 2000),
as well as temporal changes (Gardner et al, 2005). An alternative viewpoint is that
the processing might be quite similar in most extrastriate areas, the main difference
being the spatial scale (Hegdé and Essen, 2007). A model of V5 is proposed in
(Simoncelli and Heeger, 1998).

Basic historical references on the visual cortex include (Hubel and Wiesel, 1962,
1963, 1968, 1977).

3.9 Exercices

Mathematical exercises

1. Show that the addition of a mask which is orthogonal to the receptive field, as in
Section 3.5 should not change the output of the cell in the linear model

2. What is the justification for using the same letterd for the constants in Equa-
tions (3.6) and (3.7)?

Computer assignments

1. Plot function in Equation (3.7) and compare with the function in (3.6).
2. Receptive fields in the ganglion cells and the LGN are oftenmodelled as a

“difference-of-gaussians” model in whichW(x,y) is defined as

exp(− 1

2σ2
1

[(x−x0)
2+(y−y0)

2])−aexp(− 1

2σ2
2

[(x−x0)
2 +(y−y0)

2]) (3.10)

Plot the receptive fields for some choices of the parameters.Find some parameter
values that reproduce a center-surround receptive field.





Chapter 4
Multivariate probability and statistics

This chapter provides the theoretical background in probability theory and statis-
tical estimation needed in this book. This is not meant as a first introduction to
probability, however, and the reader is supposed to be familiar with the basics of
probability theory. The main emphasis here is on the extension of the basic notions
to multidimensionaldata.

4.1 Natural images patches as random vectors

To put the theory on a concrete basis, we shall first discuss the fundamental idea on
how natural image patches can be considered as a random vector.

A random vector is a vector whose elements are random variables. Randomness
can be defined in different ways. In probability theory, it isusually formalized by
assuming that the value of the random variable or vector depends on some other
variable (“state of the world”) whose value we do not know. So, the randomness is
due to our ignorance.

In this book, an image patchI is typically modelled as a random vector, whose
obtained values (called “observations”) are the numericalgrey-scale values of pixels
in a patch (window) of a natural image. A patch simply means a small sub-image,
such as the two depicted in Fig. 1.3. We use small patches because whole images
have too large dimensions for existing computers (we must beable to perform com-
plicated computations on a large number of such images or patches). A typical patch
size we use in this book is 32×32 pixels.

To get one observation of the random vector in question, we randomly select one
of the images in the image set we have, and then randomly select the location of the
image patch. The randomness of the values in the vector stemsfrom the fact that
the patch is taken in some “random” position in a “randomly” selected image from
our database. The “random” position and image selection arebased on a random
number generator implemented in a computer.

69
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It may be weird to call an image patch a “vector” as it is two-dimensional and
could also be called a matrix. However, for the purposes of most of this book, a
two-dimensional image patch has to be treated like a one-dimensional vector, or a
point in the image space, as was illustrated in Fig. 1.5. (A point and a vector are
basically the same thing in this context.) This is because observed data are typically
considered to be such vectors in statistics, and matrices are used for something quite
different (that is, to represent linear transformations, see Section 19.3 for details).
In practical calculations, one often has to transform the image patches into one-
dimensional vectors, i.e. “vectorize” them. Such a transformation can be done in
many different ways, for example by scanning the numerical values in the matrix
row-by-row; the statistical analysis of the vector is not atall influenced by the choice
of that transformation. In most of the chapters in this book,it is assumed that such
a transformation has been made.

On a more theoretical level, the random vector can also represent the whole set of
natural images, i.e. each observation is one natural image,in which case the database
is infinitely large and does not exist in reality.

4.2 Multivariate probability distributions

4.2.1 Notation and motivation

In this chapter, we will denote random variables byz1,z2, . . . ,zn ands1,s2, . . . ,sn

for some numbern. Taken together, the random variablesz1,z2, . . . ,zn form ann-
dimensional random vector which we denote byz:

z =








z1

z2
...

zn








(4.1)

Likewise, the variabless1,s2, . . . ,sn can be collected to a random vector, denoted by
s.

Although we will be considering general random vectors, in order to make things
concrete, you can think of eachzi as the grey-scale value of a pixel in the image
patch. In the simple case of two variables,z1 andz2, this means that you take samples
of two adjacent pixels (say, one just to the right of the other). A scatter plot of such
a pixel pair is given in Fig. 4.1. However, this is by no means the only thing the
variables can represent; in most chapters of this book, we will also consider various
kinds of features which are random variables as well.

The fundamental goal of the models in this book is to describethe probability
distribution of the random vector of natural image patches.So, we need to next
consider the concept of a probability density function.
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Fig. 4.1: Scatter plot of the grey-scale values of two neighbouring pixels. The horizontal axis gives
the value of the pixel on the left, and the vertical axis givesthe value of the pixel on the right. Each
dot corresponds to one observed pair of pixels.

4.2.2 Probability density function

A probability distribution of a random vector such asz is usually represented using
aprobability density function(pdf). The pdf at a point in then-dimensional space is
denoted bypz.

The definition of the pdf of a multidimensional random vectoris a simple gen-
eralization of the definition of the pdf of a random variable in one dimension. Let
us first recall that definition. Denote byz a random variable. The idea is that we
take a small numberv, and look at the probability thatz takes a value in the interval
[a,a+v] for any givena. Then we divide that probability byv, and that is the value
of the probability density function at the pointa. That is

pz(a) =
P(z is in [a,a+v])

v
(4.2)

This principle is illustrated in Fig. 4.2. Rigorously speaking, we should take the
limit of an infinitely smallv in this definition.

This principle is simple to generalize to the case of ann-dimensional random
vector. The value of the pdf function at a point, saya = (a1,a2, . . . ,an), gives the
probability that an observation ofz belongs to a small neighbourhood of the point
a, divided by the volume of the neighbourhood. Computing the probability that the
values of eachzi are between the values ofai andai +v, we obtain

pz(a) =
P(zi is in [ai ,ai +v] for all i)

vn (4.3)

wherevn is the volume of then-dimensional cube whose edges all have lengthv.
Again, rigorously speaking, this equation is true only in the limit of infinitely small
v.

A most important property of a pdf is that it is normalized: its integral is equal to
one ∫

pz(a)da = 1 (4.4)
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a a+v
Fig. 4.2: The pdf of a random variable at a pointa gives the probability that the random variable
takes a value in a small interval[a,a+ v], divided by the length of that interval, i.e.v. In other
words, the shaded area, equal top(a)v, gives the probability that that the variable takes a value in
that interval.

This constraint means that you cannot just take any non-negative function and say
that it is a pdf: you have to normalize the function by dividing it by its integral.
(Calculating such an integral can actually be quite difficult and sometimes leads to
serious problems, as discussed in Chapter 21).

For notational simplicity, we often omit the subscriptz. We often also writep(z)
which means the value ofpz at the pointz. This simplified notation is rather ambigu-
ous because nowz is used as an ordinary vector (likea above) instead of a random
vector. However, often it can be used without any confusion.

Example 1 The most classic probability density function for two variables is the
gaussian, or normal, distribution. Let us first recall the one-dimensional gaussian
distribution, which in the basic case is given by

p(z) =
1√
2π

exp(−1
2

z2) (4.5)

It is plotted in Fig. 4.3 b). This is the “standardized” version (mean is zero and
variance is one), as explained below. The most basic case of atwo-dimensional
gaussian distribution is obtained by taking this one-dimensional pdf separately for
each variables, and multiplying them together. (The meaning of such multiplication
is that the variables are independent, as will be explained below.) Thus, the pdf is
given by

p(z1,z2) =
1

2π
exp(−1

2
(z2

1 +z2
2)) (4.6)

A scatter plot of the distribution is shown in Fig. 4.3 a). Thetwo-dimensional pdf
itself is plotted in Fig. 4.3 c).

Example 2 Let us next consider the following two-dimensional pdf:
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p(z1,z2) =

{

1, if |z1|+ |z2|< 1

0, otherwise
(4.7)

This means that the data is uniformly distributed inside a square which has been
rotated 45 degrees. A scatter plot of data from this distribution is shown in Figure 4.4
a).
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Fig. 4.3: a) scatter plot of the two-dimensional gaussian distributionin Equation (4.6).b) The
one-dimensional standardized gaussian pdf. As explained in Section 4.3, it is also the marginal
distribution of one of the variables in a), and furthermore,turns out to be equal to the conditional
distribution of one variable given the other variable.c) The probability density function of the
two-dimensional gaussian distribution.

4.3 Marginal and joint probabilities

Consider the random vectorz whose pdf is denoted bypz. It is important to make
a clear distinction between thejoint pdf and themarginal pdf’s. The joint pdf is
just what we called pdf above. The marginal pdf’s are what youmight call the
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Fig. 4.4:a) scatter plot of data obtained from the pdf in Eq. (4.7).b) marginal pdf of one of the
variables in a).c) conditional pdf ofz2 givenz1 = 0. d) conditional pdf ofz2 givenz1 = .75

“individual” pdf’s of zi , i.e. the pdf’s of those variables,pz1(z1), pz2(z2), . . . when
we just consider one of the variables and ignore the existence of the other variables.

There is actually a simple connection between marginal and joint pdf’s. We can
obtain a marginal pdf by integrating the joint pdf over one ofthe variables. This is
sometimes called “integrating out”. Consider for simplicity the case where we only
have two variables,z1 andz2. Then, the marginal pdf ofz1 is obtained by

pz1(z1) =

∫

pz(z1,z2)dz2 (4.8)

This is a continuous-space version of the intuitive idea that for a given value ofz1,
we “count” how many observations we have with that value, going through all the
possible values ofz2.1 (In this continuous-valued case, no observed values ofz1 are

1 Note again that the notation in Eq. (4.8) is sloppy, because now z1 in the parentheses, both on
the left and the right-hand side, stands for any valuez1 might obtain, although the same notation is
used for the random quantity itself. A more rigorous notation would be something like:

pz1(v1) =
∫

pz(v1,v2)dv2 (4.9)
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likely to be exactly equal to the specified value, but we can use the idea of a small
interval centred around that value as in the definition of thepdf above.)

Example 3 In the case of the gaussian distribution in Equation (4.6), we have

p(z1) =

∫

p(z1,z2)dz2 =

∫
1

2π
exp(−1

2
(z2

1 +z2
2))dz2

=
1√
2π

exp(−1
2

z2
1)
∫

1√
2π

exp(−1
2

z2
2)dz2 (4.10)

Here, we used the fact that the pdf is factorizable since exp(a+b) = exp(a)exp(b).
In the last integral, we recognize the pdf of the one-dimensional gaussian distribu-
tion of zero mean and unit variance given in Equation (4.5). Thus, that integral is
one, because the integral of any pdf is equal to one. This means that the marginal
distributionp(z1) is just the the classic one-dimensional standardized gaussian pdf.

Example 4 Going back to our example in Eq. (4.7), we can calculate the marginal
pdf of z1 to equal

pz1(z1) =

{

1−|z1|, if |z1|< 1

0, otherwise
(4.11)

which is plotted in Fig. 4.4 b), and shows the fact that there is more “stuff” near
the origin, and no observation can have an absolute value larger than one. Due to
symmetry, the marginal pdf ofz2 has exactly the same form.

4.4 Conditional probabilities

Another important concept is theconditionalpdf of z2 givenz1. This means the pdf
of z2 when we have observed the value ofz1. Let us denote the observed value ofz1

by a. Then conditional pdf is basically obtained by just fixing the value ofz1 to a in
the pdf, which givespz(a,z2). However, this is not enough because a pdf must have
an integral equal to one. Therefore, we must normalizepz(a,z2) by dividing it by
its integral. Thus, we obtain the conditional pdf, denoted by p(z2 |z1 = a) as

p(z2 |z1 = a) =
pz(a,z2)

∫
pz(a,z2)dz2

(4.12)

Note that the integral in the denominator equals the marginal pdf of z1 at pointa, so
we can also write

where we have used two new variables,v1 to denote the point where we want to evaluate the
marginal density, andv2 which is the integration variable. However, in practice we often do not
want to introduce new variable names in order to keep things simple, so we use the notation in
Eq. (4.8).
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p(z2 |z1 = a) =
pz(a,z2)

pz1(a)
(4.13)

Again, for notational simplicity, we can omit the subscripts and just write

p(z2 |z1 = a) =
p(a,z2)

p(a)
(4.14)

or, we can even avoid introducing the new quantitya and write

p(z2 |z1) =
p(z1,z2)

p(z1)
(4.15)

Example 5 For the gaussian density in Equation (4.6), the computationof the con-
ditional pdf is quite simple, if we use the same factorization as in Equation (4.10):

p(z2|z1) =
p(z1,z2)

p(z1)
=

1√
2π exp(− 1

2z2
1)

1√
2π exp(− 1

2z2
2)

1√
2π exp(− 1

2z2
1)

=
1√
2π

exp(−1
2

z2
2) (4.16)

which turns out to be the same as the marginal distribution ofz2. (This kind of situ-
ation wherep(z2|z1) = p(z2) is related to independence as discussed in Section 4.5
below.)

Example 6 In our example pdf in Eq. (4.7), the conditional pdf changes quite a lot
as a function of the valuea of z1. If z1 is zero (i.e.a = 0), the conditional pdf ofz2

is the uniform density in the interval[−1,1]. In contrast, ifz1 is close to 1 (or -1),
the values that can be taken byz2 are quite small. Simply fixingz1 = a in the pdf,
we have

p(a,z2) =

{

1, if |z2|< 1−|a|
0 otherwise

(4.17)

which can be easily integrated:
∫

p(a,z2)dz2 = 2(1−|a|) (4.18)

(This is just the length of the segment in whichz2 is allowed to take values.) So, we
get

p(z2|z1) =

{
1

2−2|z1| , if |z2|< 1−|z1|
0 otherwise

(4.19)

where we have replaceda by z1. This pdf is plotted forz1 = 0 andz1 = 0.75 in
Fig. 4.4 a) and b), respectively.

Generalization to many dimensions The concepts of marginal and conditional
pdf’s extend naturally to the case where we haven random variables instead of just
two. The point is that instead of two random variables,z1 andz2, we can have two
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random vectors, sayz1 andz2, and use exactly the same formulas as for the two
random variables. So, starting with a random vectorz, we take some of its variables
and put them in the vectorz1, and leave the rest in the vectorz2

z =

(
z1

z2

)

(4.20)

Now, the marginal pdf ofz1 is obtained by the same integral formula as above:

pz1(z1) =

∫

pz(z1,z2)dz2 (4.21)

and, likewise, the conditional pdf ofz2 givenz1 is given by:

p(z2 |z1) =
p(z1,z2)

p(z1)
(4.22)

Both of these are, naturally, multidimensional pdf’s.

Discrete-valued variables For the sake of completeness, let us note that these
formulas are also valid for random variables with discrete values; then the integrals
are simply replaced by sums. For example, for the conditional probabilities, we
simply have

P(z2 |z1) =
Pz(z1,z2)

Pz1(z1)
(4.23)

where marginal probability ofz1 can be computed as

Pz1(z1) = ∑
z2

Pz(z1,z2) (4.24)

4.5 Independence

Let us consider two random variables,z1 andz2. Basically, the variablesz1 andz2

are said to be statistically independent if information on the value taken byz1 does
not give any information on the value ofz2, and vice versa.

As an example, let us consider again the grey-scale values oftwo neighbouring
pixels. As in Fig. 4.1, we go through many different locations in an image in random
order, and take the grey-scale values of the pixels as the observed values of the two
random variables. These random variables willnotbe independent. One of the basic
statistical properties of natural images is that two neighbouring pixels are depen-
dent. Intuitively, it is clear that two neighbouring pixelstend to have very similar
grey-scale values: If one of them is black, then the other oneis black with a high
probability, so they do give information on each other. Thisis seen in the oblique
shape (having an angle of 45 degrees) of the data “cloud” in Fig. 4.1. Actually, the
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grey-scale values are correlated, which is a special form ofdependence as we will
see below.

The idea thatz1 gives no information onz2 can be intuitively expressed using con-
ditional probabilities: the conditional probabilityp(z2 |z1) should be just the same
asp(z2):

p(z2 |z1) = p(z2) (4.25)

for any observed valuea of z1. This implies

p(z1,z2)

p(z1)
= p(z2) (4.26)

or
p(z1,z2) = p(z1)p(z2) (4.27)

for any values ofz1 andz2. Equation (4.27) is usually taken as the definition of
independence because it is mathematically so simple. It simply says that the joint
pdf must be a product of the marginal pdf’s. The joint pdf is then called factorizable.

The definition is easily generalized ton variablesz1,z2, . . . ,zn, in which case it is

p(z1,z2, . . . ,zn) = p(z1)p(z2) . . . p(zn) (4.28)

Example 7 For the gaussian distribution in Equation (4.6) and Fig. 4.3, we have

p(z1,z2) =
1√
2π

exp(−1
2

z2
1)×

1√
2π

exp(−1
2

z2
2) (4.29)

So, we have factorized the joint pdf as the product of two pdf’s, each of which
depends on only one of the variables. Thus,z1 andz2 are independent. This can also
be seen in the form of the conditional pdf in Equation (4.16),which does not depend
on the conditioning variable at all.

Example 8 For our second pdf in Eq. (4.7), we computed the conditional pdf
p(z2|z1) in Eq. (4.19). This is clearly not the same as the marginal pdfin Eq. (4.11);
it depends onz1. So the variables are not independent. (See the discussion just before
Eq. (4.17) for an intuitive explanation of the dependencies.)

Example 9 Consider the uniform distribution on a square:

p(z1,z2) =

{
1
12, if |z1| ≤

√
3 and|z2| ≤

√
3

0, otherwise
(4.30)

A scatter plot from this distribution is shown in Fig. 4.5. Now, z1 andz2 are indepen-
dent because the pdf can be expressed as the product of the marginal distributions,
which are
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p(z1) =

{
1

2
√

3
, if |z1| ≤

√
3

0, otherwise
(4.31)

and the same forz2.
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Fig. 4.5: A scatter plot of the two-dimensional uniform distribution in Equation (4.30)

4.6 Expectation and covariance

4.6.1 Expectation

The expectation of a random vector, or its “mean” value, is, in theory, obtained by
the same kind of integral as for a single random variable

E{z}=

∫

pz(z)zdz (4.32)

In practice, the expectation can be computed by taking the expectation of each vari-
able separately, completely ignoring the existence of the other variables

E{z}=








E{z1}
E{z2}

...
E{zn}








=








∫
pz1(z1)z1dz1

∫
pz2(z2)z2dz2

...
∫

pzn(zn)zndzn








(4.33)

The expectation of any transformationg, whether one- or multidimensional, can be
computed as:

E{g(z)}=

∫

pz(z)g(z)dz (4.34)
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The expectation is a linear operation, which means

E{az+bs}= aE{z}+bE{s} (4.35)

for any constantsa andb. In fact, this generalizes to any multiplication by a matrix
M :

E{Mz}= ME{z} (4.36)

4.6.2 Variance and covariance in one dimension

The variance of a random variable is defined as

var(z1) = E{z2
1}− (E{z1})2 (4.37)

This can also be written var(z1) = E{(z1−E{z1})2}, which more clearly shows
how variance measures average deviation from the mean value.

When we have more than one random variable, it is useful to analyze thecovari-
ance:

cov(z1,z2) = E{z1z2}−E{z1}E{z2} (4.38)

which measures how well we can predict the value of one of the variables using a
simple linear predictor, as will be seen below.

The covariance is often normalized to yield the correlationcoefficient

corr(z1,z2) =
cov(z1,z2)

√

var(z1)var(z2)
(4.39)

which is invariant to the scaling of the variables, i.e. it isnot changed if one or both
of the variables is multiplied by a constant.

If the covariance is zero, which is equivalent to saying thatthe correlation coef-
ficient is zero, the variables are said to beuncorrelated.

4.6.3 Covariance matrix

The variances and covariances of the elements of a random vector z are often col-
lected to acovariance matrixwhosei, j-th element is simply the covariance ofzi

andzj :

C(z) =








cov(z1,z1) cov(z1,z2) . . . cov(z1,zn)
cov(z2,z1) cov(z2,z2) . . . cov(z2,zn)

...
. . .

...
cov(zn,z1) cov(zn,z2) . . . cov(zn,zn)








(4.40)



4.6 Expectation and covariance 81

Note that the covariance ofzi with itself is the same as the variance ofzi . So, the
diagonal of the covariance matrix gives the variances. The covariance matrix is ba-
sically a generalization of variance to random vectors: in many cases, when moving
from a single random variable to random vectors, the covariance matrix takes the
place of variance.

In matrix notation, the covariance matrix is simply obtained as a generalization
of the one-dimensional definitions in Equations (4.38) and (4.37) as

C(z) = E{zzT}−E{z}E{z}T (4.41)

where taking the transposes in the correct places is essential. In most of this book,
we will be dealing with random variables whose means are zero, in which case the
second term in Equation (4.41) is zero.

If the variables are uncorrelated, the covariance matrix isdiagonal. If they are
all further standardized to unit variance, the covariance matrix equals the identity
matrix.

The covariance matrix is the basis for the analysis of natural images in the next
chapter. However, in many further chapters, the covariancematrix is not enough,
and we need further concepts, such as independence, so we need to understand the
connection between these concepts.

4.6.4 Independence and covariances

A most important property ofindependentrandom variablesz1 andz2 is that the
expectation of any product of a function ofz1 and a function ofz2 is equal to the
product of the expectations:

E{g1(z1)g2(z2)}= E{g1(z1)}E{g2(z2)} (4.42)

for any functionsg1 andg2. This implies thatindependent variables are uncorre-
lated, since we can takeg1(z) = g2(z) = z, in which case Eq. (4.42) simply says that
the covariance is zero.

Example 10 In the standardized gaussian distribution in Equation (4.6), the means
of bothz1 andz2 are zero, and their variances are equal to one (we will not tryto
prove this here). Actually, the word “standardized” means exactly that the means
and variances have been standardized in this way. The covariance cov(z1,z2) equals
zero, because the variables are independent, and thus uncorrelated.

Example 11 What would be the covariance ofz1 andz2 in our example pdf in
Eq. (4.7)? First, we have to compute the means. Without computing any integrals,
we can actually see thatE{z1}= E{z2}= 0 because of symmetry: both variables are
symmetric with respect to the origin, so their means are zero. This can be justified as
follows: take a new variabley = −z1. Because of symmetry of the pdf with respect
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to zero, the change of sign has no effect and the pdf ofy is just the same as the pdf
of z1. Thus, we have

E{y}= E{−z1}=−E{z1}= E{z1} (4.43)

which implies thatE{z1} = 0. Actually, the covariance is zero because of the same
kind of symmetry with respect to zero. Namely, we have cov(y,z2) = cov(z1,z2)
because again, the change of sign has no effect and the joint pdf of y,z2 is just
the same as the pdf ofz1,z2. This means cov(y,z2) = E{(−z1)z2} = −E{z1z2} =
E{z1z2}. This obviously implies that the covariance is zero. The covariance matrix
of the vectorz is thus diagonal (we don’t bother to compute the diagonal elements,
which are the variances).

Example 12 Let’s have a look at a more classical example of covariances.Assume
thatz1 has mean equal to zero and variance equal to one. Assume thatn (a “noise”
variable) is independent fromz1. Let us consider a variablez2 which is a linear
function ofx, with noise added:

z2 = az1 +n (4.44)

What is the covariance of the two variables? We can calculate

cov(z1,z2) = E{z1(az1 +n)}+0×E{z2}= aE{z2
1}+E{z1n}

= a+E{z1}E{n}= a+0×E{z1}= a (4.45)

Here, we have the equalityE{z1n} = E{z1}E{n} because of the uncorrelatedness
of z1 andn, which is implied by their independence. A scatter plot of such data,
created for parametera set at 0.5 and with noise variance var(n) = 1, is shown in
Fig. 4.6. The covariance matrix of the vectorz = (z1,z2) is equal to

C(z) =

(
1 a
a 1

)

(4.46)

Example 13 White noiserefers to a collection of random variables which are in-
dependent and have the same distribution. (In some sources,only uncorrelatedness
is required, not independence, but in this book the definition of white noise includes
independence.) Depending on the context, the variables could be the value of noise
at different time pointsn(t), or at different pixelsN(x,y). In the first case, white
noise in the system is independent at different time points;in the latter, noise at dif-
ferent pixels is independent. When modelling physical noise, which can be found in
most measurement devices, it is often realistic and mathematically simple to assume
that the noise is white.
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Fig. 4.6: A scatter plot of the distribution created by the dependence relation in Equation (4.44)

4.7 Bayesian inference

Bayesian inference is a framework that has recently been increasingly applied to
model such phenomena as perception and intelligence. Thereare two viewpoints on
what Bayesian inference is.

1. Bayesian inference attempts to infer underlying causes when we observe their
effects.

2. Bayesian inference uses prior information on parametersin order to estimate
them better.

Both of these goals can be accomplished by using the celebrated Bayes’ formula,
which we will now explain.

4.7.1 Motivating example

Let us start with a classic example. Assume that we have a testfor a rare genetic
disorder. The test is relatively reliable but not perfect. For a patient with the disorder,
the probability of a positive test result is 99%, whereas fora patient without the
disorder, the probability of a positive test is only 2%. Let us denote the test result by
t and the disorder byd. A positive test result is expressed ast = 1 and a negative one
ast = 0. Likewise,d = 1 means that the patient really has the disorder, whereasd = 0
means the patients doesn’t. Then, the specifications we justgave can be expressed
as the following conditional probabilities:

P(t = 1|d = 1) = .99 (4.47)

P(t = 1|d = 0) = .02 (4.48)
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Because probabilities sum to one, we immediately find the following probabilities
as well:

P(t = 0|d = 1) = .01 (4.49)

P(t = 0|d = 0) = .98 (4.50)

Now, the question we want to answer is:Given a positive test result, what is the
probability that the patient has the disorder?Knowing this probability is, of course,
quite important when applying this medical test. Basically, we then want to compute
the conditional probability of the formp(d = 1|t = 1). The order of the variables in
this conditional probability is reversed from the formulasabove. This is because the
formulas above gave us the observable effects given the causes, but now we want to
know the causes, given observations of their effects.

To find that probability, let’s try to use the definition in Eq.(4.23)

P(d = 1|t = 1) =
P(d = 1,t = 1)

P(t = 1)
(4.51)

which presents us with two problems: We know neither the denominator nor the nu-
merator. To get further, let’s assume we know the marginal distributionP(d). Then,
we can easily find the numerator by using the definition of conditional probability

P(d = 1,t = 1) = P(t = 1|d = 1)P(d = 1) (4.52)

and after some heavy thinking, we see that we can also computethe denominator in
Eq. (4.51) by using the formula for marginal probability:

P(t = 1) = P(d = 1,t = 1)+P(d = 0,t = 1) (4.53)

which can be computed once we know the joint probabilities by(4.52) and its cor-
responding version withd = 0. Thus, in the end we have

P(d = 1|t = 1) =
P(t = 1|d = 1)P(d = 1)

P(t = 1|d = 1)P(d = 1)+P(t = 1|d = 0)P(d = 0)
(4.54)

So, we see that the key to inferring the causes from observed effects is to know
the marginal distribution of the causes, in this caseP(d). This distribution is also
called theprior distribution ofd, because it incorporates our knowledge of the cause
d prior to any observations. For example, let’s assume 0.1% of the patients given
this test have the genetic disorder. Then, before the test our best guess is that a
given patient has the disorder with the probability of 0.001. However, after making
the test, we have more information on the patient, and that information is given
by the conditional distributionP(d |t = 1) which we are trying to compute. This
distribution, which incorporates both our prior knowledgeond and the observation
of t, is called theposteriorprobability.

To see a rather surprising phenomenon, let us plug in the value
P(d = 1) = 0.001 as the prior probability of disorder in Equation (4.54).Then,
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we can calculate

P(d = 1|t = 1) =
0.99×0.001

0.99×0.001+0.02× (1−0.001)
≈ 0.05 (4.55)

Thus, even after a positive test result, the probability that the patient has the disorder
is approximately 5%. Many people find this quite surprising,because they would
have guessed that the probability is something like 99%, as the test gives the right
result in 99% of the cases.

This posterior probability depends very much on the prior probability. Assume
that half the tested patients actually have the disorder,P(d = 1) = 0.5. Then the
posterior probability is 99%. This prior actually gives us no information because the
chances are 50-50, and the 99% accuracy of the test is directly seen in the posterior
probability.

Thus, in cases where the prior assigns very different probabilities to different
causes, Bayesian inference shows that the posterior probabilities of the causes can
be very different from what one might expect by just looking at the effects.

4.7.2 Bayes’ Rule

The logic of the previous section was actually the proof of the celebrated Bayes’
rule. In the general case, we consider a continuous-valued random vectors that
gives the causes andz that gives the observed effects. The Bayes’ rule then takes the
form

p(s|z) =
p(z|s) ps(s)

∫
p(z|s) ps(s)ds

(4.56)

which is completely analogous to Eq. (4.54) and can be derived in the same way.
This is the Bayes’ rule, in one of its formulations. It gives the posterior distribution
of sbased on its prior distributionp(s) and the conditional probabilitiesp(z|s). Note
that instead of random variables, we can directly use vectors in the formula without
changing anything.

To explicitly show what is random and what is observed in Bayes rule, we should
rewrite it as

p(s= b |z = a) =
pz|s(a|b) ps(b)

∫
pz|s(a|u) ps(u)du

(4.57)

wherepz|s(a|b) is the conditional probabilityp(z= a|s= b), a is the observed value
of z, andb is a possible value ofs. This form is, of course, much more difficult to
read than Eq. (4.56).

In theoretical treatment, Bayes rule can sometimes be simplified because the de-
nominator is actually equal top(z), which gives

p(s|z) =
p(z|s) ps(s)

pz(z)
(4.58)
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However, in practice we usually have to use the form in Eq. (4.56) because we do
not know how to directly computepz.

The prior ps contains the prior information on the random variables. The con-
ditional probabilitiesp(z|s) show the connection between the observed quantityz
(the “effect”) and the underlying variables (the “cause”).

Where do we get the prior distributionp(s)? In some cases,p(s) can be esti-
mated, because we might be able to observe the originals. In the medical example
above, the prior distributionp(d) can be estimated if some of the patients are sub-
jected to additional tests which are much more accurate (thus usually much more
expensive) so that we really know for sure how many of the patients have the dis-
order. In other cases, the prior might be formulated more subjectively, based on the
opinion of an expert.

4.7.3 Non-informative priors

Sometimes, we have no information on the prior probabilities ps. Then, we should
use a non-informative prior that expresses this fact. In thecase of discrete variables,
a non-informative prior is one that assigns the same probability to all the possible
values ofs (e.g. 50% probability of a patient to have the disorder or not).

In the case of continuous-valued priors defined in the whole real line[−∞,∞], the
situation is a bit more complicated. If we take a “flat” pdf that is constant,p(s) = c,
it cannot be a real pdf because the integral of such a pdf is infinite (or zero ifc= 0).
Such a prior is called improper. Still, they can often be usedin Bayesian inference
even though the non-integrability may pose some theoretical problems.

What happens in the Bayes rule if we take such a flat, non-informative prior? We
get

p(s|z) =
p(z|s)c

∫
p(z|s)cds

=
p(z|s)

∫
p(z|s)ds

(4.59)

The denominator does not depend ons (this is always true in Bayes’ rule), so we
see thatp(s|z) is basically the same ofp(z|s); it is just rescaled so that the integral
is equal to one. What this shows is that if we have no information on the prior
probabilities, the probabilities of effects given the causes are simply proportional to
the probabilities of causes given the effects. However, if the prior p(s) is far from
flat, these two probabilities can be very different from eachother, as the example
above showed in the case where the disorder is rare.

4.7.4 Bayesian inference as an incremental learning process

The transformation from the prior probabilityp(s) to p(s|z) can be compared to an
incremental (on-line) learning process where a biologicalorganism receives more
and more information in an uncertain environment.
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In the beginning, the organism’s belief about the value of a quantity s is the
prior probability p(s). Here we assume that the organism performs probabilistic
inference: the organism does not “think” that it knows the value ofs with certainty;
rather, it just assigns probabilities to different valuess might take. This does not
mean that we assume the organism is highly intelligent and knows Bayes’ rule.
Rather, we assume that the neural networks in the nervous system of the organism
have evolved to perform something similar.

Then, the organism receives information via sensory organsor similar means. A
statistical formulation of “incoming information” is thatthe organism observes the
value of a random variablez1. Now, the belief of the organism is expressed by the
posterior pdfp(s|z1). This pdf gives the probabilities that the organism assignsto
different values ofs.

Next, assume that the organism observes another piece of information, sayz2.
Then the organism’s belief is changed top(s|z1,z2)

p(s|z1,z2) =
p(z1,z2 |s)p(s)

p(z1,z2)
(4.60)

Assume further thatz2 is independent fromz1 givens, which meansp(z1,z2 |s) =
p(z1 |s)p(z2 |s) (see Sec. 4.5 for more on independence). Then, the posteriorbe-
comes

p(s|z1,z2) =
p(z1 |s)p(z2 |s)p(s)

p(z1)p(z2)
=

p(z2 |s)
p(z2)

p(z1 |s)p(s)
p(z1)

(4.61)

Now, the expressionp(z1 |s)p(s)/p(z1) is nothing but the posteriorp(s|z1) that the
organism computed previously. So, we have

p(s|z1,z2) =
p(z2 |s)p(s|z1)

p(z2)
(4.62)

The right-hand side is just like the Bayes’ Rule applied onsandz2 but instead of the
prior p(s) it hasp(s|z1). Thus, the new posterior (after observingz2) is computed
as if the previous posterior were a prior.

This points out an incremental learning interpretation of Bayes rule. When the
organism observes new information (new random variables),it updates its belief
about the world by the Bayes rule, where the current belief istaken as the prior, and
the new belief is computed as the posterior. This is illustrated in Fig. 4.7

Such learning can happen on different time scales. It could be thats is a very
slowly changing parameter, say, the length of the arms (or tentacles) of the organism.
In that case, the organism can collect a large number of observations over time, and
the belief would change very slowly. The first “prior” beliefthat the organism may
have had before collection of any data, eventually loses itssignificance (see next
section).

On the other hand,scould be a quantity that has to be computed instantaneously,
say, the probability that the animal in front of you is tryingto eat you. Then, only
a few observed quantities (given by the current visual input) are available. Such
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Prior p(s) Posterior p(s|z)

Replace prior by posterior

Observe new z

Fig. 4.7: Computation of posterior as an incremental learning process. Given the current prior, the
organism observes the inputz, and computes the posteriorp(s|z). The prior is then replaced by this
new posterior, which is used as the prior in the future.

inference can then be heavily influenced by the prior information that the organism
has at the moment of encountering the animal. For example, ifthe animal is small
and cute, the prior probability is small, and even if the animal seems to behaves in
an aggressive way, you will probably infer that it is not going to try to eat you.

4.8 Parameter estimation and likelihood

4.8.1 Models, estimation, and samples

A statistical modeldescribes the pdf of the observed random vector using a number
of parameters. The parameters typically have an intuitive interpretation; for exam-
ple, in this book, they often define image features. A model isbasically a conditional
density of the observed data variable,p(z|α), whereα is the parameter. The param-
eter could be a multidimensional vector as well. Different values of the parameter
imply different distributions for the data, which is why this can be thought of as a
conditional density.

For example, consider the one-dimensional gaussian pdf

p(z|α) =
1√
2π

exp(−1
2
(z−α)2) (4.63)

Here, the parameterα has an intuitive interpretation as the mean of the distribution.
Given α, the observed data variablez then takes values aroundα, with variance
equal to one.

Typically, we have a large number of observations of the random variablez,
which might come from measuring some phenomenonn times, and these obser-
vations are independent. The set of observations is called asamplein statistics.2 So,
we want to use all the observations to better estimate the parameters. For example,

2 In signal processing, sampling refers the process of reducing a continuous signal to a discrete
signal. For example, an imageI(x,y) with continuous-valued coordinatesx andy is reduced to a
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in the model in (4.63), it is obviously not a very good idea to estimate the mean of
the distribution based on just a single observation.

Estimationhas a very boring mathematical definition, but basically it means that
we want to find a reasonable approximation of the value of the parameter based on
the observations in the sample. A method (a formula or an algorithm) that estimates
α is called an estimator. The value given by the estimator for aparticular sample is
called an estimate. Both are usually denoted by a hat:α̂.

Assume we now have a sample ofn observations. Let us denote the observed
values byz(1),z(2), . . . ,z(n). Because the observations are independent, the joint
probability is simply obtained by multiplying the probabilities of the observations,
so we have

p(z(1),z(2), . . . ,z(n) |α) = p(z(1) |α)× p(z(2) |α)× . . .× p(z(n) |α) (4.64)

This conditional density is called thelikelihood. It is often simpler to consider the
logarithm, which transforms products into sums. If we take the logarithm, we have
the log-likelihood as

logp(z(1),z(2), . . . ,z(n) |α) = logp(z(1) |α)+ logp(z(2) |α)+ . . .

+ logp(z(n) |α) (4.65)

4.8.2 Maximum likelihood and maximum a posteriori

The question is then, How can we estimateα? In a Bayesian interpretation, we can
consider the parameters as “causes” in Bayes’ rule, and the observed data are the
effects. Then, the estimation of the parameters means that we compute the posterior
pdf of the parameters using Bayes rule:

p(α |z(1) . . . ,z(n)) =
p(z(1) . . . ,z(n) |α)p(α)

p(z(1) . . . ,z(n))
(4.66)

In estimating parameters of the model, one usually takes a flat prior, i.e. p(α) = c.
Moreover, the termp(z(1) . . . ,z(n)) does not depend onα, it is just for normaliza-
tion, so we don’t need to care about its value. Thus, we see that

p(α |z(1) . . . ,z(n)) = p(z(1),z(2), . . . ,z(n) |α)×const. (4.67)

the posterior of the parameters is proportional to the likelihood in the case of a flat
prior.

Usually, we want a single value as an estimate. Thus, we have to somehow sum-
marize the posterior distributionp(α |z(1) . . . ,z(n)), which is a function ofα. The

finite-dimensional vector in which the coordinatesx andy take only a limited number of values
(e.g. as on a rectangular grid). These two meanings of the word “sample” need to be distinguished.
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most widespread solution is to use the value ofα that gives the highest value of the
posterior pdf. Such estimation is calledmaximum a posteriori(MAP) estimation.

In the case of a flat prior, the maximum of the posterior distribution is obtained at
the same point as the maximum of the likelihood, because likelihood is then propor-
tional to the posterior. Thus, the estimation is then calledthe maximum likelihood
estimator. If the prior is not flat, the maximum a posteriori estimator may be quite
different from the maximum likelihood estimator.

The maximum likelihood estimator has another intuitive interpretation: it gives
the parameter value that gives the highest probability for the observed data. This in-
terpretation is slightly different from the Bayesian interpretation that we used above.

Sometimes the maximum likelihood estimator can be computedby a simple al-
gebraic formula, but in most cases, the maximization has to be done numerically.
For a brief introduction to optimization methods, see Chapter 18.

Example 13 In the case of the model in Eq. (4.63), we have

logp(z|α) =−1
2
(z−α)2 +const. (4.68)

where the constant is not important because it does not depend onα. So, we have
for a sample

logp(z(1),z(2), . . . ,z(n) |α) =−1
2

n

∑
i=1

(z(i)−α)2 +const. (4.69)

It can be shown (this is left as an exercise) that this is maximized by

α̂ =
1
n

n

∑
i=1

z(i) (4.70)

Thus, the maximum likelihood estimator is given by the average of the observed
values. This is not a trivial result: in some other models, the maximum likelihood
estimator of such a location parameter is given by the median.

Example 14 Here’s an example of maximum likelihood estimation with a less
obvious result. Consider the exponential distribution

p(z|α) = α exp(−αz) (4.71)

wherez is constrained to be positive. The parameterα determines how likely large
values are and what the mean is. Some examples of this pdf are shown in Fig. 4.8.
The log-pdf is given by

logp(z|α) = logα−αz (4.72)

so the log-likelihood for a sample equals
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logp(z(1),z(2), . . . ,z(n) |α) = nlogα−α
n

∑
i=1

z(i) (4.73)

To solve for theα which maximizes the likelihood, we take the derivative of this
with respect toα and find the point where it is zero. This gives

n
α
−

n

∑
i=1

z(i) = 0 (4.74)

from which we obtain

α̂ =
1

1
n ∑n

i=1z(i)
(4.75)

So, the estimate is the reciprocal of the mean of thez in the sample.
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Fig. 4.8: The exponential pdf in Equation (4.71) plotted forthree different values ofα , which is
equal 1,2, or 3. The value ofα is equal to the value of the pdf at zero.

4.8.3 Prior and large samples

If the prior is not flat, we have the log-posterior

logp(α |z(1),z(2), . . . ,z(n))

= logp(α)+ logp(z(1) |α)+ logp(z(2) |α)+ . . .+ logp(z(n) |α)+const.
(4.76)

which usually needs to be maximized numerically.
Looking at Equation (4.76), we see an interesting phenomenon: whenn grows

large, the prior loses its significance. There are more and more terms in the like-
lihood part, and, eventually, they will completely determine the posterior because
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the single prior term will not have any influence anymore. In other words, when
we have a very large sample, the data outweighs the prior information. This phe-
nomenon is related to the learning interpretation we discussed above: the organism
eventually learns so much from the incoming data that the prior belief it had in the
very beginning is simply forgotten.

4.9 References

Most of the material in this chapter is very classic. Most of it can be found in ba-
sic textbooks to probability theory, while Section 4.8 can be found in introductory
textbooks to the theory of statistics. A textbook covering both areas is (Papoulis and
Pillai, 2001). Some textbooks on probabilistic machine learning also cover all this
material, in particular (Mackay, 2003; Bishop, 2006).

4.10 Exercices

Mathematical exercises

1. Show that a conditional pdf as defined in Eq. (4.15) is properly normalized, i.e.
its integral is always equal to one.

2. Compute the mean and variance of a random variable distributed uniformly in
the interval[a,b] (b> a).

3. Considern scalar random variablesxi , i = 1,2, . . . ,n, having, respectively, the
variancesσ2

xi
. Show that if the random variablesxi are all uncorrelated, the vari-

ance of their sum equals the sum of their variances

σ2
y =

n

∑
i=1

σ2
xi

(4.77)

4. Assume the random vectorx has uncorrelated variables, all with unit variance.
Show that the covariance matrix equals the identity matrix.

5. Take a linear transformation ofx in the preceding exercise:y = Mx for some
matrixM . Show that the covariance matrix ofy equalsMM T .

6. Show that the maximum likelihood estimator of the mean of agaussian distribu-
tion equals the sample average, i.e. Eq. (4.70).

7. Next we consider estimation of the variance parameter in agaussian distribution.
We have the pdf

p(z|σ) =
1√
2πσ

exp(− z2

2σ2 ) (4.78)
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Formulate the likelihood and the log-likelihood, given a sample z(1), . . . ,z(n).
Then, find the maximum likelihood estimator forσ .

Computer assignments

1. Generate 1,000 samples of 100 independent observations of a gaussian variable
of zero mean and unit variance (e.g. with Matlab’srandn function). That is,
you generate a matrix of size 1000×100 whose all elements are all independent
gaussian observations.

a. Compute the average of each sample. This is the maximum likelihood estima-
tor of the mean for that sample.

b. Plot a histogram of the 1,000 sample averages.
c. Repeat all the above, increasing the sample size to 1,000 and to 10,000.
d. Compare the three histograms. What is changing?

2. Generate a sample of 10,000 observations of a two-dimensional random vector
x with independent standardized gaussian variables. Put each observation in a
column and each random variable in a row, i.e. you have a 2× 10000 matrix,
denote it byX.

a. Compute the covariance matrix of this sample ofx, e.g. by using thecov
function in Matlab. Note that the transpose convention in Matlab is different
from what we use here, so you have to apply thecov function of the transpose
of X. Compare the result with the theoretical covariance matrix(what is its
value?)

b. Multiply x (or in practice,X) from the left with the matrix

A =

(
2 3
0 1

)

(4.79)

Compute the covariance matrix ofAx. Compare withAAT .





Part II
Statistics of linear features





Chapter 5
Principal components and whitening

The most classical method of analyzing the statistical structure of multidimen-
sional random data is principal component analysis (PCA), which is also called the
Karhunen-Loève transformation, or the Hotelling transformation. In this chapter we
will consider the application of PCA to natural images. It will be found that it is not a
successful model in terms of modelling the visual system. However, PCA provides
the basis for all subsequent models. In fact, before applying the more successful
models described in the following chapters, PCA is often applied as a preprocessing
of the data. So, the investigation of the statistical structure of natural images must
start with PCA.

Before introducing PCA, however, we will consider a very simple and funda-
mental concept: the DC component.

5.1 DC component or mean grey-scale value

To begin with, we consider a simple property of an image patch: its DC component.
The DC component refers to the mean grey-scale value of the pixels in an image or
an image patch.1 It is often assumed that the DC component does not contain inter-
esting information. Therefore, it is often removed from theimage before any further
processing to simplify the analysis. Removing the DC component thus means that
we preprocess each image (in practice, image patch) as follows

Ĩ(x,y) = I(x,y)− 1
m ∑

x′,y′
I(x′,y′) (5.1)

wherem is the number of pixels. All subsequent computations would then usẽI .

1 The name ”DC” comes from a rather unrelated context in electrical engineering, in which it
originally meant “direct current” as opposed to “alternating current”. The expression has become
rather synonymous with “constant” in electrical engineering.

97
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In section 1.8, we looked at the outputs of some simple feature detectors when the
input is natural images. Let us see what the effect of DC removal is on the statistics
of these features; the features are depicted in Fig. 1.10 on page 20. Let us denote the
output of a linear feature detector with weightsWi(x,y) by s:

si = ∑
x,y

Wi(x,y)I(x,y) (5.2)

The ensuing histograms of thesi , for the three detectors when input with natural
images, and after DC removal, are shown in Fig. 5.1. Comparing with Fig. 1.11 on
page 20, we can see that the first histogram changes radically, where as the latter two
do not. This is because the latter two filters were not affected by the DC component
in the first place, which is because the sum of their weight wasapproximately zero:
∑x,yW(x,y) = 0. Actually, the three histograms are now more similar to each other:
the main difference is in the scale. However, they are by no means identical, as will
be seen in the analyses of this book.

The effect of DC component removal depends on the size of the image patch.
Here, the patches were relatively small, so the removal had alarge effect on the
statistics. In contrast, removing the DC component from whole images has little
effect on the statistics.

In the rest of this book, we will assume that the DC component has been removed
unless otherwise mentioned. Removing the DC component alsomeans that the mean
of anys is zero; this is intuitively rather obvious but needs some assumptions to be
shown rigorously (see Exercises). Thus, in what follows we shall assume that the
mean of any features is zero.
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Fig. 5.1: Effect of DC removal. These are histograms of the outputs of the filters in Fig. 1.10 when
the output is natural images whose DC component has been removed. Left: output of Dirac filter,
which is the same as the histogram of the original pixels themselves. Center: output of grating
feature detector. Right: output of edge detector. The scales of the axes are different from those in
Fig. 1.10.

Some examples of natural image patches with DC component removed are shown
in Figure 5.2. This is the kind of data analyzed in almost all of the rest of this book.
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Fig. 5.2: Some natural image patches, with DC component removed.

5.2 Principal component analysis

5.2.1 A basic dependency of pixels in natural images

The point in PCA is to analyze the dependencies of the pixel grey-scale values
I(x,y) andI(x′,y′) for two different pixel coordinate pairs(x,y) and(x′,y′). More
specifically, PCA considers the second-order structure of natural images, i.e. the
variances and and covariances of pixel valuesI(x,y).

If the pixel values were all uncorrelated, PCA would have nothing to analyze.
Even a rudimentary analysis of natural images shows, however, that the pixel val-
ues are far from independent. It is intuitively rather clearthat natural images are
typically smoothin the sense that quite often, the pixel values are very similar in
two near-by pixels. This can be easily demonstrated by a scatter plot of the pixel
values for two neighbouring pixels sampled from natural images. This is shown in
Figure 5.3. The scatter plot shows that the pixels are correlated. In fact, we can com-
pute the correlation coefficient (Equation 4.39), and it turns out to be approximately
equal to 0.9.

Actually, we can easily compute the correlation coefficients of a single pixel with
all near-by pixels. Such a plot is shown in grey-scale in Fig.5.4, both without re-
moval of DC component (in a) and with DC removal (in b). We see that the correla-
tion coefficients (and, thus, the covariances) fall off withincreasing distance. These
two plots, with or without DC removal, look rather similar because the plots use
different scales; the actual values are quite different. Wecan take one-dimensional
cross-sections to see the actual values. They are shown in Fig. 5.4 c) and d). We see
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that without DC removal, all the correlation coefficients are strongly positive. Re-
moving the DC components reduces the correlations to some extent, and introduces
negative correlations.
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Fig. 5.3: Scatter plot of the grey-scale values of two neighbouring pixels.a) Original pixel values.
The values have been scaled so that the mean is zero and the variance one.b) Pixel values after
removal of DC component in a 32×32 patch.

5.2.2 Learning one feature by maximization of variance

5.2.2.1 Principal component as variance-maximizing feature

The covariances found in natural images pixel values can be analyzed by PCA. In
PCA, the point is to find linear features that explain most of the variance of the data.

It is natural to start the definition of PCA by looking at the definition of the first
principal component. We consider the variance of the output:

var(s) = E{s2}− (E{s})2 = E{s2} (5.3)

where the latter equality is true becauseshas zero mean.
Principal components are featuress that contain (or “explain”) as much of the

variance of the input data as possible. It turns out that the amount of variance ex-
plained is directly related to the variance of the feature, as will be discussed in
Section 5.3.1 below. Thus, the first principal component is defined as the feature, or
linear combination of the pixel values, which has the maximum variance. Finding a
feature with maximum variance can also be considered interesting in its own right.
The idea is to find the “main axis” of the data cloud, which is illustrated in Fig. 5.5.

Some constraint on the weightsW, which we call theprincipal component
weights, must be imposed as well. If no constraint were imposed, the maximum
of the variance would be attained whenW becomes infinitely large (and the mini-
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Fig. 5.4: The correlation coefficients of a pixel (in the middle) with all other pixels.a) For original
pixels. Black is small positive and and white is one.b) After removing DC component. The scale
is different from a): black is now negative and white is plus one.c) A cross-section of a) in 1D to
show the actual values.d) A cross-section of b) in 1D.

Fig. 5.5: Illustration of PCA. The principal component of this (artificial) two-dimensional data is
the oblique axis plotted. Projection on the principal axis explains more of the variance of the data
than projection on any other axis.
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mum would be attained when all theW(x,y) are zero). In fact, just multiplying all
the weights inW by a factor of two, we would get a variance that is four times
as large, and by dividing all the coefficients by two the variance decreases to one
quarter.

A natural thing to do is to constrain the norm ofW:

‖W‖=
√

∑
x,y

W(x,y)2 (5.4)

For simplicity, we constrain the norm to be equal to one, but any other value would
give the same results.

5.2.2.2 Learning one feature from natural images

What is then the feature detector that maximizes the variance of the output, given
natural image input, and under the constraint that the norm of the detector weights
equals one? We can find the solution by taking a random sample of image patches.
Let us denote byT the total number of patches used, and byIt each patch, wheret
is an index that goes from 1 toT. Then, the expectation ofs2 can be approximated
by the average over this sample. Thus, we maximize

1
T

T

∑
t=1

(

∑
x,y

W(x,y)It(x,y)

)2

(5.5)

with respect to the weights inW(x,y), while constraining the values ofW(x,y) so
that the norm in Equation (5.4) is equal to one. The computation of the solution is
discussed in Section 5.2.4.

Typical solutions for natural images are shown in Fig. 5.6. The feature detector
is an object of the same size and shape as an image patch, so it can be plotted as an
image patch itself. To test whether the principal componentweights are stable, we
computed it ten times for different image samples. It can be seen that the component
is quite stable.

Fig. 5.6: The feature detectors giving the first principal component of image windows of size
32× 32, computed for ten different randomly sampled datasets taken from natural images. The
feature detector is grey-scale-coded so that the grey-scale value of a pixel gives the value of the
coefficient at that pixel. Grey pixels mean zero coefficients, light-grey or white pixels are positive,
and dark-grey or black are negative.
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5.2.3 Learning many features by PCA

5.2.3.1 Defining many principal components

One of the central problems with PCA is that it basically gives only one well-defined
feature. It cannot be extended to the learning of many features in a very meaningful
way. However, if we want to model visual processing by PCA, itwould be absurd
to compute just a single feature which would then be supposedto analyze the whole
visual scene.

Definition Typically, the way to obtain many principal components is bya “de-
flation” approach: After estimating the first principal component, we want to find
the feature of maximum varianceunder the constraintthat the new feature must be
orthogonalto the first one (i.e. the dot-product is zero, as in Equation 5.8). This
will then be called the second principal component. This procedure can be repeated
to obtain as many components as there are dimensions in the data space. To put
this formally, assume that we have estimatedk principal components, given by the
weight vectorsW1,W2 . . . ,Wk. Then thek+1-th principal component weight vector
is defined by

max
W

var

(

∑
x,y

I(x,y)W(x,y)

)

(5.6)

under the constraints

‖W‖=
√

∑
x,y

W(x,y)2 = 1 (5.7)

∑
x,y

Wj(x,y)W(x,y) = 0 for all j = 1, . . . ,k (5.8)

An interesting property is that any two principal components are uncorrelated, and
not only orthogonal. In fact, we could change the constraintin the definition to
uncorrelatedness, and the principal components would be the same.

Critique of the definition This classic definition of many principal components
is rather unsatisfactory, however. There is no really good justification for thinking
that the second principal component corresponds to something interesting: it is not
a feature that maximizes any property in itself. It only maximizes the variance not
explained by the first principal component.

Moreover, the solution is not quite well defined, since for natural images, there
are many principal components that give practically the same variance. After the first
few principal components, the differences of the variancesof different directions get
smaller and smaller. This is a serious problem for the following reason. If two prin-
cipal components, saysi andsj , have the same variance, then any linear combination
q1si + q2sj has the same variance as well,2 and the weightsq1Wi(x,y)+ q2Wj(x,y)

2 This is due to the fact that the principal components are uncorrelated, see Section 5.8.1.
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fulfill the constraints of unit norm and orthogonality, if wenormalize the coefficients
q1 andq2 so thatq2

1 + q2
2 = 1. So, not only we cannot say what is the order of the

components, but actually there is an infinite number of different components from
which we cannot choose the “right” one.

In practice, the variances of the principal components are not exactly equal due
to random fluctuations, but this theoretical result means that the principal compo-
nents are highly dependent on those random fluctuations. In the particular sample
of natural images that we are using, the maximum variance (orthogonal to previous
components) can be obtained by any of these linear combinations. Thus, we cannot
really say what the 100th principal component is, for example, because the result
we get from computing it depends so much on random sampling effects. This will
be demonstrated in the experiments that follow.

5.2.3.2 All principal components of natural images

The first 320 principal components of natural images patchesare shown in Fig-
ure 5.7, while Figure 5.9 shows the variances of the principal components. For lack
of space, we don’t show all the components, but it is obvious from the figure what
they look like. As can be seen, the first couple of features seem quite meaningful:
they are oriented, something like very low-frequency edge detectors. However, most
of the features given by PCA do not seem to be very interesting. In fact, after the
first, say, 50 features, the rest seem to be just garbage. Theyare localized in fre-
quency as they clearly are very high-frequency features. However, they do not seem
to have any meaningful spatial structure. For example, theyare not oriented.

In fact, most of the features do not seem to be really well defined for the reason
explained in the previous section: the variances are too similar for different features.
For example, some of the possible 100th principal components, for different random
sets of natural image patches, are shown in Figure 5.8. The random changes in the
component are obvious.

5.2.4 Computational implementation of PCA

In practice, numerical solution of the optimization problem which defines the prin-
cipal components is rather simple and based on what is calledthe eigenvalue de-
composition. We will not go into the mathematical details here; they can be found
in Section 5.8.1. Briefly, the computation is based on the following principles

1. The variance of any linear feature as in Equation (5.2) canbe computed if we
just know the variances and covariances of the image pixels.

2. We can collect the variances and covariances of image pixels in a single matrix,
called thecovariance matrix, as explained in Section 4.6.3. Each entry in the ma-
trix then gives the covariance between two pixels—varianceis simply covariance
of a pixel with itself.
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Fig. 5.7: The 320 first principal components weightsWi of image patches of size 32×32. The order
of decreasing variances is left to right on each row, and top to bottom.

Fig. 5.8: Ten different estimations of the 100th principal component of image windows of size
32×32. The random image sample was different in each run.
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Fig. 5.9: The logarithms of the variances of the principal components for natural image patches,
the first of which were shown in Fig. 5.7.

3. Any sufficiently sophisticated software for scientific computation is able to com-
pute the eigenvalue decomposition of that matrix. (However, the amount of com-
putation needed grows fast with the size of the image patch, so the patch size
cannot be too large.)

4. As a result of the eigenvalue decomposition we get two things. First, theeigen-
vectors, which give theWi which are the principal component weights. Second,
theeigenvalues, which give the variances of the principal componentssi . So, we
only need to order the eigenvectors in the order of descending eigenvalues, and
we have computed the whole PCA decomposition.

5.2.5 The implications of translation-invariance

Many of the properties of the PCA of natural images are due a particular property of
the covariance matrix of natural images. Namely, the covariance for natural images
is translation-invariant, i.e. it depends only on the distance

cov(I(x,y), I(x′,y′)) = f ((x−x′)2 +(y−y′)2) (5.9)

for some functionf . After all, the covariance of two neighbouring pixels is not
likely to be any different depending on whether they are on the left or the right side
of the image. (This form of translation-invariance should not be confused with the
invariances of complex cells, discussed in Section 3.4.2 and Chapter 10).
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The principal component weightsWi(x,y) for a covariance matrix of this form
can be shown to always have a very particular form: they are sinusoids:

Wi(x,y) = sin(ax+by+c) (5.10)

for some constantsa,b,c (the scaling is arbitrary so you could also multiplyWi with
a constantd). See Section 5.8.2 below for a detailed mathematical analysis which
proves this.

The constantsa andb determine the frequency of the oscillation. For example,
the first principal components have lower frequencies than the later ones. They also
determine the orientation of the oscillation. It can be seenin Fig. 5.7 that some of
the oscillations are oblique while others are vertical and horizontal. Some have os-
cillations in one orientation only, while others form a kindof checkerboard pattern.
The constantc determines the phase.

The variances associated with the principal components thus tell how strongly the
frequency of the sinusoid is present in the data, which is closely related to computing
the power spectrum of the data.

Because of random effects in the sampling of image patches and computation
of the covariance matrix, the estimated feature weights arenot exactly sinusoids.
Of course, just the finite resolution of the images makes themdifferent from real
sinusoidal functions.

Since the principal component weights are sinusoids, they actually perform some
kind of Fourier analysis. If you apply the obtainedWi as feature detectors on an
image patch, that will be related to a discrete Fourier transform of the image patch.
In particular, this can be interpreted as computing the coefficients of the patch in the
basis given by sinusoidal functions, as discussed in Section 2.3.2.

An alternative viewpoint is that you could also consider thecomputation of the
principal components as doing a Fourier analysis of the covariance matrix of the
image patch; this interesting connection will be considered in Section 5.6.

5.3 PCA as a preprocessing tool

So far, we have presented PCA as a method for learning features, which is the classic
approach to PCA. However, we saw that the results were ratherdisappointing in the
sense that the features were not interesting as neurophysiological models, and they
were not even well-defined.

However, PCA is not a useless model. It accomplishes severalusefulpreprocess-
ing tasks, which will be discussed in this section.
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5.3.1 Dimension reduction by PCA

One task where PCA is very useful is in reducing the dimensionof the data so that
the maximum amount of the variance is preserved.

Consider the following general problem that also occurs in many other areas
than image processing. We have a very large number, saym, of random variables
x1, . . . ,xm. Computations that use all the variables would be too burdensome. We
want to reduce the dimension of the data by linearly transforming the variables into
a smaller number, sayn, of variables that we denote byz1, . . . ,zn:

zi =
m

∑
j=1

wi j x j , for all i = 1, . . . ,n (5.11)

The number of new variablesn might be only 10% or 1% of the original number
m. We want to find the new variables so that they preserve as muchinformation on
the original data as possible. This “preservation of information” has to be exactly
defined. The most wide-spread definition is to look at the squared error that we get
when we try to reconstruct the original data using thezi . That is, we reconstructx j

as a linear transformation∑i a jizi , minimizing the average error

E






∑

j

(

x j −∑
i

a jizi

)2





= E

{

‖x−∑
i

aizi‖2
}

(5.12)

where thea ji are also determined so that they minimize this error. For simplicity, let
us consider only transformations for which the transforming weights are orthogonal
and have unit norm:

∑
j

w2
i j = 1, for all i (5.13)

∑
j

wi j wk j = 0, for all i 6= k (5.14)

What is the best way of doing this dimension reduction? The solution is to take
as thezi then first principal components! (A basic version of this result is shown in
the exercises.) Furthermore, the optimal reconstruction weight vectorsai in Equa-
tion (5.12) are given by the very same principal components weights which compute
thezi .

The solution is not uniquely defined, though, because any orthogonal transforma-
tion of thezi is just as good. This is understandable because any such transformation
of thezi contains just the same information: we can make the inverse transformation
to get thezi from the transformed ones.

As discussed above, the features given by PCA suffer from theproblem of not
being uniquely defined. This problem is much less serious in the case of dimension
reduction. What matters in the dimension reduction contextis not so much the actual
components themselves, but thesubspacewhich they span. Theprincipal subspace
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means the set of all possible linear combinations of then first principal components.
It corresponds to taking all possible linear combinations of the principal component
weight vectorsWi associated with then principal components. As pointed out above,
if two principal componentssi andsj have the same variance, any linear combina-
tion q1si + q2sj has the same variance forq2

1 + q2
2 = 1. This is not a problem here,

however, since such a linear combination still belongs to the same subspace as the
two principal componentssi andsj . Thus, it does not matter if we consider the com-
ponentssi andsj , or two components of the formq1si +q2sj andr1si + r2sj where
the coefficientsr1 andr2 give a different linear combination than theq1 andq2.

So, then-dimensional principal subspace is usually uniquely defined even if some
principal components have equal variances. Of course, it may happen that then-th
and the(n+ 1)-th principal components have equal variances, and that we cannot
decide which one to include in the subspace. But the effect onthe whole subspace
is usually quite small and can be ignored in practice.

Returning to the case of image data, we can rephrase this result by saying that
it is thesetof features defined by then first principal components and their linear
combinations that is (relatively) well defined, and not the features themselves.

5.3.2 Whitening by PCA

5.3.2.1 Whitening as normalized decorrelation

Another task for which PCA is quite useful is whitening. Whitening is an impor-
tant preprocessing method where the image pixels are transformed to a set of new
variabless1, . . . ,sn so that thesi are uncorrelated and have unit variance:

E{sisj}=

{

0 if i 6= j

1 if i = j
(5.15)

(It is assumed that all the variables have zero mean.) It is also said that the resulting
vector(s1, . . . ,sn) is white.

In addition to the principal components weights being orthogonal, the principal
components themselves are uncorrelated, as will be shown inmore detail in Sec-
tion 5.8.1. So, after PCA, the only thing we need to do to get whitened data is to
normalize the variances of the principal components by dividing them by their stan-
dard deviations. Denoting the principal components byyi , this means we compute

si =
yi

√

var(yi)
(5.16)

to get whitened componentssi . Whitening is a useful preprocessing method that
will be used later in this book. The intuitive idea is that it completely removes the
second-order information of the data. “Second-order” means here correlations and
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variances. So, it allows us to concentrate on properties that are not dependent on
covariances, such as sparseness in the next chapter.

Whitening by PCA is illustrated in Figure 5.10.
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Fig. 5.10: Illustration of PCA and whitening.a) The original data “cloud”. The arrows show the
principal components. The first one points in the direction of the largest variance in the data, and
the second in the remaining orthogonal direction.b) When the data is transformed to the principal
components, i.e. the principal components are taken as the new coordinates, the variation in the
data is aligned with those new axes, which is because the principal components are uncorrelated.
c) When the principal components are further normalized to unit variance, the data cloud has
equal variance in all directions, which means it has been whitened. The change in the lengths of
the arrows reflects this normalization; the larger the variance, the shorter the arrow.

5.3.2.2 Whitening transformations and orthogonality

It must be noted that there are many whitening transformations. In fact, if the ran-
dom variablessi , i = 1. . . ,n are white, then anyorthogonal transformationof those
variables is also white (the proof is left as an exercise). Often, whitening is based
on PCA because PCA is a well-known method that can be computedvery fast, but
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it must be kept in mind that PCA is just one among the many whitening transforma-
tions. Yet, PCA is a unique method because it allows us to combine three different
preprocessing methods into one: dimension reduction, whitening, and anti-aliasing
(which will be discussed in the next section).

In later chapters, we will often use the fact that the connection between orthog-
onality and uncorrelatedness is even stronger for whiteneddata. In fact, if we com-
pute two linear components∑i visi and∑i wisi from white data, they are uncorrelated
only if the two vectorsv andw (which contain the entriesvi andwi , respectively)
are orthogonal.

In general, we have the following theoretical result. For white data, multiplication
by a square matrix gives white components ifand only if the matrix is orthogonal.
Thus, when we have computed one particular whitening transformation, we also
know thatonlyorthogonal transformations of the transformed data can be white.

Note here the tricky point in terminology: a matrix if calledorthogonal if its
columns, or equivalently its rows, are orthogonal,and the norms of its columns
are all equal to one. To emphasize this, some authors call an orthogonal matrix
orthonormal. We stick to the word “orthogonal” in this book.

5.3.3 Anti-aliasing by PCA

PCA also helps combat the problem ofaliasing, which refers to a class of problems
due to the sampling of the data at a limited resolution — in ourcase the limited
number of pixels used to represent an image. Sampling of the image loses infor-
mation; this is obvious since we only know the image through its values at a finite
number of pixels. However, sampling can also introduce lessobvious distortions in
the data. Here we consider two important ones, and show how PCA can help.

5.3.3.1 Oblique gratings can have higher frequencies

One problem is that in the case of the rectangular sampling grid, oblique higher
frequencies are overrepresented in the data, because the grid is able to represent
oblique oscillations which have a higher frequency than either the vertical or hori-
zontal oscillations of the highest possible frequency.

This is because we can have an image which takes the form of a checkerboard
as illustrated in Figure 5.11 a). If you draw long oblique lines along the white and
black squares, the distance between such lines is equal to

√

1/2 as can be calculated
by basic trigonometry. This is smaller than one, which is theshortest half-cycle (half
the length of an oscillation) we can have in the vertical and horizontal orientation.
(It corresponds to the Nyquist frequency as discussed in thenext subsection, and
illustrated in Figure 5.11 b).

In the Fourier transform, this lack of symmetry is seen in thefact that the area
of possible 2-D frequencies is of the form of a square, instead of a circle as would
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be natural for data which is the same in all orientations (“rotation-invariant”, as
will be discussed in Section 5.7). Filtering out the highestoblique frequencies is
thus a meaningful preprocessing step to avoid any artefactsdue to this aliasing phe-
nomenon. (Note that we are here talking about the rectangular form of the sampling
grid, i.e. the relation of the pixels centerpoints to each other. This is not at all related
to the shape of the sampling window, i.e. the shape of the patch.)

It turns out that we can simply filter out the oblique frequencies by PCA. With
natural images, the last principal components are those that correspond to the high-
est oblique frequencies. Thus, simple dimension reductionby PCA alleviates this
problem.

a) b)

Fig. 5.11: Effects of sampling (limited number of pixels) onvery high-frequency gratings.a) A
sinusoidal grating which has a very high frequency in the oblique orientation. The cycle of the
oscillation has a length of 2

√

1/2 =
√

2 which is shorter than the smallest possible cycle length
(equal to two) in the vertical and horizontal orientations.b) A sinusoidal grating which has the
Nyquist frequency. Although it is supposed to be sinusoidal, due to the limited sampling (i.e.,
limited number of pixels), it is really a block grating.

5.3.3.2 Highest frequencies cannot can have only two different phases

Another problem is that at the highest frequencies, we cannot have sinusoidal grat-
ings with different phases. Let us consider the highest possible frequency, called in
Fourier theory the Nyquist frequency, which means that there is one cycle for every
two pixels, see Figure 5.11 b). What happens when you change the phase of the
grating a little bit, i.e. shift the “sinusoidal” grating a bit? Actually, almost noth-
ing happens: the grating does not shift at all because due to the limited resolution
given by the pixel size, it is impossible to represent a smallshift in the grating. (The
grey-scale values will be changed; they depend on the match between the sampling
lattice and the underlying sinusoidal they try to represent.) The sampled image re-
ally changes only when the phase is changed so much that the best approximation
is to flip all the pixels from white to black and vice versa.
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Thus, a grating sampled at the Nyquist frequency can really have only two differ-
ent phases which can be distinguished. This means that many concepts depending
on the phase of the grating, such as the phase tuning curve (Section 6.4) or phase-
invariance (Chapter 10) are rather meaningless on the Nyquist frequency. So, we
would like to low-pass filter the image to be able to analyze such phenomena with-
out the distorting effect of a limited resolution.

Again, we can alleviate this problem by PCA dimension reduction, because it
amounts to discarding the highest frequencies.

5.3.3.3 Dimension selection to avoid aliasing

So, we would like to do PCA so that we get rid of the checkerboard patterns as well
as everything in the Nyquist frequency. On the other hand, wedon’t want to get rid
of any lower frequencies.

To investigate the dimension reduction needed, we computedwhat amount of
checkerboard and Nyquist gratings is present in the data as afunction of dimension
after PCA. We also computed this for gratings that had half the Nyquist frequency
(i.e. a cycle was four pixels), which is a reasonable candidate for the highest fre-
quency patterns that we want to retain.

The results are shown in Figure 5.12. We can see in the figure that to get rid
of checkerboard patterns, not much dimension reduction is necessary: 10% or so
seems to be enough.3 To get rid of the Nyquist frequency, at least 30% seems to be
necessary. And if we look at how much we can reduce the dimension without losing
any information on the highest frequencies that we are really interested in, it seems
we can easily reduce even 60%-70% of the dimensions.

Thus, the exact number of dimensions is not easy to determinebecause we don’t
have a very clear criterion. Nevertheless, a reduction of atleast 30% seems to be
necessary to avoid the artifacts, and even 60%-70% can be recommended. In the
experiments in this book, we usually reduce dimension by 75%.

5.4 Canonical preprocessing used in this book

Now, we have arrived at a preprocessing method that we call “canonical preprocess-
ing” because it is used almost everywhere in this book. Canonical preprocessing
means:

1. Remove the DC component as in Eq. (5.1).
2. Compute the principal components of the image patches.

3 Note that this may be an underestimate: van Hateren proposedthat 30% may be needed (van
Hateren and van der Schaaf, 1998). This is not important in the following because we will anyway
reduce at least 30% for other reasons that will be explained next.
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Fig. 5.12: The percentage of different frequencies presentin the data as a function of PCA di-
mension reduction. Horizontal axis: Percentage of dimensions retained by PCA. Vertical axis:
Percentage of energy of a given grating retained. Solid lines: Gratings of half Nyquist frequency
(vertical and oblique) (wanted). Dotted line (see lower right-hand corner): checkerboard pattern
(unwanted). Dashed lines: Gratings of Nyquist frequency (vertical and oblique) (unwanted).

3. Retain only then first principal components and discard the rest. The numbern
is typically chosen as 25% of the original dimension.

4. Divide the principal components by their standard deviations as in Equation (5.16)
to get whitened data.

Here we see two important (and interrelated) reasons for doing whitening by
PCA instead of some other whitening method. We can reduce dimension to com-
bat aliasing and to reduce computational load with hardly any extra computational
effort.

Notation The end-product of this preprocessing is ann-dimensional vector for
each image patch. The preprocessed vector will be denoted byz, and its elements by
z1, . . . ,zn, when considered as a random vector and random variables. Observations
of the random vector will be denoted byz1,z2, . . ., or more often with the subscript
t as inzt . In the rest of this book, we will often use such canonically preprocessed
data. Likewise, observed image patches will be denoted byI , and their individual
pixels byI(x,y), when these are considered a random vector and random variables,
respectively, and their observations will be denoted byIt andIt(x,y).
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5.5 Gaussianity as the basis for PCA

5.5.1 The probability model related to PCA

In PCA and whitening, it is assumed that the only interestingaspect of the data
variablesx1, . . . ,xn is variances and covariances. This is the case with gaussiandata,
where the probability density function equals

p(x1, . . . ,xn) =
1

(2π)n/2|detC|−1/2
exp(−1

2 ∑
i, j

xix j [C−1]i j ) (5.17)

whereC is the covariance matrix of the data,C−1 is its inverse, and[C−1]i j is
the i, j-th element of the inverse. Thus, the probability distribution is completely
characterized by the covariances (as always, the means are assumed zero here).

These covariance-based methods are thus perfectly sufficient if the distribution
of the data is gaussian. However, the distribution of image data is typically very far
from gaussian. Methods based on the gaussian distribution thus neglect some of the
most important aspects of image data, as will be seen in the next chapter.

Using the gaussian distribution, we can also interpret PCA as a statistical model.
After all, one of the motivations behind estimation of statistical models for natural
images was that we would like to use them in Bayesian inference. For that, it is
not enough to just have a set of features. We also need to understand how we can
compute the prior probability density functionp(x1, . . . ,xn) for any given image
patch.

The solution is actually quite trivial: we just plug in the covariance of the data in
Eq. (5.17). There is actually no need to go through the trouble of computing PCA in
order to get a probabilistic model! The assumption of gaussianity is what gives us
this simple solution.

In later chapters, we will see the importance of the assumption of gaussianity, as
we will consider models which do not make this assumption.

5.5.2 PCA as a generative model

A more challenging question is how to interpret PCA as a generative model, i.e. a
model which describes a process which “generated” the data.There is a large litera-
ture on such modelling, which is typically calledfactor analysis. PCA is considered
a special case, perhaps the simplest one, of factor analyticmodels. The point is that
we can express data as a linear transformation of the principal components

I(x,y) = ∑
i

Wi(x,y)si (5.18)
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What we have done here is simply to invert the transformationfrom the data to the
principal components, so that the data is a function of the principal components
and not vice versa. This is very simple because the vectorsWi are orthogonal: then
the inverse of the system (matrix) they form is just the same matrix transposed, as
discussed in Section 19.7. Therefore, the feature vectors in this generative model
are just the same as the feature detector weights that we computed with PCA.

Now, we define the distribution of thesi as follows:

1. the distribution of eachsi is gaussian with variance equal to the variance of the
i-th principal component

2. thesi are statistically independent from each other.

This gives us, using Equation (5.18), a proper generative model of the data. That is,
the data can be seen as a function of the “hidden” variables that are now given by
the principal componentssi .

5.5.3 Image synthesis results

Once we have a generative model, we can do an interesting experiment to test our
model: We can generate image patches from our model, and see what they look
like. Such results are shown in Figure 5.13. What we see is that the PCA model
captures the general smoothness of the images. The smoothness comes from the
fact that the first principal components correspond to feature vectors which change
very smoothly. Other structure is not easy to see in these results. The results can be
compared with real natural images patches shown in Figure 5.2 on page 99; they
clearly have a more sophisticated structure, visible even in these small patches.

5.6 Power spectrum of natural images

An alternative way of analyzing the covariance structure ofimages is through
Fourier analysis. The covariances and the frequency-basedproperties are related
via the Wiener-Khinchin theorem. We begin by considering the power spectra of
natural images and then show the connection.

5.6.1 The1/ f Fourier amplitude or1/ f 2 power spectrum

The fundamental result on frequency-based representationof natural images is that
the power spectrum of natural images typically falls off inversely proportional to
the square of the frequency. Since the power spectrum is the square of the Fourier
amplitude (spectrum), this means that the Fourier amplitude falls off as a function
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Fig. 5.13: Image synthesis using PCA. 20 patches were randomly generated using the PCA model
whose parameters were estimated from natural images. Compare with real natural image patches
in Figure 5.2.

c/ f wherec is some constant andf is the frequency. It is usually more convenient
to plot the logarithms. For the logarithm this means

Log Fourier amplitude=− log f +const. (5.19)

or
Log power spectrum=−2log f +const. (5.20)

for some constant which is the logarithm of the constantc.
Figure 5.15 a) shows the logarithm of the power spectrum of the natural im-

age in Fig. 5.14 a). What we can see in this 2D plot is just that the spectrum is
smaller for higher frequencies. To actually see how it fallsoff, we have to look at
one-dimensional cross-sections of the power spectrum, so that we average over all
orientations. This is how we get Fig. 5.15 b), in which we havealso taken the log-
arithm of the frequency as in Equation (5.20). This plot partly verifies our result: it
is largely linear with a slope close to minus two, as expected. (Actually, more thor-
ough investigations have found that the log-power spectrummay, in fact, change a
bit slower than 1/ f 2, with a exponent closer to 1.8 or 1.9. ) In addition, the power
spectra are very similar for the two images in Fig. 5.15.

A large literature in physics and other fields has consideredthe significance of
such a behaviour of the power spectrum. Many other kinds of data have the same
kind of spectra. An important reason for this is that if the data is scale-invariant,
or self-similar, i.e. it is similar whether you zoom in or out, the power spectrum is
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necessarily something like proportional to 1/ f 2; see References section below for
some relevant work.

a) b)

Fig. 5.14: Two natural images used in the experiments.
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Fig. 5.15: Power spectrum or Fourier amplitude of natural images.a) The logarithm of two-
dimensional power spectrum of natural image in Fig. 5.14 a).b) The average over orientations
of one-dimensional cross-sections of the power spectrum ofthe two images in Fig. 5.14. Only the
positive part is shown since this is symmetric with respect to the origin. This is a log-log plot where
a logarithm of base 10 has been taken of both the frequency (horizontal axis) and the power (ver-
tical axis) in order to better show the 1/ f 2 behaviour, which corresponds to a linear dependency
with slope of−2.
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5.6.2 Connection between power spectrum and covariances

What is then the connection between the power spectrum of an image, and the co-
variances between pixels we have been computing in this chapter? To this end, we
need a theorem from the theory of stochastic processes (we will not rigorously de-
fine what stochastic processes are because that is not necessary for the purposes of
this book). The celebrated Wiener-Khinchin theorem statesthat for a stochastic pro-
cess,the average power spectrum is the Fourier Transform of the autocorrelation
function.

The theorem talks about the “autocorrelation function”. This is the terminology
of stochastic processes, which we have not used in this chapter: we simply consid-
ered different pixels as different random variables. The “autocorrelation function”
means simply the correlations of variables (i.e. pixel values) as a function of the hor-
izontal and vertical distances between them. Thus, the autocorrelation function is a
matrix constructed as follows. First, take one row of the covariance matrix, say the
one corresponding to the pixel at(x0,y0). To avoid border effects, let’s take(x0,y0)
which is in the middle of the image patch. Then, convert this vector back to the
shape of the image patch. Thus, we have a matrixC(x0,y0)






cov(I(x0,y0), I(1,1)) . . . cov(I(x0,y0), I(1,n))
...

cov(I(x0,y0), I(n,1)) . . . cov(I(x0,y0), I(n,n))




 (5.21)

which has the same sizem×mas the image patch. This matrix is nothing else than
what was already estimated from natural images and plotted in Fig. 5.4.

Actually, it is obvious that this matrix essentially contains all the information in
the covariance matrix. As discussed in Section 5.2.5, it is commonly assumed that
image patches are translation-invariant in the sense that the covariances actually
only depend on the distance between two pixels, and not on where in the patch the
pixels happen to be. (This may not hold for whole images, where the upper half
may depict sky more often and lower parts, but it certainly holds for small image
patches.) Thus, to analyze the covariance structure of images, all we really need is
a matrix like in Equation (5.21).

What the Wiener-Khinchin theorem now says is that when we take the Fourier
transformation ofC(x0,y0), just as if this matrix were an image patch, the Fourier
amplitudes equal theaveragepower spectrum of the original image patches. (Due to
the special symmetry properties of covariances, the phasesin the Fourier transform
of C(x0,y0) are all zero, so the amplitudes are also equal to the coefficients of the
cos functions.)

Thus, we can see the connection between the 1/ f Fourier amplitude of natural
images and the covariances of the pixels structure. The average 1/ f Fourier ampli-
tude or the 1/ f 2 power spectrum of single images implies that the Fourier transform
of C(x0,y0) also falls of as 1/ f 2. Now, since the features obtained from PCA are
not very different from those used in a discrete Fourier transform (sine and cosine
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functions), and the squares of the coefficients in that basisare the variances of the
principal components, we see that the variances of the principal components fall
off as 1/ f 2 as a function of frequency. (This cannot be seen in the variance plot in
Fig. 5.9 because that plot does not give the variances as a function of frequency.)

Another implication of the Wiener-Khinchin theorem is thatit shows howconsid-
ering the power spectrum of images alone is related to using gaussian model. Since
the average power spectrum contains essentially the same information as the covari-
ance matrix, and using covariances only is equivalent to using a gaussian model, we
see that considering the average power spectrum alone is essentially equivalent to
modelling the data with a gaussian pdf as in Section 5.5. Since the power spectrum
does not contain information about phase, using the phase structure is thus related
to using the non-gaussian aspects of the data, which will be considered in the next
chapters.

5.6.3 Relative importance of amplitude and phase

When considering frequency-based representations of natural images, the following
question naturally arises: Which is more important, phase or amplitude (power) —
or are they equally important? Most researchers agree that the phase information is
more important for the perceptual system than the amplitudestructure. This view is
justified by experiments in which we take the phase structurefrom one image and
the power structure from another, and determine whether theimage is more similar
to one of the natural images. What this means is that we take the Fourier transform
(using the Discrete Fourier Transform) of the two images, and isolate the phase and
amplitude from the two transforms. Then we compute the inverse of the Fourier
transform from the combination of the phase from the first image and the amplitude
from the second; this gives us a new image. We also create another image with the
inverse Fourier transform using the phase from the second image and the amplitude
from the first.

Results of such an experiment are shown in Fig. 5.16. In both cases, the image
“looks” more like the image from which the phase structure was taken, although
in a) this is not very strongly so. This may be natural if one looks at the Fourier
amplitudes of the images: since they are both rather similar(showing the typical
1/ f fall-off), they cannot provide much information about whatthe image really
depicts. If all natural images really have amplitude spectra which approximately
show the 1/ f shape, the power spectrum cannot provide much information on any
natural image, and thus the phase information has to be the key to identifying the
contents in the images.

Thus, one can conclude that since PCA concentrates only on information in the
power spectrum, and the power spectrum does not contain a lotof perceptually im-
portant information, one cannot expect PCA and related methods to yield too much
useful information about the visual system. Indeed, this provides an explanation for
the rather disappointing performance of PCA in learning features from natural im-
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ages as seen in Fig. 5.7 — the performace is disappointing, atleast, if we want to
model receptive fields in V1. In the next chapter we will see that using information
not contained in the covariances gives an interesting modelof simple cell receptive
fields.

a) b)

Fig. 5.16: Relative importance of phase and power/amplitude information in natural images.a)
Image which has the Fourier phases of the image in Fig. 5.14 a), and the Fourier amplitudes of the
image in Fig. 5.14 b).b) Image which has the phases of the image in Fig. 5.14 b), and theamplitude
structure of the image in Fig. 5.14 a). In both cases the images are perceptually more similar to the
image from which the phase structure was taken, which indicates that the visual system is more
sensitive to the phase structure of natural images.

5.7 Anisotropy in natural images

The concept of anisotropy refers to the fact that natural images are not completely
rotationally invariant (which would be called isotropy). In other words, the statistical
structure is not the same in all orientations: if you rotate an image, the statistics
change.

This may come as a surprise after looking at the correlation coefficients in Fig-
ure 5.4 d), in which it seems that the correlation is simply a function of the distance:
the closer to each other the two pixels are, the stronger their correlation; and the
orientation does not seem to have any effect. In fact, isotropy is not a bad first ap-
proximation, but a closer analysis reveals some dependencies on orientation.

Figure 5.17 show the results of such an analysis. We have taken the correlation
coefficients computed in Figure 5.4, and analyzed how they depend on the orienta-
tion of the line segment connecting the two pixels. An orientation of 0 (orπ) means
that the two pixels have the samey coordinate; orientation ofπ/2 means that they
have the samex coordinate. Other values mean that the pixels have an oblique rela-
tionship to each other. Figure 5.17 shows that the correlations are the very strongest
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if the pixels have the samey coordinate, that is, they are on the same horizontal line.
The correlations are also elevated if the pixels have the samex coordinate.

In fact, we already saw in Figure 5.6 that the first principal component is, con-
sistently, a low-frequency horizontal edge. This is in linewith the dominance of
horizontal correlations. If the images exactly isotropic,horizontal edges and verti-
cal edges would have exactly the same variance, and the first principal component
would not be well-defined at all; this would be reflected in Figure 5.6 so that we
would get edges with different random orientations.

Thus, we have discovered a form of anisotropy in natural image statistics. It will
be seen in different forms in all the later models and analyses as well.
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Fig. 5.17: Anisotropy, i.e. lack of rotational invariance,in natural image statistics. We took the
correlation coefficients in Figure 5.4 and plotted them on three circles with different radii (the
maximum radius allowed by the patch size, and that multiplied by one half and one quarter). For
each of the radii, the plot shows that the correlations are maximized for the orientations of 0 or
π , which mean horizontal orientation: the pixels are on the same horizontal line. The vertical
orientationπ/2 shows another maximum which is less pronounced.

5.8 Mathematics of principal component analysis*

This section is dedicated to a more sophisticated mathematical analysis of PCA and
whitening. It can be skipped by a reader not interested in mathematical details.
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5.8.1 Eigenvalue decomposition of the covariance matrix

The “second-order” structure of data is completely described by the covariance ma-
trix, defined in Section 4.6.3. In our case with thex andy coordinates of the patches,
we can write:

C(x,y;x′,y′) = E{I(x,y)I(x′,y′)} (5.22)

The point is that the covariance ofanytwo linear features can be computed by

E

{

[∑
x,y

W1(x,y)I(x,y)][∑
x,y

W2(x,y)I(x,y))]

}

= E

{

[ ∑
xyx′y′

W1(x,y)I(x,y)W2(x
′,y′)I(x′,y′))]

}

= ∑
xyx′y′

W1(x,y)W2(x
′,y′)E{I(x,y)I(x′,y′)}

= ∑
xyx′y′

W1(x,y)W2(x
′,y′)C(x,y;x′,y′) (5.23)

which reduces to a something which can be computed using the covariance ma-
trix. The second-order structure is thus conveniently represented by a single matrix,
which enables us to use classic methods of linear algebra to analyze the second-
order structure.

To go into details, we change the notation so that the whole image is in one
vector,x, so that each pixel is one element in the vector. This can be accomplished,
for example, by scanning the image row by row, as was explained in Section 4.1.
This simplifies the notation enormously.

Now, considering any linear combinationwTx = ∑i wixi we can compute its vari-
ance simply by:

E{(wTx)2}= E{(wTx)(xTw)}= E{wT(xxT)w}= wTE{xxT}w
= wTCw (5.24)

where we denote the covariance matrix byC = E{xxT}. So, the basic PCA problem
can be formulated as

max
w:‖w‖=1

wTCw (5.25)

A basic concept in linear algebra is the eigenvalue decomposition. The starting
point is thatC is a symmetric matrix, because cov(xi ,x j) = cov(x j ,xi). In linear
algebra, it is shown that any symmetric matrix can be expressed as a product of the
form:

C = UDUT (5.26)
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whereU is an orthogonal matrix, andD = diag(λ1, . . . ,λm) is diagonal. The columns
of U are called theeigenvectors, and theλi are called theeigenvalues. Many efficient
algorithms exist for computing the eigenvalue decomposition of a matrix.

Now, we can solve PCA easily. Lets us make the change of variablesv = UTw.
Then we have

wTCw = wTUDUTw = vTDv = ∑
i

v2
i λi (5.27)

BecauseU is orthogonal,‖v‖ = ‖w‖, so the constraint is the same forv as it was
for w. Let us make the further change of variables tomi = v2

i . The constraint of unit
norm of v is now equivalent to the constraints that the sum of themi must equal
one (they must also be positive because they are squares). Then, the problem is
transformed to

max
mi≥0,∑mi=1

∑
i

miλi (5.28)

It is rather obvious that the maximum is found when themi corresponding to the
largestλi is one and the others are zero. Let us denote byi∗ the index of the max-
imum eigenvalue. Going back to thew, this corresponds tow begin equal to the
i∗-th eigenvector, that is, thei∗-th column ofU. Thus, we see how the first principal
component is easily computed by the eigenvalue decomposition.

Since the eigenvectors of a symmetric matrix are orthogonal, finding the second
principal component means maximizing the variance so thatvi∗ is kept zero. This is
actually equivalent to making the neww orthogonal to the first eigenvector. Thus,
in terms ofmi , we have exactly the same optimization problem, but with theextra
constraint thatmi∗ = 0. Obviously, the optimum is obtained whenw is equal to the
eigenvector corresponding to thesecondlargest eigenvalue. This logic applies to the
k-th principal component.

Thus, all the principal components can be found by ordering the eigenvectors
ui , i = 1, . . . ,m in U so that the corresponding eigenvalues are in decreasing order.
Let us assume thatU is ordered so. Then thei-th principal componentsi is equal to

si = uT
i x (5.29)

Note that it can be proven that theλi are all non-negative for a covariance matrix.
Using the eigenvalue decomposition, we can prove some interesting properties

of PCA. First, the principal components areuncorrelated, because for the vector of
the principal components

s= UTx (5.30)

we have

E{ssT}= E{UTxxTU}= UTE{xxT}U = UT(UDUT)U

= (UTU)D(UTU) = D (5.31)

because of the orthogonality ofU. Thus, the covariance matrix is diagonal, which
shows that the principal components are uncorrelated.
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Moreover, we see that the variances of the principal components are equal to the
λi . Thus, to obtain variables that are white, that is, uncorrelated and have unit vari-
ance, it is enough to divide each principal component by the square root of the cor-
responding eigenvalue. This proves that diag(1/

√
λ1, . . . ,1/

√
λm)UT is awhitening

matrix forx.
This relation also has an important implication for the uniqueness of PCA. If

two of the eigenvalues are equal, then the variance of those principal components
are equal. Then, the principal components are not well-defined anymore, because we
can make arotationof those principal components without affecting their variances.
This is because ifzi andzi+1 have the same variance, then linear combinations such
as
√

1/2zi +
√

1/2zi+1 and
√

1/2zi −
√

1/2zi+1 have the same variance as well;
all the constraints (unit variance and orthogonality) are still fulfilled, so these are
equally valid principal components. In fact, in linear algebra, it is well-known that
the eigenvalue decomposition is uniquely defined only when the eigenvalues are all
distinct.

5.8.2 Eigenvectors and translation-invariance

Using the eigenvalue decomposition, we can show why the principal components
of a typical image covariance matrix are sinusoids as statedin Section 5.2.5. This is
because of their property of being translation-invariant,i.e. the covariance depends
only on the distance as in (5.9). For simplicity, let us consider a one-dimensional
covariance matrixc(x−x′). The functionc is even-symmetric with respect to zero,
i.e.c(−u) = c(u). By a simple change of variablez= x−x′, we have

∑
x

cov(x,x′)sin(x+ α) = ∑
x

c(x−x′)sin(x+ α) = ∑
z

c(z)sin(z+x′+ α) (5.32)

Using the property that sin(a+b) = sinacosb+cosasinb, we have

∑
z

c(z)sin(z+x′+ α) = ∑
z

c(z)(sin(z)cos(x′+ α)+cos(z)sin(x′+ α))

= [∑
z

c(z)sin(z)]cos(x′+ α)+ [∑
z

c(z)cos(z)]sin(x′+ α) (5.33)

Finally, becausec(z) is even-symmetric and sin is odd-symmetric, the first sum in
brackets is zero. So, we have

∑
x

cov(x,x′)sin(x+ α) = [∑
z

c(z)cos(z)]sin(x′+ α) (5.34)

which shows that the sinusoid is an eigenvector of the covariance matrix, with eigen-
value∑zc(z)cos(z). The parameterα gives the phase of the sinusoid; this formula
shows thatα can have any value, so sinusoids of any phase are eigenvectors.
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This proof can be extended to sinusoids of different frequenciesβ : they all are
eigenvalues with eigenvalues that depend on how strongly the frequency is present
in the data:∑zc(z)cos(βz).

In the two-dimensional case, we have cov(I(x,y), I(x′,y′)) = c((x− x′)2 + (y−
y′)2) and withξ = x−x′ andη = y−y′ we have

∑
x,y

c((x−x′)2 +(y−y′)2)sin(ax+by+c)

= ∑
ξ ,η

c(ξ ,η)sin(aξ +bη +ax′+by′+c)

= ∑
ξ ,η

c(ξ ,η)[sin(aξ +bη)cos(ax′+by′+c)+cos(aξ +bη)sin(ax′+by′+c)]

= 0+[∑
ξ ,η

c(ξ ,η)cos(aξ +bη)]sin(ax′+by′+c) (5.35)

which shows, likewise, that sinusoids of the form sin(ax′+by′+c) are eigenvectors.

5.9 Decorrelation models of retina and LGN *

In this section, we consider some further methods for whitening and decorrelation
of natural images, and the application of such methods as models of processing in
the retina and the LGN. This material can be skipped without interrupting the flow
of ideas.

5.9.1 Whitening and redundancy reduction

The starting point here is the redundancy reduction hypothesis, discussed in Chap-
ter 1. In its original form, this theory states that the earlyvisual system tries to
reduce the redundancy in its input. As we have seen in in this chapter, image pixel
data is highly correlated, so a first approach to reduce the redundancy would be to
decorrelateimage data, i.e. to transform it into uncorrelated components.

One way to decorrelate image data is to whiten it with a spatial filter. In a visual
system, this filtering would correspond to a set of neurons, with identical spatial
receptive fields, spaced suitably in a lattice. The outputs of the neurons would then
be uncorrelated, and if we were to look at the outputs of the whole set of neurons as
an image (or a set of images for multiple input images), theseoutput images would
on the average have a flat power spectrum.

The whitening theory has led to well-known if rather controversial models of the
computational underpinnings of the retina and the lateral geniculate nucleus (LGN).
In this section we will discuss spatial whitening and spatial receptive fields accord-
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ing to this line of thought; the case of temporal whitening and temporal receptive
fields will be discussed in detail in Section 16.3.2 (page 345).

The basic idea is that whitening alone could explain the center-surround structure
of the receptive fields of ganglion cells in the retina, as well as those in the LGN.
Indeed, certain spatial whitening filters are very similar to ganglion RF’s, as we
will see below. However, such a proposal is problematic because there are many
completely different ways of whitening the image input, andit is not clear why this
particular method should be used. Nevertheless, this theory is interesting because
of its simplicity and because it sheds light on certain fundamental properties of the
covariance structure of images.

There are at least two ways to derive the whitening operationin question. The
first is to compute it directly from the covariance matrix of image patches sampled
from the data; this will lead to a set of receptive fields, but with a suitable constraint
the RF’s will be identical except for different center locations, as we will see below.
We will call this patch-based whitening. The second way is to specify a whitening
filter in the frequency domain, which will give us additionalinsight and control over
the process. This we will callfilter-based whitening.

5.9.2 Patch-based decorrelation

Our first approach to spatial whitening is based on the PCA whitening introduced
above in Section 5.3.2 (page 109). The data transformation is illustrated in the two-
dimensional case in Figure 5.18.

Here, we will use the matrix notation because it directly shows some important
properties of the representation we construct. Here, we denote byU the matrix with
the vectors defining the principal components as its columns

U = (u1,u2, · · · ,uk). (5.36)

Let x denote the data vector. Because the vectorsu are orthogonal, each of the
principal componentsyk, k = 1, ...,K, of the data vectorx can be computed simply
by taking the dot product between the data vector and thekth PCA vector:

yk = uT
k x, k = 1, ...,K. (5.37)

Defining the vectory = (y1,y2, · · · ,yK)T , the Equations (5.37) for allk = 1, ...,K
can be expressed in a single matrix equation

y = UTx. (5.38)

In our two-dimensional illustration, the result of this transformation is shown in
Figure 5.18b).

As in Section 5.3.2, we next whiten the data by dividing the principal components
with their standard deviations. Thus we obtain whitened componentssk
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Fig. 5.18: An illustration of the whitening procedure that is used to derive a set of whitening
filters wk, k = 1, ...,K (here, we takeK = 2). The procedure utilizes the PCA basis vectorsuk,
k = 1, ...,K. a) The original generated data points and the PCA basis vectorsu1 and u2 (grey)
and the unit vectors(1,0) and(0,1) (black). b) The data points are first rotated so that the new
axes match the PCA basis vectors.c) The data points are then scaled along the axes so that the
data have the same variance along both axes. This also makes the two dimensions of the data
uncorrelated, so the end result is a whitened data set. (For purposes of visualization of the data
points and the vectors, in this illustration this variance is smaller than 1, while in whitening it is 1;
this difference corresponds to an overall scaling of the data.)d) Finally, the data points are rotated
back to the original orientation. Note that the data are already white after the second transformation
in c), and the last transformation is one of infinitely many possible rotations that keep the data
white; in this method, it is the one that inverts the rotationdone by PCA. Mathematically, the
three transformations in b)-d) can in fact be combined into asingle linear transformation because
each transformation is linear; the combined operation can be done by computing the dot products
between the original data points and the vectorsw1 andw2 which are the result of applying the
three transformations to the original unit vectors. See text for details.



5.9 Decorrelation models of retina and LGN * 129

sk =
yk

√

var(yk)
, k = 1, ...,K, (5.39)

This is shown for our illustrative example in Figure 5.18c).
Again, we can express theseK equations by a single matrix equation. Define a

vectors= (s1,s2, · · · ,sK)T , and letΛ denote a diagonal matrix with the inverses of
the square roots of the variances on its diagonal:

Λ =










1√
var(y1)

0 · · · 0

0 1√
var(y2)

· · · 0

...
...

.. .
...

0 0 · · · 1√
var(yK)










; (5.40)

then
s= Λy = ΛUTx. (5.41)

So far we have just expressed PCA whitening as a matrix formulation. Now,
we will make a new operation. Among the infinitely many whitening matrices, we
choose the one which is given by inverting the PCA computation given byU. In
a sense, we go “back from the principal components to the original coordinates”
(Figure 5.18d). Denoting byz the final component computed, this is defined by the
following matrix equation:

z = Us= UΛUTx. (5.42)

The computation presented in Equation (5.43) consist of three linear (matrix)
transformations in a cascade. The theory of linear transformation states that a cas-
cade of consecutive linear transformations is simply another linear transformation,
and that this combined transformation – which we will here denote byW – can be
obtained as the matrix product of the individual transformations:

z = UΛUT
︸ ︷︷ ︸

=W

x = Wx. (5.43)

When written ask scalar equations, Equation (5.43) shows that the components of
vectorz = [z1 z2 · · · zK ]T can be obtained as a dot product between the data vector
x and thekth row of matrixW = [w1 w2 · · ·wK ]T :

zk = wT
k x, k = 1, ...,K. (5.44)

The vectorswk, k = 1, ...,K, are of great interest to us, since they are filters which
map the inputx to the whitened data. In other words, the vectorswk, k = 1, ...,K,
can be interpreted as receptive fields. The receptive fieldswk, k = 1, ...,K, can be
obtained simply by computing the matrix product in Equation(5.43).

Matrix square root As an aside, we mention an interesting mathematical inter-
pretation of the matrixW. The matrixW is called theinverse matrix square rootof
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the covariance matrixC, and denoted byC−1/2. In other words, the inverseW−1

is called the square root ofC, and denoted byC1/2. The reason is that if we multi-
ply W−1 with itself, we getC. This is because, first,(UΛUT)−1 = UΛ−1UT , and
second, we can calculate

W−1W−1 = (UΛ−1UT)(UΛ−1UT) = UΛ−1(UTU)Λ−1UT = UΛ−2UT (5.45)

The matrixΛ−2 is simply a diagonal matrix with the variances in its diagonal, so the
result is nothing else than the eigenvalue decomposition ofthe covariance matrix as
in Equation (5.26).

Symmetric whitening matrix Another interesting mathematical property of the
whitening matrixW in Equation (5.43) is that it is symmetric, which can be shown
as

WT =
(
UΛUT)T

=
(
UT)T ΛTUT = UΛUT = W. (5.46)

In fact, it is the only symmetric whitening matrix.

Application to natural images When the previous procedure is applied to natural
image data, interesting receptive fields emerge. Figure 5.19a) shows the resulting
whitening filters (rows / columns ofW); a closeup of one of the filters is shown
in Figure 5.19b). As can be seen, the whitening principle results in the emergence
of filters which have center-surround structure. All of the filters are identical, so
processing image patches with such filters is analogous to filtering them with the
spatial filter shown in Figure 5.19b).

As pointed out several times above, whitening can be done in infinitely many
different ways: ifW is a whitening transformation, so is any orthogonal transfor-
mation ofW. Here the whitening solution in Equation (5.43) has been selected so
that it results in center-surround-type filters. This is a general property that we will
bump into time and again below: the whitening principle doesconstrain the form
of the emerging filters, but additional assumptions are needed before the results can
have a meaningful interpretation.

Note that the theory results in a single receptive field structure, while in the retina,
there are receptive fields with differing spatial properties – in particular scale (fre-
quency) – in the retina and the LGN. This is another limitation of the whitening
principle, and additional assumptions are needed to produce a range of differing
filters.

5.9.3 Filter-based decorrelation

Now we reformulate this theory in a filter-based framework. Then the theory pos-
tulates that the amplitude response properties (see Section 2.2.3, page 33) of retinal
and LGN receptive fields follow from the following two assumptions:
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a)

b)

Fig. 5.19: The application of the whitening principle results in the emergence of a set of center-
surround filters from natural image data.a) The set of filters (rows / columns of whitening matrix
W) obtained from image data.b) A closeup of one of the filters; the other filters are identicalexcept
for spatial location.
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1. the linear filters are whitening natural image data
2. with the constraint that noise is not amplified unduly.

Additional assumptions are needed to derive the phase response in order to specify
the filter completely. This is equivalent to the observationmade above in the general
case of whitening: there are infinitely many whitening transformations. Here, the
phases are defined by specifying that the energy of the filter should be concentrated
in either time or space, which in the spatial case can be loosely interpreted to mean
that the spatial RF’s should be as localized as possible.

The amplitude response of the filter will be derived in two parts: the first part is
the whitening filter, and the second part suppresses noise. The filter will be derived
in the frequency domain, and thereafter converted to the spatial domain by inverse
Fourier transform. It is often assumed that the statistics of image data do not depend
on spatial orientation; we make the same assumption here andstudy the orientation-
independent spatial frequencyωs. Conversion from the usual two-dimensional fre-

quenciesωx andωy to spatial frequencyωs is given byωs =
√

ω2
x + ω2

y . Let Ri(ωs)

denote the average power spectrum in natural images. We knowthat for uncorrelated
/ whitened data, the average power spectrum should be a constant (flat). Because the
average power spectrum of the filtered data is the product of the average power spec-
trum of the original data and the squared amplitude responseof the whitening filter,
which we denote by|V(ωs)|2 , this means that the amplitude response of a whitening
filter can be specified by

|V(ωs)|=
1

√

Ri(ωs)
, (5.47)

since then|V(ωs)|2Ri(ωs) = 1.
Real measurement data contains noise. Assume that the noise, whose average

power spectrum isRn(ωs), is additive and uncorrelated with the original image data,
whose average power spectrum isRo(ωs); thenRi(ωs) = Ro(ωs)+ Rn(ωs). To de-
rive the amplitude response of the filter that suppresses noise, one can use aWiener
filtering approach. Wiener filtering yields a linear filter that can be used to com-
pensate for the presence of additive noise: the resulting filter optimally restores the
original signal in the least mean square sense. The derivation of the Wiener filter in
the frequency space is somewhat involved, and we will skip ithere; see (Dong and
Atick, 1995b). The resulting response properties of the filter are fairly intuitive: the
amplitude response|F(ωs)| of the Wiener filter is given by

|F(ωs)|=
Ri(ωs)−Rn(ωs)

Ri(ωs)
. (5.48)

Notice that if there are frequencies that contain no noise – that is,Rn(ωs) = 0 –
the amplitude response is simply 1, and that higher noise power leads to decreased
amplitude response.

The overall amplitude response of the filter|W(ωs)| is obtained by cascading the
whitening and the noise-suppressive filters (equations (5.47) and (5.48)). Because
this cascading corresponds to multiplication in the frequency domain, the amplitude
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response of the resulting filter is

|W(ωs)|= |V(ωs)| |F(ωs)|=
1

√

Ri(ωs)

Ri(ωs)−Rn(ωs)

Ri(ωs)
. (5.49)

In practice,Ri(ωs) can be estimated directly from image data for eachωs, or one can
use the parametric form derived in Section 5.6 (page 116). (Negative values given
by this formula (5.49) have to be truncated to zero.) Noise isassumed to be spatially
uncorrelated, implying a constant (flat) power spectrum, and to have power equal to
data power at a certain characteristic frequency, denoted by ωs,c, so that

Rn(ωs) =
Ri(ωs,c)

2
for all ωs. (5.50)

In order to fully specify the resulting filter, we have to define its phase response.
Here we simply set the phase response to zero for all frequencies:

∠W(ωs) = 0 for all ωs. (5.51)

With the phases of all frequencies at zero, the energy of the filter is highly concen-
trated around the spatial origin, yielding a highly spatially localized filter. After the
amplitude and the phase responses have been defined, the spatial filter itself can be
obtained by taking the inverse two-dimensional Fourier transform.

The filter properties that result from the application of equations (5.49), (5.50)
and (5.51) are illustrated in Figure 5.20 for characteristic frequency valueωs,c =
0.3cycles per pixel. For this experiment, 100,000 image windows of size 16× 16
pixels were sampled from natural images.4 The average power spectrum of these
images was then computed; the average of this spectrum over all spatial orientations
is shown in Figure 5.20a). The squared amplitude response ofthe whitening filter,
obtained from equation (5.49), is shown in Figure 5.20b). The power spectrum of the
filtered data is shown in Figure 5.20c); it is approximately flat at lower frequencies
and drops off sharply at high frequencies because of the higher relative noise power
at high frequencies. The resulting filter is shown in Figure 5.20d); for comparison,
a measured spatial receptive field of an LGN neuron is shown inFigure 5.20e).

Thus, the center-surround receptive-field structure, found in the retina and the
LGN, emerges from this computational model and natural image data. However, we
made several assumptions above – such as the spacing of the receptive fields – and
obtained as a result only a single filter instead of a range of filters in different scales
and locations. In Section 16.3.2 (page 345) we will see that in the temporal domain,
similar principles lead to the emergence of temporal RF properties of these neurons.

4 Here, we did not use our ordinary data set but that of van Hateren and van der Schaaf (1998).
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Fig. 5.20: The application of the whitening principle, combined with noise reduction and zero
phase response, leads to the emergence of center-surround filters from natural image data.a) The
power spectrumRi(ωs) of natural image data.b) The squared amplitude response of a whitening
filter which suppresses noise: this curve follows the inverse of the data power spectrum at low
frequencies, but then drops off quickly at high frequencies, because the proportion of noise is larger
at high frequencies.c) The power spectrum of the resulting (filtered) data, showingapproximately
flat (white) power at low frequencies, and dropping off sharply at high frequencies.d) The resulting
filter which has been obtained from the amplitude response inb) and by specifying a zero phase
response for all frequencies; see text for details.e) For comparison, the spatial receptive field of
an LGN neuron.

5.10 Concluding remarks and References

This chapter considered models of natural images which werebased on analyzing
the covariances of the image pixels. The classic model is principal component anal-
ysis, in which variance of a linear feature detector is maximized. PCA fails to yield
interesting feature detectors if the goal is to model visualcells in brain. However,
it is an important model historically and conceptually, andalso provides the basis
for the preprocessing we use later in this book: dimension reduction combined with
whitening. In the next chapter, we will consider a differentkind of learning criterion
which does yield features which are interesting for visual modelling.

Most of the work on second-order statistics of images is based on the (approxi-
mate) 1/ f 2 property of the power spectrum. This was investigated earlyin (Field,
1987; Burton and Moorehead, 1987; Tolhurst et al, 1992; Ruderman and Bialek,
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1994a; van der Schaaf and van Hateren, 1996). It has been proposed to explain
certain scaling phenomena in the visual cortex, such as the orientation bandwidth
(van der Schaaf and van Hateren, 1996) and the relative sensitivity of cells tuned to
different frequencies (Field, 1987). Early work on PCA of images include (Sanger,
1989; Hancock et al, 1992). The 1/ f property is closely related to the study of self-
similar stochastic processes (Embrechts and Maejima, 2000) which has a very long
history (Mandelbrot and van Ness, 1968). The study of self-critical systems (Bak
et al, 1987) may also have some connection. A model of how suchself-similarities
come about as a result of composing an image of different “objects” is proposed in
(Ruderman, 1997).

A recent paper with a very useful discussion and review of thepsychophysical
importance of the Fourier powers vs. phases is (Wichmann et al, 2006); see also
(Hansen and Hess, 2007).

Another line of research proposes that whitening explains retinal ganglion recep-
tive fields (Atick and Redlich, 1992). (An extension of this theory explains LGN
receptive field by considering temporal correlations as well (Dan et al, 1996a), see
also Chapter 16.) For uniformity of presentation, we followthe mathematical the-
ory of (Dong and Atick, 1995b) both here in the spatial case and in the temporal
case in Section 16.3.2. As argued above, the proposal is problematic because there
are many ways of whitening data. A possible solution to the problem is to consider
energy consumption or wiring length, see Chapter 11 for thisconcept, as was done
in (Vincent and Baddeley, 2003; Vincent et al, 2005).

The anisotropy of pixel correlations has been used to explain some anisotropic
properties in visual psychophysics in (Baddeley and Hancock, 1991).

An attempt to characterize the proportion of information explained by the covari-
ance structure in natural images can be found in (Chandler and Field, 2007).

5.11 Exercices

Mathematical exercises

1. Show that if the expectations of the grey-scale values of the pixels are the same
for all x,y:

E{I(x,y)}= E{I(x′,y′)} for anyx,y,x′,y′ (5.52)

then removing the DC component implies than the expectationof Ĩ(x,y) is zero
for anyx,y.

2. Show that if∑x,yWx,y = 0, the removal of the DC component has no effect on the
output of the features detector.

3. Show that if the vector(y1, . . . ,yn)
T is white, any orthogonal transformation of

that vector is white as well.
4. To get used to matrix notation:
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a. The covariance matrix of the vectorx = (x1, . . . ,xn)
T is defined as the matrix

C with elementsci j = cov(xi ,x j). Under what condition do we haveC =
E{xxT}?

b. Show that the covariance matrix ofy = Mx equalsMCM T

5. Denote byw a vector which reduces the dimension ofx to one asz= ∑i wixi .
Now, we will show that taking the first principal component isthe optimal way of
reducing dimension if the optimality criterion is least-squares error. This means
that we reconstruct the original data as a linear transformation of zas:

J(W) = E{∑
j
(x j −wjz)

2} (5.53)

a. Show thatJ is equal to

∑
j

w2
j ∑

i,i′
wiwi′cov(xi ,xi′)−2∑

j

wj ∑
i

wicov(x j ,xi)+∑
j

var(x j) (5.54)

b. Using this expression forJ, show that thew which minimizesJ under the
constraint‖w‖= 1 is the first principal component ofx.

Computer assignments

1. Take some images from the Web. Take a large sample of extremely small patches
of the images, so that the patch contains just two neighbouring pixels. Convert
the pixels to grey-scale if necessary. Make a scatter plot ofthe pixels. What can
you see? Compute the correlation coefficient of the pixel values.

2. Using the same patches, convert them into two new variables: the sum of the
grey-scale values and and their difference. Do the scatter plot and computer the
correlation coefficient.

3. Using the same images, take a sample of 1,000 patches of theform of 1× 10
pixels. Compute the covariance matrix. Plot the covariancematrix (because the
patches are one-dimensional, you can easily plot this two-dimensional matrix).

4. The same as above, but remove the DC component of the patch.How does this
change the covariance matrix?

5. The same as above, but with only 50 patches sampled from theimages. How are
the results changed, and why?

6. *Take the sample of 1,000 one-dimensional patches computed above. Compute
the eigenvalue decomposition of the covariance matrix. Plot the principal com-
ponent weightsWi(x).



Chapter 6
Sparse coding and simple cells

In the preceding chapter, we saw how features can be learned by PCA of natural
images. This is a classic method of utilizing the second-order information of sta-
tistical data. However, the features it gave were not very interesting from a neural
modelling viewpoint, which motivates us to find better models. In fact, it is clear
that the second-order structure of natural images is scratching the surface of the sta-
tistical structure of natural images. Look at the outputs ofthe feature detectors of
Figure 1.10, for example. We can see that the outputs of different kinds of filters
differ from each other in other ways than just variance: the output of the Gabor filter
has a histogram that has a strong peak at zero, whereas this isnot the case for the
histogram of pixel values. This difference is captured in a property calledsparse-
ness. It turns out that a more interesting model is indeed obtained if we look at the
sparseness of the outputs instead of the variance as in PCA.

6.1 Definition of sparseness

Sparseness means that the random variable is most of the timevery close to zero,
and only occasionally gets clearly nonzero values. One often says that the random
variable is “active” only rarely.

It is very important to distinguish sparseness from small variance. When we say
“very close to zero”, this is relative to the general deviation of the random variable
from zero, i.e. relative to its variance and standard deviation. Thus, “very close to
zero” would mean something like “an absolute value that is smaller than 0.1 times
the standard deviation”.

To say that a random variable is sparse needs a baseline of comparison. Here
it is the gaussian (normal) distribution; a random variableis sparse if it is active
more rarely compared to a gaussian random variable of the same variance (and
zero mean). Figure 6.1 shows a sample of a sparse random variable, compared
to the gaussian random variable of the same variance. Another way of looking at
sparseness is to consider the probability density function(pdf). The property of

137
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being most of the time very close to zero is closely related tothe property that the pdf
has a peak at zero. Since the variable must have some deviation from zero (variance
was normalized to unity), the peak at zero must be compensated by a relatively
large probability mass at large values; a phenomenon often called “heavy tails”. In
between these two extremes, the pdf takes relatively small values, compared to the
gaussian pdf. This is illustrated in Fig. 6.2.1
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Fig. 6.1: Illustration of sparseness. Random samples of a gaussian variable (top) and a sparse
variable (bottom). The sparse variable is practically zeromost of the time, occasionally taking
very large values. Note that the variables have the same variance, and that these are not time series
but just observations of random variables.

6.2 Learning one feature by maximization of sparseness

To begin with, we consider the problem of learning a single feature based on max-
imization of sparseness. As explained in Section 1.8, learning features is a simple
approach to building statistical models. Similar to the case of PCA, we consider one
linear featurescomputed using weightsW(x,y) as

s= ∑
x,y

W(x,y)I(x,y) (6.1)

1 Here we consider the case of symmetric distributions only. It is possible to talk about the sparse-
ness of non-symmetric distributions as well. For example, if the random variable only obtains
non-negative values, the same idea of being very close to zero most of the time is still valid and
is reflected in a peak on the right side of the origin. See Section 13.2.3 for more information.
However, most distributions found in this book are symmetric.
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Fig. 6.2: Illustration of a typical sparse probability density. The sparse density function, called
Laplacian, is given by the solid curve (see Eq. (7.18) in the next chapter for an exact formula) For
comparison, the density of the absolute value of a gaussian random variable of the same variance
is given by the dash-dotted curve.a) the probability density functions,b) their logarithms.

While a single feature is not very useful for vision, this approach shows the basic
principles in a simplified setting. Another way in which we simplify the problem
is by postponing the formulation of a proper statistical model. Thus, we do not
really estimatethe feature in this section, but rather learn it by some intuitively
justified statistical criteria. In Section 6.3 we show how tolearn many features, and
in Chapter 7 we show how to formulate a proper statistical model and learn the
features by estimating it.

6.2.1 Measuring sparseness: General framework

To be able to find features that maximize sparseness, we have to develop statistical
criteria for measuring sparseness. When measuring sparseness, we can first normal-
ize s to unit variance, which is simple to do by dividings by its standard deviation.
This simplifies the formulation of the measures.

A simple way to approach the problem is to look at the expectation of some
function ofs, a linear feature of the data. If the function is the square function, we
are just measuring variance (which we just normalized to be equal to one), so we
have to use something else. Since we know that the variance isequal to unity, we
can consider the square function as a baseline and look at theexpectations of the
form

E{h(s2)} (6.2)

whereh is somenonlinearfunction.
How should the functionh be chosen so that the formula in Equation (6.2) mea-

sures sparseness? The starting point is the observation that sparse variables have a
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lot of data (probability mass) around zero because of the peak at zero, as well as a
lot of data very far from zero because of heavy tails. Thus, wehave two different
approaches to measuring sparseness. We can chooseh so that it emphasizes values
that are close to zero, or values that are much larger than one. However, it may not
be necessary to explicitly measure both of them, because theconstraint of unit vari-
ance means that if there is a peak at zero, there has to be something like heavy tails
to make the variance equal to unity, and vice versa.

6.2.2 Measuring sparseness using kurtosis

A simple function that measures sparseness with emphasis onlarge values (heavy
tails) is the quadratic function

h1(u) = (u−1)2 (6.3)

(We denote byu the argument ofh, to emphasize that it is not a function ofsdirectly.
Typically, u = s2.) Algebraic simplifications show that then the sparseness measure
is equal to

E{h1(s
2)}= E{(s2−1)2}= E{s4−2s2+1}= E{s4}−1 (6.4)

where the last equality holds because of the unit variance constraint. Thus, this mea-
sure of sparseness is basically the same as the fourth moment; subtraction of the
constant (one) is largely irrelevant since it just shifts the measurement scale.

Using the fourth moment is closely related to the classic statistic calledkurtosis

kurt(s) = E{s4}−3(E{s2})2. (6.5)

If the variance is normalized to 1, kurtosis is in fact the same as the fourth moment
minus a constant (three). This constant is chosen so that kurtosis is zero for a gaus-
sian random variable (this is left as an exercise). If kurtosis is positive, the variable
is called leptokurtic (or super-gaussian); this is a simpleoperational definition of
sparseness.

However, kurtosis is not a very good measure of sparseness for our purposes.
The basic problem with kurtosis is its sensitivity to outliers. An “outlier” is a data
point that is very far from the mean, possibly due to an error in the data collection
process. Consider, for example, a data set that has 1,000 scalar values and has been
normalized to unit variance. Assume that one of the values isequal to 10. Then,
kurtosis is necessarily equal to at least 104/1000−3= 7. A kurtosis of 7 is usually
considered a sign of strong sparseness. But here it was due toa single value, and not
representative of the whole data set at all!

Thus, kurtosis is a very unreliable measure of sparseness. This is due to the fact
thath1 puts much more weight on heavy tails than on values close to zero (it grows
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infinitely when going far from zero). It is, therefore, useful to consider other mea-
sures of sparseness, i.e. other nonlinear functionsh.

6.2.3 Measuring sparseness using convex functions of square

Convexity and sparseness Many valid measures can be found by considering
functionsh that areconvex. 2 Convexity means that a line segment that connects
two points on the graph is always above the graph of the function, as illustrated in
Figure 6.3. Algebraically, this can be expressed as follows:

h(αx1 +(1−α)x2)< αh(x1)+ (1−α)h(x2) (6.6)

for any 0< α < 1. It can be shown that this is true if the second derivative ofh is
positive for allx (except perhaps in single points).
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Fig. 6.3: Illustration of convexity. The plotted function isy =−√x+x+ 1
2 , which from the view-

point of measurement of sparseness is equivalent to just thenegative square root, as explained in
the text. The segment (dashed line) connecting two points onits graph is above the graph; actually,
this is always the case.

Why is convexity enough to yield a valid measure of sparseness? The reason is
that the expectation of a convex function has a large value ifthe data is concentrated
in the extremes, in this case near zero and very far from zero.Any points between the
extremes decrease the expectation of the convexh due to the fundamental equation
(6.6), wherex1 andx2 correspond to the extremes, andαx1+(1−α)x2 is a point in
between.

The functionh1 in Equation (6.3) is one example of a convex function, but below
we will propose better ones.

2 The convexity we consider here is usually called “strict” convexity in mathematical literature.
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An example distribution To illustrate this phenomenon, consider a simple case
wheres takes only three values:

P(s=−
√

5) = 0.1,P(s=
√

5) = 0.1,P(s= 0) = 0.8 (6.7)

This distribution has zero mean, unit variance, and is quitesparse. The squares2

takes the values 0 and 5, which can be considered very large inthe sense that it is
rare for a random variable to take values that are

√
5 times the standard deviation,

and 0 is, of course an extremely small absolute value. Now, let us move some of the
probability mass from 0 to 1, and to preserve unit variance, make the largest value
smaller. We define

P(s=−2) = 0.1, P(s= 2) = 0.1, P(s= 0) = 0.6, (6.8)

P(s=−1) = 0.1, P(s= 1) = 0.1 (6.9)

We can now compute the value of the measureE{h(s2)} for the new distribution
and compare it with the value obtained for the original distribution, based on the
definition of convexity:

0.2h(4)+0.2h(1)+0.6h(0)

= 0.2h(0.8×5+0.2×0)+0.2h(0.2×5+0.8×0)+0.6h(0)

< 0.2× (0.8h(5)+0.2h(0))+0.2× (0.2h(5)+0.8h(0))+0.6h(0)

= 0.2h(5)+0.8h(0) (6.10)

where the inequality is due to the definition of convexity in Eq. (6.6). Now, the last
expression is the value of the sparseness measure in the original distribution. Thus,
we see that the convexity ofh makes the sparseness measure smaller when proba-
bility mass is taken away from the extremes. This is true for any convex function.

Suitable convex functions A simple convex function — which will be found to be
very suitable for our purposes — is given by the negative square root:

h2(u) =−
√

u (6.11)

This function is actually equivalent to the one in Figure 6.3, because the addition of
u = s2 just adds a constant 1 to the measure: Adding a linear term to the sparseness
measureh has no effect because it only adds a constant due to the constraint of unit
variance. Adding a linear term has no effect on convexity either (which is left as
an exercise). This linear term and the constant term were just added to the function
Figure 6.3 to illustrate the fact that it puts more weight on values near zero and far
from zero, but the weight for values far from zero do not grow too fast.

The validity ofh2 as a sparseness measure is easy to see from Figure 6.3, which
shows how the measure gives large values if the data is eitheraround zero, or takes
very large values. In contrast toh1, or kurtosis, it does not suffer from sensitivity to
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outliers because it is equivalent to using the square root which grows very slowly
when going away from zero. Moreover,h2 also emphasizes the concentration around
zero because it has a peak at zero itself.3

Another point to consider is that the functionh2(s2) is actually equal to the neg-
ative of the absolute value function−|s|. It is not differentiable at zero, because
its slope abruptly changes from−1 to +1. This may cause practical problems, for
example in the optimization algorithms that will be used to maximize sparseness.
Thus, it is often useful to take a smoother function, such as

h3(u) =− logcosh
√

u (6.12)

which is as a function ofs
h3(s

2) =− logcoshs (6.13)

The relevant functions and their derivatives are plotted inFigure 6.4. Note that the
point is to have a functionh that is a convex function as a function of the square
u = s2 as in Eq. (6.12). When expressed as a function ofs as in Eq. (6.13), the
function need not be convex anymore.

Alternatively, one could modifyh2 as

h2b =−
√

u+ ε (6.14)

whereε is a small constant. This is another smoother version of the square root
function. It has the benefit of being simpler thanh3 when we considerh as a function
of u; in contrast,h3 tends to be simpler when considered a function ofs.

There are many different convex function that one might choose, so the question
arises whether there is an optimal one that we should use. In fact, estimation theory
as described in detail in Chapter 7 shows that the optimal measure of sparseness is
basically given by choosing

hopt(s
2) = logps(s) (6.15)

whereps is the probability density function ofs. The functionh2 is typically not a
bad approximation of this optimal function for natural images. Often, the logarithm
of a pdf has an even stronger singularity (peak) at zero than whath2 has. Thus, to
avoid the singularity, it may be better to use something moresimilar to h2 or h3.
This will be considered in more detail in Section 7.7.2.

Summary To recapitulate, finding linear feature detectors of maximum sparseness
can be done by finding a maximum of

E{h(∑
x,y

W(x,y)I(x,y)]2)} (6.16)

3 One could also argue thath2 does not give a large value for large values ofsat all, but only fors
very close to zero, because the functionh2 has a peak at zero. This is a complicated point because
we can add a linear function toh2 as pointed out above. In any case, it is certain thath2 puts much
more weight on values ofu very close to zero.
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Fig. 6.4: Illustration of the log cosh function and its comparison with the absolute value function.
a) The functionh2 is Eq. (6.11) is given in solid curve. The functionh3 in (6.12) is given as a
dash-dotted curve.b) The same functionsh2 andh3 are given as function ofs (and not its square).
c) the derivatives of the functions in b).

with respect toW, constrainingW so that

E{[∑
x,y

W(x,y)I(x,y)]2}= 1, (6.17)

where the functionh is typically chosen as in Eq. (6.12).
Usually, there are many local maxima of the objective function (see Section 18.3

for the concept of global and local maxima). Each of the localmaxima gives a
different feature.

6.2.4 The case of canonically preprocessed data

In practice, we use data that has been preprocessed by the canonical way described
in Section 5.4. That is, the dimension of the data has been reduced by PCA to re-
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duce computational load and to get rid of the aliasing artifacts, and the data has
been whitened to simplify the correlation structure. Denoting the canonically pre-
processed data byzi , i = 1, . . . ,n the maximization then takes the form

E

{

h([
n

∑
i=1

vizi ]
2)

}

(6.18)

with respect to the weightsvi which are constrained so that

‖v‖2 = ∑
i

v2
i = 1 (6.19)

6.2.5 One feature learned from natural images

Consider again the three distributions in Figure 5.1. All ofthem look quite sparse
in the sense that the histograms (which are just estimates ofthe pdf’s) have a peak
at zero. It is not obvious what kind of features are maximallysparse. However,
optimizing a sparseness measure we can find well-defined features.

Figure 6.5 shows the weightsWi obtained by finding a local maximum of sparse-
ness, using the sparseness measureh3 and canonically preprocessed data. It turns out
that features similar to Gabor functions and simple-cell receptive fields are charac-
terized by maximum sparseness. The features that are local maxima of sparseness,
they turn out to have the three basic localization properties: they are localized in
the (x,y)-space, localized in frequency (i.e. they are band-pass), and localized in
orientation space (i.e. they are oriented).

Note that in contrast to variance, sparseness has many localmaxima. Most local
maxima (almost all, in fact) are localized in space, frequency, and orientation. The
sparsenesses of different local maxima are often not very different from each other.
In fact, if you consider a feature detectors whose weights are given by the Gabor
functions which are but otherwise similar but are in two different locations, it is
natural to assume that the sparsenesses of the two features must be equal, since
the properties of natural images should be the same in all locations. The fact that
sparseness has many local maxima forms the basis for learning many features.

6.3 Learning many features by maximization of sparseness

A single feature is certainly not enough: Any vision system needs many features
to represent different aspects of an image. Since sparseness is locally maximized
by many different features, we could, in principle, just findmany different local
maxima — for example, by running an optimization algorithm starting from many
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Fig. 6.5: Three weight vectors found by maximization of sparseness in natural images. The max-
imization was started in three different points which each gave one vector corresponding to one
local maximum of sparseness.

different random initial conditions. Such a method would not be very reliable, how-
ever, because the algorithm could find the same maxima many times.

A better method of learning many features is to find many localmaxima that
fulfill some given constraint. Typically, one of two optionsis used. First, we could
constrain the detector weightsWi to be orthogonal to each other, just as in PCA.
Second, we could constraint the differentsi to be uncorrelated. We choose here the
latter because it is a natural consequence of the generative-model approach that will
be explained in Chapter 7.

Actually, these two methods are not that different after all, because if the data is
whitened as part of canonical preprocessing (see Section 5.4), orthogonality and un-
correlatedness are, in fact, the same thing, as was discussed in Section 5.3.2.2. This
is one of the utilities in canonical preprocessing. Thus, decorrelation is equivalent
to orthogonalization, which is a classic operation in matrix computations.

Note that there is no order that would be intrinsically defined between the fea-
tures. This is in contrast to PCA, where the definition automatically leads to the
order of the first, second, etc. principal component. One canorder the obtained
components according to their sparseness, but such an ordering is not as important
as in the case of PCA.

6.3.1 Deflationary decorrelation

There are basically two approaches that one can use in constraining the different fea-
ture detectors to have uncorrelated outputs. The first one iscalled deflation, and pro-
ceeds by learning the features one-by-one. First, one learns the first feature. Then,
one learns a second feature under the constraint that its output must be uncorrelated
from the output of the first one, then a third feature whose output must be uncorre-
lated from the two first ones, and so on, always constraining the new feature to be
uncorrelated from the previously found ones. In algorithmic form, this deflationary
approach can be described as follows:

1. Setk = 1.
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2. Find a vectorW that maximizes the sparseness:

E

{

h

(

[∑
x,y

W(x,y)I(x,y)]2
)}

(6.20)

under the constraints of unit variance ofdeflationarydecorrelation:

E







(

∑
x,y

W(x,y)I(x,y)

)2





= 1 (6.21)

E

{

∑
x,y

W(x,y)I(x,y)∑
x,y

Wi(x,y)I(x,y)

}

= 0 for all 1≤ i < k (6.22)

3. Store this vector inWk and incrementk by one.
4. If k does not equal the dimension of the space, go back to step 2.

The deflationary approach is easy to understand. However, itis not recommended
because of some drawbacks. Basically, in the deflationary approach those features
that are found in the beginning are privileged over others. They can do the optimiza-
tion in the whole space whereas the last vectors (k close to the dimension of the
space) have very little space where to optimize. This leads to the gradual deterio-
ration of the features: the latter ones are often rather poorbecause their form is so
severely restricted. In other words, the random errors (dueto limited sample size),
as well as numerical errors (due to inexact optimization) inthe first feature weights
propagate to latter weights, and produce new errors in them.A further problem
is that the method is not very principled; in fact, the more principled approach to
sparse coding discussed in the next chapter leads to the following method, symmet-
ric decorrelation.

6.3.2 Symmetric decorrelation

It would be more natural and efficient to use a method in which all the features
are learned on an equal footing. This is achieved in what is called the symmetric
approach. In the symmetric approach, we maximize thesumof the sparsenesses of
the outputs. In this maximization, the outputs of all units are constrained to be un-
correlated. Thus, no filters are privileged. Using the measures of sparseness defined
above, this leads to an opimization problem of the followingform:

Maximize
n

∑
i=1

E

{

h

(

[∑
x,y

Wi(x,y)I(x,y)]
2

)}

(6.23)

under the constraints of unit variance andsymmetricdecorrelation:
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E







(

∑
x,y

Wi(x,y)I(x,y)

)2





= 1 for all i (6.24)

E

{

∑
x,y

Wi(x,y)I(x,y)∑
x,y

Wj(x,y)I(x,y)

}

= 0 for all i 6= j (6.25)

This approach can also be motivated by considering that we are actually maximiz-
ing the sparseness of a representation instead of sparsenesses of the features; these
concepts will be discussed next.

Whichever method of decorrelation is used, this approach limits the number of
features that we can learn to the dimensionality of the data.For canonically prepro-
cessed data, this is the dimensionality chosen in the PCA stage. This is because the
features are constrained orthogonal in the whitened space,and there can be at mostn
orthogonal vectors in ann-dimensional space. Some methods are able to learn more
features than this, they will be treated later in Section 13.1.

6.3.3 Sparseness of feature vs. sparseness of representation

When considering a group of features, sparseness has two distinct aspects. First, we
can look at the distribution of a single features when the input consists of many
natural imagesIt ,t = 1, . . .T, as we did above — this is what we call the sparseness
of features (or “lifetime sparseness”). The second aspect is to look at the distribution
of the featuressi over the indexi = 1, . . . ,n, for a single input imageI — this is what
we call the sparseness of the representation (or “population sparseness”).

Sparseness of a representation means that a given image is represented by only
a small number of active (clearly non-zero) features. This was, in fact, one of the
main motivations of looking for sparse features in the first place, and it has been
considered the defining feature of sparse coding, i.e. a sparse representation.

A sparse representation can be compared to a vocabulary in a spoken language.
A vocabulary typically consists of tens of thousands of words. Yet, to describe a
single event or a single object, we only need to choose a few words. Thus, most of
the words are not active in the representation of a single event. In the same way, a
sparse representation consists of a large number of potential features; yet, to describe
a single input image, only a small subset of them are activated.

This kind of reduction of active elements must be clearly distinguished from
dimension reduction techniques such as principal component analysis (PCA). In
PCA, we choose once and for all a small set of features that areused for representing
all the input patches. The number of these principal features is smaller than the
dimension of the original data, which is why this is called dimension reduction. In
a sparse representation, the active features are differentfrom patch to patch, and the
total number of features in the representation need not be smaller than the number
of dimensions in the original data — in fact, it can even be larger.
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What is then the connection between these two concepts of sparseness? Basically,
we could measure the sparseness of the representation of a given image using the
same measures as we used for the sparseness of the features. Thus,for a single image
It , the sparseness of the representation given by the image filtersWi , i = 1. . . ,n can
be measured as:

n

∑
i=1

h

(

[∑
x,y

Wi(x,y)It(x,y)]
2

)

(6.26)

For this measure to be justified in the same way as we justified it above, it must be
assumed that for the single image, the following two normalization conditions hold:

1. the mean of the features is zero, and
2. the mean of the square of the features equals one (or any other constant).

While these conditions do not often hold exactly for a singleimage, they typically
are approximately true for large sets of features. In particular, if the features are
statistically independent and identically distributed (see Section 4.5), the conditions
will be approximately fulfilled by the law of large numbers — the basic statistical
law that says that the average of independent observations tends to the expectation.

Now, let us assume that we have observedT image patchesIt(x,y),t = 1, . . . ,T,
and let us simply take the sum of the sparsenesses of each image computed as in
Equation (6.26) above. This gives

T

∑
t=1

n

∑
i=1

h

(

[∑
x,y

Wi(x,y)It(x,y)]
2

)

(6.27)

Rearranging the summations, we see that this is equal to

n

∑
i=1

T

∑
t=1

h

(

[∑
x,y

Wi(x,y)It(x,y)]
2

)

(6.28)

The expression in Equation (6.28) is the sum of the sparsenesses of the features.
The expression in Equation (6.27) is the sum of the sparsenesses of representations.
Thus we see that these two measures are equal. However, for this equality to be
meaningful, it must be assumed that the normalization conditions given above hold
as well. Above, we argued that they are approximately fulfilled if the features are
approximately independent.

So, we can conclude that sparseness of features and sparseness of representation
give approximately the same function to maximize, hence thesame feature set. The
functions are closer to equal when the feature sets are largeand the features are
statistically independent and have identical distributions. However, the measures
might be different if the normalization conditions above are far from true.4

4 Here’s a counterexample in which the sparseness of featuresis zero but the sparseness of repre-
sentation is high. Consider ten independent gaussian features with zero mean. Assume nine have
a very small variance, and one of them has a very large variance. Each of the features, considered
separately, is gaussian, and thus not sparse. However, for each image, the feature distribution has
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6.4 Sparse coding features for natural images

6.4.1 Full set of features

Now we are ready to learn a whole set of features from natural images. We sampled
randomly 50,000 image patches of 32× 32 pixels, and applied canonical prepro-
cessing to them, reducing the dimension to 256, which meant retaining 25% of the
dimensions. We used the logcosh function, i.e.h3 in Eq. (6.12), and symmetric
decorrelation. The actual optimization was done using a special algorithm called
FastICA, described in Section 18.7.

The obtained results are shown in Figure 6.6. Again, the feature detector weights
are coded so that the grey-scale value of a pixel means the value of the coefficient
at that pixel. Grey pixels mean zero coefficients.

Visually, one can see that these feature detectors have interesting properties. First,
they are localized in space: most of the coefficients are practically zero outside of a
small receptive field. The feature detectors are also oriented. Furthermore, they are
multiscale in the sense that most of them seem to be coding forsmall things whereas
a few are coding for large things (in fact, so large that they do not fit in the window,
so that the detectors are not completely localized).

6.4.2 Analysis of tuning properties

We can analyze the feature detectorsWi further by looking at the responses when
gratings, i.e. sinusoidal functions, are input to them. In other words, we create arti-
ficial images which are two-dimensional sinusoids, and compute the outputssi . We
consider sinusoidal functions of the form

fo(x,y) = sin(2πα(sin(θ )x+cos(θ )y)) (6.29)

fe(x,y) = cos(2πα(sin(θ )x+cos(θ )y)) (6.30)

These are sinusoidal gratings whereθ gives the orientation (angle) of the oscilla-
tion, thex axis corresponding toθ = 0. The parameterα gives the frequency. The
two functions give two oscillations in different phases; more precisely, they are in
quadrature-phase, i.e. a 90 degrees phase difference.

Now, we compute these functions for a large number of orientations and fre-
quencies. We normalize the obtained functions to unit norm.Then we compute the
dot-products of theWi with each of the gratings. We can then compute the opti-
mal orientation and frequency by finding theα andθ that maximize the sum of the
squares of the two dot-products corresponding to the sin andcos functions. (We take

nine values close to zero and one which is typically very large, and therefore the distribution is
sparse. The key here is that the features have different variances, which violates the normalization
conditions.
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Fig. 6.6: The whole set of symmetrically orthogonalized feature vectorsWi maximizing sparsity,
learned from natural images.

the sum of squares because we do not want the phase of theWi to have influence on
this computation.)

This is actually almost the same as computing the 2-D power spectrum for all
orientations and frequencies. We could do similar computations using the Discrete
(or Fast) Fourier Transform as well, but we prefer here this direct computation for
two reasons. First, we see the concrete meaning of the power spectrum in these
computations. Second, we can compute the gratings for many more combinations
of orientations and frequencies than is possible by the DFT.

In neurophysiology, this kind of analysis is usually done using drifting gratings.
In other words, the gratings move on the screen in the direction of their oscilla-
tion. The maximum response of the cell for a drifting gratingof a given (spatial)
frequency and orientation is measured. This is more or less the same thing as the
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analysis that we are conducting here on our model simple cells. The fact that the
gratings move in time may be necessary in neurophysiology because movement
greatly enhances the cell responses, and so this method allows faster and and more
accurate measurement of the optimal orientation and frequency. However, it compli-
cates the analysis because we have an additional parameter,the temporal frequency
of the grating, in the system. Fortunately, we do not need to use drifting gratings in
our analysis.

When we have found the optimal frequency and orientation parameters, we can
analyze the selectivities by changing one of the parametersin the grating, and com-
puting again the total response to two gratings that have thenew parameters and
are in quadrature phase. Such analysis of selectivity (tuning curves) is routinely
performed in visual neuroscience.

In the same way, we can analyze the selectivity to phase. Here, we must obvi-
ously take a slightly different approach since we cannot take two filters in quadra-
ture phase since then the total response would not depend on the phase at all. In
neurophysiology, this is analyzed by simply plotting the response as a function of
time when the input is a drifting grating with the optimal frequency and orientation.
We can simulate the response by simply taking the dot-product of Wi with gratings
whose phase goes through all possible values, and still keeping the orientation and
frequency at optimal values. (The real utility of the analysis of phase selectivity will
be seen when the responses of linear features are compared with nonlinear ones in
Chapter 10.)

In Figure 6.7 we show the results of the analysis for the first ten features in
Fig. 6.6, i.e., the first ten receptive fields on the first row. What we see is that all
the cells are tuned to a specific values of frequency, orientation, and phase: any
deviation from the optimal value decreases the response.

It is also interesting to look at how the (optimal) orientations and frequencies are
related to each other. This is shown in Fig. 6.8. One can see that the model tries
to cover all possible combinations of these variables. However, there is a strong
emphasis on the highest frequencies that are present in the image. Note that prepro-
cessing by PCA removed the very highest frequencies, so the highest frequencies
present are much lower (approx. 9 cycles per patch) than the Nyquist frequency
(32/2=16 cycles per patch).

Another way of looking at the distributions is to plot the histograms of the two
parameters separately, as shown in Fig. 6.9. Here we see again that most of the fea-
tures have very high frequencies. The orientations are covered rather uniformly, but
there are more features with horizontal orientation (0 or, equivalently,π). This is an-
other expression of the anisotropy of natural images, already seen in the correlations
in Section 5.7.
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Fig. 6.7: Tuning curves of the ten first sparse coding features Wi in Figure 6.6. Left: change in
frequency (the unit is cycles in the window of 32×32 pixels, so that 16 means wavelength of 2
pixels). Middle: change in orientation. Right: change in phase.
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Fig. 6.9: Histograms of the optimala) frequencies andb) orientations of the linear features ob-
tained by sparse coding.
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6.5 How is sparseness useful?

6.5.1 Bayesian modelling

The central idea in this book is that it is useful to find good statistical models for nat-
ural images because such models provide the prior probabilities needed in Bayesian
inference, or, in general, the prior information that the visual system needs on the
environment. These tasks include denoising and completionof missing data.

So, sparse coding models are useful for the visual system simply because they
provide a better statistical model of the input data. The outputs of filter detectors are
sparse, so this sparseness should be accounted for by the model. We did not really
show that we get a better statistical model this way, but thispoint will be considered
in the next chapter.

A related viewpoint is that of information theory: sparseness is assumed to lead
to a more efficient code of the input. This viewpoint will be considered in Chapter 8.

6.5.2 Neural modelling

Another viewpoint is to just consider the power of the statistical models to account
for the properties of the visual system. From the viewpoint of computational neuro-
science,sparse coding leads to the emergence of receptive fields similar to simple
cells, so sparse coding is clearly a better model of the visual cortex in this respect
than, say, PCA. Results in Chapters 15 and 16 give even more support to this claim.
This viewpoint does not considerwhythe visual system should use sparseness.

6.5.3 Metabolic economy

However, there are other, additional, reasons as well why itwould be advantageous
for the visual system to use sparse coding, and these reasonshave nothing to do with
the statistics of the input stimuli. The point is that firing of cells consumes energy,
and energy is one of the major constraints on the biological “design” of the brain. A
sparse code means that most cells do not fire more than their spontaneous firing rate
most of the time. Thus, sparse coding isenergy-efficient.

So, we have a fortunate coincidence where those linear features that are opti-
mal statistically are also optimal from the viewpoint of energy consumption. Possi-
bly, future research will show some deep connections between these two optimality
properties.
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6.6 Concluding remarks and References

In this chapter, we learned feature detectors which maximize the sparseness of their
outputs when the input is natural images. Sparseness is a statistical property which
is completely unrelated to variance, which was the criterion in PCA in the preceding
chapter. Maximization of sparseness yield receptive fieldswhich are quite similar to
those of simple cells. This fundamental result is the basis of all the developments in
the rest of this book.

Early work on finding maximally sparse projection can be found in (Field, 1987,
1994). Estimating a whole basis for image patches was first accomplished in the
seminal paper (Olshausen and Field, 1996) using a method considered in Sec-
tion 13.1. A detailed comparison with simple cell receptivefields is in (van Hateren
and van der Schaaf, 1998); see also (van Hateren and Ruderman, 1998). A discus-
sion on sparseness of features vs. sparseness of representation is in (Willmore and
Tolhurst, 2001).

The idea of increasing metabolic efficiency by sparse codingdates back to (Bar-
low, 1972); for more recent analysis, see e.g. (Levy and Baxter, 1996; Balasubra-
maniam et al, 2001; Attwell and Laughlin, 2001; Lennie, 2003).

Some researchers have actually measured the sparseness of real neuron outputs,
typically concluding that they are sparse, see (Baddeley etal, 1997; Gallant et al,
1998; Vinje and Gallant, 2000, 2002; Weliky et al, 2003).

An approach that is popular in engineering is to take a fixed linear basis and then
analyze the statistics of the coefficients in that basis. Typically, one takes a wavelet
basis (see Section 17.3.2) which is not very much unlike the sparse coding basis.
See (Simoncelli, 2005) for reviews based on such an approach.

Approaches for sparse coding using concepts related to spike trains instead of
mean firing rates include (Olshausen, 2002; Smith and Lewicki, 2005, 2006).

6.7 Exercices

Mathematical exercises

1. Show that iff (x) is a (strictly) convex function, i.e. fulfils Eq. (6.6),f (x)+ax+b
has the same property, for any constantsa,b.

2. Show that the kurtosis of a gaussian random variable is zero. (For simplicity,
assume the variable is standardized to zero mean and unit variance. Hint: try
partial integration to calculate the fourth moment.)

3. The Gram-Schmidt orthogonalization algorithm is definedas follows. Givenn
feature detector vectorsWi(x,y) which have been normalized to unit norm, do

a. Seti→ 1.
b. Compute the new value of the vectorwi as
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Wi(x,y)←Wi(x,y)−
i−1

∑
j=1

∑
x′ ,y′

Wj(x
′,y′)Wi(x

′,y′)Wj(x,y) (6.31)

c. RenormalizeWi : Wi(x,y)←Wi(x,y)/
√

∑x′ ,y′Wi(x′,y′)2.

d. Incrementi by one and go back to step 1, ifi is not yet larger thann.

Show that the set of vectors is orthogonal after applicationof this algorithm.

Computer assignments

1. Take some images. Take samples of 10× 10 pixels. Construct a simple edge
detector. Compute its output. Plot the histogram of the output, and compute its
kurtosis.





Chapter 7
Independent component analysis

In this chapter, we discuss a statistical generative model called independent compo-
nent analysis. It is basically a proper probabilistic formulation of the ideas under-
pinning sparse coding. It shows how sparse coding can be interpreted as providing
a Bayesian prior, and answers some questions which were not properly answered in
the sparse coding framework.

7.1 Limitations of the sparse coding approach

In the preceding chapter, we showed that by finding linear feature detectors that
maximize the sparseness of the outputs, we find features thatare localized in space,
frequency, and orientation, thus being similar to Gabor functions and simple cell
receptive fields. While that approach had intuitive appeal,it was not completely
satisfactory in the following respects:

1. The choice of the sparseness measure was rather ad hoc. It would be interesting
to find a principled way of determining the optimal nonlinearfunctionh used in
the measures.

2. The learning of many features was done by simply constraining the outputs of
feature detectors to be uncorrelated. This is also quite ad hoc, and some justifi-
cation for the decorrelation is needed.

3. The main motivation for this kind of statistical modelling of natural images is
that the statistical model can be used as a prior distribution in Bayesian infer-
ence. However, just finding maximally sparse features does not give us a prior
distribution.

A principled approach that also solves these problems is using generative models. A
generative model describes how the observed data (natural images) is generated as
transformations of some simple original variables. The original variables are called
latentsince they cannot usually be observed directly.

159
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The generative model we propose here for modelling natural image patches is
called independent component analysis. This model was originally developed to
solve rather different kinds of problems, in particular, the so-called blind source
separation problem, see the References section below for more information. How-
ever, it turns out that the same model can be interpreted as a form of sparse coding,
and is more or less equivalent to finding linear features thatare maximally sparse,
as we will see in this chapter.

7.2 Definition of ICA

7.2.1 Independence

The latent variables in independent component analysis (ICA) are called indepen-
dent components. While the term “component” is mainly used for historical reasons
(inspired by the expression “principal components”), the word “independence” tells
what the basic starting point of ICA is: the latent variablesare assumed to be statis-
tically independent.

Let us consider two random variables, says1 ands2. Basically, the variabless1

ands2 are statistically independent if information on the value of s1 does not give
any information on the value ofs2, and vice versa. In this book, whenever the word
“independent” is used, it always refers to statistical independence, unless otherwise
mentioned.

Section 4.5 gave a more extensive treatment of independence. Here we recall the
basic definition. Let us denote byp(s1,s2) the joint probability density function of
s1 ands2. Let us further denote byp1(s1) the marginal pdf ofs1, i.e. the pdf ofs1

when it is considered alone. Then we define thats1 ands2 are independent if and
only if the joint pdf isfactorizable, i.e. the pdf can be expressed as a product of the
individual marginal pdf’s

p(s1,s2) = p1(s1)p2(s2). (7.1)

This definition extends naturally for any numbern of random variables, in which
case the joint density must be a product ofn terms. (Note that we use here a sim-
plified notation in whichsi appears in two roles: it is the random variable, and the
value taken by the random variable — often these are denoted by slightly different
symbols.)

It is important to understand the difference between independence and uncor-
relatedness. If the two random variables are independent, they are necessarily un-
correlated as well. However, it is quite possible to have random variables that are
uncorrelated, yet strongly dependent. Thus, correlatedness is a special kind of de-
pendence. In fact, if the two variabless1 ands2 were independent, any nonlinear
transformation of the outputs would be uncorrelated as well:
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cov(g1(s1),g2(s2)) = E{g1(s1)g2(s2)}−E{g1(s1)}E{g2(s2)}= 0 (7.2)

for any two functionsg1 andg2. When probing the dependence ofsi andsj , a sim-
ple approach would thus be to consider the correlations of some nonlinear functions.
However, for statistical and computational reasons, we will develop a different ap-
proach below.

7.2.2 Generative model

The generative model in ICA is defined by a linear transformation of the latent
independent components. Let us again denote byI(x,y) the pixel grey-scale values
(point luminances) in an image, or in practice, a small imagepatch. In ICA, an
image patch is generated as a linear superposition of some featuresAi , as discussed
in Section 2.3:

I(x,y) =
m

∑
i=1

Ai(x,y)si (7.3)

for all x andy. Thesi are coefficients that are different from patch to patch. They
can thus be considered as random variables, since their values change randomly
from patch to patch. In contrast, the featuresAi are the same for all patches.

The definition of ICA is now based on three assumptions made regarding this
linear generative model:

1. The fundamental assumption is that thesi arestatistically independentwhen con-
sidered as random variables.

2. In the next sections we will also see that in order to be ableto estimate the model,
we will also have to assume that the distributions of thesi arenon-gaussian. This
assumption shows the connection to sparse coding since sparseness is a form of
non-gaussianity.

3. We will also usually assume that the linear system defined by theAi is invertible
but this is a technical assumption that is not always completely necessary. In
fact, we will see below that we might prefer to assume that thelinear system is
invertible after canonical preprocessing, which is not quite the same thing.

These assumptions are enough to enableestimationof the model. Estimation
means that given a large enough sample of image patches,It ,t = 1, . . . ,T, we can
recover some reasonable approximations of the values ofAi , without knowing the
values of the latent componentssi in advance.

One thing that we cannot recover is the scaling and signs of the components. In
fact, you could multiply a componentsi by any constant, say -2, and if you divide the
correspondingAi by the same constant, this does not show up in the data in any way.
So, we can only recover the components up to a multiplicativeconstant. Usually, we
simplify the situation by defining that the components have unit variance. This only
leaves the signs of the components undetermined. So, for anycomponentsi , we
could just as well consider the component−si .
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As typical in linear models, estimation of theAi is equivalent to determining the
values of theWi which give thesi as outputs of linear feature detectors with some
weightsWi :

si = ∑
x,y

Wi(x,y)I(x,y) (7.4)

for each image patch. The coefficientsWi are obtained by inverting the matrix of the
Ai .

7.2.3 Model for preprocessed data

In practice, we will usually prefer to formulate statistical models for canonically pre-
processed data (see Section 5.4). The data variables in thatreduced representation
are denoted byzi . For a single patch, they can be collected to a vectorz=(z1, . . . ,zn).
Since a linear transformation of a linear transformation isstill a linear transforma-
tion, thezi are also linear transformations of the independent components si , al-
though the coefficients are different from those in the original space. Thus, we have

zi =
m

∑
j=1

bi j sj (7.5)

for some coefficientsbi j which can be obtained by transforming the featuresAi using
the same PCA transformation which is applied on the images.

We want to choose the numbern of independent components so that the lin-
ear system can be inverted. Since we are working with preprocessed data, we will
choosen so that it equals the number of variables after canonical preprocessing (in-
stead of the number of original pixels). Then, the system in Eq. (7.5) can be inverted
in a unique way and we can compute thesi as a linear function of thezi :

si =
n

∑
j=1

vi j zj = vT
i z (7.6)

Here, the vectorvi = (v1i , . . . ,vni) allows a simple expression using vector prod-
ucts. The coefficientsvi j are obtained by inverting the matrix of the coefficientsbi j .
The coefficientsWi in Equation (7.4) are then obtained by concatenating the linear
transformations given byvi j and canonical preprocessing (i.e. multiplying the two
matrices).

7.3 Insufficiency of second-order information

When comparing the feature learning results by PCA and sparse coding, it is nat-
ural to conclude that the second-order information (i.e. covariances) used in PCA
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and other whitening methods is insufficient. In this section, we justify the same
conclusion from another viewpoint: we show that second-order information is not
sufficient for estimation of the ICA model, which also implies that the components
should not be gaussian.

7.3.1 Why whitening does not find independent components

It is tempting to think that if we just whiten the data, maybe the whitened com-
ponents are equal to the independent components. The justification would be that
ICA is a whitening transformation, because it gives components which are inde-
pendent, and thus uncorrelated, and we defined their variances to be equal to one.
The fundamental error with this logic is that there is an infinite number of whiten-
ing transformations, because any orthogonal transformation of whitened data is still
white, as pointed out in Section 5.3.2. So, if you whiten the data by, say, PCA, you
get just one of those many whitening transformations, and there is absolutely no
reason to assume that you would get the ICA transformation.

There is a reason why it is, in fact, not possible to estimate the ICA model using
anymethod which is only based on covariances. This is due to thesymmetryof the
covariance matrix: cov(z1,z2) = cov(z2,z1). Thus, the number of different covari-

ances you can estimate from data is equal ton(n+1)
2 , i.e. roughly one half ofn2. In

contrast, the number of parametersbi j we want to estimate (this refers to the model
with preprocessed data in Equation (7.5)) is equal ton2. So, if we try to solve thebi j

by forcing the model to give just the right covariance structure, we have less equa-
tions (by one half!) than we have variables, so the solution is not uniquely defined!
The same logic applies equally well to the original data before preprocessing.

This is illustrated in Figure 7.1. We take two independent componentss1 and
s2 with very sparse distributions. Their joint distribution,in a), has a “star-shape”
because the data is rather much concentrated on the coordinate axes. Then, we mix
these variables linearly using randomly selected coefficientsb11 = 0.5, b12 = 1.5,
b21 = 1 andb22 = 0.2. The resulting distribution is shown in Figure 7.1b). The star
has now been “twisted”. When we whiten the data with PCA, we get the distribution
in c). Clearly, the distribution is not the same as the original distribution in a). So,
whitening failed to recover the original components.

On the positive side, we see that the whitened distribution in Figure 7.1c) has
the right “shape”, because what remains to be determined is the right orthogonal
transformation, since all whitening transformations are orthogonal transformations
of each other. In two dimension, an orthogonal transformation is basically a rotation.
So, we have solved part of the problem. After whitening, we know that we only
need to look for the remaining orthogonal transformation, which reduces the space
in which we need to search for the right solution.

Thus, we see why it was justified to constrain the different feature detectors to
give uncorrelated outputs in the sparse coding framework inSection 6.3. Constrain-
ing the transformation to be orthogonal for whitened data isequivalent to constrain-
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a) b) c)

Fig. 7.1:a) The joint distribution of the independent componentss1 ands2 with sparse distribu-
tions. Horizontal axis:s1, vertical axis:s2. b) The joint distribution of the observed data which are
linear transformations of thes1 ands2. c) The joint distribution of observed data after whitening
by PCA.

ing the featuressi to be uncorrelated (and to have unit variance). Even in the case of
ICA estimation, the features are often constrained to be uncorrelated, because this
simplifies the objective function, as discussed later in this chapter, and allows the
development of very efficient algorithms (see Section 18.7). In contrast, in the ICA
framework, it is not justified, for example, to constrain theoriginal featuresAi or the
detector weightsWi to be orthogonal, since the mixing matrix (or rather, its inverse)
is not necessarily orthogonal in the ICA model.

7.3.2 Why components have to be non-gaussian

The insufficiency of second-order information also impliesthat the independent
components must not be gaussian, because gaussian data contains nothing else than
second-order information. In this section, we explain a couple of different view-
points which further elaborate this point.

7.3.2.1 Whitened gaussian pdf is spherically symmetric

We saw above that after whitening, we have to find the rightrotation (orthogonal
transformation) which gives ICA. If the data is gaussian, this is, in fact, not possible
due to a symmetry property of gaussian data.

To see why, let us consider the definition of the gaussian pdf in Equation (5.17)
on page 115. Consider whitened variables, whose covariancematrix is the identity
matrix by definition. The inverse of the identity matrix is the identity matrix, so
C−1 is the identity matrix. Thus, we have∑i j xix j [C−1]i j = ∑i x

2
i . Furthermore, the

determinant of the identity matrix is equal to one. So, the pdf in Equation (5.17)
becomes

p(x1, . . . ,xn) =
1

(2π)n/2
exp(−1

2 ∑
i

x2
i ) =

1

(2π)n/2
exp(−1

2
‖x‖2) (7.7)
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Thispdf depends only on the norm‖x‖. Such a pdf is called spherically symmetric:
It is the same in all directions. So, there is no information left in the data to determine
the rotation corresponding to the independent components.

An illustration of this special property of the gaussian distribution is in Fig-
ure 7.2, which shows a scatter plot of two uncorrelated gaussian variables of unit
variance. The distribution is the same in all directions, except for random sampling
effects. The circles show contours on which the pdf is constant. It is clear that if you
rotate the data in any way, the distribution does not change,so there is no way to
distinguish the right rotation from the wrong ones.

Fig. 7.2: A scatter plot of two uncorrelated gaussian variables of unit variance. This is what any
whitening method would give when applied on gaussian data. The distribution is spherically sym-
metric, i.e. the same in all directions. This is also seen by looking at contours on which the pdf is
constant: they are circles, as further plotted here.

7.3.2.2 Uncorrelated gaussian variables are independent

A further justification why ICA is not possible for gaussian variables is provided by
a fundamental result in probability theory. It says that if random variabless1, . . . ,sn

have a gaussian distribution and they are uncorrelated, then they are also indepen-
dent. Thus,for gaussian variables, uncorrelatedness and independence are the same
thing, although in general uncorrelatedness does not imply independence. This fur-
ther shows why ICA brings nothing new for gaussian variables: The main interest-
ing thing you can do to gaussian variables is to decorrelate them, which is already
accomplished by PCA and other whitening methods in Chapter 5.
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It is easy to see from Equation (7.7) why uncorrelated gaussian variables are
independent. Here, the variables are actually white, i.e. they have also been stan-
dardized to unit variance, but this makes no difference since such standardization
obviously cannot change the dependencies between the variables. The point is that
the pdf in Equation (7.7) is something which can be factorized:

p(x1, . . . ,xn) = ∏
i

1√
2π

exp(−1
2

x2
i ) (7.8)

where we have used the classic identity exp(a+ b) = exp(a)exp(b). This form is
factorized, i.e. it is a product of the one-dimensional standardized gaussian pdf’s.
Such factorization is the essence of the definition of independence, as in Equa-
tion (7.1). So, we have shown that gaussian variablesxi are independent if they
are uncorrelated.

Thus, the components in ICA have to be non-gaussian in order for ICA to be
meaningful. This also explains why models based on non-gaussianity (such as ICA)
are very new in the field of statistics: classic statistics islargely based on the assump-
tion that continuous-valued variables have a gaussian distribution—that is why it is
called the “normal” distribution!

7.4 The probability density defined by ICA

Now that we have a statistical generative model of the data, we can compute the
probability of each observed image patch using basic results in probability theory.
Then we can estimate the optimal features using classic estimation theory. This
solves some of the problems we mentioned in the introductionto this chapter: we
will find the optimal measure of sparseness, and we will see why the constraint of
uncorrelatedness of the features makes sense. And obviously we can then use the
model as a prior probability in Bayesian inference.

Let us assume for the moment that we know the probability density functions
(pdf’s) of the latent independent componentssi . These are denoted bypi . Then, by
definition of independence, the multidimensional pdf of allthe si is given by the
product:

p(s1, . . . ,sn) =
n

∏
i=1

pi(si) (7.9)

What we really want to find is the pdf of the observed preprocessed variableszi ,
which is almost the same thing as having a pdf of the image patchesI(x,y). It is
tempting to think that we could just plug the formula for thesi given by equation
(7.6) into equation (7.9). However, this is not possible. The next digression (which
can be skipped by readers not interested in mathematical details) will show why not.

Short digression to probability theory To see why we cannot just combine (7.9) and (7.6),
let us consider what the pdf means in the one-dimensional case, where we have just one variable
s with probability densityps. By definition, the pdf at some points0 gives the probability thats
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belongs to a very small interval of lengthd as follows:

P(s∈ [s0,s0 +d]) = ps(s0)d (7.10)

Now, let us consider a linearly transformed variablex = as for a> 0. Here,s can be solved as
s= wxwherew= 1/a (note that we use a notation that is as close to the ICA case as possible). Let
us just plug this in the equation (7.10) and consider the probability at points0 = wx0:

P(wx∈ [wx0,wx0 +d]) = ps(wx0)d (7.11)

Obviously,P(wx∈ [x1,x2]) = P(x∈ [x1/w,x2/w]). So, we can express (7.11) as

ps(wx0)d = P(x∈ [x0,x0 +
d
w

]) = px(x0)
d
w

(7.12)

Note that the length of the intervald changed tod/w, and so we changed the right-hand side
of the equation to get the same term. Multiplying both sides of this equation byw/d we get
ps(wx0)w= px(x0). Thus, the actual pdf ofx is ps(wx)w, instead of simplyps(wx) ! This shows that
in computing the pdf of a transformation, thechange in scalecaused by the transformation must
be taken into account, by multiplying the probability density by a suitable constant that depends
on the transformation.

In general, an important theorem in probability theory saysthat for any linear
transformation, the probability density function should be multiplied by the absolute
value of thedeterminantdetV of the matrix that gives the linear transformation.The
determinant of a matrix is a measure of the associated changein scale (volume).
The absolute value of the determinant is equal to the volume of the parallelepiped
that is determined by its column vectors. (For more information on the determinant,
see Section 19.4.)

Thus, the pdf of the preprocessed dataz defined by ICA is actually given by

p(z) = |det(V)|
n

∏
i=1

pi(vT
i z) = |det(V)|

n

∏
i=1

pi(
n

∑
j=1

vi j zj) (7.13)

whereV is a matrix whose elements are given by the coefficientsvi j ; in other words,
the rows ofV are given by the vectorsvi .

The pdf depends not only on the patch viaz, but also on the parameters of the
model, i.e. the weightsvi j . Equivalently, we could consider the probability as a
function of the featuresbi j , but this does not make any difference, since thevi j are
uniquely determined by thebi j and vice versa. The formula for the probability in
equation (7.13) is more easily formulated as a function of the vectorsvi .

7.5 Maximum likelihood estimation in ICA

Maximum likelihood estimation is a classic, indeed,theclassic method for estimat-
ing parameters in a statistical model. It is based on a simpleprinciple: Find those
parameter values that would give the highest probability for the observed data. A
brief description was provided in Section 4.8.
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The likelihood is the probability of observing the data for given model parame-
ters. For a given data set, it is thus a function of the parameters. Let us assume that
we have observedT image patchesIt(x,y),t = 1, . . . ,T that are collected at random
locations in some natural images. We consider here canonically preprocessed data,
let us denote byzt the vector obtained by canonically preprocessing the imagepatch
It .

Because the patches are collected in random locations, we can assume that the
patches are independent from each other. Thus, the probability of observing all these
patches is the product of the probabilities of each patch. This gives the likelihoodL
of the observed data:

L(v1, . . . ,vn) =
T

∏
t=1

p(zt) =
T

∏
t=1

[

|det(V)|
n

∏
i=1

pi(vT
i zt)

]

(7.14)

It is much simpler to look at the logarithm of the likelihood,which is, after some
simple rearrangements:

logL(v1, . . . ,vn) = T log|det(V)|+
n

∑
i=1

T

∑
t=1

logpi(vT
i zt) (7.15)

Since the logarithm is a increasing function, maximizationof the likelihood is the
same as maximization of this log-likelihood. Estimation bythe maximum likelihood
method now means that we maximize the log-likelihood in Equation (7.15) with
respect to the parameters, that is, the weightsvi . (Choosing the functions logpi will
be discussed in Section 7.7.)

Maximization of the log-likelihood can be accomplished by numerical optimiza-
tion methods. In addition to general-purpose methods, special tailor-made methods
have been developed for this particular ICA maximization task. A thorough discus-
sion of such optimization methods can be found in Chapter 18,and we will not go
into details here. Let us just note that the first term in Equation 7.15 can be consid-
ered to be constant and omitted, as we will see in Section 7.7.1.

7.6 Results on natural images

7.6.1 Estimation of features

Using maximum likelihood estimation on 50,000 image patches of size 32×32 pix-
els as in the preceding chapters, we obtain the results in Figure 7.3. These features
have the same qualitative properties as the feature detectors estimated by maxi-
mization of sparseness in Figure 6.6 on page 151. That is, thefeatures are spatially
localized, oriented, and code for different scales (frequencies).

This is actually not surprising because, as will be shown next, maximum like-
lihood estimation of ICA is mathematically almost equivalent to the sparse coding
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analysis we did in Section 6.4. The only difference is that weare here showing
the (generating) featuresAi instead of the feature detectorsWi . This difference is
explained in detail in Section 7.10.

Fig. 7.3: The whole set of featuresAi obtained by ICA. In this estimation, the functions logpi were
chosen as in Equation (7.19) in Section 7.7.

7.6.2 Image synthesis using ICA

Now that we have defined a generative model, we can generate image data from it.
We generate the values of thesi independently from each other, and multiply the
estimated featuresAi with them to get one generated image patch. One choice we
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have to make is what our model of the marginal (i.e. individual) distributions of the
independent component is. We use here two distributions. Inthe first case, we simply
take the histogram of the actual component in the natural images, i.e. the histogram
of each∑x,yWi(x,y)I(x,y) when computed over the whole set of images. In the
second case, we use a well-known sparse distribution, the Laplacian distribution
(discussed in the next section), as the distribution of the independent components.

Figures 7.4 and 7.5 show the results in the two cases. The synthesis results are
clearly different than those obtained by PCA on page 117: Here we can see more
oriented, edge-like structures. However, we are obviouslyfar from reproducing all
the properties of natural images.

Fig. 7.4: Image synthesis using ICA. 20 patches were randomly generated using the ICA model
whose parameters were estimated from natural images. In this figure, the marginal distributions of
the components were those of the real independent components. Compare with real natural image
patches in Figure 5.2 on page 99, and the PCA synthesis results in Figure 5.13 on page 117.

7.7 Connection to maximization of sparseness

In this section, we show how ICA estimation is related to sparseness, how we should
model the logpi in the log-likelihood in Equation 7.15 and how this connection tells
us how we should design the sparseness measure.
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Fig. 7.5: Image synthesis using ICA, and a Laplacian approximation of the pdf of the independent
components. Compare with Figure 7.4, in which the real distributions were used for the indepen-
dent components. The results are perhaps less realistic because the Laplacian distribution is less
sparse than the real distributions.

7.7.1 Likelihood as a measure of sparseness

Let us assume, as we typically do, that the linear features considered are constrained
to be uncorrelated and to have unit variance. This is equivalent to assuming that the
transformation given byV is orthogonal in the canonically preprocessed (whitened)
space. Thus, the matrixV is constrained orthogonal. It can be proven that the deter-
minant of an orthogonal matrix is always equal to±1. This is because an orthogonal
transformation does not change distances and thus not volumes either; so the abso-
lute value of the determinant which measures the change in volume must be equal
to 1. Thus, the first term on the right-hand-side of Eq. (7.15)is zero and can be
omitted.

The second term on the right-hand-side of Eq. (7.15) is the expectation (mul-
tiplied by T) of a nonlinear function logpi of the outputsi of the feature detector
(more precisely, an estimate of that expectation, since this is computed over the sam-
ple). Thus, what the likelihood really boils down to is measuring the expectations of
the formE{ f (si)} for some functionf .

The connection to maximization of sparseness is now evident. If the feature out-
puts are constrained to have unit variance, maximization ofthe likelihood is equiv-
alent to maximization of the sparsenesses of the outputs,if the functions logpi are
of the form required for sparseness measurements, i.e. if wewe can express them as

logpi(s) = hi(s
2) (7.16)
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where the functionshi areconvex. In other words, the functions

hi(u) = logpi(
√

u) (7.17)

should be convex foru≥ 0. It turns out that this is usually the case in natural images,
as will be seen in the next section.

Earlier, we considered using the negative of square root ashi . In the probabilistic
interpretation given by ICA, using the square root means that the pdf of a component
si is of the form

p(si) =
1√
2

exp(−
√

2|si |) (7.18)

where the constants have been computed so thatsi has unit variance, and the integral
of the pdf is equal to one, as is always required. This distribution is called Laplacian.
It is also sometimes called the double exponential distribution, since the absolute
value ofsi has the classic exponential distribution (see Equation (4.71) on page 90).
The Laplacian pdf was already illustrated in Figure 6.2 on page 139.

As already pointed out in Chapter 6, using the Laplacian pdf maybe numeri-
cally problematic because of the discontinuity of its derivative. Thus, one might use
a smoother version, where the absolute value function is replaced by the logcosh
function. This also corresponds to assuming a particular pdf for the independent
components, usually called the “logistic” pdf. When properly normalized and stan-
dardized to unit variance, the pdf has the form

logpi(s) =−2logcosh(
π

2
√

3
s)− 4

√
3

π
(7.19)

In practice, the constants here are often ignored, and simply the plain logcosh func-
tion often is used to keep things simple.

7.7.2 Optimal sparseness measures

The maximum likelihood framework tells us what the nonlinearities used in the
sparseness measure really should be. They should be chosen according to Equation
(7.17). These nonlinearities can be estimated from naturalimages. To really find
the best nonlinearities, we could first maximize the likelihood using some initial
guesses of thehi , then estimate the pdf’s of the obtained independent components
and recompute thehi according to Equation (7.17). In principle, we should then
re-estimate theWi using these newhi , re-estimate thehi using the latestWi and so
on until the process converges. This is because we are basically maximizing the
likelihood with respect to two different groups of parameters (theWi and thehi) and
the real maximum can only be found if we go on maximizing one ofthe parameters
groups with the other fixed until no increase in likelihood can be obtained. However,
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in practice we do not need to bother to re-iterate this process because thehi do not
change that much after their initial estimation.

Figure 7.6 shows twohi ’s estimated from natural images with the corresponding
log-pdf’s; most of them tend to be very similar. These are obtained by computing
a histogram of distribution of two independent components estimated by a fixedhi :
the histogram gives an estimate ofpi from whichhi can be derived.

We see that the estimatedhi are convex, if we ignore the behaviour in the tails,
which are impossible to estimate exactly because they contain so few data points.
Thehi estimated here are not very different from the square root function, although
sometimes they tend to be more peaked.

If we want to use such optimal nonlinearities in practice, weneed to use para-
metric probability models for the (log-)pdf’s. Using histogram estimates that we
show here is not used in practice because such estimates can be very inexact and
non-smooth. One well-known option for parameterized densities is the generalized
gaussian density (sometimes also called the generalized Laplacian density):

p(s) =
1
c

exp(−|si |α
bα ) (7.20)

The parametersb andc are determined so that this is a pdf (i.e. its integral equals
one) which has unit variance. The correct values are

b =

√

Γ ( 1
α )

Γ ( 3
α )

and c =
2b
√

πΓ ( 1
α )

αΓ (1/2)
(7.21)

whereΓ is the so-called “gamma” function which can be computed veryfast in most
software for scientific computation. The parameterα > 0 controls the sparseness
of the density. Ifα = 2, we actually have the gaussian density, and forα = 1, the
Laplacian density. What is most interesting when modellingimages is that forα < 1,
we have densities that are sparser than the Laplacian density, and closer to the highly
sparse densities sometimes found in image features.

Another choice is the following density:

p(s) =
1
2

(α +2) [α (α +1)/2](α/2+1)

[
√

α (α +1)/2+ |s|](α+3)
(7.22)

with a sparseness parameterα. Whenα → ∞, the Laplacian density is obtained as
the limit. The strong sparsity of the densities given by thismodel can be seen e.g.,
from the fact that the kurtosis of these densities is always larger than the kurtosis of
the Laplacian density, and reaches infinity forα ≤ 2. Similarly,p(0) reaches infinity
asα goes to zero.

A problem with these highly peaked distributions is that they are not smooth, in
particular their derivatives are discontinuous at zero. For the generalized gaussian
distribution, the derivative is actually infinite at zero for α < 1. Thus, to avoid prob-
lems in the computational maximization of sparseness measures, it may not be a bad
idea to use something more similar to a square root function in practical maximiza-
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Fig. 7.6: Estimated optimalhi from natural images. After doing ICA, the histograms of the compo-
nent with the highest kurtosis and a component with kurtosisin the middle range were computed,
and their logarithms taken. The feature corresponding to the highest kurtosis is on the left, and
the one corresponding to the mid-range kurtosis is on the right. Top row: feature. Second row:
logarithm of pdf. Third row: optimalhi . Bottom row: the derivative of log-pdf for future reference.

tion of the sparseness measures. Actually, usually we use a smoothed version of the
square root function as discussed in Section 7.7.1.

The two density families in Equations (7.20) and (7.22) are illustrated in Fig-
ure 7.7. While it does not seem necessary to use such more accurate density models
in the estimation of the basis, they are likely to be quite useful in Bayesian inference
where we really do need a good probabilistic model.
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Fig. 7.7: Top row: Some plots of the density function (left) and its logarithm (right) given in Eqs
(7.20),α is given values 0.75, 1 and 1.5. More peaked ones correspond to smallerα . Bottom row:
Plots of the density function (7.22),α is given values 0.5,2,10. More peaked values correspond to
smallerα .

7.8 Why are independent components sparse?

There are many different ways in which random variables can be non-gaussian.
What forms do there exist, and why is it that independent components in images are
always sparse — or are they? These are the questions that we address in this section.

7.8.1 Different forms of non-gaussianity

While the forms of non-gaussianity are infinite, most of the non-gaussian as-
pects that are encountered in real data can be described as sub-gaussianity, super-
gaussianity, or skewness.

Super-gaussianity is basically the same as sparseness. Often, super-gaussianity is
defined as positive kurtosis (see Equation (6.5) for a definition of kurtosis), but other
definitions exist as well. The intuitive idea is that the probability density function
has heavy tails and a peak at zero.



176 7 Independent component analysis

The opposite of super-gaussianity is sub-gaussianity, which is typically charac-
terized by negative kurtosis. The density function is “flat”around zero. A good
example is the uniform distribution (here standardized to unit variance and zero
mean)

p(s) =

{
1

2
√

3
, if |s| ≤

√
3

0, otherwise
(7.23)

The kurtosis of this distribution equals−6/5, which is left as an exercise.
An unrelated form of non-gaussianity is skewness which basically means the lack

of symmetry of the probability density function. A typical example is the exponen-
tial distribution:

p(s) =

{

exp(−s), if s≥ 0

0, otherwise
(7.24)

which is not symmetric with respect to any point on the horizontal (s) axis. Skewness
is often measured by the third moment (assuming the mean is zero)

skew(s) = E{s3} (7.25)

This is zero for a symmetrically-distributed random variable that has zero mean
(this is left as an exercise). In fact, skewness is usually defined as exactly the third
moment. However, any other nonlinear odd function could be used instead of the
third power, for example the function that gives the sign (±1) of s.

7.8.2 Non-gaussianity in natural images

Is it true that all the independent components in natural images are sparse, and no
other forms of non-gaussianity are encountered? This is almost true, but not quite.

The skewness of the components is usually very small. After all, natural images
tend to be rather symmetric in the sense that black and white are equally probable.
This may not be exactly so, since such symmetry depends on themeasurement scale
of the grey-scale values: a non-linear change of measurement scale will make sym-
metric data skewed. However, in practice, skewness seems tobe so small that it can
be ignored.

There are some sub-gaussian components, though. In particular, the DC compo-
nent, i.e. the mean luminance of the image patch, is typically sub-gaussian. In fact,
its distribution is often not far from a uniform distribution. If we do not remove the
DC component from the images (in contrast to what we usually do), and we use
an ICA algorithm that is able to estimate sub-gaussian components as well (not all
of them are), the DC component actually tends to be estimatedas one independent
component. Depending on the window size and the preprocessing used, a couple of
further very low-frequency components can also be sub-gaussian.
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7.8.3 Why is sparseness dominant?

One reason why the independent components in images are mostly sparse is the
variation of the local variance in different parts of an image. Some parts of the
image have high variation whereas others have low variation. In fact, flat surfaces
have no variation, which is sometimes called the blue-sky effect.

To model this change in local variance, let us model an independent component
si as a product of an “original” independent componentgi of unit variance, and an
independent, non-negative “variance” variabledi :

si = gi di (7.26)

We calldi a variance variable because it changes the scale of each observation ofgi .
Such a variance variables will be the central topic in Chapter 9.

Let us assume that the original componentgi is gaussian with zero mean and unit
variance. Then the distributions of thesi is necessarily super-gaussian, i.e. it has
positive kurtosis. This can be shown using fact that for a gaussian variable, kurtosis
is zero and thusE{g4

i }= 3, so we have

kurt si = E{s4
i }−3(E{s2

i })2 = E{d4
i g4

i }−3(E{d2
i g2

i })2

= E{d4
i }E{g4

i }−3(E{d2
i })2(E{g2

i })2 = 3[E{d4
i }− (E{d2

i })2] (7.27)

which is always non-negative because it is the variance ofd2
i multiplied by 3. It can

be zero only ifdi is constant.
Thus, the changes in local variance are enough to transform the gaussian distri-

bution of gi into a sparse distribution forsi . The resulting distribution is called a
gaussian scale mixture.

7.9 General ICA as maximization of non-gaussianity

Now we can consider the problem of ICA estimation in more generality, in the
case where the components are not necessarily sparse. In particular, we consider the
following two questions: Does estimation of ICA for non-sparse components have
a simple intuitive interpretation, and: Is there a deeper reason why maximization
of sparseness is related to the estimation of the ICA model. These questions can
be answered based on the Central Limit Theorem, a most fundamental theorem in
probability theory. Here we explain this connection and show how it leads to a more
general connection between independence and non-gaussianity.
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7.9.1 Central Limit Theorem

The Central Limit Theorem (CLT) basically says that when youtake an average or
sum of many independent random variables, it will have a distribution that is close
to gaussian. In the limit of an infinite number of random variables, the distribution
actually tends to the gaussian distribution, if properly normalized:

lim
N→∞

1√
N

N

∑
n=1

sn = gaussian (7.28)

where we assume thatsn have zero mean. We have to normalize the sum here be-
cause otherwise the variance of the sum would go to infinity. Note that if we nor-
malized by 1/N, the variance would go to zero.

Some technical restrictions are necessary for this resultsto hold exactly. The
simplest choice is to assume that thesn all have the same distribution, and that
distribution has finite moments. The CLT is illustrated in Figure 7.8.

7.9.2 “Non-gaussian is independent”

What does the CLT mean in the context of ICA? Let us consider a linear combi-
nation of the observed variables,∑i wizi . This is also a linear combination of the
original independent components:

∑
i

wizi = ∑
i

wi ∑
j

ai j sj = ∑
j
(∑

i
wiai j )sj = ∑

j
q jsj (7.29)

where we have denotedq j = ∑i wiai j . We do not know the coefficientsq j because
they depend on theai j .

The CLT would suggest that this linear combination∑ j q jsj is closer to gaussian
than the original independent componentssj . This is not exactly true because the
CLT is exactly true only in the limit of an infinite number of independent compo-
nents, and there are restrictions on the distributions (forexample, the variablesq jsj

do not have identical distributions if theq j are not equal). However, the basic idea
is correct. This is illustrated in Figure 7.9 which shows that the original indepen-
dent components are more gaussian than the observed data after whitening, shown
in Figure 7.1.

Thus, based on the central limit theorem, we can intuitivelymotivate a general
principle for ICA estimation: find linear combinations∑i wizi of the observed vari-
ables that are maximally non-gaussian.

Why would this work? The linear combination∑i wizi equals a linear combina-
tion of the independent components with some coefficientsq j . Now, if more than
one of theq j is non-zero, we have a sum of two independent random variables. Be-
cause of the CLT, we can expect that such a sum is closer to gaussian that any of the
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a) b) c)

Fig. 7.8:a) Histogram of a very sparse distribution.b) Histogram of a sum of two independent
random variables distributed as in a), normalized by dividing by

√
2.c) Histogram of a normalized

sum of ten variables with the same distribution as in a). The scale of the axes are the same in all
plots. We see that the distribution goes towards gaussianity.

a) b)

Fig. 7.9:a) Histogram of one of the original components in Figure 7.1.b) Histogram of one of
thewhitenedcomponents in Figure 7.1. The whitened component has a distribution which is less
sparse, thus closer to gaussian.

original variables. (This is really only an intuitive justification and not exactly true.)
Thus, the non-gaussianity of such a linear combination is maximal when it equals
one of the original independent components, and the maximally non-gaussian linear
combinations are the independent components.

Here, we have to emphasize that this connection between non-gaussianity and
independence only holds for linear transformations. In Chapter 9 we will see that
for nonlinear transformations, such a connection need not exist at all, and may in
fact be reversed.

7.9.3 Sparse coding as a special case of ICA

Estimation of ICA by maximization of sparseness can now be seen as a special case
of maximization of non-gaussianity. Sparseness is one formof non-gaussianity, the
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one that is dominant in natural images. Thus, in natural images, maximization of
non-gaussianity is basically the same as maximization of sparseness. For other types
of data, maximization of non-gaussianity may be quite different from maximization
of sparseness.

For example, in the theory of ICA, it has been proposed that the non-gaussianity
of the components could be measured by the sum of the squares of the kurtoses:

n

∑
i=1

[kurt(vT
i z)]2 (7.30)

where, as usual, the data vectorz is whitened and the feature vectorsvi are con-
strained to be orthogonal and to have unit norm. It can be shown that ICA estimation
can really be accomplished by maximizing this objective function. This works for
both sub-gaussian and super-gaussian independent components.

Now, if the components all have positive kurtoses, maximizing this sum is closely
related to finding vectorsvi such that thevT

i z are maximally non-gaussian. The
square of kurtosis is, however, a more general measure of non-gaussianity because
there are cases where the kurtosis is negative as we saw abovein Section 7.8.1. For
such components, maximization of non-gaussianity meansminimizingkurtosis (and
sparseness), because for negative values of kurtosis, maximization of the square
means to minimize kurtosis.

In fact, maximization of sparseness may not always be the correct method for
estimation ICA even on images. If we do not remove the DC component from the
images, the DC component turns out to be one independent component, and it some-
times has negative kurtosis. For such data, simply maximizing sparseness of all the
components will produce misleading results.

Thus, we see that there is a difference between basic linear sparse coding and
ICA in the sense that ICA works for different kinds of non-gaussianity and not just
sparseness.

7.10 Receptive fields vs. feature vectors

An important point to note is the relation between the feature vectorsAi and the
feature detector weightsWi . The feature vectors are shown Fig. 7.3. However, it is
often theWi that are more interesting, since they are the weights that are applied to
the image to actually compute thesi , and in neurophysiological modelling, they are
more closely connected to the receptive fields of neurons.

There is, in fact, a simple connection between the two: theAi are basically low-
pass filtered versions of theWi . In fact, simple calculations show that the covariance
cov(I(x,y), I(x′,y′)) in images generated according to the ICA model equals

∑
i

Ai(x,y)Ai(x
′,y′) (7.31)
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because thesi are uncorrelated and have unit variance. Thus we have

∑
x′ ,y′

cov(I(x,y), I(x′,y′))Wi(x
′,y′) = ∑

x′,y′
∑
i

Ai(x,y)Ai(x
′,y′)Wi(x

′,y′)

= ∑
i

Ai(x,y) ∑
x′ ,y′

Ai(x
′,y′)Wi(x

′,y′) = Ai(x,y) (7.32)

by definition of theWi as the inverse of theAi . This means that theAi can be obtained
by multiplying theWi by the covariance matrix of the data.

Such multiplication by the covariance matrix has a simple interpretation as alow-
pass filteringoperation. This is because the covariances are basically a decreasing
function of the distance between(x,y) and(x′,y′), as shown in Figure 5.4. Thus,Ai

andWi have essentially the same orientation, location and frequency tuning proper-
ties. On the other hand, theAi are better to visualize because because they actually
correspond to parts of the image data; especially with data that is not purely spatial,
as in Chapter 15, visualization of the detector weights would not be straightforward.

7.11 Problem of inversion of preprocessing

A technical point that we have to consider is computation of the Ai for original
images based on ICA of canonically preprocessed data. Thereis actually a problem
here: in order to get theAi we have to invert the canonical preprocessing, because
estimation of the model gives the vectorsvi in the reduced (preprocessed) space
only. But canonical preprocessing is not invertible in the strict sense of the word,
because it reduces the dimension and therefore loses information!

Typically, a solution based on the idea of computing the bestpossible approxima-
tion of the inverse of the PCA/whitening transformation. Such best approximation
can be obtained by the theory of multivariate regression, or, alternatively, by the the-
ory of pseudo-inverses (see Section 19.8). Without going into details, the description
of the solution is simple.

Denote byU the orthogonal matrix which contains then vectors giving the direc-
tions of the principal components as its rows, i.e. then dominant eigenvectors of the
covariance matrix. Denote byλi the corresponding eigenvalues. Then, steps 3 and
4 of canonical preprocessing in Section 5.4 consist of multiplying the vectorized
image patches by diag(1/

√
λi)U.

We now define the inverse preprocessing as follows: After computing the fea-
ture vectors in the preprocessed space (thevi), the basis vectors are multiplied by
UTdiag(

√
λi). These are the optimal approximations of the feature vectors in the

original space. They can also be computed by taking the pseudoinverse of the ma-
trix of the featuresWi , which is what we did in our simulations.

Note that we have no such problem with computation of theWi for the original
data because we just multiply the vectorsvi with the PCA/whitening matrix, and no
inversion is needed.
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7.12 Frequency channels and ICA

A long-standing tradition in vision science is to talk about“frequency channels”,
and more rarely, about “orientation” channels. The idea is that in the early visual
processing (something like V1), information of different frequencies is processed
independently. The word “independence” as used here has nothing to do with sta-
tistical independence: it means that processing happens indifferent physiological
systems that are more or less anatomically separate, and do not exchange informa-
tion with each other.

Justification for talking about different channels is abundant in research on V1. In
recordings from single cells, simple and complex cell receptive fields are band-pass,
i.e. respond only to stimuli in a certain frequency range, and various optimal fre-
quencies are found in the cells (see Chapter 3 and its references). In psychophysics,
a number of experiments also point to such a division of earlyprocessing. For exam-
ple, in Figure 3.8 on page 60, the information on the high- andlow-frequency parts
are quite different, yet observes have no difficulty in processing (reading) them sep-
arately.

In the results of ICA on natural images, we see an interestingnew interpretation
of why the frequency channels might be independent in terms of physiological and
anatomical separation in the brain. The reason is that the information in different
frequency channels seems to bestatisticallyindependent, as measured by ICA. The
feature vectorsAi given by ICA are band-pass, thus showing that a decomposition
into statistically independent features automatically leads to frequency channels.

7.13 Concluding remarks and References

Independent component analysis is a statistical generative model whose estimation
boils down to sparse coding. It gives a proper probabilisticformulation of sparse
coding and thereby solves a number of theoretical problems in sparse coding (in
particular: optimal ways of measuring sparseness, optimality of decorrelation), and
gives a proper pdf to be used in Bayesian inference. The expression “independent
component analysis” also points out another important property of this model: the
components are considered statistically independent. This independence assumption
is challenged in many more recent models which are the topicsof Chapters 9–11.

The first application of ICA, as opposed to sparse coding, on image patches was
in (Bell and Sejnowski, 1997) based on the earlier sparse coding framework in (Ol-
shausen and Field, 1996) considered in Section 13.1.

For more information on the ICA model, see (Hyvärinen and Oja, 2000) or
(Hyvärinen et al, 2001b). Some of the earliest historical references on ICA include
(Hérault and Ans, 1984; Mooijaart, 1985; Cardoso, 1989; Jutten and Hérault, 1991).
Classic references include (Delfosse and Loubaton, 1995),which showed explicitly
how maximization of non-gaussianity is related to ICA estimation; (Comon, 1994),
which showed the uniqueness of the decomposition, and the validity of the sum-
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of-squares-of-kurtosis in Equation (7.30); the maximum likelihood framework was
introduced in (Pham et al, 1992; Pham and Garrat, 1997).

For more information on the central limit theorem, see any standard textbook on
probability theory, for example (Papoulis and Pillai, 2001).

A related way of analyzing the statistics of natural images is to look at the cu-
mulant tensors (Thomson, 1999, 2001). Cumulants (strictlyspeaking, higher-order
cumulants) are statistics which can be used as measures of non-gaussianity; for ex-
ample, kurtosis and skewness are one of the simplest cumulants. Cumulant tensors
are generalizations of the covariance matrix to higher-order cumulants. Analysis of
cumulant tensors is closely related to ICA, as discussed in detail in Chapter 11 of
(Hyvärinen et al, 2001b). Equivalently, one can analyze the polyspectra (usually the
trispectrum) which are obtained by Fourier transformations of the cumulant spec-
tra, in a similar way as the ordinary Fourier spectrum function can be obtained as
the Fourier transform of the autocovariance function; see e.g. (Nikias and Mendel,
1993; Nikias and Petropulu, 1993) for further information.

7.14 Exercices

Mathematical exercises

1. Prove (7.2).
2. Based on (7.2), prove that two independent random variables are uncorrelated.
3. Calculate the kurtosis of the uniform distribution in (7.23).
4. Calculate the kurtosis of the Laplacian distribution in (7.18).
5. Show that the skewness of a random variable with a pdf whichis even-symmetric

(i.e. p(−x) = p(x)) is zero.
6. In this exercise we consider a very simple case of gaussianmixtures (see Sec-

tion 7.8.3). Assume that a component followss = vz wherez is gaussian with
zero mean and unit variance. Let us assume that in 50% of the natural images the
variance coefficientv has valueα. In the remaining 50% of natural images,v has
valueβ .

a. What is the distribution of the random variables in the set of all natural im-
ages? (Give the density functionp(s))

b. Show thatE{s2}= 1
2(α2 + β 2)

c. Show thatE{s4}= 3
2(α4 + β 4)

d. What is the kurtosis of this distribution?
e. Show that the kurtosis is positive for almost any parameter values.

7. Prove (7.31).
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Computer assignments

1. Using numerical integration, compute the kurtoses of theLaplacian and uniform
distributions.

2. Load the FastICA program from the web. This will be used in the following
assignments. You will also need some images; try to find some that have not
been compressed, since compression can induce very nasty effects.

3. Take patches of 16×16 of the image. 10,000 is a sufficient amount of patches.
Input these to FastICA.

4. Plot histograms of the independent components. Compute their kurtoses. Plot
(some of the) RF’s. Look at the RF’s and comment on whether they look like V1
RF’s or not. If not, why not?



Chapter 8
Information-theoretic interpretations

So far, we have been operating within the theoretical framework of Bayesian in-
ference: the goal of our models is to provide priors for Bayesian inference. An al-
ternative framework is provided by information theory. In information theory, the
goal is to find ways of coding the information as efficiently aspossible. This turns
out to be surprisingly closely connected to Bayesian inference. In many cases, both
approaches start by estimation of parameters in a parameterized statistical model.

This chapter is different from the previous ones because we do not provide any
new models for natural image statistics. Rather, we describe a new framework for
interpreting some of the previous models.

8.1 Basic motivation for information theory

In this section, we introduce the basic ideas of informationtheory using intuitive ex-
amples illustrating the two principal motivations: data compression and data trans-
mission.

8.1.1 Compression

One of the principal motivations of information theory is data compression. Let us
begin with a simple example. Consider the following string of characters:

BABABABADABACAABAACABDAAAAABAAAAAAAADBCA

We need to code this using a binary string, consisting of zeros and ones, because
that’s the form used in computer memory. Since we have four different characters,
a basic approach would be to assign the four possible two-digit codewords for each
of them:

185
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A→ 00 (8.1)

B→ 01 (8.2)

C→ 10 (8.3)

D→ 11 (8.4)

(8.5)

Replacing each of the characters by its two-digit codeword gives the code

0100010001000100110001001000000100001000
0111000000000001000000000000000011011000

However, a shorter code can be obtained by using the fundamental insight of
information theory:frequent characters should be given shorter codewords. This
makes intuitive sense: if frequent characters have short codewords, even at the ex-
pense of giving less frequent characters longer codewords,the average length could
be shortened.

In this example, the character A is the most frequent one: approximately one half
of the letters are A’s. The letter B is the next, with a proportion of approximately
one quarter. So, let us consider the following kind of codeword assignment:

A→ 0 (8.6)

B→ 10 (8.7)

C→ 110 (8.8)

D→ 111 (8.9)

(8.10)

Now, the code becomes

1001001001001110100110001000110010111000
001000000000111101100

This is more than 10% shorter than the basic code given above.(In real-world appli-
cations, the saving is often much larger, sometimes reaching more than 90% in im-
age compression.) Note that the codeword assignment has been cleverly constructed
so that the original string can be recovered from this code without any ambiguity.

Compression was possible because some of the characters were more common
than others. In other words, it was due to the statistical regularities of the data (or
redundancy, which will be defined later). Thus, it is not surprising that the methods
developed in information theory have also been applied in the field of natural image
statistics.
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8.1.2 Transmission

A rather different application of information theory is in data transmission. In trans-
mission, the central problem isnoise. That is, the transmission will introduce ran-
dom errors in the data. The goal here is to code the data so thatthe receiving end of
the system can correct as many of the random errors as possible.

As a simple example, consider the following binary string which we want to
transmit:

1111101100100011100110100101110110100101

To code this string we use a very simple method: we simply repeat all the digits
three times. Thus we get the code

1111111111111110001111110000001110000000
0011111111100000011111100011100000011100
0111111111000111111000111000000111000111

This is transmitted through a channel which has relatively strong noise: 25% of the
digits are randomly changed to the opposite. So, the receiving end in the channel
receives the following string:

1111100111111110000111110000001110100001
1000110100100100111010101011100001010100
1111111111000110101000111010010111100111

Now, we can use the repetitions in the string in the followingway: we look at all
consecutive groups of three digits, and guess that the original string probably had
the digit which has the most occurrences among each group. Thus, we obtain the
following string

1111101100100101000110100101110110100101

This string has less than 10% wrong digits. Thus, our encoding scheme reduced the
number of errors introduced by the channel from 25% to less than 10%. (Actually,
we were a bit lucky with this string: on the average the errorswould be of the order
of 16%.)

So, the central idea in transmission is very different from compression. In order
to combat noise, we want to code the data so that we introduce redundancy (to be
defined later), which often means making the code longer thanthe original data.

8.2 Entropy as a measure of uncertainty

Now, we introduce the concept of entropy, which is the foundation of information
theory. First, we give its definition and a couple of examples, and then show how it
is related to data compression.
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8.2.1 Definition of entropy

Consider a random variablez which takes values in a discrete seta1, . . . ,aN with
probabilitiesP(z= ai), i = 1, . . . ,N. The most fundamental concept of information
theory isentropy, denoted byH(z), which is defined as

H(z) =−
N

∑
i=1

P(z= ai) log2P(z= ai) (8.11)

If the logarithms to base 2 are used, the unit of entropy is called abit. Entropy is a
measure of theaverage uncertaintyin a random variable. It is always non-negative.
We will next present a couple of examples to illustrate the basic idea.

Example 1 Consider a random variable which takes only two values,A andB.
Denote the probabilityP(z= A) by p0. Then, entropy ofzequals

H(z) =−p0 log2 p0− (1− p0) log2(1− p0) (8.12)

We can plot this as a function ofp0, which is shown in Fig. 8.1 The plot shows that
the maximum entropy is obtained whenp0 = 0.5, which means that both outcomes
are equally probable. Then the entropy equals one bit. In contrast, if p0 equals 0 or
1, there is no uncertainty at all in the random variable, and its entropy equals zero.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Fig. 8.1: Entropy of a random variable which can only take twovalues, plotted as a function of the
probability p0 of taking one of those values.

Example 2 Consider a random variablezwhich takes, for some givenn, any of 2n

values with equal probability, which is obviously 1/2n. The entropy equals
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H(z) =−
2n

∑
i=1

1
2n log2

1
2n =−2n 1

2n (−n) = n (8.13)

Thus, the entropy equalsn bits. This is also the number of binary digits (also called
bits) that you would need to represent the random variable ina basic binary repre-
sentation.

Example 3 Consider a random variablez which always takes the same value, i.e.
it is not really random at all. Its entropy equals

H(z) =−1× log2 1 = 0 (8.14)

Again, we see that the entropy is zero since there is no uncertainty at all.

8.2.2 Entropy as minimum coding length

An important result in information theory shows that the numerical value of entropy
directly gives theaverage code length for the shortest possible code(i.e. the one
giving maximum compression). It is no coincidence that the unit of entropy is called
a bit, since the length of the code is also given in bits, in thesense of the number of
zero-one digits used in the code.

The proof of this property is very deep, so we will only try to illustrate it with an
example.

Example 4 Now we will return back to the compression example in the preceding
section to show how entropy is connected to compression. Consider the characters
in the string as independent realizations of a random variable which takes values in
the set{A,B,C,D}. The probabilities used in generating this data are

P(A) = 1/2 (8.15)

P(B) = 1/4 (8.16)

P(C) = 1/8 (8.17)

P(D) = 1/8 (8.18)

We can compute the entropy, which equals 1.75 bits. Thus, theentropy is smaller
than 2 bits, which would be (according to Example 2), the maximum entropy for
a variable with four possible values. Using the definition ofentropy as minimum
coding length, we see that the saving in code length can be at most (2-1.75)/2 =
12.5 % for data with these characteristics. (This holds in the case of infinite strings
in which random effects are averaged out. Of course, for a finite-length string, the
code would be a bit shorter or longer due to random effects.)

Note also it is essential here that the characters in the string are generated inde-
pendently at each location; otherwise, the code length might be shorter. For example,
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if the characters would be generated in pairs, as in AACCBBAA..., this dependency
could obviously be used to reduce the code length, possibly beyond the bound that
entropy gives.

8.2.3 Redundancy

Redundancy is a word which is widely used in information theory, as well as in nat-
ural image statistics. It is generally used to refer to the statistical regularities, which
make part of the information “redundant”, or unnecessary. Unfortunately, when talk-
ing about natural images, different authors use the word in slightly different ways.

An information-theoretic definition of redundancy is basedon entropy. Given a
random variable which has 2n different values, say 1, . . . ,2n, we compare the length
of the basicn-bit code and the length of the shortest code, given by entropy:

redundancy= n−H(z) (8.19)

This is zero only if all the values 1, . . . ,2n are equally likely. Using this terminology,
we can say that compression of the string in Section 8.1.1 waspossible because the
string had some redundancy (n was larger thanH(z)). Compression is possible by
removing, or at least reducing, redundancy in the data.

This definition is actually more general than it seems, because it can also consider
dependenciesbetweendifferent variables (say, pixels). If we have two variablesz1

andz2, we can simply define a new variablez whose possible values correspond to
all the possiblecombinations1 of the values ofz1 andz2. Then, we can define entropy
and redundancy for this new variable. If the variables are highly dependent from
each other, some combinations will have very small probabilities, so the entropy
will be small and redundancy large.

It is important to understand that you may want to either reduce or increase re-
dundancy, depending on your purpose. In compression you want to reduce it, but
in information transmission, you actually want to increaseit. The situation is even
more complicated than this because usually before transmission, you want to com-
press the data in order to reduce the time needed for data transmission. So, you first
try to remove the redundancy to decrease the length of the data to be transmitted,
and then introduce new redundancy to combat noise. This neednot be contradictory
because in introducing new redundancy, you do it is a controlled way using care-
fully designed codes which increase code length as little aspossible for a required
level of noise-resistance. A result called “source-channel coding theorem” lays out
the conditions under which such a two-stage procedure is, infact, optimal.

1 More precisely: if z1 can take values in the set{1,2} and z2 can take values in the
set {1,2,3}, we definez so that it takes values in the Cartesian product of those sets, i.e.
{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)}, so that the probabilityz= (a1,a2) simply equals the prob-
ability thatz1 = a1 and z2 = a2
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8.2.4 Differential entropy

The extension of entropy to continuous-valued random variables or random vec-
tors is algebraically straightforward. For a random variable with probability density
function pz we define thedifferential entropy, denoted byH just like entropy, as
follows:

H(z) =−
∫

pz(z) logpz(z)dz (8.20)

So, basically we have just replaced the summation in the original definition in Equa-
tion (8.11) by an integral. The same definition also applies in the case of a random
vector.

It is not difficult to see what kind of random variables have small differential
entropies. They are the ones whose probability densities take large values, since
these give strong negative contributions to the integral inEq. (8.20). This means
that certain small intervals are quite probable. Thus we again see that entropy is
small when the variable is not very random, that is, it is typically contained in some
limited intervals with high probabilities.

Differential entropy is related to the shortest code lengthof adiscretizedversion
of the random variablez. Suppose we discretizez so that we divide the real line
to bins (intervals) of lengthd, and define a new discrete-valued random variable ˜z
which tells which of these bins the value ofz belongs to. This is similar to using
a limited number of decimals in the representation, for example using only one
decimal place as in “1.4” to represent the values of the random variable. Then, the
entropy ofz̃ is approximately equal to the differential entropy ofz plus a constant
which only depends on the size of the bins,d.

Example 5 Consider a random variablez which follows a uniform distribution in
the interval[0,a]: Its density is given by

pz(z) =

{

1/a, for 0≤ z≤ a

0, otherwise
(8.21)

Differential entropy can be evaluated as

H(z) =−
∫ a

0

1
a

log
1
a

dz= loga (8.22)

We see that the entropy is large ifa is large, and small ifa is small. This is natural
because the smallera is, the less randomness there is inz. Actually, in the limit
whereagoes to 0, differential entropy goes to−∞, because in the limit,z is no longer
random at all: it is always 0. This example also shows that differential entropy, in
contrast to basic entropy, need not be non-negative.
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8.2.5 Maximum entropy

An interesting question to ask is: What kind of distributions have maximum en-
tropy?

In the binary case in Example 1, we already saw that it was the distribution
with 50%-50% probabilities which is clearly consistent with the intuitive idea of
maximum uncertainty. In the general discrete-valued case,it can be shown that the
uniform distribution (probabilities of all possible values are equal) has maximum
entropy.

With continuous-valued variables, the situation is more complicated. Differential
entropy can become infinite; consider, for example whena→∞ in Example 5 above.
So, some kind of constraints are needed. The simplest constraint would perhaps be
to constrain the random variable to take values only inside afinite interval[a,b]. In
this case, the distribution of maximum entropy is, again, the uniform distribution,
i.e. a pdf which equals1

b−a in the whole interval and is zero outside of it. However,
such a constraint may not be very relevant in most applications.

If we consider random variables whosevariance is constrainedto a given value
(e.g. to 1), the distribution of maximum entropy is, interestingly, the gaussian distri-
bution. This is why the gaussian distribution can be considered the least “informa-
tive”, or the least “structured”, of continuous-valued distributions.

This also means that differential entropy can be considereda measure ofnon-
gaussianity. The smaller the differential entropy, the further away thedistribution
is from the gaussian distribution. However, it must be notedthat differential en-
tropy depends on the scale as well. Thus, if entropy is used asa measure of non-
gaussianity, the variables have to normalized to unit variance first, just like in the
case of kurtosis. We will see in Section 8.4 how differentialentropy is, in fact,
closely related to the sparseness measures we used in Chapter 6.

8.3 Mutual information

In information transmission, we need a measure of how much information the output
of the channel contains about the input. This the purpose of the concept of mutual
information.

Let’s start with the concept ofconditional entropy. It is simply the average en-
tropy calculated for the conditional distribution of the variablez, where the condi-
tioning is by the observation of another variabley:

H(z|y) =−∑
y

P(y)∑
z

P(z|y) logP(z|y) (8.23)

That is, it measures how much entropy there is left inzwhen we know (observe) the
value ofy; this is averaged over all values ofy.
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If z andy are independent, the conditional distribution ofz giveny is the same
as the distribution ofz alone, so conditional entropy is the same as the entropy of
z. If z andy are not independent, conditional entropy is smaller than the entropy
of z, because then knowledge of the value ofy reduces the uncertainty onz. In
the extreme case wherez= y, the conditional distributionz giveny is such that all
the probability is concentrated on the observed value ofy. The entropy of such a
distribution is zero (see Example 3 above), so the conditional entropy is zero.

Let us assume thatz is the message input to a transmission channel andy is the
output, i.e. the received signal. Basically, if transmission is very good, knowledge
of y will tell us very much about whatz was. In other words, the conditional distri-
bution ofzgiveny is highly concentrated on some values. So, we could measure the
transmitted information by the change in entropy which is due to measurement ofy.
It is called the mutual information, which we denote2 by J:

J(z,y) = H(z)−H(z|y) (8.24)

Just as entropy gives the code length of the optimal code, mutual information is
related to the amount of information which can be obtained aboutz, based on obser-
vation of the channel outputy.

Note that, in practice, mutual information depends not onlyon the noise in the
channel, but also on how we code the data as the variablez in the first place. There-
fore, to characterize the properties of the channel itself,we need to consider the
maximum of mutual information over all possible ways of coding z. This is called
channel capacityand gives the maximum amount of information which can be trans-
mitted through the channel.

A generalization of mutual information to many variables isoften used in the
theory of ICA. In that case, the interpretation as information transmitted over a
channel is no longer directly applicable. The generalization is based on the fact that
mutual information can be expressed in different forms:

J(z,y) = H(z)−H(z|y) = H(y)−H(y|z) = H(z)+H(y)−H(z,y) (8.25)

whereH(z,y) is thejoint entropy, which is simply obtained by defining a new ran-
dom variable so that it can take all the possible combinations of values ofz andy.
Based on this formula, we define mutual information ofn random variables as

J(z1,z2, . . . ,zn) =
n

∑
i=1

H(zi)−H(z1,z2, . . . ,zn) (8.26)

The utility in this quantity is that it can be used a measure ofindependence: it is
always non-negative and zero only if the variableszi are independent.

2 We use a non-conventional notationJ for mutual information because the conventional one,I ,
could be confused with the notation for an image.
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Conditional entropy, joint entropy, and mutual information can all be defined for
continuous-valued variables by using differential entropy in the definitions instead
of ordinary entropy.

8.4 Minimum entropy coding of natural images

Now, we discuss the application of the information-theoretic concepts in the context
of natural image statistics. This section deals with data compression models.

8.4.1 Image compression and sparse coding

Consider first the engineering application of image compression. Such compression
is routinely performed when images are transmitted over theInternet or stored on a
disk. Most successful image compression methods begin witha linear transforma-
tion of image patches. The purpose of such a transformation is to reduce (differen-
tial) entropy. Grey-scale values of single pixels have a much larger entropy than, for
example, the coefficients in a Fourier or discrete cosine transform (DCT) basis (at
least when these are applied on small patches). Since the coefficients in those bases
have smaller differential entropy, discretized (quantized) versions of the coefficients
are easier to code: the quantization error, i.e. the error inquantizing the coefficients
for a fixed code length, in reduced. This is why such a transformation is done as the
first step.

This means that the optimal linear transformation of imagesas the first step of
a compression method would be a transformation which minimizes the differential
entropy of the obtained components. This turns out to be related to sparse coding,
as we will now show.

Let us consider the differential entropy of a linear component s. How can we
compute the valueH(s) using the definition in Equation (8.20) in practice? The key
is to understand that entropy is actually the expectation ofa nonlinear function ofs.
We have

H(s) = E{G(s)} (8.27)

where the functionG is the negative of the log-pdf:G(s) =− logps(s). In practice,
we have a sample ofs, denote it bys(t),t = 1, . . . ,T. Assume we also have reason-
able approximation ofG, that is, we know rather well what the log-pdf is like. Then,
differential entropy can be estimated as the sample averagefor a fixedG as

H(s) =
1
T ∑

t
G(s(t)) (8.28)

Comparing this with Equation (6.2) on page 139, we see that differential entropy is
similar the sparseness measures we used in sparse coding. Infact, in Section 7.7.2 it
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was shown that the optimal sparseness measures are obtainedwhen we use exactly
the log-pdf ofs as the nonlinearity. Thus,differential entropy is the optimal sparse-
ness measurein the sense of Section 7.7.2: it provides the maximum likelihood
estimator of the ICA model.

However, there is one important point which needs to be takeninto account. The
sparseness measures assumed that the variance ofs is constrained to be equal to
one. This is consistent with the theory of ICA which tells that the transformation
should be orthogonal in the whitened space. In contrast, in image compression, the
transformation giving the components is usually constrained to be orthogonal (in the
original image space). One reason is that then the quantization error in the image
space is the same as the quantization error in the component space. This makes
sense because then minimizing quantization error for the components is directly
related to the quantization error of the original image. In contrast, any method which
whitens the data amplifies high-frequency components whichhave low variance,
thus emphasizing errors in their coding. So, the quantization error in the components
is not the same as the error in the original image—which is what we usually want to
minimize in engineering applications.

If we consider transformations which are orthogonal in the original space, the
constraint of unit variance of a components is not at all fulfilled. For example, PCA
is an orthogonal transformation which finds components withmaximally different
variances. From the viewpoint of information theory, logp changes quite a lot as
a function of variance, so using a fixedG may give a very bad approximation of
entropy. So, while sparse coding, as presented in Chapter 6,is related to finding
an optimal basis for image compression, it uses a rather unconventional constraint
which means it does not optimize the compression in the usualsense.

8.4.2 Mutual information and sparse coding

Information-theoretic concepts allow us to see the connection between sparse cod-
ing and ICA from yet another viewpoint. Consider a linear invertible transformation
y = Vz of a random vectorz which iswhite. The mutual information between the
componentsyi is equal to

J(y1, . . . ,yn) =
n

∑
i=1

H(vT
i z)−H(Vz) (8.29)

Recall that mutual information can be interpreted as a measure of dependence. Now,
let us constrainV to be orthogonal. Then, we haveH(Vz) = H(z) because theshape
(in an intuitive sense) of the distribution is not changed atall: an orthogonal trans-
formation simply rotates the pdf in then-dimensional space, leaving its shape intact.
This means that the values taken bypz and logpz in the definition in Equation (8.20)



196 8 Information-theoretic interpretations

are not changed; they are just taken at new values ofz. That is why differential en-
tropy is not changed by an orthogonal transformation of the data.3

So, to minimize the mutual information, we simply need to findan orthogonal
transformation which minimizes the differential entropies of the components; this
is the same as maximizing the nongaussianities of the components. And for sparse
data, maximizing non-gaussianity is usually the same as maximizing sparseness.
Thus, we see that under the constraint of orthogonality,sparse coding is equiva-
lent to minimization of the dependence of the components, if the data is white. This
provides another deep link between information theory, sparse coding, and indepen-
dence.

8.4.3 Minimum entropy coding in the cortex

A very straightforward application of the data compressionprinciple is then to as-
sume that V1 “wants” to obtain a minimum entropy code. This isvery well in line
with the results on sparse coding and ICA in Chapters 6 and 7, because we have just
shown that the objective functions optimized there can be interpreted as differential
entropies and code lengths. Basically, what information theory provides is a new
interpretation of the objective functions used in learningsimple cell receptive fields.

Yet, it is not quite clear whether such an entropy-based arguments are relevant to
the computational tasks facing the visual cortex. A critical discussion on the analogy
between compression and cortical coding is postponed to Section 8.6.

8.5 Information transmission in the nervous system

Following the fundamental division of information theory into compression and
transmission, the second influential application of information theory to visual cod-
ing considers maximization of data transmission, usually called simply infomax.

8.5.1 Definition of information flow and infomax

Assume thatx is a continuous-valued random vector. It is the input to a neural
system, which is modelled using a linear-nonlinear model (see Section 3.4.1), with

3 A rigorous proof is as follows: denotingy = Vz, we simply havepy(y) = pz(VTy) for an or-
thogonalV. The basic point is that the absolute value of the determinant of the transformation
matrix needed in transforming pdf’s, or variables in an integral formula, (see Section 7.4) is equal
to one for an orthogonal transformation, so it can be omitted. Thus, we have

∫
py(y) logpy(y)dy =

∫
pz(VTy) logpz(VTy)dy. In this integral we make a change of variablesz̃ = VTy and we get

∫
pz(z̃) logpz(z̃)dz̃.
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additive noise. Thus, outputs are of the form

yi = φi(bT
i x)+n (8.30)

where theφi are some scalar functions, thebi are the connection weight vectors of
the neurons, andn is a vector of white gaussian noise. That is, the neural network
first computes a linear transformation of the input data, with the coefficients given by
network connection weightsbi ; then it transforms the outputs using scalar functions
φi , and there is noise in the system.

Let us consider information flow in such a neural network. Efficient information
transmission requires that we maximize the mutual information between the inputs
x and the outputsy, hence the name “infomax”. This problem is meaningful only
if there is some information loss in the transmission. Therefore, we assume that
there is some noise in the network; in practice, we have to assume that the noise is
infinitely small to be able to derive clear results. We can then ask how the network
parameters should be adapted (learned) so as to maximize information transmission.

8.5.2 Basic infomax with linear neurons

To begin with, we shall consider the very basic case where there are actually no non-
linearities: we defineφ(u) = u, and the noise has constant variance. (It may seem
odd to say that white noise has constant variance, because that seems obvious. How-
ever, in Section 8.5.4 we will consider a model where the variance is not constant
because that is the case in neural systems.)

By definition of mutual information, we have

J(x,y) = H(y)−H(y|x) (8.31)

In the present case, the conditional distribution ofy givenx is simply the distribution
of the gaussian white noise. So, the entropyH(y|x) does not depend on the weights
bi at all: it is just a function of the noise variance. This meansthat for the purpose
of finding thebi which maximize information flow, we only need to consider the
output entropyH(y). This is true as long as the noise variance is constant.

To simplify the situation, let us assume, just for the purposes of this section, that
the transformation matrixB, with thebi as its rows, is orthogonal. Then,y is just an
orthogonal transformation ofx, with some noise added.

Furthermore, in all infomax analysis, we consider the limitwhere the noise vari-
ance goes to zero. This is because simple analytical resultscan only be obtained in
that limit.

So, combining these assumptions and results, infomax for linear neurons with
constant noise variance boils down to the following: we maximize the entropyH(y),
wherey is an orthogonal transformation ofx. Noise does not need to be taken into
account because we consider the limit of zero noise. But, as shown in Section 8.4.2,
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an orthogonal transformation does not change differentialentropy, so the informa-
tion flow does not depend onB at all!

Thus, we reach the conclusion that for linear neurons with constant noise vari-
ance, the infomax principle does not really give anything interesting. Fortunately,
more sophisticated variants of infomax are more interesting. In the next subsections,
we will consider the two principal cases: noise of constant variance with nonlinear
neurons, and noise of non-constant variance with linear neurons.

8.5.3 Infomax with nonlinear neurons

8.5.3.1 Definition of model

First, we consider the case where

1. the functionsφi are nonlinear. One can build a more realistic neuron model by
taking a nonlinearity which is saturating, and has no negative outputs.

2. The vectorn is additive gaussian white noise.This is the simplest noisemodel to
begin with.

Maximization of this mutual informationJ(x,y) is still equivalent to maximiza-
tion of the output entropy, as in the previous subsection. Again we take the limit
where the noise has zero variance. We will not go into detailshere, but it can be
shown that the output entropy in this nonlinear infomax model then equals

H(y) = ∑
i

E{logφ ′i (bT
i x)}+ log|detB| (8.32)

It turns out that this has a simple interpretation in terms ofthe ICA model. Now
we see that the output entropy is of the same form as the expectation of the likelihood
as in Equation (7.15). The pdf’s of the independent components are here replaced
by the functionsφ ′i . Thus, if the nonlinearitiesφi used in the neural network are
chosen as the cumulative distribution functions corresponding to the densitiespi of
the independent components, i.e.,φ ′i (·) = pi(·), the output entropy is actually equal
to the likelihood. This means that infomax is equivalent to maximum likelihood
estimation of the ICA model.

Usually, the logistic function

φi(u) =
1

1+exp(−u)
(8.33)

is used in the nonlinear infomax model (see Fig. 8.2 a). This estimates the ICA
model in the case of sparse independent components, becauseif we interpretφ ′i as a
pdf, it is sparse. In fact, the log-pdf given by logφ ′i is nothing else than the familiar
logcosh function (with negative sign and some unimportant constants), which we
have used as a measure of sparseness in Chapter 6, and as a model of a smooth
sparse log-pdf in Equation (7.19).
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8.5.4 Infomax with non-constant noise variance

Here, we present some critique of the nonlinear infomax model, and propose an
alternative formulation.

8.5.4.1 Problems with nonlinear neuron model

Using a logistic function as in Equation (8.33) is a correct way of estimating the ICA
model for natural image data in which the components really are super-gaussian.
However, if the transfer functionφi is changed to the gaussian cumulative distri-
bution function, the method does not estimate the ICA model anymore, since this
would amount to assuming gaussian independent components,which makes the es-
timation impossible. An even worse situation arises if we change the functionφi so
thatφ ′i is the pdf of a sub-gaussian (anti-sparse) distribution. This amounts to esti-
mating the ICA model assuming sub-gaussian independent components. Then, the
estimation fails completely because we have made a completely wrong assumption
on the distribution of the components.

Unfortunately, the three nonlinear functionsφi corresponding to Equation (8.33),
the gaussian case, and one particular sub-gaussian case look all very similar, how-
ever. This is illustrated in Fig. 8.2 a). All the three functions have the same kind of
qualitative behaviour. In fact, all cumulative distribution functions look very similar
after appropriate scaling along the x-axis.

It is not very likely that the neural transfer functions (which are only crude ap-
proximations anyway) would consistently be of the type in Eq. (8.33), and not closer
to the two other transfer functions. Thus,the model can be considered to be non-
robust, that is, too sensitive to small fluctuations in its parameters.4

8.5.4.2 Using neurons with non-constant variance

A possible solution to the problems with nonlinear infomax is to consider a more
realistic noise model. Let us thus take the linear function as φi , and change the
definition of the noise term instead.

What would be a sensible model for the noise? Many classic models of neurons
assume that the output is coded as the mean firing rate in a spike train, which follows
a Poisson process. Without going into details, we just note that in that case, the
variance of mean firing rate has a variance that is equal to itsmean. Thus, we have

var(ni |x) ∝ r + |bT
i x| (8.34)

4 It could be argued that the nonlinear transfer function can be estimated from the data and it need
not be carefully chosen beforehand, but this only modifies this robustness problem because then
that estimation must be very precise.
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Fig. 8.2:a) Three sigmoidal nonlinearities corresponding to logistic, gaussian, and sub-gaussian
(with log-pdf proportional to−x4) prior cumulative distributions for the independent components.
The nonlinearities are practically indistinguishable. (Note that we can freely scale the functions
along the x-axis since this has no influence on the behaviour in ICA estimation. Here we have
chosen the scaling parameters so as to emphasize the similarity.) b) Three functionsh that give
the dependencies of noise variance (functionsh) which are equivalent to different distributions.
Solid line: basic Poisson like variance as in Eq. (8.36), corresponding to a sparse distribution.
Dashed line: the case of gaussian distribution as in Eq. (8.39). Dotted line: the sub-gaussian distri-
bution used in a). Here, the function in the basic Poisson-like variance case is very different from
the others, which indicates better robustness for the modelwith changing noise variance. From
(Hyvärinen, 2002), Copyrightc©2002 Elsevier, used with permission

wherer is a constant that embodies the spontaneous firing rate whichis not zero
(and hence does not have zero noise). We take the absolute value of bT

i x because
we consider the output of a signed neuron to be actually codedby two different
neurons, one for the negative part and one for the positive part. The distribution of
noise in mean firing rate is non-gaussian in the Poisson process case. However, in
the following we approximate it as gaussian noise: The fundamental property of this
new type of noise is considered to be the variance behaviour given in Eq. (8.34), and
not its non-gaussianity. Therefore, we call noise with thiskind of variance behaviour
“noise withPoisson-like variance” instead of Poisson noise.

A more general form of the model can be obtained by defining thevariance to
be a nonlinear function of the quantity in Eq. (8.34). To investigate the robustness
of this model, we do in the following all the computations in the more general case
where

var(ni|x) = h(bT
i x) (8.35)

whereh is some arbitrary function with non-negative values, for example

h(u) = r + |u| (8.36)

in the case of Eq. (8.34).
It then can be shown that the mutual information in the limit of zero noise is

equal to
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J(x,y) = log|detB|−∑
i

E{log
√

h(bT
i x)}+const. (8.37)

where terms that do not depend onB are grouped in the constant. A comparison
of Eq. (8.37) with Eq. (8.32) reveals that in fact, mutual information is of the same
algebraic form in the two cases. By takingh(u) = 1/φ ′i (u)2, we obtain an expression
of the same form. Thus, we see thatconsidering noise with non-constant variance,
we are able to reproduce the same results as with a nonlinear transfer function.

If we consider the basic case of Poisson-like variance, which means defining the
function h so that we have Eq. (8.34), this is equivalent to the nonlinear infomax
with

φ ′i (u) =
1

√

r + |u|
(8.38)

In the nonlinear infomax,φ ′i corresponds to the probability density function assumed
for the independent component. The function in (8.38) is an improper probability
density function, since it is not integrable. However, its qualitative behaviour is typ-
ically super-gaussian: very heavy tails and a peak at zero.

Thus, in the basic case of Poisson-like variance, the infomax principle is equiva-
lent to estimation of the ICA model with this improper prior density for the compo-
nents. Since the choice of nonlinearity is usually criticalonly along the sub-gaussian
vs. super-gaussian axis, this improper prior distributioncan still be expected to prop-
erly estimate the ICA model for most super-gaussian components.5

To investigate the robustness of this model, we can considerwhat the noise vari-
ance structure should be like to make the estimation of super-gaussian components
fail. As with the nonlinear infomax, we can find a noise structure that corresponds
to the estimation of gaussian independent components. In the limit of r = 0, we have
the relationh(u) = 1/φ ′(u)2, and we see that the gaussian case corresponds to

h(u) ∝ exp(u2) (8.39)

This is a fast-growing (“exploding”) function which is clearly very different from
the Poisson-like variance structure given by the essentially linear function in Equa-
tion (8.36). In the space of possible functionsh that define the noise structure in this
model, the function in Eq. (8.39) can be considered as a borderline between those
variance structures that enable the estimation of super-gaussian independent com-
ponents, and those that do not. These two different choices for h, together with one
corresponding to sub-gaussian independent components (see caption) are plotted in
Fig. 8.2 b). The Poisson-like variance is clearly very different from the other two
cases.

Thus, we may conclude that the model with Poisson-like variance is quite robust
against changes of parameters in the model, since the main parameter is the function

5 There is, however, the problem of scaling the components. Since the improper density has infinite
variance, the estimates of the components (and the weight vectors) grow infinitely large. Such be-
haviour can be prevented by adding a penalty term of the formα ∑i ‖wi‖2 in the objective function.
An alternative approach would be to use a saturating nonlinearity asφi , thus combining the two
infomax models.
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h, and this can change qualitatively quite a lot before the behaviour of the model
with respect to ICA estimation changes. This is in contrast to the nonlinear infomax
principle where the nonlinearity has to be very carefully chosen according to the
distribution of the data.

8.6 Caveats in application of information theory

We conclude this chapter with a discussion on some open problems encountered in
the application of information theory to model cortical visual coding in the context
of natural image statistics.

Classic information theory is fundamentally a theory of compression and trans-
mission of binary strings. It is important to askIs this theory really useful in the study
of cortical visual representations?Often, the concepts of information theory are di-
rectly applied in neuroscience simply because it is assumedthat the brain processes
“information”. However, the concept of information, or theway it is processed, may
be rather different in the two cases.

In the data compression scheme, we start with a binary string, i.e. a sequence
of zeros and ones. We want to transform the vectors into a another string, so that
the string is as short as possible. This is basically accomplished by coding the most
frequent realizations by short substrings or codewords, and using longer codewords
for rarely occurring realizations. Such an approach has been found immensely useful
in storage of information in serial digital computers.

However, if the processing of information is massively parallel, as in the brain,
it is not clear what would be the interpretation of such reduction in codelength.
Consider an image that is coded in the millions of neurons in V1. A straightforward
application of information theory would suggest that for some images, we only use
k1 neurons, where each neuron codes for one digit in the string,whereas others
needk2 neurons wherek2 > k1. Furthermore, an optimal image code would be one
where the average number of neurons is minimized. Yet, the number of neurons that
are located in, say, the primary visual cortex is just the same for different stimuli. It
would be rather absurd to think that some region of V1 is not needed to represent the
most probable images. Even if some cells are not activated above the spontaneous
firing rate, this lack of activation is an important part of the code, and does not mean
that the neuron is not “part of the code”.

In fact, in sparse coding the active neurons are assumed to bedifferent for differ-
ent stimuli, and each neuron is more or less equally important for representing some
of the stimuli. While sparseness, when interpreted in termsof entropy, has some
superficial similarity to information theoretic arguments, reducing the length of a
string is very different from sparse coding because sparse coding is fundamentally
a parallel scheme where no sequential order is given to the neurons, and the outputs
of all neurons are needed to reconstruct the stimulus. That is, there is no reduc-
tion of code “length” because the number of coding units needed for reconstructing
the stimulus is always the same, i.e. the total number of neurons. The whole con-
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cept of “length” is not well-defined in the case of massively parallel and distributed
processing. Reducing the length of a string is fundamentally an objective inserial
information processing.

Another motivation for application of information theory in learning optimal rep-
resentations comes from transmission of data. Optimal transmission methods are
important in systems where data have to be sent through a noisy channel of limited
capacity. Again, the basic idea is to code different binary sequences using other bi-
nary strings, based on their probabilities of occurrence. This allows faster and more
reliable transmission of a serial binary signal.

Such “limited-capacity channel” considerations may be quite relevant in the case
of the retina and optic nerve as well as nerves coming from other peripheral sensory
organs. Another important application for this theory is inunderstanding coding
of signals using spike trains. However, in V1, a limited capacity channel may be
difficult to find. A well-known observation is that the visualinput coming from the
lateral geniculate nucleus (LGN) is expanded in the V1 by using a representation
consisting of many more neurons than there are in the LGN. So,the transmission of
information from LGN to V1 may not be seriously affected by the limited capacity
of the “channel”. Yet, the limited capacity of the channel coming to V1 is the basic
assumption in infomax models.6

Thus, we think application of information-theoretical arguments in the study of
cortical visual coding has to be done with some caution. Borrowing of concepts
originally developed in electrical engineering should be carefully justified. This is
an important topic for future research.

8.7 Concluding remarks and References

Information theory provides another viewpoint to the utility of statistical modelling
of images. The success in tasks such as compression and transmission depends on
finding a useful representation of the data, and informationtheory points out that
the optimal representation is the one which provides the best probabilistic model.
Some studies therefore apply information-theoretic concepts to the study of natural
image statistics and vision modelling. The idea of minimum-entropy coding gives
some justification for sparse coding, and information transmission leads to objec-
tive functions which are sometimes equivalent to those of ICA. Nevertheless, we
take here a more cautious approach because we think it is not clear if information
theoretical concepts can be directly applied in the contextof neuroscience, which
may be far removed from the original digital communicationssetting in which the
theory was originally developed.

A basic introduction to information theory is (Mackay, 2003). A classic reference
which can be read as an introduction as well is (Cover and Thomas, 2006).

6 Possibly, the channelfrom V1 to V2 and other other extrastriate areas could have a very limited
capacity, but that is not the usual assumption in current infomax models.
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Basic and historical references on the infomax principle are (Laughlin, 1981;
van Hateren, 1992; Linsker, 1988; Fairhall et al, 2001). Thenonlinear infomax
principle was introduced in (Nadal and Parga, 1994; Bell andSejnowski, 1995).
Infomax based on noise models with non-constant variance were introduced by
(van Vreeswijk, 2001; Hyvärinen, 2002), using rather different motivations. Pois-
son models for spike trains are discussed in (Dayan and Abbott, 2001). Information
content in spike trains in considered in, e.g. (Rieke et al, 1997). Another critique of
the application of infomax principles to cortical coding can be found in (Ringach
and Malone, 2007).

8.8 Exercices

Mathematical exercises

1. Consider the set of all possible probability distributions for a random variable
which takes values in the set{1,2, . . . ,100}. Which distribution has minimum
entropy?

2. Prove Equation (8.25).
3. Consider a general (not standardized) one-dimensional gaussian distribution,

with pdf given by

p(z) =
1√
2πσ

exp(− 1
2σ2 (z− µ)2) (8.40)

Compute its differential entropy. When it is maximized? When minimized?
4. Consider a random variablezwith pdf

1
σ

p0(
z
σ

) (8.41)

wherez takes values on the whole real line, and the functionp0 is fixed. Compute
the differential entropy as a function ofσ andp0.

5. * Assume we have a random vectorz with pdf pz, and differential entropyH(z).
Consider a linear transformationy = Mz. What is the differential entropy ofy?
Hint: don’t forget to use the probability transformation formula involving the
determinant ofM , as in Equation (7.13); and note that the preceding exerciseis
a special case of this one.

Computer assignments

1. Let’s consider discrete probability distributions which take values in the set
{1,2, . . . ,100}. Create random probabilities for each of those values taken(re-
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member to normalize). Compute the entropy of the distribution. Repeat this 1,000
times. Find the distribution which had the largest and smallest entropies. What
do they look like? Compare with results in Examples 2 and 3.





Part III
Nonlinear features & dependency of linear

features





Chapter 9
Energy correlation of linear features &
normalization

It turns out that when we estimate ICA from natural images, the obtained compo-
nents are not really independent. This may be surprising since after all, in the ICA
model, the components are assumed to be independent. But it is important to under-
stand that while the components in the theoretical model areindependent, theesti-
matesof the components ofreal image dataare often not independent. What ICA
does is that it finds the most independent components that arepossible by a linear
transformation, but a linear transformation has so few parameters that the estimated
components are often quite far from being independent. In this chapter and the fol-
lowing ones, we shall consider some dependencies that can beobserved between
the estimated independent components. They turn out to be extremely interesting
both from the viewpoint of computational neuroscience and image processing. Like
in the case of ICA, the models proposed here are still very farfrom providing a
complete description of natural image statistics, but eachmodel does exhibit some
very interesting new phenomena just like ICA.

9.1 Why estimated independent components are not independent

9.1.1 Estimates vs. theoretical components

A paradox with ICA is that in spite of the name of the method, the estimated com-
ponents need not be independent. That is, when we have a sample of real image
patches, and estimate the independent components by an ICA algorithm, we get
components which are usually not independent. The key to this paradox is the dis-
tinction between the estimated components and theoreticalcomponents. The theo-
retical components, which do not really exist because they are just a mathematical
abstraction, are assumed to be independent. However, what an ICA algorithm gives,
for any real data, is estimates of those theoretical components, and the estimates do

209
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not have all the properties of the theoretical components. In particular, the estimates
need not be independent.

Actually, it is not surprising that the components estimated by ICA are not inde-
pendent. If they were, the statistical structure of naturalimages would be completely
described by the simple ICA model. If we knew the linear featuresAi and the dis-
tributions of the independent components, we would know everything there is to
know about the statistical structure of natural images. This would be rather absurd,
because natural images are obviously an extremely complex data set; one could say
it is as complex as our world.

There are two different reasons why the estimates need not have the properties
assumed for the theoretical components. First, the real data may not fulfill the as-
sumptions of the model. This is very often the case, since models are basically ab-
stractions or approximations of reality. (We will see belowhow the ICA model does
not hold for natural image data.) The second reason is randomfluctuation, called
sampling effect in statistics: When we estimate the model for a finite number of
image patches, we have only a limited amount of information about the underlying
distribution, and some errors in the estimates are bound to occur because of this.

Consider, for example, the two-dimensional data in Fig. 9.1. This data is white
(uncorrelated and unit variance), so we can constrain the ICA matrix to be orthogo-
nal. If we input this data into an ICA algorithm, the algorithm says that the horizon-
tal and vertical axis (say,s1 ands2) are the “independent components”. However, it
is easy to see that these components are not independent: If we know thats1 is zero,
we know thats2 cannot be zero. Thus, information on one of the components gives
information on the other component, so the components cannot be independent.
This data does not follow the ICA model foranyparameter values.

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 9.1: Scatter plot of a distribution which cannot be linearly decomposed to independent compo-
nents. Thus, the estimated components (given by the horizontal and vertical axes) are dependent.
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9.1.2 Counting the number of free parameters

Another way of looking at this paradox is to think of the number of free parameters.
A linear transformation ofn variables ton new variables hasn2 free parameters. We
can think of the problem of finding really independent components as a large system
of equations which express the independence of the obtainedcomponents. How
many equations are there? In Section 4.6 we saw that two independent components
have the following nonlinear uncorrelatedness property:

cov( f1(si), f2(sj)) = 0 (9.1)

for any nonlinear functionsf1 and f2. Now, there are an infinite number of different
nonlinearities we could use. So, based on Equation (4.42) wecan form an infinite
number of different equations (constraints) that need to befulfilled, but we only
have a finite number of free parameters, namelyn2. Thus, it is clear1 that usually,
no solution can be found!

Note that the situation with respect to independence is in stark contrast to the
situation with whitening. As we saw in Chapter 5, we canalwaysfind a linear
transformation which gives uncorrelated, and further whitened, components. This
is because whitening only needs to consider the covariance matrix, which has a rel-
atively small number of free parameters. In fact, the numberof equations we get is
n(n+1)/2 (because the covariance is a symmetric operation, this is the number of
free parameters), which is smaller thann2, so we can find a transformation which
whitens the data.

9.2 Correlations of squares of components in natural images

Now, let us consider the dependencies of the components estimated in the Chapter 7.
The components are forced to be exactly uncorrelated by the ICA method we used.
So, any dependencies left between the components must take the form of some kind
of nonlinear correlations. Let us compute correlations of the type in Equation (9.1)
for different nonlinear functionsf (we use the same function as bothf1 and f2).
Because the variances of the nonlinear transformations arenot necessarily equal to
one, it is a good idea to normalize the covariance to yield thecorrelation coefficient:

corr( f (si), f (sj )) =
E{ f (si) f (sj )}−E{ f (si)}E{ f (sj)}

√
var( f (si))var( f (sj ))

(9.2)

1 Strictly speaking, we should show that we can form an infinitenumber of equations which cannot
be reduced to each other. This is too difficult to show but it islikely to be true when we look at
some arbitrary data distribution, such as the distributionof natural images. Of course, the situation
is different when the data actually follows the ICA model: inthat case we know that there is a
solution. A solution is then possible because in this very special case, the equations can be reduced,
just as if we needed to solve a system of linear equations where the matrix is not full rank.
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In Figure 9.2 we show the correlation coefficients for several different functions
f . The figure shows the histograms of all the correlation coefficients between dif-
ferent pairs of independent components estimated in Chapter 7.

It turns out that we have a strong correlation for even-symmetric functions, i.e.
functions for which

f (−s) = f (s) (9.3)

Typical examples are the square function or the absolute value (b and a in the figure).
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Fig. 9.2: Histograms of correlation coefficients of nonlinear functions of independent components
estimated from natural images.a) f (s) = |s|, b) f (s) = s2, c) f (s) is a thresholding function that
gives 0 between -1 and 1 and gives 1 elsewhere,d) f (s) = sign(s), e) f (s) = s3. Note that linear
correlations, i.e. the casef (s) = sare zero up to machine precision by definition.
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9.3 Modelling using a variance variable

Intuitively, the dependency of two components that was described above is such
that the components tend to be “active”, i.e. have non-zero outputs, at the same
time. However, the actual values of the components are not easily predictable from
each other. To understand this kind of dependency consider acase where the compo-
nentssi are defined as products of “original” independent variabless̃i and a common
“variance” variabled, which is independent of the ˜si . For simplicity, let us define
that the means of the ˜si are zeros and the variances are equal to one. Thus, we define
the distribution of the components as follows:

s1 = s̃1d (9.4)

s2 = s̃2d

...

sn = s̃nd

Now, si andsj are uncorrelated fori 6= j, but they are not independent. The idea is
thatd controls the overall activity level of the two components: if d is very small,s1

ands2 are probably both very small, and ifd is very large, both components tend to
have large absolute values.

Such dependency can be measured by the correlation of their squaress2
i , some-

times called the “energies”. This means that

cov(s2
i ,s

2
j ) = E{s2

i s2
j}−E{s2

i }E{s2
j}> 0. (9.5)

In fact, assuming that ˜si ands̃j have zero mean and unit variance, the covariance of
the squares equals

E{s̃2
i d2s̃2

j d
2}−E{s̃2

i d
2}E{s̃2

j d
2}

= E{s̃2
i }E{s̃2

j}E{d2d2}−E{s̃2
i }E{d2}E{s̃2

j}E{d2}= E{d4}−E{d2}2 (9.6)

This covariance is positive because it equals the variance of d2, and the variance of
a random variable is always positive (unless the variable isconstant).

Moreover, if the ˜si are gaussian, the resulting componentss1 ands2 can be shown
to be sparse (leptokurtic). This is because the situation for each of the components
is just the same as in Section 7.8.3: changing the variance ofa gaussian variable
creates a sparse variable. However, we do not assume here that original components
s̃i are gaussian, so the effect of the variance variables is toincreasetheir sparseness.

What is not changed from basic ICA is that the componentssi are uncorrelated
in the ordinary sense. This is because we have

E{sisj}= E{s̃i}E{s̃j}E{d2}= 0 (9.7)
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due to the independence of thed from s̃j . One can also define that thesi have vari-
ance equal to one, which is just a scaling convention as in ICA. Thus the vector
(s1,s2, . . . ,sn) can be considered to be white.

9.4 Normalization of variance and contrast gain control

To reduce the effect of the variance dependencies, it is useful to normalize the local
variance. Let us assume that the image patch is generated as alinear combination
of independent features, as in ICA. However, now the variances of the components
change from patch to patch as above. This can be expressed as

I(x,y) =
m

∑
i=1

Ai(x,y)(ds̃i) = d
m

∑
i=1

Ai(x,y)s̃i (9.8)

whered is the variance variables that gives the standard deviationat each patch. It
is a random variable because its value changes from patch to patch.

Here we made the strong assumption that the variances of all the components are
determined by a single variance variabled. This may be not a bad approximation
when considering small image patches. It simplifies the situation considerably, since
now we can simply estimated and divide the image patch byd:

Ī(x,y)← I(x,y)

d̂
(9.9)

Assuming that we have a perfect estimatord̂ = d, the normalized images̄I then
follow the basic ICA model

Ī(x,y) =
d
d

m

∑
i=1

Ai(x,y)s̃i =
m

∑
i=1

Ai(x,y)s̃i (9.10)

with the original components ˜si . In practice we don’t have a perfect estimator, so the
data will follow the ICA model only approximatively. Also, it is preferable to do

Ī(x,y)← I(x,y)

d̂+ ε
(9.11)

whereε is a relatively small constant that prevents division by zero or a very small
number.2

This kind of normalization of variances is calledcontrast gain control. It can
be compared with the subtraction of the DC component: an unrelated (irrelevant)
variable that has a strong effect on the statistics of the features we are modelling is
removed so that we have a more direct access to the statistics.

2 A reasonable method for determiningε might be to take the 10% quantile of the values ofd,
which we did in our simulations.
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For small image patches, one rather heuristic approach is tosimply estimated
using the norm of the image patch

d̂ = c
√

∑
x,y

I(x,y)2 (9.12)

wherec is a constant that is needed to make thesi have unit variance after normal-
ization; it depends of the covariance matrix of the data. Usually, however, we do not
need to computec because it only changes the overall scaling of the data.

When we normalize the contrast as described here, and compute the output of
linear feature detector, the result is closely related to the neurophysiological model
of divisive normalization, see Equation (3.9) on page 65. The output of the linear
feature detector is then computed as

s̃=
∑x,yW(x,y)I(x,y)
√

∑x,y I(x,y)2 + ε
(9.13)

In the divisive normalization model, the denominator was essentially the sum of the
squares of the outputs of linear feature detectors. Here, wehave the norm of the
image patch instead. However, these two can be closely related to each other if the
set of linear feature detectors form an orthogonal basis fora small image patch; then
the sum of squares of pixel values and feature detectors are exactly equal.

The approach to estimatingd in this section was rather ad hoc. A more principled
method for contrast gain control could be obtained by properly defining a probability
distribution ford together with the ˜s, and estimating all those latent variables using
maximum likelihood estimation or some other principled methods. Furthermore, if
the model is to be used on whole images instead of small patches, a single variance
variable is certainly insufficient. This is still an area of ongoing research, see the
References section for more information.

Let us just mention here a slight modification of the divisivenormalization in
Equation (9.11) and (9.12) which has been found useful in some contexts. The idea
is that one could compute a weighted sum of the pixel valuesI(x,y) to estimate the
variance variable. In particular, low frequencies dominate Equation (9.12) because
they have the largest variances. This effect could be eliminated by computing a
whitening matrix and using the norms of the patches in the whitened space aŝd.
Note that the divisive normalization destroys the whiteness of the data, so after such
normalization, the whitening matrix has to be recomputed, and the data has to be
whitened with this new whitening matrix.
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9.5 Physical and neurophysiological interpretations

Why are the variances, or general activity levels, so strongly correlated, and what
is the point in contrast gain control? A number of intuitive explanations can be put
forward.

9.5.1 Cancelling the effect of changing lighting conditions

The illumination (lighting) conditions can drastically change from one image to
another. The same scene can be observed under very differentlighting conditions,
think for example of daylight, dusk, and indoor lighting. The light coming onto the
retina is a function of the reflectances of the surfaces in thescene (R), and the light
(illuminance) level (L). In fact, the reflectances are multiplied by the illuminance to
give the luminanceI arriving at the retina:

I(x,y) = L(x,y)R(x,y) (9.14)

In bright daylight, the luminance levels are uniformly larger than in an indoor room,
and so are the contrasts. The average luminance level is not visible in our images
because we have removed the DC component, which is nothing else than the mean
luminance in an image patch. But the general illuminance level still has a clear effect
on the magnitude of the contrasts in the image, and these are seen in the values of the
independent components. In a whole scene the illuminance may be quite different in
different parts of the image due to shadows, but in a small image patch illuminance is
likely to be approximately the same for all pixels. Thus, thesingle variance variable
d, which does not depend onx or y, could be interpreted as the general illuminance
level in an image patch.

In this interpretation, the utility of divisive normalization is that it tries to estimate
the reflectancesRof the surfaces (objects). These are what we are usually interested
in, because they are needed for object recognition. IlluminanceL is usually not of
much interest.

9.5.2 Uniform surfaces

A second reason for the correlated changes in the variances of features outputs is
what is called the “blue sky effect”. Natural images containlarge areas of almost
zero contrast, such as the sky. In such areas, the variances of all the independent
components should be set to almost zero. Thus, the variance variabled is related to
whether the image patch is in a uniform surface or not. This would partly explain
the observed changes in the variances of the components, butthis does not seem to
explain utility of contrast gain control.
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9.5.3 Saturation of cell responses

Mechanisms related to gain control have been observed in many parts of the visual
system, from the retina to the visual cortex (see the References section below). Be-
fore the advent of statistical modelling, their existence was usually justified by the
limited response range of neurons. As discussed in section 3.4.1, the neurons cannot
fire above a certain firing rate. The range of contrasts that are present in the stim-
uli coming to the retina is huge because of the changes in illuminance condition:
the incoming signal can differ in several orders of magnitude. Contrast gain con-
trol is assumed to solve this problem by dividing the contrasts (to be coded by cell
responses) by a measure of the general contrast level. This leads to a very similar
computation to what our statistical modelling proposes, although our model does not
consider limited response ranges of neurons — linear RF’s have no such limitation.

9.6 Effect of normalization on ICA

Although we considered the dependencies after estimating ICA, it makes sense to
do the variance normalization before ICA. This would be theoretically optimal be-
cause then the ICA estimation would be performed on data whose distribution is
closer to the distribution given by the ICA model. In fact, the method given above
in Section 9.4 can actually normalize the patches without computing independent
components.

A valid question then is: does variance normalization affect the independent com-
ponents? Let us now estimate ICA after variance normalization to see what effect
there may be. The obtainedWi andAi are shown in Figures 9.3 and 9.4. The simi-
larity to the results obtained without variance normalization (Figs. 6.6 on page 151
and 7.3 on page 169) is striking.3

There is one important difference, however. Variance normalization makes the
components less sparse. In Fig. 9.5 we have plotted the histogram of the kurtoses of
the independent components, estimated either with and without variance normaliza-
tion. Variance normalization clearly reduces the average kurtosis of the components.
The components after variance normalization correspond toestimates ˜si .

This reduction in kurtosis is not very surprising if we recall the results in Sec-
tion 7.8.3. There, it was shown that changing variance of gaussian variables is one
mechanism for creating sparse variables. The variance variable in Equation (9.8)
does exactly that. Here, the variance variable is the same for all components, but
that does not change the situation regarding the marginal distributions of the single
components: multiplication by the variance variable makesthem more sparse. Thus,
if we cancel the effect of the variance variable, it is natural that the components be-
come less sparse.

3 However, there is some difference as well: the vectorsAi now have some spurious oscillations.
The reason for this phenomenon remains to be investigated.
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Fig. 9.3: The whole set of detector weightsWi obtained by ICA after the variances have been
normalized as in Equations (9.11) and (9.12).

In practice, normalization of the image patches only reduces the variance depen-
dencies but does not eliminate them. The process described above for modelling the
variances of the components was only a very rough approximation. Let us do the
same measurements on the variance dependencies that we did above before normal-
ization. The results are shown in Figure 9.6. We see that energy correlations still
remain, although they are now smaller.



9.7 Concluding remarks and References 219

Fig. 9.4: The whole set of featuresAi obtained by ICA after the variances have been normalized.

9.7 Concluding remarks and References

This chapter focused on the simple empirical fact that the “independent compo-
nents” estimated from natural images are not independent. This seemingly para-
doxical statement is due to the slightly misleading way the expression “indepen-
dent component” is used in the context of ICA. While ICA finds the most indepen-
dent components possible by a linear transformation, thereis no guarantee that they
would be completely independent. The dependencies observed in the case of natural
images can be partly explained by the concept of a global variance variable which
changes from patch to patch. Attempts to cancel the dependencies generated by such
a changing variance lead to divisive normalization or gain control models. However,
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Fig. 9.5: Histograms of kurtoses of independent components. a) estimatedwithout variance nor-
malization,b) estimatedwith variance normalization.
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Fig. 9.6: Histograms of correlation coefficients of nonlinear functions of independent components
estimatedwith variance normalization.a) f (s)= |s|, b) f (s)= s2, c) f (s) is a thresholding function
that gives 0 between -1 and 1 and gives 1 elsewhere. Compare with a)-c) in Fig. 9.2.
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this is merely the beginning of a new research direction — modelling dependencies
of “independent” components — which will be continued in thefollowing chapters.

The results in this chapter also point out an interesting, and very important,
change in the relationship between sparseness and independence. With linear mod-
els, maximization of sparseness is equivalent to maximization of independence,
if the linear projections are sparse (super-gaussian). Butin Section 9.6, we saw
that divisive normalizationincreases independence, as measured by correlations of
squares, whiledecreasing sparsenessas measured by kurtosis. Thus, sparseness and
independence have a simple relation in linear models only; with nonlinear process-
ing, we cannot hope to maximize both simultaneously. This point is elaborated in
(Lyu and Simoncelli, 2008); we will also return to this pointin Section 17.2.1.

A seminal work on normalizing images to get more gaussian distributions for
the components is (Ruderman and Bialek, 1994b). Simoncelliand coworkers have
proposed sophisticated methods for modelling variance dependencies in large im-
ages. They start with a fixed wavelet transform (which is similar to the ICA de-
composition, see Section 17.3.2). Since the linear basis isfixed, it is much easier to
build further models of the wavelet coefficients, which can then be used in contrast
gain control (Schwartz and Simoncelli, 2001a; Schwartz et al, 2005). More com-
plex model include hidden Markov models (Wainwright et al, 2001; Romberg et al,
2001) as well as Markov Random Fields (Gehler and Welling, 2005; Lyu and Si-
moncelli, 2007). A recent experimental work which considers different alternatives
for the functional form of divisive normalization is (Boninet al, 2006); the authors
conclude that something like the division by the norm is a good model of contrast
gain control in the cat’s LGN.

Finally, let us mention that some work considers the statistical properties of il-
lumination itself, before its interaction with objects (Dror et al, 2004; Mury et al,
2007).

Gain control phenomena can be found in many different parts of the visual sys-
tem. Some of the earliest quantitative work on the effect of natural stimuli statistics
considered gain control in the retina (Laughlin, 1981; van Hateren, 1992). Recent
work on gain control in the LGN can be found in (Bonin et al, 2006).

9.8 Exercices

Mathematical exercises

1. Show that if two componentss1 and s2 are created using a variance variable
as in Eq. (9.4), then also their absolute values have a positive correlation, i.e.
cov(|s1|, |s2|)> 0 unlessd is constant.

2. Consider a variance variabled which only takes two values:α with probability
1/2 andβ with probability 1/2. Assumes1 ands2 follow Eq. (9.4) with gaussian
s̃1 ands̃2.
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a. Show that forα,β > 0, the resulting joint pdf of(s1,s2) is a sum of two
gaussian pdf’s.

b. Takeα = 0 andβ > 0. What is the distribution now like? Can you write the
pdf?

Computer assignments

1. Take some images and sample patches from them. Then, buildtwo edge detectors
in orthogonal orientations. Compute the outputs of both edge detectors for all the
patches. Normalize the outputs to unit variance. What are the

a. the ordinary covariances and correlation coefficients ofedge detector outputs
b. the covariances and correlation coefficients of the squares of the edge detector

outputs?



Chapter 10
Energy detectors and complex cells

In preceding chapters we considered only linear features. In this chapter, we intro-
duce nonlinear features. There is an infinite variety of different kinds of nonlinear-
ities that one might use for computing such features. We willconsider a very basic
form inspired by models previously used in computer vision and neuroscience. This
approach is based on the concepts of subspaces and energy detectors. The resulting
model called “independent subspace analysis” gives nonlinear features which turn
out to be very similar to complex cells when the parameters are learned from natural
images.

10.1 Subspace model of invariant features

10.1.1 Why linear features are insufficient

In the previous chapters, we assumed that each feature is basically a linear entity.
Linearity worked in two directions: The coefficient (strength) si of the feature in
the image was computed by a linear feature detector as in Equation (7.4) on page
162, and the image was composed of a linear superposition of the featuresAi , as in
Equation (7.3) on page 161.

A problem with linear features is that they cannot representinvariances. For
example, an ideal complex cell gives the same response for a grating irrespective of
its phase. A linear feature detector cannot have such behaviour, because the response
of a linear system to a grating depends on the match between the phase of the input
and the phase of the detector, as discussed in Section 2.2.3.In higher levels of the
visual system, there are cells which respond to complex object parts irrespective of
their spatial location. This cannot be very well described by a single linear template
(feature detector), either.

223
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10.1.2 Subspaces or groups of linear features

Linear combinations are a flexible tool that is capable of computing and representing
invariant features. Let us consider a feature that consist of several vectors and all
their linear combinations. Thus, one such feature corresponds to a group of simple
linear features which are mixed together with some coefficients:

invariant feature= set of
q

∑
i=1

Ai(x,y)si for all values ofsi (10.1)

whereq is the number of vectors in a single group. This grouping of components is
closely related to the concept ofsubspacein linear algebra. The subspace spanned
by the vectorsAi for i = 1, . . . ,q is defined as the set of all the possible linear combi-
nations of the vectors. Thus, the range of values that the invariant feature represents
is a subspace.

The point is that each such subspace is representing an invariant feature by taking
different linear combinations of the vectors. Let us consider, for example, the prob-
lem of constructing a detector for some shape, so that the output of the detector does
not depend on location of that shape, i.e. it detects whetherthe shape occurs any-
where in the image. You could approach the problem by linear vectors (templates)
Ai that represent the shape in many different locations. Now, if these vectors are
dense enough in the image space, so that all locations are covered, the occurrence
of the shape in any location can be represented as a trivial linear combination of the
templates: take the coefficient at the right location to be equal to one, and all the
other coefficientssi to be zero. Thus, the subspace can represent the shape in a way
that is invariant with respect to the location, i.e. it does not depend on the location.
In fact, subspaces are even more powerful, because to represent a shape that is not
exactly in the locations given by the basic vectors, a satisfactory representation can
often be obtained by taking the average of two or more templates in nearby locations
(say, just to the left and just to the right of the actual location). It is this capacity of
interpolationthat makes the linear subspace representation so useful.

The whole image (patch) can be expressed as a linear superposition of these
nonlinear features. Let us denote byS(k) the set of indicesi of thoseAi that belong
to the k-th group or subspace; for example, if all the subspaces havedimension
two, we would haveS(1) = {1,2},S(2) = {3,4} etc. Thus, we obtain the following
model

I(x,y) = ∑
k

∑
i∈S(k)

Ai(x,y)si (10.2)

The image is still a linear superposition of the vectorsAi(x,y), but the point is that
these vectors are grouped together. The grouping is useful in defining nonlinear
feature detectors, as shown next.
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10.1.3 Energy model of feature detection

In Equation (10.2), there was no quantity that would directly say what the strength
(value, output) of a subspace feature is. It is, of course, important to define such a
measure, which is the counterpart of thesi in the case of simple linear features. We
now define the value of the feature, i.e. the output of a feature detector as a particular
nonlinearfunction of the input image patch. We shall denote it byek.

First of all, since the model in Equation (10.2) is still a linear superposition
model, we can invert the system given by the vectorsAi as in the linear case. To
be able to do this easily, we assume, as in ICA, that the total number of vectorsAi

is equal to the number of pixels (alternatively, equal to thenumber of dimensions
after canonical preprocessing, as discussed below). Then,each linear coefficientsi

can be computed by inverting the system, just as in equation (7.6):

si = ∑
x,y

Wi(x,y)I(x,y). (10.3)

for some detector weightsWi which are obtained just as with any linear image model
(e.g. the ICA model).

Now, how do we compute the strength of the subspace feature asa function of the
coefficientssi that belong to that subspace? There are several reasons for choosing
the square root of the sum of the squares:

ek =

√

∑
i∈S(k)

s2
i (10.4)

The first reason for using this definition is that the sum of squares is related to the
norm of the vector∑i∈S(k) Aisi . In fact, if theAi form an orthogonal matrix i.e. they
are orthogonal and have norms equal to one, the square root ofthe sum of squares
is equal to the norm of that vector. The norm of the vector is anobvious measure
of its strength; here it can be interpreted as the “total” response of all thesi in the
subspace.

Second, a meaningful measure of the strengthek of a subspace feature in an
imageI could be formed by computing the distance ofI from the best approximation
(projection) that the subspace feature is able to provide:

min
si ,i∈S(k)

∑
x,y

[I(x,y)− ∑
i∈S(k)

siAi(x,y)]
2 (10.5)

Again, if theAi form an orthogonal matrix, this can be shown to be equal to

∑
x,y

I(x,y)2− ∑
i∈S(k)

s2
i (10.6)

which is closely related to the sum of squares, because the first term does not depend
on the coefficientssi at all.
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Third, a sum of squares is often used in Fourier analysis: the“energy” in a given
frequency band is usually computed as the sum of squares of the Fourier coefficients
in the band. This is why a feature detector using sum of squares is often called an
energy detector. Note, however, that the connection to energy in the sense of physics
is quite remote.

Fourth, the sum of squares seems to be a good model of the way complex cells
in the visual cortex compute their outputs from outputs of simple cells, see Sec-
tion 3.4.2. In the physiological model, a square root is not necessarily taken, but the
basic idea of summing the squares is the same. In that context, the summation is
often called “pooling”.

Note that we could equally well talk about linear combinations of linear feature
detectorsWi instead of linear combinations of theAi . For an orthogonal basis, these
are essentially the same thing, as shown in Section 19.6. Then, linear combinations
of theWi in the same subspace give the forms of all possible linear feature detectors
associated with that subspace.

Figure 10.1 illustrates such an energy pooling (summation)model.

IInput

8<w  , I>

7<w  , I>

(.)

2(.)

2

6

<w  , I>

2<w  , I>

1<w  , I>

3

<w  , I>

5<w  , I>

4<w  , I>

(.)

2(.)

2(.)
Σ

2(.)

2(.)

2

2(.)

Σ

Fig. 10.1: Illustration of computation of complex cell outputs by pooling squares of linear feature
detectors. From (Hyvärinen and Hoyer, 2000), Copyrightc©2000 MIT Press, used with permis-
sion.
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Canonically preprocessed data

Invariant features can be directly applied to data whose dimension has been re-
duced. Just as in the case of a basic linear decomposition, wecan simply formu-
late the linear model as in Equation (10.2) where the data on the left-hand side is
the preprocessed datazi , and the linear feature vectors are in the reduced space.
Nothing is changed in the concept of subspaces. Likewise, the energy detector in
Equation (10.4) takes the same form.

10.2 Maximizing sparseness in the energy model

10.2.1 Definition of sparseness of output

What we are now going to show is that we can learn invariant features from natu-
ral images by maximization of sparseness of the energy detectors ek given by the
subspace model. Sparseness can be measured in the same way asin the linear case.
That is, we consider the expectation of a convex function of the square of the detec-
tor output.

First of all, we take a number of linear features that span a feature subspace. To
keep things simple, let us take just two in the following. Letus denote the detector
weight vectors, which work in the reduced space after canonical preprocessing, by
v1 andv2. Since we are considering a single subspace, we can drop the indexi of
the subspace. So, what we want to maximize is a measure of sparseness of the form

E{h(e2)}= E
{

h((vT
1 z)2 +(vT

2 z)2)
}

= E

{

h((
n

∑
j=1

v1 jzj )
2 +(

n

∑
j=1

v2 jzj)
2)

}

(10.7)

whereh is a convex function just as in the linear feature case.
An important point that must be considered is how the relation betweenv1 and

v2 should be constrained. If they are not constrained at all, itmay easily happen that
these two linear detectors end up being the equal to each other. Then we lose the
capability of representing a subspace. Mathematically speaking, such a situation is
violating our assumption that the linear system given by thevectorsAi is invertible,
because this assumption implies that theWi (or thevi) are not linear combinations
of each other.

We constrain herev1 andv2 in the same way as in the linear feature case: the
outputs of the linear feature detectors must be uncorrelated:

E{(vT
1 z) (vT

2 z)}= 0 (10.8)

and, as before, we also constrain the output variances to be equal to one:

E{(vT
i z)2}= 1, for i = 1,2 (10.9)
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Now, we can maximize the function in Equation (10.7) under the constraints in
Equations (10.8) and (10.9).

10.2.2 One feature learned from natural images

To give some preview of what this kind of analysis means in practice, we show the
results of estimation of a single four-dimensional subspace from natural images.
The four vectorsvi , converted back to the original image space (inverting the pre-
processing), are shown in Figure 10.2.

Fig. 10.2: A group of weight vectorsWi found by maximization of the nonlinear energy detector in
natural images.

What is the invariance represented by the subspace like? A simple way to analyze
this is to plot a lot of linear combinations of the weight vectorsWi belonging to the
same subspace. Thus, we see many instances of the different features that together
define the invariant feature. This is shown in Fig. 10.3 for the weight vectors in
Fig. 10.2, using random coefficients inside the subspace.

Fig. 10.3: Random combinations of the weight vectorsWi in the subspace shown in Fig. 10.2. These
combinations are all particular instances of the feature set represented by the invariant feature

The resulting invariance has a simple interpretation: The invariant feature ob-
tained by the algorithm is maximally invariant with respectto thephaseof the in-
put. This is because all the four linear featuresWi are similar to Gabor functions
which have quite similar parameters otherwise, but with themajor difference that
the phases of the underlying oscillations are quite different. In the theory of space-
frequency analysis (Section 2.4), and in complex cell models (Section 3.4.2), invari-
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ance to phase is achieved by using two different linear feature detectors which are
in quadrature-phase (as sine and cosine functions). Here, we have four linear feature
detectors, but the basic principle seems to be the same.

Such phase-invariance does, in fact, practically always emerge for the feature
subspaces estimated from natural image data, see Section 10.7 for a more detailed
analysis. The invariant features are thus similar to complex cells in the visual cor-
tex. This invariance appears because the linear features inthe same subspace have
similar orientations, and frequencies, whereas they have quite different phases, and
slightly different positions. Note that it is not easy to distinguish the effects of dif-
ferent phases and slightly different positions, since theyresult in very much the
same transformations in the overall shape of the features (something that looks like
a small displacement of the feature).

These results indicate that from a statistical viewpoint, the invariance to phase
is a more important feature of natural images that, say, invariance to orientation.
Such invariance to phase has been considered very importantin visual neuroscience
because it is the function usually attributed to complex cells: phase-invariance is the
hallmark property that distinguished simple and complex cells.

To see that this “emergence” of phase-invariant features isnot self-evident, we
can consider some alternatives. A well-known alternative would be a feature sub-
space invariant to orientation, called “steerable filters”in computer vision. Actually,
by taking a subspace of Gabor-like vectors that are similar in all other parameters
than orientation, one can obtain exactly orientation-invariant features (see Refer-
ences and Exercises sections below). What our results show is that in representing
natural images, invariance with respect to phase is more important in the sense that
it gives a better statistical model of natural images. This claim will be justified in
the next section, where we build a proper probabilistic model based on sparse, inde-
pendent subspaces.

10.3 Model of independent subspace analysis

Maximization of sparseness can be interpreted as estimation of a statistical model
just as in the case of linear features. Assume that the pdf of thesk is of the following
form:

logp(s1, . . . ,sn) = ∑
k

h(e2
k) = ∑

k

h( ∑
i∈S(k)

s2
i ) (10.10)

(A constant needs to be added to make this a proper pdf if the functionh is not prop-
erly normalized, but it has little significance in practice.) Denote byzt ,t = 1, . . . ,T a
set of observed image patches after preprocessing. Then, the likelihood of the model
can be obtained in very much the same way as in the case of ICA inEquation (7.15)
on page 168. The log-likelihood is given by
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logL(v1, . . . ,vn) = T log|det(V)|+∑
k

T

∑
t=1

h( ∑
i∈S(k)

(vT
i zt)

2) (10.11)

Again, if we constrain thesi to be uncorrelated and of unit variance, which is equiv-
alent to orthogonality of the matrixV, the term log|det(V)| is constant. The re-
maining term is just the sum of the sparseness measures of allthe energy detectors.
Thus, we see that maximization of the sparsenesses is equivalent to estimation of
the statistical generative model by maximization of likelihood.

As a concrete example, let us consider the case of two-dimensional subspaces,
and chooseh(y) =−√y. This defines a distribution inside each subspace for which

logp(si ,sj) =−
√

s2
i +s2

j . If we further normalize this pdf so that its integral is equal

to one, and so thatsi andsj have unit variance, we get the following pdf forsi and
sj in the same subspace:

p(si ,sj) =
2

3π
exp(−

√
3
√

s2
i +s2

j ) (10.12)

This could be considered as a two-dimensional generalization of the Laplacian dis-
tribution. If you assumesj is given assj = 0, the conditional pdf ofsi is proportional

to exp(−
√

3
√

s2
i ), which is as in the Laplacian pdf in Equation (7.18) up to some

scaling constants.
What is the main difference between this statistical model and ICA? In ICA,

the pdf was derived using the assumption of independence of the componentssi .
Since we have here a rather different model, it must mean thatsome statistical de-
pendencies exist among the components. In fact, the pdf above corresponds to a
model where thenonlinear features ek are independent, but the components (i.e.
linear features) in the same subspace are not. The independence of the nonlinear
features can be seen from the fact that the log-density in Equation (10.10) is a sum
of functions of the nonlinear features. By definition, the nonlinear features are then
independent. This also implies that two components in two different subspaces are
independent. Since the subspaces are independent in these two ways, this model is
called independent subspace analysis (ISA).

The more difficult question is: What kind of dependencies exist between the com-
ponents in a single subspace? This will be considered next.

10.4 Dependency as energy correlation

The basic result is that in the ISA model, the dependencies ofthe linear components
in the same subspace take the form of energy correlations already introduced in
Chapter 9. This result will be approached from different angles in the following.
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10.4.1 Why energy correlations are related to sparseness

To start this investigation on the statistical dependencies of components in ISA, we
consider a simple intuitive explanation of why the sparseness of energy detectors is
related to the correlations of energies of the underlying linear features.

Let us consider the following two cases. First, consider just two linear feature
detectors which have the same output distributions, and whose output energies are
summed (pooled) in a nonlinear energy detector. If the outputs are statistically inde-
pendent, the pooling reduces sparseness. This is because ofthe fundamental result
given by the Central Limit Theorem (see Section 7.9.1). It says, roughly speaking,
that the sum of independent random variables is closer to gaussian (and therefore,
less sparse) than the original random variables themselves.

Second, consider the contrasting extreme case where the linear detector outputs
are perfectly dependent, that is, equal. This means that thedistribution of the pooled
energies is equal to the distribution of the original energies (up to a scaling constant),
and therefore there is no reduction in sparseness.

So, we see that maximization of the sparseness of the energy is related to maxi-
mization of the energy correlations (dependencies) of the underlying linear features.

10.4.2 Spherical symmetry and changing variance

Next, we show how the ISA pdf can be interpreted in terms of a variance variable,
already used in Chapter 9.

The distribution inside each subspace, as defined by Eq. (10.10), has the distin-
guishing property of beingspherically symmetric. This simply means that the pdf

depends on the norm
√

∑i∈S(k) s2
i only. Then, any rotation (orthogonal transforma-

tion) of the variables in the subspace has exactly the same distribution.
Spherically symmetric distributions constitute one of thesimplest models of non-

linear correlations. Ifh is nonlinear, the variables in the same subspace are depen-
dent. In contrast, an important special case of sphericallysymmetric distributions is
obtained whenh(u) = u, in which case the distribution is just the ordinary gaussian
distribution with no dependencies or correlations.

Spherical symmetry is closely related to the the model in which a separate vari-
ance variable multiplies two (or more) independent variables as in Equation (9.4)
on page 213. If the independent variables ˜s1 ands̃2 aregaussian, the distribution of
the vector(s1,s2) is spherically symmetric. To show this, we use the basic principle
that the marginal pdf of the vector(s1,s2) can be computed by integrating the joint
pdf of (s1,s2,d) overd. First note that we have ˜s2

i = s2
i /d

2. Since the ˜si are gaussian
and independent (let us say they have unit variance), and independent ofd, the pdf
can be computed as:

p(s1,s2) =

∫

p(s1,s2,d)dd =

∫
1

2πd2 exp(−s2
1 +s2

2

2d2 )p(d)dd (10.13)
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Even without actually computing the integral (“integrating d out”) in this formula,
we see that the pdf only depends on the (square of the) norms2

1 + s2
2. Thus, the

distribution is spherically symmetric. This is because thedistribution of(s̃1, s̃2) was
spherically symmetric to begin with. The distribution ofd, given by p(d) in the
equation above, determines what the distribution of the norm is like.

In the model estimation interpretation,h is obtained as the logarithm of the pdf,
when it is expressed as a function of the square of the norm. Thus, based in Equa-
tion (10.13) we have

h(e2) = log
∫

1
2πd2 exp(− e2

2d2 )p(d)dd (10.14)

Note that we obtain a spherically symmetric distribution only if the s̃i are gaus-
sian, because only gaussian variables can be both spherically symmetrically dis-
tributed and independent. In Chapter 9, we did not assume that the s̃i are gaussian;
in fact, when we normalized the data we saw the the estimated ˜si are still quite
super-gaussian. This apparent contradiction arises because in the ISA model, we
have a different variance variabledk for each subspace, whereas in Chapter 9 there
was only oned for the whole image patch. If we estimated the ˜si in the ISA model,
their distributions would presumably be much closer to gaussian than in Chapter 9.

10.4.3 Correlation of squares and convexity of nonlinearity

Next we consider the role of the nonlinearityh in Equation (10.11). In the model
developed in this chapter, we don’t have just anyh, but h is assumed to be convex
because we are considering measures of sparseness. Actually, it turns out that the
h that can be derived from the model with a variance variable asin the preceding
section, are necessarily convex. A detailed mathematical analysis of this connection
is given in Section 10.8.

Conversely, if we define the pdf inside a subspace by taking a convex functionh
of the square of the norm, we usually get a positive covariance between the squares
of the components. Again, a detailed mathematical analysisof this connection is
given in Section 10.8, but we will discuss this connection here with an example.

As an illustrative example, consider two-dimensional subspaces with pdf defined
as in Equation (10.12). The covariance of the squares ofsi andsj can be calculated,
it is equal to 2/3. The kurtosis of eithersi or sj is equal to 2, and the variables
are uncorrelated. (This density has been standardized to that its mean is zero and
variance equal to one.) Using this pdf we can investigate theconditional distribution
of sj for a givensi :

p(sj |si) =
p(si ,sj )

p(si)
=

p(si ,sj )
∫

p(si ,sj)dsj
(10.15)
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This can be easily computed for our pdf, and is plotted in Fig,10.4 a). We see a shape
that has been compared to abow-tie: when going away from zero on the horizontal
axis (si), the distribution on the vertical axis (sj ) becomes wider and wider, i.e. its
variance grows. This can be quantified by the conditional variance

var(sj |si) =

∫

s2
j p(sj |si)dsj (10.16)

The actual conditional variance ofsi , givensj is shown in Fig. 10.4 b). We see that
the conditional variance grows with the absolute value ofsi .

What is the connection to energy correlations? Both increasing conditional vari-
ance and energy correlations try to formalize the same intuitive idea: when one of
the variables has a large absolute values, the other(s) is likely to have a large abso-
lute values as well. Correlations of squares or energies is something we can easily
compute, whereas conditional variance is a more faithful formalization of the same
idea.

Thus, we see that taking a convexh, or assuming the data to come from the
variance variable model (with gaussian “original” variabless̃i) are closely related.
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Fig. 10.4: Illustration of the correlation of squares in theprobability density in Equation (10.12).
a) The two-dimensionalconditional density ofsj (vertical axis) givensi (horizontal axis). The
conditional density is obtained by taking vertical slices of the density function, and then normal-
izing each slice so that it integrates to one, and thus definesa proper probability density function.
Black means low probability density and white means high probability density. We see that the
conditional distribution get broader assi goes further from zero in either direction. This leads to
correlation of energies since the expectation of the squareis nothing but the variance.b) The condi-
tional variance ofsj (vertical axis) for a givensi (horizontal axis). Here we see that the conditional
variance grows with the square (or absolute value) ofsi .
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10.5 Connection to contrast gain control

Both the ISA model and the model we used to motivate divisive normalization in
Chapter 9 lead to a similar kind of dependency. This may give the impression that
the two are actually modelling the same thing. This is not so because in ISA, the
variance variablesd are different for each subspace, whereas in the contrast gain
control there was a singled for the whole patch.

In the ISA model, the variance variablesdi are actually closely related to the out-
puts of nonlinear feature detectors. The sum of squares of thesi inside one subspace
(or rather, that sum divided by the dimension of the subspace) can be considered
a very crude estimator of thed2

i of that subspace, because, in general, the average
of squares is an estimator of variance. No such interpretation of d can be made in
the contrast gain control context, where the singled is considered an uninteresting
“nuisance parameter”, something whose influence we want to cancel.

Although the contrast gain control models could be generalized to the case where
the patch is modelled using several variance variables, which possibly control the
variances in different parts of the patch due to different illumination conditions,
the basic idea is still that in ISA, there are many more energydetectors than there
are variance variables due to illumination conditions in the contrast gain model in
Chapter 9.

Because the dependencies in the two models are so similar, one could envision
a single model that encompasses both models. Steps towards such a model are dis-
cussed in Section 11.8. On the other hand, we can use ISA to model the energy
correlations that remain in the imagesafterdivisive normalization. In the image ex-
periments below, we first reduce energy correlation by divisive normalization using
Equation (9.11), and then model the data by ISA. This has two different motivations:

1. We want to model energy correlations, or in general the statistical structure of
images, as precisely as possible. So it makes sense to first reduce the overall value
of energy correlations to be able better to see fine details. This can be compared
with removal of the DC component, which makes the details in second-order
correlations more prominent. Just like in ICA, one finds thatthe dependencies
between the subspaces are reduced by divisive normalization, so the ISA model
is then simply a better model of image data.

2. On a more intuitive level, one goal in image modelling is tofind some kind of
“original” independent features. Reducing the dependencies of linear features by
divisive normalization seems a reasonable step toward sucha goal.

10.6 ISA as a nonlinear version of ICA

It is also possible to interpret the ISA model of independentsubspace analysis as a
nonlinear invertible transformation of the data. Obviously the transformation is non-
linear, but how can we say that it is invertible? The point is to consider not just the
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norms of the coefficients in the subspaces, but also the angles inside the subspaces.
That is, we look at what is called thepolar coordinates inside each subspace. For
simplicity, let us consider just two-dimensional subspaces, although this discussion
also applies in higher-dimensional subspaces.

The point is that if we express the coordinatess1,s2 in a two-dimensional sub-

space as a function of the normr =
√

s2
1 +s2

2 and the angleθ = arctans2/s1 with
respect to one of the axes. This is an invertible transformation; the inverse is given
by s1 = r cosθ ands2 = r sinθ .

The fundamental point is that the two variablesr andθ areindependentunder the
ISA model. This is precisely because of the assumption that the pdf is spherically
symmetric, i.e. it depends on the norm only. Intuitively, this is easy to see: since
the pdf only depends on the norm, it can be factorized, as required by the defini-
tion of statistical independence, to two factors. The first depends on the norm only,
and the second, completely trivial factor is equal to 1. The constant factor can be
interpreted to be a (constant) function ofθ , corresponding to a uniform distribution
of the angles. So, we see that the pdf can be factorized into a product of a function
of r and a functionθ , which proves the independence. (Note that this proof is not
quite correct because we have to take into account the determinant of the Jacobian,
as always when we transform pdf’s. The rigorous proof is leftas an exercise for
mathematically very sophisticated readers.)

Thus we see that we can think of the generative model of ISA as anonlinear,
invertible transformation, which is, in the case of two-dimensional subspaces, as
follows: 








r1

θ1
...

rn/2
θn/2










→










z1

z2
...

zn−1

zn










(10.17)

where the components on the left-hand-side are all independent from each other.
The same idea holds for subspaces of any dimensions; we just need to parameterize
arbitrary rotations in those subspaces (which is rather complicated).

10.7 Results on natural images

10.7.1 Emergence of invariance to phase

10.7.1.1 Data and preprocessing

We took the same 50,000 natural image patches of size 32×32 as in the ICA case.
We performed contrast gain control by divisive normalization as in Equation (9.11),
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as motivated in Section 10.5. Then, we preprocessed the normalized patches in the
same (“canonical”) way as with ICA, reducing the dimension to 256.

The nonlinearityh used in the likelihood or sparseness measure was chosen to
be a smoothed version of the square root as in Eq. (6.14) on page 143. We then esti-
mated the whole set of feature subspaces using subspace size4 for natural images,
which means 64= 256/4 subspaces.

10.7.1.2 Features obtained

The results are shown in Fig. 10.5 and Fig. 10.6 for theWi and theAi , respectively.
Again, the feature detectors are plotted so that the grey-scale value of a pixel means
the value of the coefficient at that pixel. Grey pixels mean zero coefficients. As with
linear independent components, the order of the subspaces is not defined by the
model. For further analysis, the subspaces are ordered according to the sparsenesses
of the subspaces as measure by the term∑T

t=1 h(∑i∈S(k)(v
T
i zt)

2) in the likelihood.
Visually, one can see that these feature detectors have interesting localization

properties. First, they are localized in space: most of the coefficients are practically
zero outside of a small receptive field. This is true of the individual feature detectors
in the same way as in the case of linear feature detectors estimated by sparse coding
or ICA. What is important here is that it is also true with respect to the whole sub-
space, because the non-zero coefficients are more or less in the same spatial location
for all feature detectors corresponding to the same subspace. The linear feature de-
tectors and the invariant features are also oriented and multiscale in exactly the same
way: the optimal orientations and frequencies seem to be thesame for all the linear
features in the same subspace.

10.7.1.3 Analysis of tuning and invariance

We can analyze these features further by fitting Fourier gratings, just as in Sec-
tion 6.4. In determining the optimal orientation and frequency for a subspace, we
find the grating that has maximum energy response, i.e. maximum sum of squares of
linear dot-products inside the subspace. The analysis is made a bit more complicated
by the fact that for these nonlinear features, we cannot find the maximum response
over all phases by using two filters in quadrature-phase and taking the square of the
responses as we did in Section 6.4. We have to compute the responses over different
values of orientation, frequencyandphase. Thus we take many different values of
α,β andθ in

f (x,y) = sin(2πα(sin(θ )x+cos(θ )y)+ β ) (10.18)

Then we compute the responses of the energy detectors and findtheα,θ that max-
imize the sum of responses over the differentβ for each subspace.

We can then investigate the selectivities of the features bychanging one of the
parameters, while the others are fixed to the optimal values.This gives the tuning
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Fig. 10.5: The whole set of vectorsWi obtained by independent subspace analysis. The four vectors
in the same subspace are shown consecutively on the same row.The subspaces have been ordered
so that the sparsest ones are first (top rows).

curves for each of the parameters. Note that when computing the responses for vary-
ing orientation or frequency, we again take the sum over all possible phases to sim-
ulate the total response to a drifting grating. On the other hand, when we compute
the tuning curve for phase, we do not take a sum over differentphases.

In Figure 10.7 we have show the results of the analysis for thefirst ten (i.e. the ten
sparsest) subspaces in Fig. 10.5. We can clearly see that estimated energy detectors
are still selective to orientation and frequency. However,they are less selective to
phase. Some of the features are rather completely insensitive to phase, whereas in
other, some selectivity is present. This shows that the model successfully produces
the hallmark property of complex cells: invariance to phase—at least in some of the
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Fig. 10.6: The whole set of vectorsAi obtained by independent subspace analysis.

cells.1 Thus, the invariance and selectivities that emerge from natural images by ISA
is just the same kind that characterize complex cells.

The selectivity to orientation and frequency is a simple consequence of the fact
that the orientation and frequency selectivities of the underlying linear feature de-
tectors are similar in a given subspace. This can be analyzedin more detail by vi-
sualizing the correlations of the optimal parameters for two linear features in the

1 It should be noted that the invariance to phase of the sum of squares of linear filter responses
is not an interesting property in itself. Even taking receptive fields with random coefficients gives
similar phase-response curves as in Fig. 10.7 for the sum of squares. This is because the phase-
responses are always sinusoids, and so are their squares, soif the phases of different filters are
different enough, their sum often ends up being relatively constant. What is remarkable, and needs
sophisticated learning, is thecombinationof selectivity to orientation and frequency with phase-
invariance.
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Fig. 10.7: Tuning curves of the ISA featuresWi . Left: change in frequency (the unit is relative to the
window size of 32 pixels, so that 16 means wavelength of 2 pixels). Middle: change in orientation.
Right: change in phase.
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same subspace. In Fig. 10.8 we see that the orientations (b) are strongly correlated.
In the case of frequencies the correlation is more difficult to see because of the over-
all concentration to high frequencies. As for phases, no correlation (or any kind of
statistical dependency) can be seen.

In this analysis, it is important to reduce the dimension by PCA quite a lot. This is
because as explained in Section 5.3.3.2, the phase is not a properly defined quantity
at the very highest frequencies (the Nyquist frequency) that can be represented by
the sampling lattice, i.e. the pixel resolution.
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Fig. 10.8: Correlation of parameters characterizing the linear features in the same independent
subspace. In each plot, we have divided the subspaces into two pairs, and plotted the optimal
parameter values for the two linear features in a scatter plot. a) scatter plot of frequencies,b)
scatter plot of orientations,c) scatter plot of phases,d) scatter plot of locations (x-coordinate of
centerpoints).

Finally, we can analyze the distribution of the frequenciesand orientations of the
subspace features. The plot in Fig. 10.9 shows that while allorientations are rather
equally present (except for the anisotropy seen even in ICA results), the frequency
distribution is strongly skewed: most invariant features are tuned to high frequen-
cies.
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Fig. 10.9: Histograms of the optimala) frequencies andb) orientations of the independent sub-
spaces.

10.7.1.4 Image synthesis results

Results of synthesizing image with the ISA model are shown inFigure 10.10. This
is based on the interpretation as a nonlinear ICA in Section 10.6, but the model with
variance dependencies in Section 10.4 would give the same results.

Here, the normsr i , i.e. the values of the invariance features, were chosen to be
equal to those actually observed in the data. The angles inside the subspace were
then randomly generated.

The synthesized images are quite similar to those obtained by ICA. The invari-
ance is not really reflected in the visual quality of these synthesized images.

Fig. 10.10: Image synthesis using ISA. Compare with the ICA results in Figure 7.4 on page 170.
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10.7.2 The importance of being invariant

What is the point in features that are invariant to phase? In general, the variability
of how objects are expressed in the retinal image is one of thegreatest challenges,
perhaps the very greatest, to the visual system. Objects canbe seen in different
locations in the visual space (= retinal space). They can appear at different distances
to the observer, which changes their size in the retinal image. Objects can rotate,
turn around, and transform in a myriad of ways. And that’s notall: the environment
can change, moving light sources and changing their strength, casting shadows and
even occluding parts of the object.

The visual system has learned to recognize objects despite these difficulties. One
approach used in the early parts of the system is to compute features that are in-
variant to some of such changes. Actually, in Chapter 9 we already saw one such
operation: contrast gain control attempts to cancel some effects of changes in light-
ing, and removal of the DC component is doing something similar.

With energy detectors, we find phase-invariant features, similar to those in com-
plex cells. It is usually assumed that the point in such an invariance is to make
recognition of objects less dependent on the exact positionwhere they appear. The
point is that a change in phase is very closely related to a change in position. In fact,
it is rather difficult to distinguish between phase-invariance and position-invariance
(which is often called translation- or shift-invariance.)If you look at the different
feature vectorsAi inside the same subspace in Fig. 10.6, you might say that theyare
the same feature in slightly different positions.

Changing the phase of a grating, and in particular of a Gabor function is in-
deed very similar to moving the stimulus a bit. However, it isnot movement in
an arbitrary direction: It is always movement in the direction of oscillations. Thus,
phase-invariance is rather a special case of position-invariance. And, of course, the
position-invariance exhibited by these energy detectors is very limited. If the stim-
ulus is spatially localized (say, a Gabor function as always!), only a small change
in the position is allowed, otherwise the stimulus goes out of the receptive field and
the response goes to zero. Even this very limited position-invariance can be useful
as a first step, especially if combined with further invariant computations in the next
processing layers.

Figure 10.11 shows a number of Gabor stimuli that have all other parameters
fixed at the same values but the phase is changed systematically. An ideal phase-
invariant feature detector would give the same response to all these stimuli.

Fig. 10.11: A Gabor stimulus whose phase is changed.
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10.7.3 Grouping of dependencies

Next we analyze how grouping of dependencies can be seen in the ISA results on
natural images. A simple approach is to compute the correlation coefficients of the
squares of components. This is done separately for components which belong to
the same subspace, and for components which belong to different subspaces. When
this is computed for all possible component pairs, we can plot the histogram of the
correlation coefficients in the two cases. This is shown in Figure 10.12. We see that
square correlations are much stronger for components in thesame subspace. Ac-
cording to the model definition, square correlations shouldbe zero for components
in different subspaces, but again we see that the real data does not exactly respect
the independence assumptions.
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Fig. 10.12: Correlation coefficients of the squares of all possible pairs of components estimated by
ISA. a) Components in the same subspace,b) Components in different subspaces.

Another way of analyzing the results is to visualize the square correlations. This
is done in Figure 10.13 for the first 80 components, i.e. 20 first subspaces. Visually,
we can see a clear grouping of dependencies.

10.7.4 Superiority of the model over ICA

How do we know if the ISA model really is better for natural images when compared
to the ICA model? The first issue to settle is what it means to have a better model.

Of course, ISA is better than ICA in the sense that it shows emergence of new
kinds of phenomena. However, since we are building statistical models, it is impor-
tant to ask if the new model we have introduced, in this case ISA, really is better
than ICA in a purely statistical sense. One useful way of approaching this is to
compute the maximum likelihood. In a Bayesian interpretation, the likelihood is the



244 10 Energy detectors and complex cells

20 40 60 80

20

40

60

80

Fig. 10.13: Correlation coefficients of the squares of the 80first components in Figure 10.5. The
correlation coefficients are shown in grey-scale. To improve the visualization, values larger than
0.3 have been set to 0.3.

probability of the parameters given the data, if the prior isflat. This helps us in com-
paring ICA and ISA models because we can consider the subspace size as another
parameter. The ICA model is obtained in the case where the subspace size equals
one. So, we can plot the maximum likelihood as a function of subspace size, always
recomputing theWi so as to maximize the likelihood for each subspace size. If the
maximum is obtained for a subspace size larger than one, we can say that ISA is a
better model than ICA.2

It is important to note that we need to use a measure which is inline with the
theory of statistics. One might think that comparison of, say, sparsenesses of the
ICA and ISA features could be used to compare the models, but such a compari-
son would be more problematic. First, ISA has fewer features, so how to compare
the total sparseness of the representations? Second, we would also encounter the
more fundamental question: Which sparseness measure to use? If we use likeli-
hood, statistical theory automatically shows how to compute the quantities used in
the comparison.

2 Comparison of models in this way is actually a bit more complicated. One problem is that if
the models may have a different number of parameters, a direct comparison of the likelihoods is
not possible because having more parameters can lead to overfitting. Here, this problem is not
serious because the number of parameters in the two models isessentially the same (it may be a bit
different if the nonlinearitieshi are parameterized as well). Furthermore, Bayesian theory proposes
a number of more sophisticated methods for comparing models; they consider the likelihood with
many different parameter values and not only at the maximal point. Such methods are, however,
computationally quite complicated, so we don’t use them here.
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In Figure 10.14, likelihood is given as a function of subspace size for the ISA
model, for image patches is 24×24. What we see here is that the likelihood grows
when the subspace size is made larger than one—a subspace size of one is the same
as the ICA model. Thus, ISA gives a higher likelihood. In addition, the graph shows
that the likelihood is maximized when the subspace size is 32, which is quite large.
However, this maximum depends quite a lot on how contrast gain control is per-
formed. Here, it was performed by dividing the image patchesby their norms, but
as noted in Chapter 9, this may not a very good normalization method. Thus, the re-
sults in Figure 10.14 should not be taken too seriously. Combining a proper contrast
gain control method with the ICA and ISA model is an importanttopic for future
research.
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Fig. 10.14: Maximum likelihood of natural image data as a function of subspace dimensionality
in ISA. Subspace size equal to 1 corresponds to the ICA model.The error bars are computed by
doing the estimation many times for different samples of patches. Adapted from (Hyvärinen and
Köster, 2007).

10.8 Analysis of convexity and energy correlations*

In this section, we show more detailed mathematical analysis on the connection of
the correlation of squares and convexity ofh discussed in Section 10.4.3. It can be
omitted by readers not interested in mathematical details.
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10.8.1 Variance variable model gives convexh

First we show that the dependency implied by the model with a convexh typically
takes the form of energy correlations. To prove thath in (10.14) is always convex, it
is enough to show that the second derivative ofh is always positive. We can ignore
the factor 1/2π . Using simple derivation under the integral sign, we obtain

h′′(u) =

∫ 1
d6 exp(− u

2d2 )p(d)dd
∫ 1

d2 exp(− u
2d2 )p(d)dd− [

∫ 1
d4 exp(− u

2d2 )p(d)dd]2

[
∫ 1

d2 exp(− u
2d2 )p(d)dd]2

(10.19)
Since the denominator is always positive, it is enough to show that the numerator is
always positive. Let is consider exp(− u

2d2 )p(d) as a new pdf ofd, for any fixedu,
after it has been normalized to have unit integral. Then, thenumerator takes the form
(E{1/d6}E{1/d2}−E{1/d4}2). Thus, it is enough that we prove the following
general result: for any random variablez≥ 0, we have

(E{z2})2≤ E{z3}E{z} (10.20)

When we apply this onz= 1/d2, we have shown that the numerator is positive. The
proof of Equation (10.20) is possible by the classic Cauchy-Schwarz inequality,
which says that for anyx,y≥ 0, we have

E{xy} ≤ E{x2}1/2E{y2}1/2 (10.21)

Now, choosex = z3/2 and y = z1/2. Then, taking squares on both sides, Equa-
tion (10.21) gives Equation (10.20).

10.8.2 Convexh typically implies positive energy correlations

Next we show why convexity ofh implies energy correlations in the general case.
We cannot show this exactly, we have to use a first-order approximation. Let us
consider two variables, and look at the conditional pdf ofs2 near the points2 = 0.
This gives

h(s2
1 +s2

2) = h(s2
1)+h′(s2

1)s
2
2 +smaller terms (10.22)

Let us interpret this as the logarithm of the pdf ofs2, given a fixeds1. Some nor-
malization term should then be added, corresponding to the denominator in (10.15),
but it is a function ofs1 alone. This first-order approximation of the conditional pdf
is gaussian, because only the gaussian distribution has a log-pdf that is a quadratic
function. The variance of the distribution is equal to 2/|h′(s2

1)|. Because of convex-
ity, h′ is increasing. Usually,h′ is also negative, because the pdf must go to zero
(and its log to−∞) whens2 goes infinite. Thus,|h′(s2

1)| is a decreasing function,
and 2/|h′(s2

1)| is increasing. This shows that the conditional variance ofs2 increases
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with s2
1, if h is convex. Of course, this was only an approximation, but it justifies the

intuitive idea that a convexh leads to positive energy correlations.
Thus, we see that using a convexh in the ISA model is closely related to assuming

that thesi inside the same subspace have positive energy correlations.

10.9 Concluding remarks and References

Independent subspace analysis is for complex cells what ICAwas for simple cells.
When estimated from natural image data, it learns an energy detector model which
is similar to what is computed by complex cells in V1. The resulting features have a
relatively strong phase-invariance, while they retain thesimple-cell selectivities for
frequency, orientation, and to a lesser degree, location. Arestriction in the model is
that the pooling in the second layer is fixed; relaxing this restriction is an important
topic of current research and will be briefly considered in Section 11.8. Another
question is whether the squaring nonlinearity in computation of the features is better
than, say, the absolute value; experiments in (Hyvärinen and Köster, 2007) indicate
that it is.

Steerable filters (orientation-invariant features) are discussed in the exercises and
computer assignments below. The earliest references include (Koenderink and van
Doorn, 1987; Freeman and Adelson, 1991; Simoncelli et al, 1992). An alterna-
tive viewpoint on using quadratic models on natural images is in (Lindgren and
Hyvärinen, 2007), which uses a different approach and findsvery different features.

Early and more recent work on energy detectors can be found in(Pollen and
Ronner, 1983; Mel et al, 1998; Emerson et al, 1992; Gray et al,1998). It is also
possible to directly incorporate energy detectors in wavelets using complex-valued
wavelets (Romberg et al, 2000). The idea of transforming thedata into polar coor-
dinates can be found in (Zetzsche et al, 1999). Using position-invariant features in
pattern recognition goes back to at least (Fukushima, 1980), see e.g. (Fukushima
et al, 1994; Riesenhuber and Poggio, 1999) for more recent developments.

Only recently, reverse correlation methods have been extended to estimation en-
ergy models (Touryan et al, 2005; Rust et al, 2005; Chen et al,2007). These provide
RF’s for linear subunits in an energy model. The obtained results are quite similar to
those we learned in this chapter. However, such reverse-correlation are quite scarce
at the moment, so a detailed comparison is hardly possible. Alternative approaches
to characterizing complex cells is presented in (Felsen et al, 2005; Touryan et al,
2002).
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10.10 Exercices

Mathematical exercises

1. Show Equation (10.6).
2. This exercise considers the simplest case of steerable filters. Consider the gaus-

sian function

ϕ(x,y) = exp(−1
2
(x2 +y2)) (10.23)

a. Compute the partial derivatives ofϕ with respect tox andy. Denote them by
ϕx andϕy.

b. Show thatϕx andϕy are orthogonal:

∫

ϕx(x,y)ϕy(x,y)dxdy= 0 (10.24)

c. The two functionsϕx andϕy define a pair of steerable filters. The subspace
they span has an invariance property which will be shown next. Define an
orientation angle parameterα. Consider a linear combination

ϕα = ϕx cosα + ϕysinα (10.25)

The point is to show thatϕα has just the same shape asϕx or ϕy, the only
difference being that they are all rotated versions of each other. Thus,ϕx and
ϕy form an orthogonal basis for a subspace which consists of simple edge
detectors with all possible orientations. The proof can be obtained as follows.
Define a rotated version of the variables as

(
x′

y′

)

=

(
sinβ cosβ
−cosβ sinβ

)(
x
y

)

(10.26)

Expressϕ as a function ofx′ andy′. Show that this is equivalent toϕα for a
suitably chosenβ .

Computer assignments

1. Create two two-dimensional Gabor filters in quadrature-phase and plot random
linear combinations of them.

2. Next we consider steerable filters.

a. Plot the partial derivativesϕx andϕy defined in the mathematical exercise 2
above.

b. For a couple of different values of alpha, plot their linear combinationsϕα .

Compare visually the shapes of the functions plotted.



Chapter 11
Energy correlations and topographic
organization

The energy detection model in the preceding chapter can easily be modified to in-
corporate topography, i.e. an arrangement of the features on a two-dimensional grid.
This is very interesting because such organization is one ofthe most prominent phe-
nomena found in the primary visual cortex. In this chapter, we shall investigate such
a topographic version of the ICA model. It is, mathematically, a rather simple mod-
ification of the independent subspace analysis model.

11.1 Topography in the cortex

Topography means that the cells in the visual cortex are not in any random order;
instead, they have a very specific spatial organization. When moving on the corti-
cal surface, the response properties of the neurons change in systematic ways. The
phenomenon can also be called topological organization, and sometimes the term
“columnar organization” is used in almost the same sense.

Fundamentally the cortex is, of course, three-dimensional. In addition to the sur-
face coordinates, which we denote byxc andyc, there is the depth dimensionzc. The
depth “axis” goes from the very surface of the cortex throughdifferent layers of the
grey matter to the white matter.

However, the depth dimension is usually assumed to be different from the other
two dimensions. In the most simplistic interpretations, the cells that are on the same
surface location(xc,yc) are similar irrespective of how deep they are on the cortex.
This is most clearly expressed in the classic “ice cube” model of V1. Such a simplis-
tic view has been challenged, and it is now well-known that atleast some properties
of the cells are clearly different in different (depth) layers. In particular, input to V1
is received in some of the layers and others are specialized in outputting the results.
Still, it seems that the response properties which we consider in this book, such as
location, frequency, and orientation selectivities, depend mainly on the coordinates
(xc,yc) of the cell with respect to the surface.

249
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Looking at the spatial organization of response propertiesas a function of the
surface coordinatesxc andyc, the most striking aspect of topographic organization is
retinotopy, which means that the location of the receptive field in the retinal space is
closely correlated with thexc andyc coordinates. The global correspondence of the
retinal coordinates and the cortical coordinates is somewhat complicated due to such
phenomena as the magnification factor (the area in the centerof the visual field has
a relatively larger representation on the cortex), the division into two hemispheres,
some unexpected discontinuities, and so on. The correlation is, therefore, more of a
local nature.

The second important topographic property is the gradual change of orienta-
tion tuning. The preferred orientation of simple and complex cells mostly changes
smoothly. This phenomenon is often referred to asorientation columns. They can be
seen most clearly in optical imaging experiments where one takes a “photograph” of
the cortex that shows which regions are active when the inputconsists of a grating
of a given orientation. Such activity patterns take the formof stripes (columns).

The third important property of spatial organization is that frequency selectivity
seems to be arranged topographically into low-frequency blobs so that the blobs (or
at least their centers) contain predominantly cells that prefer low-frequency cells
and the interblob cells prefer higher frequencies. These low-frequency blobs seem
to coincide with the well-known cytochrome oxidase blobs.

A final point to note is that phase is not arranged topographically. In fact, phase
seems to be completely random: there is no correlation between the phase parame-
ters in two neighbouring cells.

11.2 Modelling topography by statistical dependence

Now we show how to extend the models of natural image statistics to include to-
pography. The key is to consider the dependencies of the components. The model is
thus closely related to the model of independent subspace analysis in Chapter 10. In
fact, ISA can be seen as a special case of this model.

11.2.1 Topographic grid

To model topographic organization, we have to first define which features are “close
to each other” on the cortical surface. This is done by arranging the featuressi on
a two-dimensional grid or lattice. The restriction to 2D is motivated by cortical
anatomy, but higher dimensions are equally possible. The spatial organization on
the grid models the organization on the cortical surface. The arrangement on the
lattice is illustrated in Figure 11.1.

The topography is formally expressed by a neighbourhood function π(i, j) that
gives the proximity of the features (components) with indicesi and j. Typically, one
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Fig. 11.1: Illustration of topography and its statistical interpretation. The neurons (feature detec-
tors) are arranged on a two-dimensional grid that defines which neurons are near to each other and
which are far from each other. It also defines the neighbourhood of a cell as the set of cells which
are closer than a certain radius. In the statistical model, neurons that are near to each other have
statistically dependent outputs, neurons that are far fromeach other have independent outputs.

defines thatπ(i, j) is 1 if the features are sufficiently close to each other (theyare
“neighbours”), and 0 otherwise. Typically, the neighbourhood function is chosen by
defining the neighbourhood of a feature to be square. For example,π(i, j) is 1 if the
featurej is in a 5×5 square centered on featurei; otherwiseπ(i, j) is zero.

11.2.2 Defining topography by statistical dependencies

Consider a number of featuressi , i = 1, . . . ,n. How can we order the features on the
topographic grid in a meaningful way? The starting point is to define a measure of
similarity between two features, and then to order the features so that features that
are similar are close to each other on the grid. This is a general principle that seems
fair enough. But then, what is a meaningful way of defining similarity between two
features? There are, actually, a couple of different possibilities.

In many models, the similarity of features is defined by similarity of the features
weights or receptive fieldsWi . Typically, this means the dot-product (also called,
somewhat confusingly, the correlation of the receptive fields). This is the case in
Kohonen’s self-organizing map and related models. However, this seems rather in-
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adequate in the case of the visual cortex. For example, two features of the same
frequency need not exhibit large dot-products of weight vectors; in fact, the dot-
product can be zero if the features are of orthogonal orientations with otherwise
similar parameters. Yet, since the V1 exhibits low-frequency blobs, low-frequency
features should be considered similar to each other even if they are quite differ-
ent with respect to other parameters. What’s even worse is that since the phases
change randomly when moving a bit on the cortical surface, the dot-products be-
tween neighbouring components also change rather randomlysince the phase has a
large influence on the shape of the receptive fields and on the dot-products.

Another candidate for a similarity measure would be correlation of the feature
detector outputssi when the input consists of natural images. However, this is no
good either, since the outputs (components) are typically constrained to be exactly
uncorrelated in ICA and related models. Thus, they would allbe maximally dissim-
ilar if similarity is based on correlations.

Yet, using correlations seems to be a step in the right direction. The central hy-
pothesis used in this book — visual processing in the cortex is strongly influenced
by the statistical structure of the natural input — would suggest that we have to look
at the statistics of feature detector outputs in order to finda meaningful measure of
similarity to be used in a model of topography. We just need more information than
the ordinary linear correlations.

Our statistical approach to topography thus concentrates on the pattern of statis-
tical dependencies between thesi , assuming that the joint distribution of thesi is
dictated by the natural image input. The basic idea is thatsimilarity is defined by
the statistical dependency of the outputs. Thus, features that have strong statistical
dependencies are defined to be similar, and features that areindependent or weakly
dependent are defined to be dissimilar.

The application of this principle is illustrated in Fig. 11.1. The linear feature
detectors (simple cells) have been arranged on a grid (cortex) so that any two fea-
ture detectors that are close to each other have dependent outputs, whereas feature
detectors that are far from each other have independent outputs.

Actually, from Chapters 9 and 10 we know what are the most prominent statis-
tical dependencies that remains after ordinary ICA: the correlations of squares (or
absolute values, which seems to be closely related). Thus, we do not need to model
the whole dependency structure of thesi , which would be most complicated. We can
just concentrate on the dependencies of the squaress2

i .

11.3 Definition of topographic ICA

As in the ICA and ISA models, we model the image as a linear superposition of
featuresAi with random coefficientssi :

I(x,y) =
m

∑
i=1

Ai(x,y)si (11.1)
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As in ICA and ISA, thesi are obtained as the outputs of linear feature detectors as

si = ∑
x,y

Wi(x,y)I(x,y) =
n

∑
j=1

vi j zj = vT
i z (11.2)

where thezj denotes thej-th variable obtained from the image patch by canonical
preprocessing.

The point is now to define the joint pdf of thesi so that it expresses the topo-
graphic ordering. First, we define the “local energies” as

ci =
n

∑
j=1

π(i, j)s2
j . (11.3)

This is basically the general activity level in the neighbourhood of the linear feature
si . The weighting byπ(i, j) means that we only sum oversj which are close tosi in
the topography.

Next, we define the likelihood of the topographic ICA model bya simple mod-
ification of the log-likelihood in the ISA model, given in Equation (10.11) on page
230. We replace the subspace energiesek by these local energies. (The connection
between the two models is discussed in more detail later.) Thus, define the pdf of
thesi as

logp(s1, . . . ,sn) =
n

∑
i=1

h(
n

∑
j=1

π(i, j)s2
j ) (11.4)

whereh is a convex function as in the preceding chapters, e.g. Section 6.2.1. As-
suming we have observed a set of image patches, represented by zt ,t = 1, . . . ,T
after canonical preprocessing, we obtain the likelihood

logL(v1, . . . ,vn) = T log|det(V)|+
n

∑
i=1

T

∑
t=1

h(
n

∑
j=1

π(i, j)(vT
j zt)

2) (11.5)

The topography given byπ(i, j) is considered fixed, and only the linear feature
weightsv j are estimated, so this likelihood is a function of thev j only. As in earlier
models, the vectorsv j are constrained to form an orthogonal matrix, so the determi-
nant is constant (one) and the termT log|det(V)| can be ignored.

The central feature of this model is that the responsessi of near-by simple cells
arenotstatistically independent in this model. The responses arestill linearly uncor-
related, but they have nonlinear dependencies. In fact, theenergiess2

i are strongly
positively correlated for neighbouring cells. This property is directly inherited from
the ISA model; that connection will be discussed next.
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11.4 Connection to independent subspaces and invariant features

Topographic ICA can be considered a generalization of the model of independent
subspace analysis. The likelihood of ISA, see Equation (10.11), can be expressed as
a special case of the likelihood in Equation (11.5) with a neighbourhood function
which is one if the components are in the same subspace and zero otherwise, or
more formally:

π(i, j) =

{

1, if there is some subspace with indexq so thati, j ∈ S(q)

0 otherwise.

This shows that topographic ICA is closely connected to the principle of invari-
ant feature subspaces in Chapter 10. In topographic ICA, every component has its
own neighbourhood, which corresponds to a subspace in ISA. Each of the local en-
ergiesci could be considered as the counterpart of the energiesek in ISA. Thus the
local energies, possibly after a nonlinear transform, can be interpreted as the values
of invariant features. The pooling process is controlled bythe neighbourhood func-
tion π(i, j). This function directly gives the pooling weights, i.e. theconnections
between the linear features with indexi and the invariant feature cell with indexj.
Note that the number of invariant features is here equal to the number of underlying
linear features.

The dependencies of the components can also be deduced from this analogy
with ISA. In ISA, components which are in the same subspace have correlations
of energies. In topographic ICA, components which are closeto each other in the
topographic grid have correlations of squares. Thus, all the features in the same
neighbourhood tend to be active (non-zero) at the same time.

In a biological interpretation, our definition of the pooling weights from simple
cells to complex cells in topographic ICA is equivalent to the assumption that com-
plex cells only pool outputs of simple cells that are near-byon the topographic grid.
Neuroanatomic measurements indicate that the wiring of complex cells may indeed
be so constrained, see References below. Such a two-layer network is illustrated in
Fig. 11.2.

11.5 Utility of topography

What is the computational utility of a topographic arrangement? A widely used ar-
gument is that such a spatial arrangement is useful tominimize wiring length. Wiring
length means here the length of the physical connections (axons) needed to send sig-
nals from one neuron to another. Consider, for example, the problem of designing
the connections from simple cells to complex cells so that the “wires” are as short
as possible. It is rather obvious that topographic ICA is related to minimizing that
wiring length because in topographic ICA all such connections are very local in the
sense that they are not longer that the radius of the neighbourhoods. A more general
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task may be to pool of responses to reduce noise: if a cell in a higher area wants
to “read”, say, the orientation of the stimulus, it could reduce noise in V1 cell re-
sponses by looking at the average of the responses of many cells which have the
same orientation selectivity.

In general, if we assume that two cells need to communicate with each other
if (and only if) their outputs are statistically dependent,topographic ICA provides
optimal wiring. The same applies if the responses of two cells are combined by a
third cell only if the outputs of the two cells are statistically dependent. Such as-
sumptions are reasonable because if the cells represent pieces of information which
are related (in some intuitive sense), it is likely that their outputs are statistically de-
pendent, and vice versa; so, statistical dependence tells which cells contain related
information which has to be combined in higher levels.

Minimization of wiring length may be important for keeping the total brain vol-
ume minimal: a considerable proportion of the brain volume is used up in intercon-
necting axons. It would also speed up processing because thesignal travels along
the axons with limited speed.

2( ) ( )

Σ

( ) 2 ( ) 2 ( ) 22 ( )2 ( ) 2 ( ) 2 ( ) 2

Fig. 11.2: Computation of invariant features in the topographic ICA model. Invariant features (com-
plex cell outputs) are obtained by summing the squares of linear features (simple cell outputs) in
a neighbourhood of the topographic grid. From (Hyvärinen et al, 2001a), Copyrightc©2001 MIT
Press, used with permission.
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11.6 Estimation of topographic ICA

A fundamental similarity to ISA is that we donot specify what parameters should
be considered as defining the topographic order. That is, themodel does not specify,
for example, that near-by neurons should have receptive fields that have similar
locations, or similar orientations. Rather, we let the natural images decide what the
topography should be like, based on their statistical structure.

(locally pooled energies)

(linear filters)

square rectification

PIXEL INPUT

maximize
sparseness

SIMPLE CELLS

COMPLEX CELLS

fixed

learned
weights

weights

Fig. 11.3: Illustration of learning in the topographic ICA model. From (Hyvärinen and Hoyer,
2001), Copyrightc©2001 Elsevier, used with permission.

Since we have already defined the likelihood in Equation (11.5), estimation needs
hardly any further comment. We use whitened (canonically preprocessed) data, so
we constrainV to be orthogonal just like in ICA and ISA. We maximize the like-
lihood under this constraint. The computational implementation of such maximiza-
tion is discussed in detail in Chapter 18, in particular Section 18.5.

The intuitive interpretation of such estimation is that we are maximizing the
sparsenesses of the local energies. This is completely analogue to ISA, where we
maximize sparsenesses of complex cell outputs. The learning process is illustrated
in Fig. 11.3.
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11.7 Topographic ICA of natural images

11.7.1 Emergence of V1-like topography

11.7.1.1 Data and preprocessing

We performed topographic ICA on the same data as in previous chapters. We took
the same 50,000 natural image patches of size 32×32 as in the preceding chapters.
We preprocessed the data in the same way as in the ISA case: This means divisive
normalization using Equation (9.11), and reducing the dimension to 256 by PCA.
The nonlinearityh was chosen to be a smoothed version of the square root as in
Eq. (6.14), just like in the ISA experiments.

The topography was chosen so thatπ(i, j) is 1 if the cell j is in a 5×5 square
centered on celli; otherwiseπ(i, j) is zero. Moreover, it was chosen to be cyclic
(toroidal) so that the left edge of the grid is connected to the right edge, and the
upper edge is connected to the lower edge. This was done to reduce border artifacts
due to the limited size to the topographic grid.

11.7.1.2 Results and analysis

The linear detector weightsWi obtained by topographic ICA from natural images
are shown in Fig. 11.4, and the corresponding feature vectors Ai are in Fig. 11.5.
The topographic ordering is visually obvious. The underlying linear features are
tuned for the three principal parameters: orientation, frequency and location. Visual
inspection of the map shows that orientation and location mostly change smoothly
as a function of position on the topographic grid. A strikingfeature of the map is a
“blob” grouping low-frequency features. Thus the topography is determined by the
same set of parameters for which the features are selectively tuned; these are just the
same as in ICA and ISA. These are also the three parameters with respect to which
a clear spatial organization has been observed in V1.

The topography can be analyzed in more detail by either a global or a local anal-
ysis. A local analysis is done by visualizing the correlations of the optimal Gabor
parameters for two linear features that are immediate neighbours. In Fig. 11.6 we
see that the locations (a,b) and orientations (c) are strongly correlated. In the case
of frequencies (d) the correlation is more difficult to see because of the overall con-
centration to high frequencies. As for phases (e), no correlation (or any kind of sta-
tistical dependency) can be seen, which is again similar to what has been observed
in V1. Furthermore, all these correlations are similar to the correlations inside inde-
pendent subspaces in Figure 10.8 on page 240. This is not surprising because of the
intimate connection between the two models, explained above in Section 11.4.

A global analysis is possible by colour-coding the Gabor parameters of linear
features. This gives “maps” whose smoothness shows the smoothness of the under-
lying parameter. The maps are shown in Figure 11.7. The locations (a and b) can be
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Fig. 11.4: The whole set of vectorsWi obtained by topographic independent component analysis,
in the topographic order.

seen to change smoothly, which is not obvious from just looking at the features in
Figure 11.4. The orientation and frequency maps (c and d) mainly change smoothly,
which was rather obvious from Figure 11.4 anyway. In some points, the orientation
seems to change abruptly, which may correspond to so-called“pinwheels”, which
are points in which many different orientations can be foundnext to each other, and
have been observed on the cortex. As for phases, the map in (e)shows that they
really change randomly.

We can also analyze the distribution of the frequencies and orientations of the
features. The plot in Fig. 11.8 shows the histograms preferred orientations and
frequencies for the linear features. We see that all orientations are almost equally
present, but the horizontal orientation is slightly overrepresented. This is the same
anisotropy we have seen all preceding models. In contrast, the frequency distribu-
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Fig. 11.5: The whole set of vectorsAi obtained by topographic independent component analysis.

tion is very strongly skewed: most linear features are tunedto high frequencies.
However, the distribution of frequencies is a bit closer to uniform than in the cases
of ICA (Fig. 6.9) or ISA (Fig. 10.9).

The connection of the model to ISA suggests that the local energies can be in-
terpreted as invariant features. What kind of invariances do we see emerging from
natural images? Not surprisingly, the invariances are similar to what we obtained
with ISA, because the neighbourhoods have the same kinds of parameters correla-
tions (Figure 11.6) as in ICA; we will not analyze them in moredetail here. The
main point is thatlocal energies are like complex cells. That is, the topographic ICA
model automatically incorporates a complex cell model.

Basically, the conclusion to draw from these results is thatthe topographic ICA
model produces a spatial topographic organization of linear features that is quite
similar to the one observed in V1.
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Fig. 11.6: Correlation of parameters characterizing the linear features of two neighbouring features
in Figure 11.4. An immediate neighbour for each cell chosen as the one immediately to the right.
Each point in the scatter plots is based on one such couple.a) scatter plot of locations along x-axis,
b) locations along y-axis,c) orientations,d) frequencies, ande) phases. The plots are very similar
to corresponding plots for ISA in Fig. 10.8 on page 240; the main visual difference is simply due
to the fact that here we have twice the number of dots in each plot.

11.7.1.3 Image synthesis results & sketch of generative model

Next, we will synthesize images from the topographic ICA model. This is a bit tricky
because in fact, we did not yet introduce a proper generativemodel for topographic
ICA. Such a model can be obtained as a special case of the framework introduced
later in Section 11.8.2. We will here briefly describe how such a generative model
can be obtained.
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Fig. 11.7: Global structure of the topography estimated from natural images in Figure 11.4. Each
parameter of the Gabor functions describing the features isplotted grey-scale or colour-coded.
Colour-coding is used for parameters which are cyclic: orientation and phase, since the colour
spectrum is also cyclic. The actual values of the parametersare not given because they have little
importance.a) locations along x-axis,b) locations along y-axis,c) orientations,d) frequencies,
ande) phases.

Basically, the idea is a simple generalization of the framework using variance
variables as in Section 10.4 and Section 9.3. Here, we have a separate variance
variabledi for each componentsi :

si = s̃idi (11.6)
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Fig. 11.8: Histograms of the optimala) frequencies andb) orientations of the linear features in
topographic ICA.

where the ˜si are gaussian and independent from each other (and from thedi). The
point is to generate thedi so that their dependencies incorporate the topography.This
can be accomplished by generating them using a higher-orderICA model, where the
mixing matrix is given by the neighbourhood function. Denoting the higher-order
components byui , we simply define

di = ∑
j

π(i, j)ui (11.7)

This produces approximately the same distribution as the pdf which we used to
define the topographic ICA model earlier in this chapter. SeeSection 11.8.2 for
details. A problem we encounter here is that it is not obvioushow to estimate the
distributions of theui. So, we have to fix them rather arbitrarily, which means the
results are not quite directly comparable with those obtained by ISA and ICA where
we could use the observed histograms of the features.

Results of synthesizing images with this generative model are shown in Fig-
ure 11.9. Theui were generated as the fourth powers of gaussian variables. The
synthesized images seem to have more global structure than those obtained by ICA
or ISA, but as we just pointed out, this may be related to the way we fixed the
distributions of theui .

11.7.2 Comparison with other models

When compared with other models on V1 topography, we see three important prop-
erties in the topographic ICA model:

1. The topographic ICA model shows emergence of a topographic organization us-
ing the above-mentioned three principal parameters: location, frequency and ori-
entation. The use of these particular three parameters is not predetermined by the
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Fig. 11.9: Image synthesis using topographic ICA. Compare with the ICA results in Figure 7.4 on
page 170 and ISA results in Figure 10.10 on page 241.

model, but determined by the statistics of the input. This isin contrast to most
models that only model topography with respect to one or two parameters (usu-
ally orientation possibly combined with binocularity) that are chosen in advance.

2. No other model has shown the emergence of a low-frequency blob.
3. Topographic ICA may be the first one to explicitly show a connection between

topography and complex cells. The topographic, columnar organization of the
simple cells is such that complex cell properties are automatically created when
considering local activations. This is related to the randomness of phases, which
means that in each neighbourhood, there are linear featureswith very different
phases, like in the subspaces in ISA.

It is likely that the two latter properties (blobs and complex cells) can only
emerge in a model that is based on simultaneous activation (energy correlation)
instead of similarity of receptive fields as measured by Euclidean distances or recep-
tive field correlations. This is because Euclidean distances or correlations between
feature vectors of different frequencies, or of different phases, are quite arbitrary:
they can obtain either large or small values depending on theother parameters. Thus,
they do not offer enough information to qualitatively distinguish the effects of phase
vs. frequency, so that phase can be random and frequency can produce a blob.
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11.8 Learning both layers in a two-layer model *

In this section, we discuss estimation of a two-layer model which is a generaliza-
tion of the topographic ICA. The section is quite sophisticated mathematically, and
presents ongoing work with a lot of open problems, so it can beskipped by readers
not interested in mathematical details.

11.8.1 Generative vs. energy-based approach

Many of the results in the preceding chapters are related to atwo-layer generative
model. In the model, the observed variablesz are generated as a linear transforma-
tion of componentss, just as in the basic ICA model:z = As. The point is to define
the joint density ofs so that it expresses the correlations of squares that seem tobe
dominant in image data.

There are two approaches we can use. These parallel very muchthe sparse cod-
ing and ICA approaches in Chapters 6 and 7. In the first approach, typically called
“energy-based” for historical reasons,1 we just define an objective function which
expresses sparseness or some related statistical criterion, and maximize it. In the
second approach, we formulate a generative model which describes how the data
is generated starting from some elementary components. We shall consider here
first the generative-model approach; the energy-based model is considered in Sec-
tion 11.8.5.

11.8.2 Definition of the generative model

In the generative-model approach, we define the joint density of s as follows. The
variancesd2

i of thesi are not constant, instead they are assumed to be random vari-
ables. These random variablesdi are, in their turn, generated according to a model
to be specified. After generating the variancesd2

i , the variablessi are generated in-
dependently from each other, using some conditional distributions to be specified.
In other words, thesi areindependent given their variances. Dependence among the
si is implied by the dependence of their variances.

This is a generalization of the idea of a common variance variable presented
in Section 7.8.3. Here, there is no single common variance variable, since there is
a separate variance variabled2

i corresponding to eachsi . However, these variance
variables are correlated, which implies that the squares ofthesi are correlated. Con-
sider the extreme case where thedi are completely correlated. Then, thed2

i are actu-
ally the same variable, possibly multiplied by some constants. Thus, in this extreme

1 Note that the word “energy” here has nothing to do with Fourier energy, it comes from a com-
pletely different physical analogy.
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case, we actually have just a single variance variable as in the divisive normalization
model in Chapter 9.

Many different models for the variancesd2
i could be used. We prefer here to use

an ICA model followed by a nonlinearity:

di = r(
n

∑
k=1

π(i,k)uk) (11.8)

Here, theuk are the “higher-order” independent components used to generate the
variances, andr is some scalar nonlinearity (possibly just the identityr(z) = z).
The coefficientsπ(i,k) are the entries of a higher-order feature matrix. It is closely
related to the matrix defining the topography in topographicICA, which is why we
use the same notation.

This particular model can be motivated by two facts. First, taking sparseui , we
can model a two-layer generalization of sparse coding, where the activations (i.e. the
variances) of the componentssi are sparse, and constrained to some groups of “re-
lated” components. Related components means here components whose variances
are strongly influenced by the same higher-order componentsui .

In the model, the distributions of theui and the actual form ofr are additional
parameters; some suggestions will be given below. It seems natural to constrain the
uk to be non-negative. The functionr can then be constrained to be a monotonic
transformation in the set of non-negative real numbers. This ensures that thedi ’s are
non-negative, so is a natural constraint since they give thestandard deviation of the
components.

The resulting two-layer model is summarized in Fig. 11.10. Note that the two
stages of the generative model can be expressed as a single equation, analogously to
(9.4), as follows:

si = r(∑
k

π(i,k)uk)s̃i (11.9)

wheres̃i is a random variable that has the same distribution assi given thatdi is
fixed to unity. Theuk and the ˜si are all mutually independent.

11.8.3 Basic properties of the generative model

Here we discuss some basic properties of the generative model just defined.

11.8.3.1 The componentssi are uncorrelated

This is because according to (11.9) we have

E{sisj}= E{s̃i}E{s̃j}E{r(∑
k

π(i,k)uk)r(∑
k

π( j,k)uk)} = 0 (11.10)
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due to the independence of theuk from s̃i and s̃j . (Recall that ˜si and s̃j are zero-
mean.) To simplify things, one can define that the marginal variances (i.e. integrated
over the distribution ofdi) of thesi are equal to unity, as in ordinary ICA. In fact,
we have

E{s2
i }= E{s̃2

i }E{r(∑
k

π(i,k)uk)
2}, (11.11)

so we only need to rescaleπ(i, j) (the variance of ˜si is equal to unity by definition).

11.8.3.2 The componentssi are sparse

This is true in the case where componentsi is assumed to have a gaussian distribu-
tion when the variance is given. This follows from the proof given in Section 7.8.3:
the logic developed there still applies in this two-layer model, when the marginal
distribution of each componentsi is consider separately. Then, the marginal, uncon-
ditional distributions of the componentssi are called gaussian scale mixtures.

11.8.3.3 Topographic organization can be modelled

This is possible simply by constraining the higher-order matrix π(i, j) to equal a
topographic neighbourhood matrix as in Section 11. We can easily prove that com-
ponents which are far from each other on the topography are then independent.
Assume that thatsi andsj are such that their neighbourhoods have no overlap, i.e.
there is no indexk such that bothπ(i,k) andπ( j,k) are non-zero. Then their vari-
ancesdi andd j are independent because no higher-order component influences both
of these variances. Thus, the componentssi andsj are independent as well.

11.8.3.4 Independent subspaces are a special case

This is more or less implied by the discussion in Section 11.4where independent
subspace analysis was shown to be a special case of topographic ICA. A more direct
connection is seen by noting that each variance variable could determine the vari-
ance inside a single subspace, with no interactions betweenthe variance variables.
Then we get the ISA model as explained in Section 10.4.

11.8.4 Estimation of the generative model

11.8.4.1 Integrating out

In this section, we discuss the estimation of the two-layer model introduced in the
previous section. In principle, this can be done by “integrating out” the latent vari-
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Fig. 11.10: An illustration of the two-layer generative model. First, the “variance-generating” vari-
ablesui are generated randomly. They are then mixed linearly. The resulting variables are then
transformed using a nonlinearityr, thus giving the local variancesd2

i . Componentssi are then
generated with variancesd2

i . Finally, the componentssi are mixed linearly to give the observed
variablesxi (which are subsequently whitened to give thezi ).

ables. Integrating out is an intuitive appealing method: since the likelihood depends
on the values of the variance variablesui which we don’t know, why not just com-
pute the likelihood averaged over all possible values ofui? Basically, if we have the
joint density of thesi and theui , we could just compute the integral over theui to
get the density oversi alone:

p(s) =
∫

p(s,u)du (11.12)

The problem is, as always with integration, that we may not beable to express this
integral with a simple formula, and numerical integration may be computationally
impossible.

In our case, the joint density ofs, i.e. the topographic components, andu, i.e. the
higher-order independent components generating the variances, can be expressed as

p(s,u) = p(s|u)p(u) = ∏
i

ps
i (

si

r(∑k π(i,k)uk)
)

1
r(∑k π(i,k)uk)

∏
j

pu
j (u j) (11.13)

where thepu
i are the marginal densities of theui and theps

i are the densities ofps
i for

variance fixed to unity. The marginal density ofscould be obtained by integration:

p(s) =

∫

∏
i

ps
i (

si

r(∑k π(i,k)uk)
)

∏ j pu
j (u j)

r(∑k π(i,k)uk)
du (11.14)

Possibly, for some choices of the nonlinearityr and the distributionspu
i , this integral

could be computed easily, but no such choices are known to us.

11.8.4.2 Approximating the likelihood

One thing which we can do is toapproximatethe likelihood by an analytical expres-
sion. This approximation actually turns out to be rather useless for the purpose of
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estimating the two-layer model, but it shows an interestingconnection to the likeli-
hood of the topographic ICA model.

To simplify the notation, we assume in the following that thedensitiespu
i are

equal for all i, and likewise forps
i . To obtain the approximation, we first fix the

densityps
i = ps to be gaussian, as discussed in Section 11.8.3, and we define the

nonlinearityr as
r(∑

k

π(i,k)uk) = (∑
k

π(i,k)uk)
−1/2 (11.15)

The main motivation for these choices is algebraic simplicity that makes a sim-
ple approximation possible. Moreover, the assumption of conditionally gaussiansi ,
which implies that the unconditional distribution ofsi super-gaussian, is compatible
with the preponderance of super-gaussian variables in ICA applications.

With these definitions, the marginal density ofsequals:

p(s) =

∫
1√
2πn exp(−1

2 ∑
i

s2
i [∑

k

π(i,k)uk])∏
i

pu(ui)
√

∑
k

π(i,k)uk du (11.16)

which can be manipulated to give

p(s) =

∫
1√
2πn exp(−1

2 ∑
k

uk[∑
i

π(i,k)s2
i ])∏

i
pu(ui)

√

∑
k

π(i,k)uk du. (11.17)

The interesting point in this form of the density is that it isa function of the “local
energies”∑i π(i,k)s2

i only. The integral is still intractable, though. Therefore, we
use the simple approximation:

√

∑
k

π(i,k)uk ≈
√

π(i, i)ui. (11.18)

This is actually a lower bound, and thus our approximation will be a lower bound of
the likelihood as well. This gives us the following approximation p̃(s):

p̃(s) = ∏
k

exp(G(∑
i

π(i,k)s2
i )) (11.19)

where the scalar functionG is obtained from thepu by:

G(y) = log
∫

1√
2π

exp(−1
2

uy)pu(u)
√

π(i, i)udu. (11.20)

Recall that we assumedπ(i, i) to be constant.
Next, using the same derivation as in ICA, we obtain the likelihood of the data as

logL̃(V) =
T

∑
t=1

n

∑
j=1

G(
n

∑
i=1

π(i, j)(vT
i z(t))2)+T log|detV|. (11.21)
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whereV = (v1, . . . ,vn)
T = A−1, and thez(t),t = 1, . . . ,T are the observations ofz.

It is here assumed that the neighbourhood function and the nonlinearity r as well
as the densitiespu

i and ps
i are known. This approximation is a function of local

energies. Every term∑n
i=1 π(i, j)(vT

i z(t))2 could be considered as the energy of a
neighbourhood, related to the output of a higher-order neuron as in complex cell
models. The functionG has a similar role as the log-density of the independent
components in ICA; the corresponding functionh is basically obtained ash(u) =
G(
√

|u|).
The formula forG in (11.20) can be analytically evaluated only in special cases.

One such case is obtained if theuk are obtained as squares of standardized gaussian
variables. Straight-forward calculation then gives the following function

G0(y) =− log(1+y)+const. (11.22)

However, in ICA, it is well-known that the exact form of the log-density does not
affect the consistency of the estimators, as long as the overall shape of the function
is correct. This is probably true in topographic ICA as well.

11.8.4.3 Difficulty of estimating the model

What we have really shown in deriving the approximation of likelihood in Equa-
tion (11.21) is that the heuristically justified objective function in Equation (11.5)
can be obtained from the two-layer generative model as an approximation. But we
have not really got any closer to the goal of estimating both layers of weights. This
is because the approximation used here approximates the dependence of the likeli-
hood fromπ quite badly. To see why, consider maximization of the approximative
likelihood in Equation (11.21) with respect to theπ(i, j). TakeG as in (11.22). Now,
∑n

i=1 π(i, j)(vT
i z(t))2 is always non-negative. On the other hand,G attains its max-

imum at zero. So, if we simply takeπ(i, j) = 0 for all i, j, G is actually always
evaluated at zero and the approximative likelihood is maximized. So, taking all ze-
ros inπ is the maximum, which is absurd!

One approach would be to find the values of the latent variables ui which max-
imize the likelihood, treating theui like the parameters. Thus, we would not try to
integrate out theui , but rather just formulate the joint likelihood ofV,π(i, j),ui(t)
for all i, j and allt = 1, . . . ,T. This is computationally very difficult because the la-
tent variablesdi are different for each image patch, so there is a very large number of
them. The situation could be simplified by first estimating the first layer by ordinary
ICA, and then fixingV once and for all (Karklin and Lewicki, 2005). However, this
does not reduce the number of dimensions.

So, we see that the estimation of both layers in a generative two-layer model is
quite difficult. However, abandoning the generative-modelapproach simplifies the
situation, and provides a promising approach, which will betreated next.
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11.8.5 Energy-based two-layer models

A computationally simpler alternative to estimation of thetwo layers is provided by
an “energy-based” approach. The idea is to take the likelihood in Equation (11.5) as
the starting point. As pointed out above, it does not make sense to try to maximize
this with respect to theπ , because the maximum is obtained by taking all zeros as
the second layer weights.

There is a deep mathematical reason why we cannot maximize the likelihood
in Equation (11.5) with respect to theπ . The reason is that the likelihood isnot
normalized. That is, when we interpret the likelihood as a pdf, its integral over the
data variables is not equal to one: the integral depends on the values of theπ . This
means it is not a properly defined pdf, because a pdf must always integrate to one,
so the likelihood is not a properly defined likelihood either. To alleviate this, we
have to introduce what is called anormalization constantor apartition functionin
the likelihood. The normalization constant, which is actually not a constant but a
function of the model parameters, is chosen so that it makes the integral equal to
one. Denoting the normalization constant byZ(π), we write

logL(v1, . . . ,vn) =
T

∑
t=1

∑
i

h(
n

∑
j=1

π(i, j)(vT
i zt)

2)− log|detV|− logZ(π) (11.23)

See Section 13.1.5 and Chapter 21 for more discussion on the normalization con-
stant.

In principle, the normalization constant can be computed bycomputing the inte-
gral of the underlying pdf over the space of thev, but this is extremely complicated
numerically. Fortunately, there is a way around this problem, which is to use spe-
cial estimation methods which do not require the normalization constant. Thus, we
abandon maximization of likelihood, because it requires that we compute the nor-
malization constant. See Chapter 21 for information on suchmethods.

Attempts to estimate both layers in a two-layer model, usingan energy-based
approach, and estimation methods which circumvent the needfor a normalization
constant, can be found in (Osindero et al, 2006; Köster and Hyvärinen, 2007, 2008).
This is a very active area of research (Karklin and Lewicki, 2008). Some more re-
motely related work is in (Köster et al, 2009a).

11.9 Concluding remarks and References

A simple modification of the model of independent subspace analysis leads to emer-
gence of topography, i.e. the spatial arrangement of the features. This is in contrast
to ICA and ISA, in which the features are in random order. (In ISA, it is the sub-
spaces which are in random order, but the linear features have some organization
because of their partition to subspaces.) The basic idea in modelling topography is
to consider subspaces which are overlapping, so that the neighbourhood of each cell
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is one subspace. It is also possible to formulate a proper generative model which in-
corporates the same kind of statistical dependencies usingvariance variables which
are generated by a higher-order ICA model, but that approachis mathematically
difficult and still under construction.

Basic though old papers on topography are (Hubel and Wiesel,1968; DeValois
et al, 1982). Optical imaging results are shown in (Blasdel,1992), and a recent high-
resolution imaging study is in (Ohki et al, 2005). Topography with respect to spatial
frequency is investigated in (Tootell et al, 1988; Silverman et al, 1989; Edwards et al,
1996). Seminal papers on pinwheels are (Bonhoeffer and Grinvald, 1991; Maldon-
ado et al, 1997). A most interesting recent paper is (DeAngelis et al, 1999) that also
shows that the phases are not correlated in neighbouring cells. The relationships of
the topographic representation for different parameters are considered in (Hübener
et al, 1997). An important point is made in (Yen et al, 2007), who show that the
topography of responses is not so clear when the stimuli are complex, presumable
due to nonlinear interactions. The connection between topography and complex cell
pooling is discussed in (Blasdel, 1992; DeAngelis et al, 1999).

The idea of minimum wiring length, or wiring economy, goes back to Ramón
y Cajal, cited in (Chen et al, 2006). The metabolic advantages of topography are
further considered in (Durbin and Mitchison, 1990; Mitchison, 1992; Koulakov and
Chklovskii, 2001; Attwell and Laughlin, 2001). Comparisons between white and
grey matter volume also point out how brain (skull) size limits the connectivity
(Zhang and Sejnowski, 2000).

Original papers describing the topographic ICA models are (Hyvärinen and
Hoyer, 2001; Hyvärinen et al, 2001a). Kohonen’s famous self-organizing map is
also closely related (Kohonen, 1982, 2001), but it has not been shown to produce
a realistic V1-like topography; reasons for this were discussed in Section 11.7.2.
A model which produces more a realistic topography (but still no low-frequency
blobs) is Kohonen’s ASSOM model (Kohonen, 1996; Kohonen et al, 1997). How-
ever, in that model the nature of the topography is strongly influenced by an artificial
manipulation of the input (a sampling window that moves smoothly in time), and it
does not really emerge from the structure of images alone.

A related idea on minimization of wiring length has been proposed in (Vincent
and Baddeley, 2003; Vincent et al, 2005), in which it is proposed that the retinal
coding minimizes wiring, whereas cortical coding maximizes sparseness of activi-
ties.





Chapter 12
Dependencies of energy detectors: Beyond V1

All the models in this book so far have dealt with the primary visual cortex (V1).
In this chapter, we show how statistical models of natural images can be extended
to deal with properties in the extrastriate cortex, i.e. those areas which are close to
V1 (also called the striate cortex) and to which the visual information is transmitted
from V1.

12.1 Predictive modelling of extrastriate cortex

Most of the experimental results in early cortical visual processing have considered
V1. The function of most extrastriate areas is still rather much a mystery. Likewise,
most research in modelling natural image statistics has been on low-level features,
presumably corresponding to V1.

However, the methodology that we used in this book could possibly be extended
to such extrastriate areas as V2, V3(A), V4, and V5. Actually, since the function of
most extrastriate areas is not well understood, it would be most useful if we could
use this modelling endeavour in apredictivemanner, so that we would be able to
predict properties of cells in the visual cortex, in cases where the properties have
not yet been demonstrated experimentally. This would give testable, quantitative
hypotheses that might lead to great advances in visual neuroscience.

In the next sections, we attempt to accomplish such predictive modelling in order
to predict properties of a third processing step, followingthe simple and complex
cell layers. The predictions should be based on the statistical properties of modelled
complex-cell outputs. Our method is to apply ordinary independent component anal-
ysis to modelled outputs of complex cells whose input consists of natural images.1

1 This chapter is based on the article (Hyvärinen et al, 2005a), originally published in BMC Neu-
roscience. The experiments were done by Michael Gutmann. Copyright retained by the authors.
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12.2 Simulation of V1 by a fixed two-layer model

The basic idea in this chapter is to fix a model of complex cellsand then learn
a representation for complex cell outputs using a statistical model. The resulting
three-layer network is depicted in Fig. 12.1.

This approach is rather different from the one used in previous chapters, in which
we learned first the simple cells and then the complex cells from the data. Here, to
simplify the model and the computations, we do not attempt tolearn everything
at the same time. Instead, we fix the first two layers (simple and complex cells)
according to well-known models, and learn only the third layer.

image

complex cells

contour cells

simple cells

i

ija

s

c j

Fig. 12.1: The simplified hierarchical model investigated in this chapter. Modelled complex-cell
responses are calculated in a feedforward manner, and theseresponses are subsequently analyzed
by a higher-order feature layer in the network (“contour” layer). To emphasise that the lower layers
are fixed and not learned, these layers have been greyed out inthe figure. The direction of the arrows
is from higher features to lower ones which is in line with theinterpretation of our analysis as a
generative model.

The classic complex-cell model is based on Gabor functions.As explained in
Section 3.4.2, complex cells can be modelled as the sum of squares of two Gabor
functions which are in quadrature phase. Quadrature phase means, simply, that if
one of them is even-symmetric, the other one is odd-symmetric. This is related to
computation of the Fourier energy locally, as explained in Section 2.4.

Complex-cell responsesck to natural images were thus modelled with a Gabor
energy model of the following form:

ck =

(

∑
x,y

Wo
k (x,y)I(x,y)

)2

+

(

∑
x,y

We
k (x,y)I(x,y)

)2

(12.1)
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whereWe
k andWo

k are even- and odd-symmetric Gabor receptive fields; the equa-
tion shows that their squares (energies) are pooled together in the complex cell. The
complex cells were arranged on a 6× 6 spatial grid. They had 6× 6 = 36 differ-
ent spatial locations, and at each location, four differentpreferred orientations and
three different frequency selectivities (“bands”). The aspect ratio (ratio of spatial
length to width) was fixed to 1.5. The frequency selectivities of the Gabor filters
are shown in Figure 12.2, in which all the filtersW were normalized to unit norm
for visualization purposes. The actual normalization we used in the experiments
consisted of standardizing the variances of the complex cell outputs so that they
were equal to unity for natural image input. The number of complex cells totalled
36×4×3= 432.
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Fig. 12.2: We used fixed complex cells with three different frequency selectivities. The amplitudes
of the Fourier Transforms of the odd-symmetric Gabor filtersare shown here. The selectivities are
such that each cell is sensitive to a certain frequency “band”. The underlying Gabor filters had
logarithmically spaced frequency peaks. Peak spatial frequencies were chosen as follows:f1 = 0.1
cycles/pixel,f2 = 0.21 cycles/pixel andf3 = 0.42 cycles/pixel.

As the basic data, we used 1008 grey-scale natural images of size 1024×1536
pixels from van Hateren’s database2. We manually chose natural images in the nar-
rower sense, i.e. only wildlife scenes. From the source images, 50,000 image patches
of size 24×24 pixels were randomly extracted. The mean grey value of each im-
age patch was subtracted and the pixel values were rescaled to unit variance. The
resulting image patch will be denoted byI(x,y).

2 Available athttp://hlab.phys.rug.nl/imlib/index.html , category “deblurred”
(van Hateren and van der Schaaf, 1998).
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12.3 Learning the third layer by another ICA model

After fixing the first two layers, we learned the feature weights in the third layer
by doing a simple ICA of the complex cell (second-layer) outputs denoted byck.
No PCA dimension reduction was done here, so the number of independent com-
ponents equals the number of complex cells,K. Thus, ICA was performed on the
vectorc = (c1, . . . ,cK) using the FastICA algorithm (see Section 18.7). In ICA, the
orthogonalization approach was symmetric. Different nonlinearitiesg were used,
see Table 12.1. (The nonlinearities are related to the non-gaussianity measures used,
see Section 18.7.)

Non-gaussianity measure FastICA nonlinearity Motivation
G1(y) = logcoshy g1(y) = tanh(y) Basic sparseness measure
G2(y) =−exp(−y2/2) g2(y) = yexp(−y2/2) More robust variant ofg1

G3(y) = 1
3y3 g3(y) = y2 Skewness (asymmetry)

G4(y) = Gaussian cum. distr. functiong4(y) = exp(−y2/2) Robust variant ofg3

Table 12.1: The measures of non-gaussianity used, i.e. the different functionsG = logps used in
the likelihood of the ICA model. These correspond to different nonlinearitiesg in the FastICA
algorithm, and to different sparseness measuresh. The measures probe the non-gaussianity of the
estimated components in different ways.

Thus we learned (estimated) a linear decomposition of the form

ck =
K

∑
i=1

akisi for all k = 1, . . . ,K (12.2)

or in vector form

c =
K

∑
i=1

aisi = As (12.3)

where each vectorai = (a1i, . . . ,aKi) gives a higher-order feature vector. Thesi de-
fine the values of the higher-order features in the third cortical processing stage.
Recall that the input to the system was natural images, so thestatistics ofc reflect
natural image statistics.

Note that the signs of the feature vectors are not defined by the ICA model, i.e.
the model does not distinguish betweenai and−ai because any change in sign of the
feature vector can be cancelled by changing the sign ofsi accordingly. Here, unlike
in the original natural images, the features will not be symmetric with respect to
such a change of sign, so it makes sense to define the signs of the ai based on that
asymmetry. We defined the sign for each vectorai so that the sign of the element
with the maximal absolute value was positive.

This model can be interpreted as a generative model of image patches, following
the interpretation of ISA as a nonlinear ICA in Section 10.6.The higher-order inde-
pendent component (here denoted bysi) are generated according to Equation (12.2).
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Then, the activity of the complex cell is expressed as activities of simple cells with
random division of the activity to the simple cells, using a random angle variable
as in Equation (10.17) on page 235. Finally, the simple cell activities are linearly
transformed to image patches as in ICA or ISA models. This provides a complete
generative model from the higher-order features to image pixel values.

12.4 Methods for analysing higher-order components

We need to introduce some special methods to analyze the “higher-order” compo-
nents obtained by this method, because the resulting higher-order feature vectorsai

cannot be simply plotted in the form of image patches.
We visualize the vectorsai by plotting an ellipse at the centerpoint of each com-

plex cell. The orientation of the ellipse is the orientationof the complex cell with
indexk, and the brightness of the ellipse with indexi is proportional to the coeffi-
cientaki of the feature vectorai , using a grey-scale coding of coefficient values. We
plotted complex cells in each frequency band (i.e. with the same frequency selectiv-
ity) separately.

We are also interested in the frequency pooling of complex cells in different
higher-order features. We quantified the pooling over frequencies using a simple
measure defined as follows. Let us denote byai(x,y,θ , fn) the coefficient in the
higher-order feature vectorai that corresponds to the complex cell with spatial loca-
tion (x,y), orientationθ and preferred frequencyfn. We computed a quantity which
is similar to the sums of correlations of the coefficients over the three frequency
bands, but normalized in a slightly different way. This measure Pi was defined as
follows:

Pi = ∑
m<n

|∑x,y,θ ai(x,y,θ , fm)ai(x,y,θ , fn)|
CmCn

(12.4)

where the normalization constantCm is defined as

Cm =

√

1
K ∑

j ,x,y,θ
a j(x,y,θ , fm)2 (12.5)

and likewise forCn.
For further analysis of the estimated feature vectors, we defined the preferred

orientation of a higher-order feature. First, let us define for a higher-order fea-
ture of indexi the hot-spot(xi ,yi)

∗ as the centre location(x,y) of complex cells
where the higher-order componentsi generates the maximum amount of activity.
That is, we sum the elements ofai that correspond to a single spatial location, and
choose the largest sum. This allows us to define the tuning to agiven orientation of
a higher-order featurei by summing over the elements ofai that correspond to the
spatial hotspot and a given orientation; the preferred orientation is the orientation for
which this sum is maximized. We also computed the length of a higher-order feature
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by least-squares fitting a gaussian kernel to the patternsai (Hoyer and Hyvärinen,
2002).

It is also possible to perform an image synthesis from a higher-order feature
vector. However, the mapping from image to complex-cell outputs is not one-to-
one. This means that the generation of the image is not uniquely defined given the
activities of higher-order features alone. A unique definition can be achieved by
constraining the phases of the complex cells. For the purposes of image synthesis,
we assume that only odd-symmetric Gabor filters are active. Furthermore, we make
the simplifying assumptions that the receptive fieldsW in simple cells are equal to
the corresponding feature vectors, and that all the elements in the higher-order fea-
ture vector are non-negative (or small enough to be ignored). Then, the synthesized
imageI i

synth for higher-order feature vectorai is given by

I i
synth(x,y) = ∑

k∈H

Wo
k (x,y)

√
aki (12.6)

where the square root cancels the squaring operation in the computation of complex-
cell responses, andH denotes the set of indices that correspond to complex cells of
the preferred orientation at the hotspot. Negative values of aki were set to zero in
this formula.

Since we are applying ICA on data which has been heavily processed (by the
complex cell model), we have to make sure that the model is notonly analyzing the
artefacts produced by that processing. To obtain a baselinewith which to compare
our results, and to show which part of the results is due to thestatistical properties
of natural images instead of some intrinsic properties of our filterbank and analysis
methods, we did exactly the same kind of analysis for 24×24 image patches that
consisted of white gaussian noise, i.e. the grey-scale value in each pixel was ran-
domly and independently drawn from a gaussian distributionof zero mean and unit
variance. The white gaussian noise input provides a “chancelevel” for any quantities
computed from the ICA results. In a control experiment, suchwhite noise patches
were thus fed to the complex cell model, and the same kind of ICA was applied on
the outputs.

12.5 Results on natural images

12.5.1 Emergence of collinear contour units

In the first experiment, we used only the output from complex cells in a single
frequency band,f2 in Figure 12.2.

The higher-order features are represented by their featurevectorsai which show
the contribution of the third-stage feature of indexi on the activities of complex
cells. A collection of the obtained feature vectors is shownin Figure 12.3 for the
nonlinearityg1 (see Table 12.1), visualized as described above. We can see emer-
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gence of collinear features. That is, the higher-order features code for the simulta-
neous activation of complex cells that together form something similar to a straight
line segment.

Those coefficients that are clearly different from zero havealmost always the
same sign in a single feature vector. Defining the sign as explained above, this means
that the coefficients are essentially non-negative.3

Other measures of non-gaussianity (FastICA nonlinearities) led to similar feature
vectors. However, some led to a larger number of longer contours. Figure 12.4 shows
the distribution of lengths for different nonlinearities.The nonlinearityg4 (robust
skewness) seems to lead to the largest number of long contours. The outputs of
complex cells are skewed (non-symmetric), so it makes senseto use a skewness-
based measure of non-gaussianity, as discussed in Section 7.9. In this experiment,
the results were very similar to those obtained by sparseness, however.
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Fig. 12.3: Random selection of learned feature vectorsai when the complex cells are all in a single
frequency band. ICA nonlinearityg was the tanh nonlinearityg1. Each patch gives the coefficients
of one higher-order feature. Each ellipse means that the complex cell in the corresponding location
and orientation is present in the higher-order feature, thebrightness of the ellipse is proportional to
the coefficientaki.

12.5.2 Emergence of pooling over frequencies

In the second experiment, the complex cell set was expanded to include cells of
three different preferred frequencies. In total, there were now 432 complex cells.
We performed ICA on the complex cell outputs when their inputconsisted of nat-
ural images. Thus, we obtained 432 higher-order feature vectors (features)ai with
corresponding activitiessi .

3 In earlier work (Hoyer and Hyvärinen, 2002) we actually imposed a non-negativity constraint
on the coefficients, see Section 13.2. The results reported here show that those results can be
replicated using ordinary ICA methods. The constraint of non-negativity of the feature vectors has
little impact on the results: even without this constraint,the system learns feature vectors which
are mainly non-negative.



280 12 Dependencies of energy detectors: Beyond V1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Length

P
er

ce
nt

ag
e 

of
 c

el
l p

op
ul

at
io

n

g
1

g
2

g
3

g
4

Fig. 12.4: Comparison of different measures of non-gaussianity (FastICA nonlinearities) in the
first experiment. The histogram gives the lengths of the contour patterns for the four different
nonlinearitiesg1, . . . ,g4 in Table 12.1.

We visualized a random selection of higher-order features learned from natural
images in Figure 12.5. The visualization shows that the features tend to be spatially
localized and oriented, and show collinearity as in the single-channel experiment
above. What is remarkable in these results is that many cellspool responses over
different frequencies. The pooling is coherent in the sensethat the complex cells
that are pooled together have similar locations and orientations. A smaller number of
cells is shown in more detail in Figure 12.6, where the coefficients in all orientations
are shown separately.

We computed the frequency pooling measurePi in Equation (12.4) for the learned
feature vectors. The distribution of this measure for natural image input and white
gaussian noise input is shown in Figure 12.7. The figure showsthat frequency pool-
ing according to this measure was essentially nonexistent for white gaussian noise
input, but relatively strong for many feature vectors when the input consisted of
natural images. To express this more quantitatively, we computed the 99% quantile
for the white gaussian noise input. Then, 59% of the basis vectors for natural image
input had a pooling indexPi that was larger than this quantile. (For the 95% quantile
the proportion was 63%.) Thus, we can say that more than half of the higher-order
basis vectors, when learned from natural images, have a pooling over frequencies
that is significantly above chance level.

To show that the pooling measure is valid, and to further visualize the frequency
pooling in the higher-order features, we chose randomly feature vectors learned
from natural images that have pooling significantly over chance level (Pi above its
99% quantile for white gaussian noise). These are plotted inFigure 12.8. Visual in-
spection shows that in this subset, all basis vectors exhibit pooling over frequencies
that respects the orientation tuning and collinearity properties.

The corresponding results when the input is white gaussian noise are shown in
Figure 12.9, for a smaller number of higher-order cells . (Tomake the comparison
fair, these were randomly chosen among the 59% that had higher pooling mea-
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sures, the same percentage as in Figure 12.8.) Pooling over frequencies as well as
collinearity are minimal. Some weak reflections of these properties can be seen, pre-
sumably due to the small overlap of the filters in space and frequency, which leads
to weak statistical correlations between complex cells that are spatially close to each
other or in neighbouring frequency bands.

We also examined quantitatively whether the higher-order features are tuned to
orientation. We investigated which complex cell has the maximum weight inai for
eachi in each frequency band. When the data used in learning consisted of natural
images, in 86% of the cells the maximally weighted complex cells were found to be
located at the hot-spot(xi ,yi)

∗ (i.e., point of maximum activity, see above) and tuned
to the preferred orientation of the higher-order feature for everyfrequencyf . This
shows how the higher-order features are largely selective to a single orientation.
When the data used in learning consisted of gaussian white noise, only 34% of the
cells were found to be orientation-selective according to this criterion.
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Fig. 12.5: A random selection of higher-order feature vectors ai estimated from natural images
using complex cells of multiple frequencies in the second experiment. ICA nonlinearityg was the
tanh nonlinearityg1. Each display of three patches gives the coefficients of one higher-order fea-
ture. Each patch gives the coefficients of one higher-order feature in one frequency band. Each
ellipse means that the complex cell in the corresponding location, and of the corresponding orien-
tation and frequency is present in the higher-order feature, brightness of ellipse is proportional to
coefficientaki.

Finally, we synthesized images from higher-order feature activities. Figure 12.10
shows a slice orthogonal to the preferred orientation of onehigher-order feature
vector (H209 in Figure 12.6). The intensity of the synthesized image shows no side-
lobes (unnecessary oscillations), while representing a sharp, localized edge. In con-
trast, synthesis in the white gaussian noise case (also shown in Figure 12.10) gives
curves that have either side-lobes like the underlying Gabor filters, or do not give a
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Fig. 12.6: Higher-order feature vectors of four selected higher-order features in the second ex-
periment, shown in detail. The coefficients in each orientation and frequency band are plotted
separately.
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Fig. 12.7: The distributions of the frequency pooling measure in Equation (12.4) for natural images
and white gaussian noise.
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Fig. 12.8: A selection of higher-order feature vectorsai estimated from natural images in the second
experiment. These basis vectors were chosen randomly amongthose that have frequency pooling
significantly above chance level.
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Fig. 12.9: For comparison, higher-order feature vectors estimated from white gaussian noise, with
each frequency band shown separately.

sharp localized edge. Thus, the curve obtained from synthesis of the features learned
from natural images corresponds better to the notion of an edge.
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0

Fig. 12.10: Local image synthesis from the three odd-symmetric Gabor elements that have pre-
ferred orientation at the hotspot of a higher-order featurevector (H209 in Figure 12.6). The thick
dotted curve shows the synthesis using coefficients from natural images, and the solid curves show
various synthesis results using coefficients learned from white gaussian noise input.

12.6 Discussion of results

12.6.1 Why coding of contours?

The result of the first experiment, using a single frequency channel (Section 12.5.1),
is that simple ICA of simulated complex cell outputs leads toemergence of units
coding for collinear contours (Figure 12.3). First, we haveto note that this result is
not logically necessary: It is not obvious that the higher-order representation should
necessarily code for contours. Multi-layer mechanisms similar to the one used here
have been proposed in the context of texture segregation as well (Sperling, 1989;
Malik and Perona, 1990). A priori, one could have expected such texture bound-
ary detectors to emerge from this model. Our results seem to indicate that contour
coding is, at least in this sparse coding sense, more fundamental than texture segre-
gation.

The higher-order neurons which represent long contours bear many similarities
to ‘collator’ (or ‘collector’) units, proposed in the psychophysical literature (Mussap
and Levi, 1996; Moulden, 1994). Such units are thought to integrate the responses
of smaller, collinear filters, to give a more robust estimateof global orientation than
could be achieved with elongated linear mechanisms.4

4 In principle, long contours could be represented by long feature vectors on the level of simple
cells as well. However, the representation by these higher-order contour coding cells has the ad-
vantage of being less sensitive to small curvature and otherdepartures from strict collinearity. Even
very small curvature can completely change the response of an elongated linear filter (simple cell),
but it does not change the representation on this higher level, assuming that the curvature is so small
that the line stays inside the receptive fields of the same complex cells. Thus, higher-order contour
cells give a more robust representation of the contours. Of course, the intermediate complex cell
layer also confers some phase-invariance to the contour detectors.
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12.6.2 Frequency channels and edges

In the second experiment using multiple frequency channels(Section 12.5.2), we
saw emergence of pooling of contour information across multiple frequencies (Fig-
ures 12.5,12.6,12.8).What is the functional meaning of this frequency pooling? One
possibility is that this spatially coherent pooling of multiple frequencies leads to a
representation of an edge that is more realistic than the edges given by typical Ga-
bor functions. Presumably, this is largely due to the fact that natural images contain
many sharp, step-like edges that are not contained in a single frequency band. Thus,
representation of such “broad-band” edges is difficult unless information from dif-
ferent frequency bands is combined.

In terms of frequency channels, the model predicts that frequency channels
should be pooled together after complex cell processing. Models based on frequency
channels and related concepts have been most prominent in image coding litera-
ture in recent years, both in biological and computer visioncircles. The utility of
frequency channels in the initial processing stages is widely acknowledged, and it
is not put into question by these results — in fact, the results in Chapters 6–10
show that using frequency-selective simple and complex cells is statistically opti-
mal. However, the question of when the frequency channels should be pooled or
otherwise combined has received little attention. The results in this chapter (second
experiment) indicate that a statistically optimal way is topool them together right
after the complex cell “stage”, and this pooling should be done among cells of a
given orientation which form a local, collinear configuration.

12.6.3 Towards predictive modelling

As we explained in the beginning of the chapter, the present results are an instance of
predictive modelling, where we attempt to predict properties of cells and cell assem-
blies that have not yet been observed in experiments. To be precise, the prediction is
that in V2 (or some related area) there should be cells whose optimal stimulus is a
broad-band edge that has no sidelobes while being relatively sharp, i.e. the optimal
stimulus is closer to a step-edge than the Gabor functions that tend to be optimal for
V1 simple and complex cells. The optimal stimulus should also be more elongated
(Polat and Tyler, 1999; Gilbert and Wiesel, 1985) than what is usually observed in
V1, while being highly selective for orientation.

Statistical models of natural images offer a framework thatlends itself to pre-
dictive modelling of the visual cortex. First, they offer a framework where we of-
ten see emergence of new kinds of feature detectors — sometimes very different
from what was expected when the model was formulated. Second, the framework
is highly constrained and data-driven. The rigorous theoryof statistical estimation
makes it rather difficult to insert the theorist’s subjective expectations in the model,
and therefore the results are strongly determined by the data. Third, the framework
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is very constructive. From just a couple of simple theoretical specifications, e.g.
non-gaussianity, natural images lead to the emergence of complex phenomena.

We hope that the present work as well as future results in the same direction will
serve as a basis for a new kind of synergy between theoreticaland experimental
neuroscience.

12.6.4 References and related work

Several investigators have looked at the connection between natural image statistics,
Gestalt grouping rules, and local interactions in the visual cortex (Geisler et al, 2001;
Sigman and Gilbert, 2000; Elder and Goldberg, 2002; Krüger, 1998). However, few
have considered the statistical relations between features of different frequencies.
It should be noted that some related work on interactions of different frequencies
does exist in the models of contrast gain control, see Chapter 9 or (Schwartz and
Simoncelli, 2001a).

Recent measurements from cat area 18 (somewhat analogous toV2) emphasize
responses to “second-order” or “non-Fourier” stimuli, typically sine-wave gratings
whose amplitudes are modulated (Mareschal and Baker, 1998a,b). These results
and the proposed models are related to our results and predictions, yet fundamen-
tally different. In the model in (Mareschal and Baker, 1998b), a higher-order cell
pools outputs of complex cells in the same frequency band to find contours that are
defined by texture-like cues instead of luminance. The same cell also receives direct
input from simple cells of a different frequency, which enables the cell to combine
luminance and second-order cues. This is in stark contrast to higher-order cells in
the model we used in this chapter, which pool outputs of complex cells of different
frequencies. They can hardly find contours defined by second-order cues; instead
they seem to be good for coding broad-band contours. Furthermore, in (Mareschal
and Baker, 1998a,b), any collinearity of pooling seems to beabsent. This naturally
leads to the question: Why are our predictions so different from these results from
area 18? We suspect this is because it is customary to think ofvisual processing
in terms of division into frequency channels — “second-order” stimuli are just an
extension of this conceptualization. Therefore, not much attempt has been made to
find cells that break the division into frequency channels according to our prediction.
On the other hand, one can presume that the cells found in area18 in (Mareschal
and Baker, 1998a,b) are different from our predictions because they use a learning
strategy which is different from sparse coding used in our model, perhaps related to
the temporal aspects of natural image sequences, see Chapter 16.

Another closely related line of work is by Zetzsche and coworkers (Zetzsche and
Krieger, 1999; Zetzsche and Röhrbein, 2001) who emphasizethe importance of de-
composing the image information to local phase and amplitude information. The
local amplitude is basically given by complex cell outputs,whereas the physiologi-
cal coding of the local phases is not known. An important question for future work
is how to incorporate phase information in the higher-orderunits. Some models by
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Zetzsche et al actually predict some kind of pooling over frequencies, but rather
directly after the simple cell stage, see Fig. 16 in (Zetzsche and Röhrbein, 2001).

Related models in which edge detection uses phase information pooled over dif-
ferent frequencies are in (Morrone and Burr, 1988; Kovesi, 1999). An interesting
investigation into the relation of edges and space-frequency analysis filter outputs in
natural images is in (Griffin et al, 2004). A psychophysical study on the integration
of information over different frequencies is (Olzak and Wickens, 1997).

The model in this chapter opens the way to highly nonlinear multilayer models
of natural image statistics. While this seems like a most interesting direction of
research, not much work has been done so far. Related attempts to construct very
general, nonlinear models of natural image statistics include (Pedersen and Lee,
2002; Lee et al, 2003; Malo and Gutiérrez, 2006; Chandler and Field, 2007; Griffin,
2007).

12.7 Conclusion

Experiments in this chapter show that two different kinds ofpooling over complex
cells emerge when we model the statistical properties of natural images. First, the
higher-order features group collinear complex cells whichform a longer contour.
Second, they group complex cells of different frequency preferences. This is ac-
complished by applying ordinary ICA on a set of modelled complex cells with mul-
tiple frequencies, and inputting natural images to the complex cells. Thus, statistical
modelling of natural stimuli leads to an interesting hypothesis on the existence of a
new kind of cells in the visual cortex.





Chapter 13
Overcomplete and non-negative models

In this chapter, we discuss two generalizations of the basicICA and sparse coding
models. These do not reject the assumption of independence of the components
but change some of the other assumptions in the model. Although the generative
models are linear, the computation of the features is nonlinear. In the overcomplete
basis model, the number of independent components is largerthan the number of
pixels. In the non-negative model, the components, as well as the feature vectors,
are constrained to be non-negative.

13.1 Overcomplete bases

13.1.1 Motivation

An important restriction of most of the models treated so faris that the number of
features cannot be larger than the dimension of the data. Thedimension of the data
is at most equal to the number of pixels, and it is actually smaller after canonical
preprocessing including PCA. This was for two reasons:

1. In the sparse coding models the feature detector weights were constrained to be
orthogonal. In a space withn dimensions, we can have at mostn orthogonal
vectors, so this constrains the number of features.

2. In the generative models such as ICA, we had to assume that the matrixA, which
has the features as its columns, is invertible. Again, a matrix can be invertible
only if it is square: thus the number of features cannot be larger than the number
of pixels.

However, it can be argued that the number of features should be larger than the
dimension of the image data. The computational justification for such a claim goes
as follows:

289
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1. The processing of an image part, corresponding perhaps toan object, should not
depend on which location of the image it happens to occupy. That is, if a face
is in on the left side of the visual field, it should be processed in the same way
as if it were on the right side; and if the object is moved one pixel to the left, its
processing should not change either.1

2. Thus, any feature the system computes should be computed at each possible loca-
tion — at the minimum at the location corresponding to each pixel. For example,
if we have an edge detector, the output of that edge detector should be computed
at each possible(x,y) location possible. Denote their number byN.

3. So, any feature should basically haveN replicates in the system, one for each
location. Possibly it could be a bit less because we may not want to replicate the
feature very close to borders where they could not be replicated completely, but
this does not change the basic argument.

4. What all this implies is that if we just take one feature, say a vertical odd-
symmetric Gabor of a given frequency and envelope, copy it inall different loca-
tions, we already haveN different features, supposedly the maximum number!

5. Of course, we would actually like to have many different Gabors with different
orientations, different phases, different frequencies and maybe something else
as well. Actually, the argument in point 1 can be applied equally well to differ-
ent orientations and frequencies, which should be processed equally well. So, in
the end, the number of features must be many times greater than the number of
pixels.

A neuroanatomical justification for the same phenomenon is the following cal-
culation: the number of simple cells in V1 seems to be much larger than the number
of retinal ganglion cells which send out the information on the retina, perhaps by
a factor of 25 (Olshausen, 2003). So, if we consider the number of ganglion cells
as the “dimension” of input to V1, the number of features seems to be much larger
than the number of dimensions.2

13.1.2 Definition of generative model

Now we define a generative model which has more features than the data has di-
mensions. In this context, to avoid any confusion, we call the feature vectorsAi

basis vectors. A set of basis vectors which contains more vectors than the space has

1 The resolution of the retinal image changes as a function of eccentricity (the distance from the
centerpoint), so talking about moving “one pixel to the left” is an oversimplification. However, this
does not change the underlying logic very much, if one simplythinks of photoreceptors or ganglion
cells instead of pixels.
2 This point is a bit complicated by the fact that the number of photoreceptors in the retina is
approximately 100 times larger than the number of ganglion cells. Thus, ganglion cells reduce
the dimension of the data, and V1 seems to increase it again. Nevertheless, if we consider the
computational problem faced by V1, it does seem justified to say that it uses an overcomplete basis
because it can only receive the outputs of ganglion cells.
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dimensions is called anovercomplete basis(Simoncelli et al, 1992; Olshausen and
Field, 1997).

The definition of a generative model with an overcomplete basis is rather straight-
forward. We just need to express the image as a linear superposition

I(x,y) =
m

∑
i=1

Ai(x,y)si (13.1)

where the only difference to previous models is that the number of featuresm is
arbitrarily large. We also need to specify the statistical properties of the components
si . In the basic case, we assume that they are sparse and statistically independent.

For technical reasons, another modification is also usuallyintroduced at this
point: we assume that the image is not exactly a linear sum of the features, but
there is noise as well. That is, gaussian noiseN(x,y) is added to each pixel:

I(x,y) =
m

∑
i=1

Ai(x,y)si +N(x,y) (13.2)

This does not change the behaviour of the model very much, especially if the noise
level is small, but it simplifies the computations in this case. (In the case of basic
ICA, introduction of noise in the model just complicates things, so it is usually
neglected.)

Note that the meaning of overcompleteness changes when the dimension is re-
duced by PCA. From the viewpoint of statistical modelling, the dimension of the
data is then the dimension given by PCA. So, even a basis whichhas the same num-
ber of vectors as there are pixels can be called overcomplete, because the number of
pixels is larger than the PCA-reduced dimension.

Despite the simplicity of the definition of the model, the overcomplete basis
model is much more complicated to estimate. What is interesting is that it has a
richer behaviour than the basic sparse coding and ICA modelsbecause it leads to
some nonlinearities in the computation of the features. We will treat this point first.

13.1.3 Nonlinear computation of the basis coefficients

Consider first the case where the basis vectorsAi are given, and we want to compute
the coefficientssi for an input imageI . The fundamental problem is that the linear
system given by the basis vectorsAi is not invertible: If one tries to solve for thesi

given anI , there are more unknownssi than there are equations. So, computation of
thesi seems impossible. Indeed, it is impossible in the sense thateven if the image
were created as a linear sum of theAi for some coefficient valuessi , we cannot
recover those original coefficients from the input image alone, without some further
information.
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As an illustration, consider an image with two pixels with values(1,1). Assume
we use a basis with three vectors:(0,1), (1,0), and(1,1). Thus, we have

(1,1) = (0,1)s1 +(1,0)s2+(1,1)s3 (13.3)

Obviously, we could represent the image by settings1 = 0, s2 = 0, ands3 = 1. But,
equally well, we could sets1 = 1, s2 = 1, ands3 = 0. Even if the image was exactly
generated using one of these choices forsi , we cannot tell which one it was by using
information in the image alone. Actually, there is an infinite number of different
solutions: you could take any weighted average with of the two solution just given,
and it would be a solution as well.

However, there is a partial solution to this problem. The keyis to use sparseness.
Since we know that thesi are sparse, we can try decide to find thesparsest solution.
In the illustration above, we would choose the solutions1 = 0, s2 = 0, ands3 = 1
because it is the sparsest possible in the sense that only onecoefficient is different
from zero.3

There is a clear probabilistic justification for such a procedure. Basically, we can
find the most probable values for the coefficientssi , under the assumption that the
si have sparse distributions. This is possible by using conditional probabilities in a
manner similar to Bayes’ rule (see Section 4.7). Now we will derive the procedure
based on probabilistic reasoning. By the definition of conditional pdf’s, we have

p(s|I) =
p(s, I)
p(I)

=
p(I |s)p(s)

p(I)
(13.4)

which is the basis for Bayes’ rule. The formula can be simplified becausep(I) does
not depend ons. Since our goal is to find thes which maximizesp(s|I), we can
just ignore this constant. We can also maximize its logarithm instead because it is
often simpler, and equivalent because logarithm is a strictly increasing function.
This gives us the following objective function to maximize:

logp(I |s)+ logp(s) (13.5)

Such estimation of thes is called maximum a posteriori (MAP) estimation, as dis-
cussed in Section 4.8.2.

Now, we have to compute the probabilities logp(I |s) and logp(s) needed. The
first thing we consider is theprior distributionp(s) of thesi . In Bayesian inference,
the prior distribution (or prior for short) incorporates the knowledge we have before
making any observations. What prior knowledge do we have here? First, we know
that the components are sparse. Second, we assume that they are independent, which
is a simple approximation although it is not terribly precise. Thus, logp(s) is similar
to what was used in ordinary ICA estimation and linear sparsecoding. It can be
expressed as

3 Another solution would be to use the Moore-Penrose pseudo-inverse, see Section 19.8. However,
that method is less justified by statistical principles, andless useful in practice.
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logp(s) =
m

∑
i=1

G(si) (13.6)

where the functionG is the same kind of function we used in ICA estimation, see
e.g. Equation (7.19) on page 172.

To computep(I |s), we will use the noisy version of the model in Equation (13.2).
Assume that we know the variance of the gaussian noise, and denote it by byσ2.
Then, the conditional probability ofI(x,y) given all thesi is the gaussian pdf of
N(x,y) = ∑m

i=1Ai(x,y)si − I(x,y). By definition of the gaussian pdf, the pdf of a
single noise variable is thus

p(N(x,y)) =
1√
2π

exp(− 1
2σ2N(x,y)2) (13.7)

So, the conditional log-pdf for one pixel is

logp(I(x,y)|s) =− 1
2σ2N(x,y)2− 1

2
log2π

=− 1
2σ2 [I(x,y)−

m

∑
i=1

Ai(x,y)si ]
2− 1

2
log2π (13.8)

We assume that the noise is independent in all pixels, so the conditional pdf of the
whole imageI is the sum of these log-pdf’s:

logp(I |s) =− 1
2σ2 ∑

x,y
[I(x,y)−

m

∑
i=1

Ai(x,y)si ]
2− 1

2
log2π (13.9)

The constant12 log2π can be omitted for simplicity.
Putting all this together: To find the most probables1, . . . ,sm that generated the

image, we maximize

logp(s|I) = logp(I |s)+ logp(s)+const.

=− 1
2σ2 ∑

x,y
[I(x,y)−

m

∑
i=1

Ai(x,y)si ]
2 +

m

∑
i=1

G(si)+const. (13.10)

where the “const” means terms which do not depend ons. Maximization of this
objective function is usually not possible in closed form, and numerical optimiza-
tion methods have to be used. We have here assumed that theAi are known; their
estimation will be considered below.

Maximization of such an objective function leads to anonlinearcomputation of
the cell activitiessi . This is in stark contrast to ordinary (non-overcomplete) mod-
els, in which thesi are a linear function of theI(x,y). The implications of such a
nonlinearity will be considered in more detail in Chapter 14.



294 13 Overcomplete and non-negative models

13.1.4 Estimation of the basis

Estimation of the basis vectorsAi can be performed using the same principle as es-
timation of thesi . Basically, the solution is hidden in Equation (13.10). First, note
that the pdf in Equation (13.9) depends on theAi as well. So, that equation actu-
ally describesp(I |s,A1, . . . ,Am) instead of justp(I |s). Further, if we backtrack in
the logic that lead us to Equation (13.10), we see that the conditional probability
in Equation (13.10), when considered as a function of boths and theAi , is equal
to p(s,A1, . . . ,Am|I), if we assume a flat (constant) prior for theAi . This is the con-
ditional probability ofboth s and theAi , given the imageI . Thus, the conditional
log-pdf can be interpreted as essentially the likelihood oftheAi .

Estimation of theAi can now be performed by maximizing the conditional pdf
in Equation (13.10) for asampleof imagesI1, I2, . . . , IT . (Obviously, we cannot es-
timate a basis from a single image.) As usual, we assume that the images in the
sample have been collected independently from each other, in which case the log-
pdf for the sample is simply the sum of the log-pdf. So, we obtain the final objective
function

T

∑
t=1

logp(s(t),A1, . . . ,Am|It)

=− 1
2σ2

T

∑
t=1

∑
x,y

[It(x,y)−
m

∑
i=1

Ai(x,y)si(t)]
2 +

T

∑
t=1

m

∑
i=1

G(si(t))+const. (13.11)

When we maximize this objective function with respect to allthe basis vectorsAi

and cell outputssi(t) (the latter are different for each image), we obtain, at the same
time, the estimates of the components and the basis vectors.4 In other words, we
compute both the nonlinear cell outputs and the featuresAi .

Note that it is not straightforward to define the receptive fields of the cell any-
more. This is because computation of the cell outputs is nonlinear, and receptive
fields are simple to define for linear cells only. Actually, ifwe collect the basis
vectorsAi into a matrixA as we did earlier in the ordinary ICA case, that matrix
is simply not invertible, so we cannot define the receptive fields as the rows of its
inverse, as we did earlier.

13.1.5 Approach using energy-based models

An alternative approach for estimating an overcomplete representation is the follow-
ing: We give up a generative model and concentrate on generalizing the sparseness

4 One technical problem with this procedure is that the scalesof the independent components are
not fixed, which leads to serious problems. This problem can be solved simply by normalizing the
variances of the independent components to be equal to unityat every optimization step. Alterna-
tively, one can normalize the basis vectorAi to unit norm at every step.



13.1 Overcomplete bases 295

criteria. Basically, we take the log-likelihood of the basic ICA model, and relax the
constraint that there cannot be too many linear feature detectors. This approach is
computationally more efficient because we do not need to compute the nonlinear
estimates of the componentssi which requires another optimization.

Consider the log-likelihood of the basic ICA model in Equation (7.15), which we
reproduce here for convenience:

logL(v1, . . . ,vn;z1, . . . ,zT) = T log|det(V)|+
m

∑
i=1

T

∑
t=1

Gi(vT
i zt) (13.12)

wherezt is the canonically preprocessed data sample, and thevi are the feature de-
tector vectors in the preprocessed space. We have changed the number of feature
detectors tom in line with the notation in this section. Moreover, we use here gen-
eral functionsGi , which in the case of basic ICA is equal to logpi , the log-pdf of
the independent component. (In this section, we revert to using canonically prepro-
cessed data, but this does not really change anything in the mathematical develop-
ments. Overcompleteness then means that the number of features is larger than the
PCA-reduced dimension.)

Now, could we just use the formula in Equation (13.12) with more features than
dimensions? Let us denote the dimension of the data byn. Then, this means that we
just takem> n to achieve an overcomplete representation.

Unfortunately, this is not possible. The problem is the termlog|det(V)|. The
simple reason is that ifm> n, the matrixV, which collects thevi as its rows, would
not be square, and the determinant is only defined for a squarematrix.

On the other hand, the second term on the right-hand side in Equation (13.12)
is just a sum of measures of sparseness of the features, so this term need not be
changed if we want to have an overcomplete representation.

So, we have to understand the real meaning of the term log|det(V)| to obtain
a model with an overcomplete representation. This term is actually the logarithm
of what is called thenormalization constantor apartition function. It is a function
of the model parameters which makes the pdf of the data fulfillthe fundamental
constraint that the integral of the pdf is equal to one—a constraint that every pdf
must fulfill. A likelihood is nothing else than a pdf interpreted as a function of the
parameters, and computed for the whole sample instead of oneobservation. So, the
likelihood must fulfill this constraint as well.

The normalization constant is, in theory, obtained in a straightforward manner.
Let us define the pdf (for one observation) by replacing the first term in Equa-
tion (13.12) by the proper normalization constant, which wedenote byZ:

logL(z;v1, . . . ,vn) =− logZ(V)+
n

∑
i=1

Gi(vT
i z) (13.13)

Normalization of the pdf means that we should have
∫

L(z;v1, . . . ,vn)dz = 1 (13.14)
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In the present case, this means

∫

L(z;v1, . . . ,vn)dz =
1

Z(V)

∫ n

∏
i=1

exp(Gi(vT
i z))dz = 1 (13.15)

So, in principle, we just need to take

Z(V) =
∫ n

∏
i=1

exp(Gi(vT
i z))dz (13.16)

because this makes the integral in Equation (13.15) equal toone.
However, in practice, evaluation of the integral in Equation (13.16) is extremely

difficult even with the best numerical integration methods.So, the real problem
when we take more feature detector vectors than there are dimensions in the data, is
the computation of the normalization constant.

Estimation of the model by maximization of likelihood requires that we know
Z. If we omit Z and maximize only the first term in Equation (13.13), the estima-
tion goes completely wrong: If theGi have a single peak at zero (like the negative
log cosh function), as we have assumed in earlier chapters, the maximum of such a
truncated likelihood is obtained when theWi(x,y) are all zero, which is quite absurd!

So, the model becomes much more complicated to estimate since we don’t know
how to normalize the pdf as a function of the vectorsvi . This is in stark contrast to
the basic case where the number of feature detector vectors equals the number of
input variables: the functionZ is simply obtained from the determinant of the matrix
collecting all the vectorsvi , as seen in Equation (7.15).

Fortunately, there are methods for estimating models in thecase whereZ can-
not be easily computed. First of all, there is a number of methods for computingZ
approximately, so that the maximum likelihood estimation is computationally pos-
sible. However, in our case, it is probably more useful to look at methods which
estimate the model directly, avoiding the computation of the normalization con-
stant. Score matching and contrastive divergence are two methods for estimating
such “non-normalized” models. The mathematical details ofscore matching are de-
scribed in Chapter 21.

One point to note is that we are really estimating linear receptive fieldsWi us-
ing this method. Thus, the result is not really an overcomplete basisbut rather an
overcomplete representation using an overcomplete set of receptive fields.

This approach is sometimes called “energy-based” due to complicated historical
reasons. The model in Equation (13.13) has also been called a“Products of Experts”
model (Hinton, 2002). Further related methods are considered in (Hyvärinen and
Inki, 2002). See (Utsugi, 2001) for an overcomplete versionof the ISA model.
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13.1.6 Results on natural images

We estimated an overcomplete representation from natural images using the method
in Section 13.1.5. Thus, we defined the model using the non-normalized log-
likelihood in Equation 13.13. We basically used the classic(negative) log cosh func-
tion asG, but we allowed a bit more flexibility by allowing rescaling of the Gi by
definingGi(u) = −αi logcosh(u), whereαi are parameters that are estimated at the
same time as thevi. We also constrained the norms of thevi to be equal to one.
We used the score matching approach (see above or Chapter 21)to estimate the
parameters without computation of the normalization constant.

To reduce the computational load, we took patches of 16×16 pixels. We prepro-
cessed the data just like with ICA in Chapter 7, but the dimension reduction was
less strong: we retained 128 principal components, i.e. onehalf of the dimensions.
Then, we estimated a representation with 512 receptive fields. The representation is
thus 4 times overcomplete when compared to the PCA dimension, and two times
overcomplete when compared with the number of pixels.

The resulting receptive fields are shown in Figure 13.1. To save space, only a
random sample of 192 receptive fields is shown. The receptivefields are quite sim-
ilar to those estimated by basic ICA or sparse coding. Some are more oscillatory,
though.

13.1.7 Markov Random Field models *

The approach of energy-based overcomplete representations can be readily extended
to models which cover the whole image using the principle of Markov Random
Fields. Here, we provide a very brief description of this extension for readers with
some background in MRF’s.

A very important question for any image-processing application is how the mod-
els for image patches can be used for whole images which have tens of thousands,
or even millions, of pixels. One approach for this is to use Markov random fields
(MRF). What this means is that we define what is called in that theory aneighbour-
hoodfor each pixel, and define the probability density for the image as a function
of each pixel value and the values of the pixels in the neighbourhood. The central
idea is that we compute the same function in all possible locations of the image.

In our context, the neighbourhood of a pixel can be defined to be an image patch
taken so that the pixel in question is in the very middle. To extend our models to a
MRF, we can also use the outputs of linear feature detectors to define the pdf.

This leads to a pdf of the following form:

logp(I ;W1, . . . ,Wn) = ∑
x,y

n

∑
i=1

G(∑
ξ ,η

Wi(ξ ,η)I(x+ ξ ,y+ η))− logZ(W1, . . . ,Wn)

(13.17)
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Fig. 13.1: Receptive fieldsWi in a four times overcomplete basis for canonically preprocessed data,
estimated using the model in Equation (13.13) and score matching estimation. Only a random
sample of theWi is shown to save space.
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Here, the first sum overx,y goes over all possible image locations and neighbour-
hoods. For each location, we compute the outputs ofn linear feature detectors so
that they are always centered around the locationx,y. The functionG is the same
kind of function, for example logcosh, as used in sparse coding.

An important point is that the indicesξ ,η only take values inside a small range,
which is the neighbourhood size. For example, we could definethat they belong to
the range−5, . . . ,5, in which case the patch size would be 11×11 pixels.

One interpretation of this pdf is that we are sliding a windowover the whole
image and computing the outputs of the feature detectors in those windows. In other
words, we compute the convolution of each of theWi with the image, and then apply
the nonlinear functionG on the results of the convolution. Summation overx,y and
over i then simply means that the log-pdf is the sum over the whole convolved,
nonlinearly processed image, and all the filters.

As in the case of the model in Section 13.1.5, the log-pdf includes a normaliza-
tion constantZ, which is a function of the feature detector weightsWi . Again, the
computation of the normalization constant is most difficult, and the model is prob-
ably best estimated using methods which avoid computation of the normalization
constant (see e.g. Chapter 21).

In fact, we can see a direct connection with the overcompletebasis framework
as follows. Define the translated feature detectorW(a,b) as a feature detector whose
weights have been translated by the amount given bya andb, so thatW(a,b)(x,y) =
W(x−a,y−b). Also, redefine indices asx+ ξ = x′, y+ η = y′. Then we can write
the log-pdf as

logp(I ;W1, . . . ,Wn) =
n

∑
i=1

∑
x,y

G(∑
x′ ,y′

W(x,y)
i (x′,y′)I(x′,y′))− logZ (13.18)

This model is just like the overcomplete model in Section 13.1.5, but the feature
weights areconstrainedso that they are copies of a small number of feature weights
Wi in all the different locations, obtained by the translationoperationWi(x,y). Due
to the summation over the translation parametersx,y, each weight vector is copied
to all different locations. (We are here neglecting any border effects which appear
because for those weight in theWi which go over the edges of the image.) Further-
more, the normalization constant is computed in a slightly different way because the
integration is over the whole image.

Learning feature detector weights of MRF’s was proposed in (Roth and Black,
2005). A related approach was proposed in (Zhu et al, 1997). At the time of this
writing, the first successful attempt to estimate MRF’s in the sense that we obtain
Gabor-like features was obtained in (Köster et al, 2009b).A review of classic MRF
models, i.e. models in which the features are not learned butmanually tuned, is in
(Li, 2001); a more mathematical treatise is (Winkler, 2003).

Let us finally mention some completely different approachesto modelling whole
images or scenes. One is to extract some global statistics, i.e. feature histograms,
which can then be further analyzed by various statistical models, as in , e.g., (Liu and
Cheng, 2003; Lindgren and Hyvärinen, 2004). Yet another alternative is to compute
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a low-dimensional holistic representation by techniques related to PCA, as in e.g.,
(Torralba and Oliva, 2003).

13.2 Non-negative models

13.2.1 Motivation

Neural firing rates are never negative. Even if we consider the spontaneous firing
rate as the baseline and define it to be zero in our scale, the firing in cortical cells
cannot go much below zero because the spontaneous firing rates are so low; so,
it may be useful to consider them non-negative anyway. It hasbeen argued that
this non-negativity of firing rates should be taken into account in statistical models.
Non-negative matrix factorization (NMF) (Lee and Seung, 1999) is a recent method
for finding such a representation. It was originally introduced in a different context
and calledpositivematrix factorization (Paatero and Tapper, 1994), but the acronym
NMF is now more widely used.5

13.2.2 Definition

Let us assume that our data consists ofT of n-dimensional vectors, denoted by
x(t) (t = 1, . . . ,T). These are collected to a non-negative data matrixX which has
x(t) as its columns. NMF finds an approximate factorization ofX into non-negative
factorsA andS. Thus, non-negative matrix factorization is a linear, non-negative
approximate data representation, given by

x(t)≈
m

∑
i=1

aisi(t) = As(t) or X ≈ AS

whereA is an n×m matrix containing thebasis vectorsai as its columns. This
representation is, of course, similar in many respects to PCA and ICA. In particular,
the dimension of the representationmcan be smaller than the dimension of the data,
in which the the dimension is reduced as in PCA.

Whereas PCA and ICA do not in any way restrict the signs of the entries ofA and
S, NMF requires all entries of both matrices to be non-negative. What this means
is that the data is described by using additive components only. This constraint has
been motivated in a couple of ways: First, in many applications one knows (for ex-
ample by the rules of physics) that the quantities involved cannot be negative—firing
rates are one example. In such cases, it can be difficult to interpret the results of PCA

5 This section is based on the article (Hoyer, 2004), originally published in Journal of Machine
Learning Research. Copyright retained by the author.
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and ICA (Paatero and Tapper, 1994; Parra et al, 2000). Second, non-negativity has
been argued for based on the intuition that parts are generally combined additively
(and not subtracted) toform a whole; hence, these constraints might be useful for
learning parts-based representations (Lee and Seung, 1999).

Given a data matrixX, the optimal choice of matricesA andS are defined to
be those non-negative matrices that minimize the reconstruction error betweenX
andAS. Various error functions have been proposed (Paatero and Tapper, 1994; Lee
and Seung, 2001), perhaps the most widely used is the squarederror (Euclidean
distance) function

D(A,S) = ‖X−AS‖2 = ∑
i, j

(xi j − [AS]i j )
2.

A gradient algorithm for this optimization was proposed by (Paatero and Tapper,
1994), whereas in (Lee and Seung, 2001) a multiplicative algorithm was devised
that is somewhat simpler to implement and also showed good performance.

Although some theoretical work on the properties of the NMF representation ex-
ists (Donoho and Stodden, 2004), much of the appeal of NMF comes from its em-
pirical success in learning meaningful features from a diverse collection of real-life
datasets. It was shown in (Lee and Seung, 1999) that, when thedataset consisted of a
collection of face images, the representation consisted ofbasis vectors encoding for
the mouth, nose, eyes, etc; the intuitive features of face images. In Figure 13.2a) we
have reproduced that basic result using the same dataset. Additionally, they showed
that meaningful topics can be learned when text documents are used as data. Sub-
sequently, NMF has been successfully applied to a variety ofdatasets (Buchsbaum
and Bloch, 2002; Brunet et al, 2004; Jung and Kim, 2004; Kim and Tidor, 2003).

Despite this success, there also exist datasets for which NMF does not give an
intuitive decomposition into parts that would correspond to our idea of the ‘building
blocks’ of the data. It was shown by (Li et al, 2001) that when NMF was applied
to a different facial image database, the representation was global rather than local,
qualitatively different from that reported by (Lee and Seung, 1999). Again, we have
rerun that experiment and confirm those results, see Figure 13.2b). The difference
was mainly attributed to how well the images were hand-aligned (Li et al, 2001).

Another case where the decomposition found by NMF does not match the under-
lying elements of the data is shown in Figure 13.2c). In this experiment, natural im-
age patches were whitened and subsequently split into positive (‘ON’) and negative
(‘OFF’) contrast channels, simply by separating positive and negative values into
separate channels (variables). This is somewhat similar tohow visual information is
processed by the retina. Each image patch of 12×12 pixels was thus represented by
a 2×12×12= 288 -dimensional vector, each element of which mimics the activ-
ity of an ON- or OFF-center neuron to the input patch. These vectors made up the
columns ofX. When NMF is applied to such a dataset, the resulting decomposition
does not consist of the oriented filters which form the cornerstone of most of visual
models and modern image processing. Rather, NMF representsthese images using
simple, dull, circular ‘blobs’.
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a c

b

Fig. 13.2: NMF applied to various image dataset.a) Basis images
given by NMF applied to face image data from the CBCL database
(http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html),
following (Lee and Seung, 1999). In this case NMF produces a parts-based repre-
sentation of the data.b) Basis images derived from the ORL face image database
(http://www.uk.research.att.com/facedatabase.html), following (Li et al,
2001). Here, the NMF representation is global rather than parts-based.c) Basis vectors from NMF
applied to ON/OFF-contrast filtered natural image data. Top: Weights for the ON-channel. Each
patch represents the part of one basis vectorai corresponding to the ON-channel. (White pixels
denote zero weight, darker pixels are positive weights.) Middle: Corresponding weights for the
OFF-channel. Bottom: Weights for ON minus weights for OFF. (Here, grey pixels denote zero.)
NMF represents this natural image data using simple blobs.

13.2.3 Adding sparseness constraints

Now we show, following (Hoyer, 2004), how explicitly controlling the sparseness of
the representation leads to representations that are parts-based and match the intu-
itive features of the data. Here we use a sparseness measure based on the relationship
between the sum of absolute values and the sum of squares (Euclidean norm):

sparseness(s) =

√
m− (∑ |si |)/

√

∑s2
i√

m−1
,
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wherem is the dimensionality ofs. This function evaluates to unity if and only if
s contains only a single non-zero component, and takes a valueof zero if and only
if all components are equal (up to signs), interpolating smoothly between the two
extremes.

Our aim is to constrain NMF to find solutions with desired degrees of sparseness.
The first question to answer is then: what exactly should be sparse? The basis vectors
A or the coefficientsS? This is a question that cannot be given a general answer; it
all depends on the specific application in question. Further, just transposing the data
matrix switches the role of the two, so it is easy to see that the choice of which to
constrain (or both, or none) must be made by the experimenter.

When trying to learn useful features from images, it might make sense to require
both A andS to be sparse, signifying that any given object ispresentin few im-
ages andaffectsonly a small part of the image. Or, we could take the approach in
Chapter 6 and only require thesi to be sparse.

These considerations lead us to defining NMF with sparsenessconstraints as
follows: Given a non-negative data matrixX of sizen×T, find the non-negative
matricesA andS of sizesn×mandm×T (respectively) such that

D(A,S) = ‖X−AS‖2 (13.19)

is minimized, underoptional constraints

sparseness(ai) = Sa, ∀i
sparseness(si) = Ss, ∀i,

whereai is the i-th columnof A andsi is the i-th row of S. Here,m denotes the
number of components, andSa andSs are the desired sparsenesses ofA andS (re-
spectively). These three parameters are set by the user.

Note that we did not constrain the scales ofai or si yet. However, sinceaisi =
(aiλ )(si/λ ) for anyλ , we are free to arbitrarily fix any norm of either one. In our
algorithm, we thus choose to fix the Euclidean norm (sum of squares) ofs to unity,
as a matter of convenience.

An algorithm for learning NMF with sparseness constraints is described in
(Hoyer, 2004). In Figure 13.2c we showed that standard NMF applied to natu-
ral image data produces only circular features, not oriented features as have been
observed in the cortex. Now, let us see the result of using additional sparseness
constraints. Figure 13.3 shows the basis vectors obtained by putting a sparseness
constraint on the coefficients (Ss = 0.85) but leaving the sparseness of the basis
vectors unconstrained. In this case, NMF learns oriented Gabor-like features that
represent edges and lines. This example illustrates how it is often useful to combine
sparseness and non-negativity constraints to obtain a method which combines the
biologically plausible results of low-level features withthe purely additive learn-
ing of NMF. Such combinations may be useful in future models which attempt to
go beyond the primary visual cortex, because non-negativity may be an important



304 13 Overcomplete and non-negative models

property of complex cell outputs and other higher-order features, as was already
pointed out in Chapter 12.

Fig. 13.3: Basis vectors from ON/OFF-filtered natural images obtained using NMF with sparse-
ness constraints. The sparseness of the coefficients was fixed at 0.85, and the sparseness of the
basis images was unconstrained. Top: weights in ON channel.Middle: weights in OFF channel.
Bottom: weights in ON channel minus weights in OFF channel. As opposed to standard NMF (cf
Figure 13.2c), the representation is based on oriented, Gabor-like, features.



13.3 Conclusion 305

13.3 Conclusion

In this chapter, we saw two quite different extensions of thebasic linear ICA model.
The model with overcomplete basis is well motivated as a model of simple cells,
and the next chapter will show some more implications of the principle.

In contrast, the utility of non-negative models for featureextraction is still to
be explored. Possibly, non-negative models can be useful inlearning higher-order
features, which can be considered either to be “there” (positive values) or “not there”
(zero value), negative values being less meaningful. On theother hand, negative
values can often be interpreted as meaning that the feature is there “less strongly” or
“less likely”, possibly related to some baseline. In fact, after our initial work (Hoyer
and Hyvärinen, 2002) learning the third layer as in Chapter12 using non-negativity
constraints, we found out that the non-negativity constraints had little effect on the
results, and the results in Chapter 12 do not use any such contraint.

Moreover, it is not clear if both the basis vectors and their coefficients should
be constrains non-negative: A partly non-negative model inwhich either the basis
vectors or the components are constrained non-negative mayalso be more meaning-
ful. Non-negativity may, in the end, find its utility as one ofthe many properties of
(some of the) parameters in a statistical model, instead of being very useful in itself.





Chapter 14
Lateral interactions and feedback

So far, we have almost exclusively considered a “bottom-up”or feedforward frame-
work, in which the incoming image is processed in a number of successive stages,
the information flowing in one direction only. However, it iswidely appreciated in
visual neuroscience that the brain is doing something much more complicated than
just feedforward processing. There is a lot of evidence for

1. feedback from “higher” areas to lower areas, e.g., “top-down” connections from
V2 back to V1, as well as

2. lateral (horizontal) interactions, by which we mean hereconnections between
features in the same stage, e.g., connections between simple cells.

In this chapter, we will see how such phenomena are rather natural consequences
of Bayesian inference in the models we have introduced. First, we will introduce a
model of feedback based on thresholding, or shrinkage, of coefficients in the higher
stage. Second, we will consider a lateral interaction phenomenon: end-stopping in
simple cells. Finally, we will discuss the relationship of the principle of predictive
coding to these phenomena.

14.1 Feedback as Bayesian inference

A central question in visual neuroscience concerns the computational role of feed-
back connections. It has been suggested that the purpose of feedback is that of using
information from higher-order units to modulate lower-level outputs, so as to se-
lectively enhance responses which are consistent with the broader visual context
(Lamme, 1995; Hupé et al, 1998). In hierarchical generative models, this is natu-
rally understood as part of the inference process: finding the most likely configura-
tion of the network requires integrating incoming (bottom-up) sensory information
with priors stored in higher areas (top-down) at each layer of the network (Hinton
and Ghahramani, 1997).

307
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Why would this kind of feedback inference be useful? In many cases, there can
be multiple conflicting interpretations of the stimulus even on the lowest level, and
top-down feedback is needed to resolve such conflicts. In essence, feedback infer-
ence computes the most likely interpretation of the scene (Knill and Richards, 1996;
Lee and Mumford, 2003; Yuille and Kersten, 2006), combiningbottom-up sensory
information with top-down priors.

14.1.1 Example: contour integrator units

An example of Bayesian feedback inference can be constructed based on the model
of higher-order units that integrate outputs of complex cells, introduced in Chap-
ter 12. Basically, the idea is as follows: if enough collinear complex cells are active,
they will activate a higher-order contour-coding unit. Theactivation of such a unit
is then evidence for a contour at that location, and this evidence will strengthen re-
sponses of all complex cells lying on the contour, especially those whose bottom-up
input is relatively weak.

The structure of the network was depicted in Figure 12.1 in Chapter 12. In that
chapter, we interpreted this network as performing feedforward computations only:
first the energy model for complex cells, and then a linear transformation. How can
we then simulate the full network inference process to modelfeedback?

One approach is reduction of noise (Hupé et al, 1998). “Noise” in this context
refers to any activity that is not consistent with the learned statistical model and
is thus not only neural or photoreceptor noise. Such noise reduction essentially
suppresses responses which are not typical of the training data, while retaining re-
sponses that do fit the learned statistical model. Denoting the complex cell responses
by ck, we model them by a linear generative model which includes a noise term:

ck =
K

∑
i=1

akisi +nk for all k (14.1)

wherenk is gaussian noise of zero mean and varianceσ2. The outputs of higher-
order contour-coding units are still denoted bysi .

We postulate that the outputssi of higher-order cells are computed by Bayesian
inference in this generative model. Given an image, the complex-cell outputs are
first computed in a feedforward manner; these initial valuesare denoted byck. (It
is here assumed that the feature weightsaik have already been learned.) Next, the
outputs of higher-order cells are computed by finding thesi which have the high-
est posterior probability — we use the Bayesian terminology“posterior probability
(distribution)”, which simply means the conditional probability given the observa-
tions. Let us denote the computed outputs asŝ:

ŝ= argmax
s

logp(s|c) (14.2)
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As is typical in Bayesian inference (see Section 4.7), we canformulate the posterior
log-probability as the sum of two terms:

logp(s|c) = logp(c|s)+ logp(s)−const. (14.3)

wherep(s) is theprior pdf of s. It incorporates our knowledge of the structure of
the world, e.g. that the cell outputs are sparse. The term logp(c|s) incorporates our
knowledge of the image generation process; an example will be given below.

The important point here is that the outputs ˆsi of higher-order units arenonlinear
functions of the complex cell outputs. We will discuss belowwhy this is so. This
opens up the possibility ofreducing noisein the complex cell outputs by recon-
structing them using the linear generative model in Equation (14.1), ignoring the
noise. The obtained reconstructions, i.e. the outputs of the complex cells after they
have received feedback, are denoted by ˆck, and computed as

ĉk =
K

∑
i=1

akiŝi for all k (14.4)

Nonlinearity is essential in these models. If the outputs ˆsi were simply linear trans-
formations of the complex cell outputs, little would be gained by such feedback.
This is because the reconstructed values ˆck would still be linear transformations of
the original feed-forwardck. Thus, one could wonder why any feedback would re-
ally be needed to compute the ˆck because a linear transformation could certainly be
easily incorporated in the feedforward process which computes theck in the first
place. However, the nonlinear computations that emerge from the Bayesian infer-
ence process do need more complicated computing circuitry,so it is natural that
feedback is needed.

The effect of this inference is that the top-down connections from the contour-
coding units to the complex cells seek to adjust the complex cell responses towards
that predicted by the contour units. To be more precise, suchan effect can be ob-
tained, for example, by sending a dynamic feedback signal ofthe form

uki = [
K

∑
i=1

akiŝi ]−ck (14.5)

from the i-th higher-order cell to the k-th complex cell. When ck is equal to its
denoised estimate, this signal is zero and equilibrium is achieved. Of course, this
feedback signal is just one possibility and it is not known how this computation
is actually achieved in the visual system. What is importanthere is that Bayesian
inference gives an exact proposal on what thepurposeof such feedback signals
should be, thus providing a normative model.

In Fig. 14.1, we show a very basic example of how feedback noise reduction in
this model results in the emphasis of smooth contours. We generated image patches
by placing Gabor functions at random locations and orientations (for simplicity,
we consider only a single frequency band here). In one case, there was a collinear
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alignment of three consecutive Gabors; in the other these same Gabors had random
orientations. These image patches are shown in Fig. 14.1 a).Next, we processed
these by our model complex cells, as we had processed the natural image patches in
our experiments in Chapter 12. The resultingck are shown in Fig. 14.1 b). Finally,
we calculated the contour-coding unit activitiessi (the actual method is discussed
in the next subsection), and plotted the noise-reduced complex cell activity in Fig.
14.1 c).

a b c

+

0

Fig. 14.1: Noise reduction and contour integration.a) Two image patches containing Gabors at
random locations and orientations. In the top patch there isa collinear set of three Gabors, whereas
in the bottom patch these same Gabors had random orientations. b) The response of the model
complex cells to the images in a).c) The response of the complex cells after feedback noise reduc-
tion using the learned network model. Note that the reduction of noise has left the activations of
the collinear stimuli but suppressed activity that did not fit the learned sparse coding model well.
From (Hoyer and Hyvärinen, 2002), Copyrightc©2002 Elsevier, used with permission.

Note how the noise-reduction step suppresses responses to “spurious” edges,
while emphasizing the responses that are part of the collinear arrangement. Such
response enhancement to contours is the defining characteristic of many proposed
computational models of contour integration, see for example (Grossberg and Min-
golla, 1985; Li, 1999; Neumann and Sepp, 1999). Comparing the denoised re-
sponses (Fig. 12c) with each other one can also observe collinear contextual in-
teractions in the model. The response to the central Gabor isstronger when it is
flanked by collinear Gabors (upper row) than when the flankershave random orien-
tations (bottom row), even though the flankers fall well outside the receptive field
of the central neuron. This type of contextual interaction has been the subject of
much study recently (Polat and Sagi, 1993; Polat et al, 1998;Polat and Tyler, 1999;
Kapadia et al, 1995, 2000; Kurki et al, 2006); see (Fitzpatrick, 2000) for a review. It
is hypothesized to be related to contour integration, although such a relation is not
certain (Williams and Hess, 1998).
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14.1.2 Thresholding (shrinkage) of a sparse code

What is the nonlinearity in the inference of thesi like in Equation (14.2)? Because
the code is sparse, it turns out to be something like a thresholding of individual cell
activities, as we will show next.

14.1.2.1 Decoupling of estimates

Inference in an ICA model which contains gaussian noise, as in Equation (14.1), is
a special case of the principle in Section 13.1.3, in which the coefficients in an over-
complete basis were estimated. We will see that the noise alone leads to nonlinear
computations even if the basis is not overcomplete as it was in Section 13.1.3. We
can directly use the posterior pdf we calculated there, in Equation (13.10) on page
293; instead of the original imageI the observed data is the vector of complex cell
outputsc. Thus, we have

logp(s|c) =− 1
2σ2 ∑

k

[ck−
m

∑
i=1

akisi ]
2 +

m

∑
i=1

G(si)+const. (14.6)

whereaki is the matrix of higher-order features weights, and the constant does not
depend ons. Now, let us assume that the number of complex cells equals the number
of higher-order features. This is just the classic assumption that we usually make
with ICA (with the exception of the overcomplete basis modelin Section 13.1).
Then, the matrixA, which has theaki as its entries, is invertible. Second, let us
make the assumption that the matrixA is orthogonal. This assumption is a bit more
intricate. It can be interpreted as saying that that the noise is added on the whitened
data, becauseA is orthogonal after whitening. Since the noise is, in our case, an
abstract kind of noise whose structure is not very well knownin any case, this may
not be an unreasonable assumption.

After these simplifying assumptions, the inference definedin Equation (14.6)
becomes quite simple. First, note that the sum of squares is,in matrix notation, equal
to ‖c−As‖2. Because an orthogonal transformation does not change the norm, we
can multiply the vectorc−As by AT without changing the norm. Thus, we can
replace the sum of squares in Equation (14.6) by‖ATc−s‖2, obtaining

logp(s|c) =− 1
2σ2

m

∑
i=1

[
K

∑
k=1

akick−si]
2 +

m

∑
i=1

G(si)+const. (14.7)

Now we see the remarkable fact that this posterior log-pdf isa sum of functions
of the form

logp(si |c) =− 1
2σ2 [

K

∑
k=1

akick−si ]
2 +G(si)+const. (14.8)
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which are functions of singlesi (higher-order features) only. Thus, we can maxi-
mize this posterior pdf separately for eachsi : we only need to do one-dimensional
optimization. Each such one-dimensional maximum depends only on ∑K

k=1akick.
This means that the estimates of thesi which maximize this pdf are obtained by
applying some one-dimensional nonlinear functionf on linear transformations of
the complex cell outputs:

ŝi = f (
K

∑
k=1

akick) (14.9)

where the nonlinear functionf depends onG, the log-pdf of thesi .

14.1.2.2 Sparseness leads to shrinkage

What kind of nonlinearityf does noise reduction lead to? Intuitively, there are two
forces at play in the posterior log-density logp(si |c). The first term, squared error,
says thatsi should be close to∑K

k=1 akick, which can be thought of as the feed-
forward linear estimate forsi . The really interesting part is the prior given by the
function G in Equation (14.8). Now, for a sparse density, the log-density G is a
peaked function. For example, it equalsG(s) = −

√
2|s| (plus some constant) for

the Laplacian density which we have used previously (see Equation (7.18)). This
peakedness makes the inference nonlinear so that if the linear estimate∑K

k=1akick

is sufficiently close to zero, the maximum ofp(si |c) is obtained at zero. This is
illustrated in Figure 14.2.

Actually, the form of the functionf can be obtained analytically for some choices
of G. In particular, assume thatG is the log-pdf of the Laplacian distribution. Then,
the functionf becomes what is called a “shrinkage” function:

f (y) = sign(y)max(|y|−
√

2σ2,0) (14.10)

What this function means is that the linear transformation of complex cell outputs
∑K

k=1akick is “shrunk” towards zero by an amount which depends on noise level
σ2. Such a function can be considered a “soft” form of thresholding. In fact, for
some other choices ofG, such as the one in Equation (7.22), which correspond
to much sparser pdf’s, the nonlinearity becomes very close to thresholding. See
Fig. 14.3 for plots of such functions. For more details in shrinkage functions, see
(Hyvärinen, 1999b; Simoncelli and Adelson, 1996; Johnstone and Silverman, 2005)
in a Bayesian context, and (Donoho, 1995) for a related method.

The nonlinear behaviour obtained by a sparse prior is in stark contrast to the case
where the distribution ofsi is gaussian: thenG is quadratic, and so is logp(si |c).
Minimization of a quadratic function leads to a linear function of the parameters. In
fact, we can take the derivative of logp(si |c) = − 1

2σ2 [∑K
k=1akick− si ]

2− s2
i /2 with

respect tosi and set it to zero, which gives as the solution ˆsi = 1
1+σ2 ∑K

k=1akick.
This is a simple linear function of the feed-forward estimate. So, we see that it is
sparseness, or non-gaussianity, which leads to interesting nonlinear phenomena.
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Thus, we see that the function of Bayesian inference in this kind of a model
is to reduce small cell activities in the higher processing area to zero. If there is
not enough evidence that the feature encoded by a higher-order cell is there, the
cell activity is considered pure noise, and set to zero. Feedback from higher ar-
eas modulates activity in lower areas by suppressing cells which are not consistent
with the cell activity which is left after noise reduction onthe higher level. In other
words, activities of some cells in the lower-level area are suppressed because they
are considered purely noise. At the same time, activities ofsome cells may even be
enhanced so as to make them consistent with higher-level activities. Such a mech-
anism can work on many different levels of hierarchy. However, the mathematical
difficulties constrain most analysis to a network where the feedback is only between
two levels.

a)
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Fig. 14.2: Illustration of why noise reduction with a sparseprior for si leads to shrinkage. In both
plots, the dashed line gives the Laplacian prior pdfG(s) = −

√
2|s|. The dash-dotted line gives

the squared error term in Equation (14.8). The solid line gives the sum of these two terms, i.e.
the posterior log-probability log(si |c). The variance is fixed toσ 2 = 0.5. a) The case where the
feedforward signal is weak:∑K

k=1akick = 0.25. We can see that the peak at zero of the Laplacian
pdf dominates, and the maximum of the posterior is obtained at zero. This leads to a kind of
thresholding.b) The case where the feedforward signal is strong:∑K

k=1 akick = 1.5. Now, the sparse
prior does not dominate anymore. The maximum of the posterior is obtained at a value which is
clearly different from zero, but a bit smaller than the valuegiven by the feedforward signal.

14.1.3 Categorization and top-down feedback

The shrinkage feedback treated above is only one example of Bayesian inference
in a noisy linear generative model. Different variants can be obtained depending
on the assumptions of the marginal distributions of the latent variables, and their
dependencies. Actually, even the generative model in Equation (14.1) is applicable
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Fig. 14.3: Plots of the shrinkage functionsf which modify the outputs of the higher-order contour
cells. The effect of the functions is to reduce the absolute value of its argument by a certain amount
which depends on the noise level. Small arguments are set to zero. This reduces gaussian noise
for sparse random variables. Solid line: shrinkage corresponding to Laplace density. Dash-dotted
line: a thresholding function corresponding to the highly sparse density in Equation (7.22). The
line x = y is given as the dotted line. The linear estimate to which thisnonlinearity is applied was
normalized to unit variance, and noise variance was fixed to.3.

to any two groups of cells on two levels of hierarchy; theck need not be complex
cells andsi need not be contour-coding cells.

For example, consider the latent variablessi as indicatingcategory membership.
Each of them is zero or one depending on whether the object in the visual field
belongs to a certain category. For example, assume one of them, s1, signals the
category “face”.

Thus, Bayesian inference based on Equation (14.2) can againbe used to infer
the most probable values for theck variables fors1. What is interesting here is that
the binary nature ofs1 means that when the visual input is sufficiently close to
the prototype of a face, the most likely value ofs1 will be exactly 1; at a certain
threshold, it will jump from 0 to 1. This will affect the denoised estimates of the
complex cell outputsck. The top-down feedback will now say that they should be
similar to the first basis vector(a11, . . . ,a1n). Thus, a combination of excitatory and
inhibitory feedback will be sent down to complex cells to drive the complex cell
outputs in this direction.

For example, if the input is a face in which some of the contours have very low
contrast, due to lighting conditions, this feedback will try to enhance them (Lee and
Mumford, 2003). Such feedback will be triggered if the evidence fors1 being 1 is
above the threshold needed. Otherwise, possibly the feedback from another category
unit is activated.
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14.2 Overcomplete basis and end-stopping

A second kind of phenomenon which emerges from Bayesian inference and goes
beyond a basic feedforward model iscompetitive interactions. This happens espe-
cially in the model with overcomplete basis, see Section 13.1, and can explain the
phenomenon of end-stopping.

End-stopping refers to a phenomenon, already described by Hubel and Wiesel in
the 1960’s, in which the cell output is reduced when the optimal stimulus is made
longer. That is, you first find a Gabor stimulus which gives maximum response in a
simple cell. Then, you simply make that Gabor longer, that is, more elongated, with-
out changing anything else. You would expect that the response of the cell does not
change because the new stuff that appears in the stimulus is outside of the receptive
field. However, some cells (both simple and complex) actually reduce their firing
rate when the stimulus is made more elongated. This is what iscalled end-stopping.

As discussed in Section 13.1, in an overcomplete basis thereare often many
different combinations of coefficientssi which can give rise to the same image in a
linear generative modelI(x,y) = ∑i Ai(x,y)si . Using Bayesian inference, the most
likely coefficientssi can be found, and this may provide a more accurate model for
how simple cells in V1 compute their responses. This is related to end-stopping
because such Bayesian inference in an overcomplete basis leads to dynamics which
can be conceptualized ascompetition.

Here is an example of such competition. Consider only three Gabor-shaped ba-
sis vectors which are of the same shape but in slightly different locations, so that
together they form an elongated Gabor. It is important that the Gabors areoverlap-
ping; this is necessary for the competition to arise. The three Gabors are depicted in
Figure 14.4.

First assume that the stimulus is a Gabor which is exactly thesame as the feature
coded by the cell in the middle. Then, obviously, the sparsest possible representation
of the stimulus is to set the coefficients of the left- and right-most features to zero
(s1 = s3 = 0), and use only the feature in the middle. Next, assume that the stimulus
is a more elongated Gabor, which is actually exactly the sum of the two Gabors on
the left and the right sides. Now, the sparsest representation is such that the middle
feature has zero activity (s2 = 0), and the other two are used with equal coefficients.

Thus, the cell in the middle is first highly activated, but when the stimulus be-
comes more elongated, its activity is reduced, and eventually becomes zero. We can
interpret this in terms of competition: The three cells are competing for the “right”
to represent the stimulus, and with the first stimulus, the cell in the middle wins,
whereas when the stimulus is elongated, the other two win. This competition pro-
vides a perfect example of end-stopping.

This kind of experiments also show that the classical concept of receptive field
may need to be redefined, as already discussed in Section 13.1.4. After all, the con-
cept of receptive field is based on the idea that the response of the cell only depends
on the light pattern in a particular part of the retinal space. Now, end-stopping, and
other phenomena such as contrast gain control, show that thecell response depends
on stimulation outside of what is classically called the receptive field. Hence, the
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Cell receptive fields

Stimuli

Fig. 14.4: The receptive fields and stimuli used in the end-stopping illustration. When the stimulus
on the left is input to the system, the sparsest, i.e. the mostprobable pattern of coefficients is such
that only the cell in the middle is activatedsi > 0. In contrast, when the stimulus is made longer,
i.e. the stimulus on the right is input to the system, the inference leads to a representation in which
only the cells on the left and the right are useds1,s3 > 0 whereas the cell in the middle has zero
activity s2 = 0.

expressionclassicalreceptive field is used for the part which roughly corresponds
to non-zero weights inW(x,y), and the area from which signals of contrast gain
control and end-stopping come is called the non-classical receptive field. See (An-
gelucci et al, 2002) for an investigation of different kindsof receptive fields.

14.3 Predictive coding

A closely related idea on the relation between feedback and feedforward processing
is predictive coding. There are actually rather different ideas grouped under this
title.

Firstly, one can consider prediction in timeor in space, where “space” means
different parts of a static image. Some of the earliest work in predictive coding
considered prediction in both (Srivanivasan et al, 1982). Secondly, prediction can be
performed between different processing stages (Mumford, 1992; Rao and Ballard,
1999) or inside a single stage (Srivanivasan et al, 1982; Hosoya et al, 2005). There
is also a large body of engineering methods in which time signals, such as speech,
are predicted in time in order to compress the signal (Spanias, 1994); we shall not
consider such methods here.

We constrain ourselves here to the case whereprediction happens between dif-
ferent levels of neural processing and for static stimuli. The key idea here is that
each neural level tries to predict the activity in thelower processing level. This is
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usually coupled with the idea that the lower level sends to the higher level the error
in that prediction.

Prediction of the activities in lower levels is, in fact, implicit in the noisy gen-
erative model we have been using. As we saw in Section 13.1, estimation of the
model in Equation (14.1) can be accomplished by maximization of the objective
function (the posterior probability) in Equation (14.6) with respect to bothaki and
si . We can interpret∑i akisi as the prediction that the higher level makes of lower-
level activities. (In Section 14.1 we interpreted it as a denoised estimate which is
closely related.) Then, the first term in Equation (14.6) canbe interpreted as the pre-
diction that the higher level makes of the lower level activitiesck. Thus, estimation
of the model is, indeed, based on minimization of a prediction error as in predictive
coding.

The idea that the lower level sends only the prediction errorto the higher level
needs some reinterpretation of the model. In Section 14.1, we showed how inference
of si can, under some assumptions, be interpreted as shrinkage. Let us approach the
maximization of the posterior probability in Equation (14.8) by a basic gradient
method. The partial derivative of the objective function with respect tosi equals:

∂ logp(s|c)
∂si

=
1

σ2 ∑
k

aki[ck−
m

∑
i=1

akisi ]+G′(si) (14.11)

This derivative actually contains the prediction errorsck−∑m
i=1akisi of the lower-

level activitiesck, and no other information on theck. Thus, if the higher level imple-
ments a gradient descent method to infer the most likelysi , the information which
it needs from the lower level can be conveyed by sending theseprediction errors
(multiplied by the weightsaki which can be considered as feedforward connection
weights).

The main difference between predictive coding and the generative modelling
framework may thus be small from the viewpoint of statistical inference. The es-
sential difference is in the interpretation of how the abstract quantities are computed
and coded in the cortex. In the predictive modelling framework, it is assumed that
the prediction errorsck−∑m

i=1akisi are actually the activities (firing rates) of the
neurons on the lower level. This is a strong departure from the framework used in
this book, where theck are considered as the activities of the neurons. Which one
of these interpretations is closer to the neural reality is an open question which has
inspired some experimental work, see (Murray et al, 2002). Something like a syn-
thesis of these views is to posit that there are two differentkinds of neurons, each
sending one of these signals (Roelfsema et al, 2002).

14.4 Conclusion

In this chapter, we have shown that, in contrast to the impression one might get from
preceding chapters, current models of natural images are not at all bound to a strict
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feed-forward thinking which neglects top-down influence. Quite on the contrary,
Bayesian inference in these models leads to different kind of lateral interactions and
feedback from higher cortical areas.

We have barely scratched the surface here. In many cases where connections be-
tween latent variables and images are not completely deterministic and one-to-one
in both directions, such phenomena emerge. For example, thetwo-layer generative
model in Section 11.8 would also give rise to such phenomena:If the latent vari-
ables are properly inferred from the input stimuli, some interesting dynamics might
emerge.

Another very important case is contour integration by lateral (horizontal) connec-
tions between simple or complex cells. Basic dependencies between cells signalling
contours which are typically part of a longer contour were pointed out in (Krüger,
1998; Geisler et al, 2001; Sigman et al, 2001; Elder and Goldberg, 2002). Proba-
bilistic models incorporating horizontal connections canbe found in (Garrigues and
Olshausen, 2008; Osindero and Hinton, 2008).

A very deep question related to feedback concerns the very definition of natural
images. Any sufficiently sophisticated organism has an active mechanism, related to
attention, which selects what kind of information it receives by its sensory organs.
This introduces a complicated feedback loop between perception and action. It has
been pointed out that the statistics in those image parts to which people attend, or
direct their gaze, are different from the overall statistics (Reinagel and Zador, 1999;
Krieger et al, 2000); see (Henderson, 2003) for a review. Theimplications of this
difference can be quite deep. A related line of work considers contours labelled by
human subjects in natural images (Martin et al, 2004).



Part IV
Time, colour and stereo





Chapter 15
Colour and stereo images

In this chapter, we show how we can model some other visual modalities, colour and
stereopsis using ICA. We will see that ICA still finds features that are quite similar
to those computed in the visual cortex.1

15.1 Colour image experiments

In this section, we extend the ICA image model from grey-scale (achromatic) to
colour (chromatic) images. Thus, for each pixel we have three values (red, green
and blue), instead of one (grey-scale). The corresponding ICA model is illustrated
in Figure 15.1. First, we discuss the selection of data, thenwe analyse its second-
order statistics and finally show the features found using ICA.

= s1· + s2· + · · ·+ sn·

Fig. 15.1: The colour image ICA model. As with grey-scale patches, we model the data as a linear
combination of feature vectorsAi . Here, each feature vector consists of the three colour planes
(red, green and blue), shown separately to clearly illustrate the linear model.

1 This chapter was originally published as the article (Hoyerand Hyvärinen, 2000) in Network:
Computation in Neural Systems. Copyrightc©2000 Institute of Physics, used with permission.
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15.1.1 Choice of data

Obviously we should select as input data as “natural” imagesas possible if we wish
to make any connection between our results and properties ofneurons in the visual
cortex. When analysing colours, the spectral composition of the images becomes
important in addition to the spatial structure.

It is clear that the colour content of images varies widely with the environment
in which the images are taken. Thus we do not pretend to find some universally
optimal features in which to code all natural colour images.Rather, we seek the
general qualitative properties of an ICA model of such images. In other words, we
hope to find answers to questions such as: “How are colours coded in using such
features; separate from, or mixed with achromatic channels?” and “What kind of
spatial configuration do colour-coding feature vectors have?”

We hope that, as with grey-scale images, the ICA features arenot too sensitive
to the particular choice of colour images, and that our data is realistic enough.

Neurons, of course, receive their information ultimately from the outputs of the
photoreceptors in the retina. Colour vision is made possible by the existence of
photoreceptors called “cones” which come in three types, each sensitive to light
of different wavelengths. Thus our data should consist of the hypothetical outputs
of the three types of cones in response to our images. However, any three linear
combinations of these outputs is just as good an input data, since we are applying
ICA: Linearly transforming the data transforms the featurematrix A, but does not
alter the independent components.

We choose to use standard red/green/blue (RGB) values as inputs, assuming the
transformation to cone outputs to be roughly linear. This has the advantage that the
features found are directly comparable to features currently in use in image pro-
cessing operations such as compression or denoising, and could straightforwardly
be applied in such tasks. The drawback of using RGB values as inputs is of course
that any nonlinearities inherent in the conversion from RGBto cone responses will
affect the ICA result and a comparison to properties of neurons may not be war-
ranted. To test the effect of nonlinearities, we have experimented with transforming
the RGB values using the well-known gamma-nonlinearity2 of cathode ray tubes
used in computer screens. This did not qualitatively changethe results, and there-
fore we are confident that our results would be similar if we had used estimated cone
outputs as inputs.

Our main data consists of colour versions of natural scenes (depicting forest,
wildlife, rocks, etc.) which we have used in previous work aswell. The data is in
the form of 20 RGB images (of size 384×256-pixels) in standard TIFF format.

2 The gamma-nonlinearity is the most significant nonlinearity of the CRT monitor. After gamma-
correction the transform from RGB to cone responses is roughly linear; see the appendix in (Wan-
dell, 1995).
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15.1.2 Preprocessing and PCA

From the images, a total of 50,000 12-by-12 pixel image patches were sampled ran-
domly. Since each channel yields 144 pixels, the dimensionality was now 3×144=
432. Next, the mean value of each variable (pixel/colour pair) was subtracted from
that component, centering the dataset on the origin. Note that the DC component
was not subtracted.

Then, we calculated the covariance matrix and its eigenvectors, which gave us
the principal components. These are shown in Figure 15.2. The eigenvectors con-
sist of global features, resembling 2D Fourier features. The variance decreases with
increasing spatial frequency, and when going from grey-scale to blue/yellow to
red/green features.3 These results were established by (Ruderman et al, 1998) who
used hyperspectral images (i.e. data with many more than thethree spectral compo-
nent in RGB data) as their original input data.

To analyze the colour content of the PCA filters in more detail, we will show
the pixels of a few filters plotted in a coloured hexagon. In particular, each pixel
(RGB-triplet) is projected onto a plane given by

R+G+B= constant. (15.1)

In other words, the luminance is ignored, and only the colourcontent is used in
the display. Figure 15.3 shows the colours in this hexagon. Note that this is a very
simple 2D projection of the RGB colour cube and should not directly be compared
to any neural or psychophysical colour representations.

Figure 15.4 shows a bright/dark filter (no. 3), a blue/yellowfilter (no. 15), a
red/green filter (no. 432, the last one), and a mixture (no. 67). Most filters are in-
deed exclusively opponent colours, as was found in (Ruderman et al, 1998). How-
ever, there are also some mixtures of these in the transitionzones of main opponent
colours.

As described earlier, we project the data onto then first principal components
before whitening (we have experimented withn = 100, 160, 200, and 250). As can
be seen from Figure 15.2, dropping the dimension mostly discards blue/yellow fea-
tures of high spatial frequency and red/green features of medium to high frequency.
This already gives a hint as to why the blue/yellow and the red/green systems have
a much lower resolution than the bright/dark system, as has been observed in psy-
chophysical experiments (Mullen, 1985).

15.1.3 ICA results and discussion

The feature vectorsAi estimated by ICA are shown in Figure 15.5. Examining Fig-
ure 15.5 closely reveals that the features found are very similar to earlier results on

3 It should be noted that chromatic aberration in the eye mighthave an effect of additionally
reducing signal energy at high spatial frequencies.
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Fig. 15.2: PCA features of colour images. These are the eigenvectors of the covariance matrix of
the data, from left-to-right and top-to-bottom in order of decreasing corresponding eigenvalues. As
explained in the main text, we projected the data on the first 160 principal components (top 8 rows)
before performing ICA.

grey-scale image data, i.e. the features resemble Gabor-functions. Note that most
units are (mainly) achromatic, so they only represent brightness (luminance) vari-
ations. This is in agreement with the finding that a large partof the neurons in the
primary visual cortex seem to respond equally well to different coloured stimuli, i.e.
are not selective to colour (Hubel and Wiesel, 1968; Livingstone and Hubel, 1984).
In addition, there is a small number of red/green and blue/yellow features. These are
also oriented, but of much lower spatial frequency, similarto the grey-scale features
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Fig. 15.3: The colour hexagon used for analyzing the colour content of the PCA and ICA features.
The hexagon is the projection of the RGB cube onto a plane orthogonal to the luminance (R+G+
B) vector. Thus achromatic RGB triplets map to the center of the hexagon while highly saturated
ones are projected close to the edges.

Fig. 15.4: Colour content of four PCA filters. From left to right: Component no. 3, 15, 432, and
67. All pixels of each filter have been projected onto the colour hexagon shown in Figure 15.3. See
main text for a discussion of the results.

Fig. 15.5: ICA features of colour images. Each patch corresponds to one featureAi . Note that
each feature is equally well represented by its negation, i.e. switching each pixel to its opponent
colour in any one patch is equivalent to changing the sign ofai and does not change the ICA model
(assuming components with symmetric distributions).
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of lowest frequency. One could think that the low frequency features together form
a “colour” (including brightness) system, and the high-frequency grey-scale fea-
tures a channel analysing form. Also note that the average colour (DC-value) of the
patches is represented by 3 separate feature vectors, just as the average brightness
in an ICA decomposition of grey-scale images is usually separate from the other
feature vectors.

We now show typical ICA features plotted in the colour-hexagon (Figure 15.6),
as we did with the PCA features. The figure shows a bright/darkfeature, a blue-
yellow feature, and a red/green feature. There were no “mixtures” of the type seen
for PCA; in other words each feature clearly belonged to one of these groups. (Note
that the bright/dark features also contained blue/yellow to a quite small degree.)

Fig. 15.6: Colour content of three ICA filters, projected onto the colour hexagon of Figure 15.3.
From left to right: no. 24, 82, and 12.

The dominance of bright/dark features is largely due to the dimension reduction
performed while whitening. To test the dependence of the group sizes on the value
of n used, we estimated the ICA features for different values ofn and counted the
group sizes in each case. The results can be seen in Figure 15.7. Clearly, whenn is
increased, the proportion of colour-selective units increases. However, even in the
case of keeping over half of the dimensions of the original space (n = 250), the
bright/dark features still make up over 60% of all units.

Another thing to note is that each ICA feature is “double-opponent”: For blue-
yellow features stimulating with a blue spot always gives anopposite sign in the
response compared to stimulating with a yellow spot. Red/green and bright/dark
features behave similarly. This is in fact a direct consequence of the linear ICA
model. It would be impossible to have completely linear filters function in any other
way.

Although early results (Livingstone and Hubel, 1984) on thechromatic prop-
erties of neurons suggested that most colour-sensitive cells were unoriented, and
exhibited center-surround receptive fields, more recent studies have indicated that
there are also oriented colour-selective neurons (Ts’o andGilbert, 1988). The fact
that our colour features are mostly oriented is thus at leastin partial agreement with
neurophysiological data.
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Fig. 15.7: Percentages of achromatic, blue/yellow, and red/green feature vectors for different num-
bers of retained PCA components (100, 160, 200 and 250). (In each case, the three features giving
the mean colour have been left out of this count.)

In any case, there is some agreement that most neurons are notselective to
chromatic contrast, rather are more concerned about luminance (Hubel and Wiesel,
1968; Livingstone and Hubel, 1984; Ts’o and Roe, 1995). Our basis is in agreement
with these findings. In addition, the cytochrome oxidase blobs which have been
linked to colour processing (Livingstone and Hubel, 1984) have also been associ-
ated with low spatial frequency tuning (Tootell et al, 1988;Shoham et al, 1997). In
other words, colour selective cells should be expected to betuned to lower spatial
frequencies. This is also seen in our features.

As stated earlier, we do not pretend that our main image set isrepresentative of
all natural environments. To check that the results obtained do not vary wildly with
the image set used, we have performed the same experiments onanother dataset:
single-eye colour versions of the 11 stereo images described in Section 15.2.1. The
found ICA features (not shown) are in most aspects quite similar to that shown in
Figure 15.5: Features are divided into bright/dark, blue/yellow and red/green chan-
nels, of which the bright/dark group is the largest, containing Gabor-like filters of
mostly higher frequency than the features coding colours. The main differences are
that (a) there is a slightly higher proportion of colour-coding units, and (b) the oppo-
nent colours they code are slightly shifted in colour space from those found from our
main data. In other words, the qualitative aspects, answering questions such as those
proposed in Section 15.1.1, are quite similar. However, quantitative differences do
exist.
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15.2 Stereo image experiments

Another interesting extension of the basic grey-scale image ICA model can be made
by modelling stereopsis, which means the extraction of depth information from
binocular disparity. (Binocular disparity refers to the difference in image location
of an object seen by the left and right eyes, resulting from the eyes’ horizontal sepa-
ration.) Now, our artificial neurons are attempting to learnthe dependencies of cor-
responding patches from natural stereo images. The model isshown in Figure 15.8.

15.2.1 Choice of data

Again, the choice of data is an important step for us to get realistic results. Different
approaches are possible here. In some early work, a binocular correlation function
was estimated from actual stereo image data, and subsequently analysed (Li and
Atick, 1994). In addition, at least one investigation of receptive field development
used artificially generated disparity from monocular images (Shouval et al, 1996).
Here, we have chosen to use 11 images from a commercial collection of stereo
images of natural scenes; a typical image is given in Figure 15.9.

To simulate the workings of the eyes, we selected 5 focus points at random from
each image and estimated the disparities at these points. Wethen randomly sampled
16×16-pixel corresponding image patches in an area of 300×300 pixels centered
on each focus point, obtaining a total of 50,000 samples. Because of the local fluctu-
ations in disparity (due to the 3D imaging geometry) corresponding image patches
often contained similar, but horizontally shifted features; this is of course the basis
of stereopsis.

Note that in reality the “sampling” is quite different. Eachneuron sees a certain
area of the visual field which is relatively constant with respect to the focus point.
Thus a more realistic sampling would be to randomly select 50,000 focus points
and from each take corresponding image patches at some givenconstant positional
offset. However, the binocular matching is computationally slow and we thus opted
for the easier approach, which should give the same distribution of disparities.

= s1· + s2· + · · ·+ sn·

Fig. 15.8: The ICA model for corresponding stereo image patches. The top row contains the patches
from left-eye image and the bottom row corresponding patches from the right-eye image. Just as
for grey-scale and colour patches, we model the data as a linear combination of feature vectorsAi

with independent coefficientssi .



15.2 Stereo image experiments 329

Fig. 15.9: One of the stereo images used in the experiments. The left image should be seen with
the left eye, and the right image with the right eye (so-called uncrossed viewing).

15.2.2 Preprocessing and PCA

The same kind of preprocessing was used in these experimentsas for colour, in
Section 15.1. Since each sample consisted of correspondingleft and right 16×16-
patches our original data was 512-dimensional. First, the mean was removed from
each variable, to center the data on the origin. Next, we calculated the covariance
matrix of the data, and its eigenvalue decomposition. In order not to waste space,
we show here (in Figure 15.10) the principal components for awindow size of 8×8
pixels (the result for 16×16 is qualitatively very similar).

The most significant feature is that the principal components are roughly or-
dered according to spatial frequency, just as in PCA on standard (monocular) image
patches. However, in addition early components (low spatial frequency) are more
binocular than late ones (high frequency). Also note that binocular components gen-
erally consist of features of identical or opposite phases.This is in agreement with
the binocular correlation function described in (Li and Atick, 1994).

As before, we select the first 160 principal components for further analysis by
ICA. Again, this is plausible as a coding strategy for neurons, but is mainly done to
lower the computational expenses and thus running time and memory consumption.
Due to the structure of the covariance matrix, dropping the dimension to 160 is
similar to low-pass filtering.
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Fig. 15.10: PCA features of stereo images, i.e. the eigenvectors of the covariance matrix of the
data, from left-to-right and top-to-bottom in order of decreasing corresponding eigenvalues. See
main text for discussion.

15.2.3 ICA results and discussion

Figure 15.11 shows the estimated ICA feature vectorsAi . Each pair of patches rep-
resents one feature. First, note that pairs have varying degrees of binocularity. Many
of our “model neurons” respond equally well to stimulation from both eyes, but
there are also many which respond much better to stimulationof one eye than to
stimulation of the other. This is shown quantitatively in Figure 15.12, which gives
an “ocular-dominance” histogram of the features. Ocular dominance thus means
whether the neuron prefers input from one of the eyes (monocular) or combines
information from both eyes (binocular).

The histogram depends strongly on the area of the sampling around the focus
points (which in these experiments was 300×300 pixels). Sampling a smaller area
implies that the correlation between the patches is higher and a larger number of
features fall into the middle bin of the histogram. In theory, if we chose to sample
only exactly at the fixation point, we would obtain (ignoringfactors such as occlu-
sion) identical left-right image patches; this would in turn make all feature vectors
completely binocular with identical left-right patches, as there would be no signal
variance in the other directions of the data space. On the other hand, sampling a
larger area leads to a spreading of the histogram towards theedge bins. As the area
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Fig. 15.11: ICA of stereo images. Each pair of patches represents one feature vectorAi . Note the
similarity of these features to those obtained from standard image data (Figure 7.3 on page 169).
In addition, these exhibit various degrees of binocularityand varying relative positions and phases.

gets larger, the dependencies between the left and right patches get weaker. In the
limit of unrelated left and right windows, all features fallinto bins 1 and 7 of the
histogram. This was confirmed in experiments (results not shown).

Taking a closer look at the binocular pairs reveals that for most pairs the left
patch is similar to the right patch both in orientation and spatial frequency. The po-
sitions of the features inside the patches are close, when not identical. In some pairs
the phases are very similar, while in others they are quite different, even completely
opposite. These properties make the features sensitive to different degrees of binoc-
ular disparity. Identical left-right receptive fields makethe feature most responsive
to zero disparity, while receptive fields that are identicalexcept for a phase reversal
show strong inhibition (a response smaller than the “base-line” response given by
an optimal monocular stimulus) to zero disparity.

To analyse the disparity tuning we first estimated several ICA bases using dif-
ferent random number seeds. We then selected only relatively high frequency, well
localized, binocular features which had a clear Gabor filterstructure. This was nec-
essary because filters of low spatial frequency were not usually well confined within
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the patch and thus cannot be analysed as complete neural receptive fields. The set
of selected feature vectors is shown in Figure 15.13.
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Fig. 15.12: Ocular dominance histogram of the ICA features.For each pair, we cal-
culated the value of(‖Aleft

i ‖ − ‖A
right
i ‖)/(‖Aleft

i ‖ + ‖Aleft
i ‖), and used the bin boundaries

[−0.85,−0.5,−0.15,0.15,0.5,0.85] as suggested in (Shouval et al., 1996). Although many units
where quite monocular (as can be seen from Figure 15.11), no units fell into bins 1 or 7. This
histogram is quite dependent on the sampling window around fixation points, as discussed in the
main text.

Fig. 15.13: Units selected for disparity tuning analysis. These were selected from bases such as
the one in Figure 15.11 on the basis of binocularity, frequency content and localization (only well-
localized Gabor filters were suitable for further analysis).
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For each stereo pair, we presented an identical stimulus at different disparities
to both the left and right parts of the filter corresponding tothe pair. For each dis-
parity, the maximum over translations was taken as the response of the pair at that
disparity. This gave a disparity tuning curve. For stimuli we used the feature vectors
themselves, first presenting the left patch of the pair to both “eyes”, then the right.
The tuning curves were usually remarkably similar, and we took the mean of these
as the final curve.

We then classified each curve as belonging to one of the types “tuned excitatory”,
“tuned inhibitory”, “near”, or “far”, which have been identified in physiological ex-
periments (Poggio and Fischer, 1977; Fischer and Kruger, 1979; LeVay and Voigt,
1988). Tuned excitatory units showed a strong peak at zero, usually with smaller
inhibition at either side. Tuned inhibitory units on the other hand showed a marked
inhibition (cancelling) at zero disparity, with excitation at small positive or nega-
tive disparities. Features classified as “near” showed a clear positive peak at crossed
(positive) disparity while those grouped as “far” a peak foruncrossed (negative) dis-
parity. Some tuning curves that did not clearly fit any of these classes were grouped
into “others”.

In Figure 15.14 we give one example from each class. Shown arethe feature
vectors and the corresponding tuning curves. It is fairly easy to see how the orga-
nization of the patches gives the tuning curves. The tuned excitatory (top) unit has
almost identical left-right profiles and thus shows a strongpreference for stimuli
at zero disparities. The tuned inhibitory (second) unit hasnearly opposite polarity
patches which implies strong inhibition at zero disparity.The near (third) unit’s right
receptive field is slightly shifted (positional offset) to the left compared with the left
field, giving it a positive preferred disparity. On the otherhand, the far unit (bottom)
has an opposite positional offset and thus responds best to negative disparities.

Figure 15.15 shows the relative number of units in the different classes. Note that
the most common classes are “tuned excitatory” and “near”. One would perhaps
have expected a greater dominance of the tuned excitatory over the other groups.
The relative number of tuned vs. untuned units probably depends to a great deal on
the performance of the disparity estimation algorithm in the sampling procedure.
We suspect that with a more sophisticated algorithm (we haveused a very simple
window-matching technique) one would get a larger number oftuned cells. The
clear asymmetry between the “near” and “far” groups is probably due to the much
larger range of possible disparities for near than for far stimuli: Disparities for ob-
jects closer than fixation can in principle grow arbitrarilylarge whereas disparities
for far objects are limited (Barlow et al, 1967).

It is important to note that completely linear units (simplecells) cannot have
very selective disparity tuning. Also, since the disparitytuning curves vary with the
stimulus, the concept “disparity tuning curve” is not very well-defined (Zhu and
Qian, 1996). However, disparity tuning is still measurableso long as one keeps in
mind that the curve depends on the stimulus. Our tuning curves are “simulations” of
experiments where a moving stimulus is swept across the receptive field at differ-
ent binocular disparities, and the responses of the neuron in question is measured.
As such, it is appropriate to use the estimated feature vectors as input. To obtain
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Fig. 15.14: Disparity tuning curves for units belonging to different classes. Top row: A “tuned
excitatory” unit (no. 4 in Figure 15.13). Second row: a “tuned inhibitory” unit (12). Third row:
a “near” unit (38). Bottom row: a “far” unit (47). Crossed disparity (“near”) is labelled positive
and uncrossed (“far”) negative in the figures. The horizontal dotted line gives the “base-line” re-
sponse (the optimal response to one-eye only) and the vertical dotted line the position of maximum
deviation from that response.

stimulus-invariant disparity tuning curves (as well as more complex binocular inter-
actions than those seen here) one would need to model nonlinear (complex) cells.

Overall, the properties of the found features correspond quite well to those of re-
ceptive fields measured for neurons in the visual cortex. Thefeatures show varying
degrees of ocular dominance, just as neuronal receptive fields (Hubel and Wiesel,
1962). Binocular units have interocularly matched orientations and spatial frequen-
cies, as has been observed for real binocular neurons (Skottun and Freeman, 1984).
It is easy by visual inspection to see that there exist both interocular position and
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Fig. 15.15: Disparity tuning histogram. The histogram shows the relative amounts of “tuned exci-
tatory” (44), “near” (44), “far” (17) units (in black) and “tuned inhibitory” units (25) in white. Not
shown are those which did not clearly fit into any of these categories (15).

phase differences, which seems to be the case for receptive fields of cortical neurons
(Anzai et al, 1999a). Finally, simulated disparity tuning curves of the found features
are also similar to tuning curves measured in physiologicalexperiments (Poggio and
Fischer, 1977).

15.3 Further references

15.3.1 Colour and stereo images

Work concerning the second-order statistics of colour include (Atick et al, 1992; van
Hateren, 1993; Ruderman et al, 1998). In addition, colouredinput was used in (Bar-
row et al, 1996) to emerge a topographic map of receptive fields. Again, that work
basically concerns only the second-order structure of the data, as the correlation-
based learning used relies only on this information. Application of ICA on colour
images has been reported in (Hoyer and Hyvärinen, 2000; Wachtler et al, 2001;
Doi et al, 2003; Caywood et al, 2004; Wachtler et al, 2007). Related work on LGN
neurons can be found in (Mante et al, 2005).

In addition to learning chromatic receptive fields, it is also possible to investigate
the statistical properties of the chromatic spectra if single pixels (Wachtler et al,
2001). That is, one measures the spectral content of single pixels with a high reso-
lution which gives more than the conventional three dimensions. This can shed light
on the optimality of the three-cone dimensionality reduction used in the retina.

Emerging receptive fields from stereo input has been considered in (Li and Atick,
1994; Shouval et al, 1996; Erwin and Miller, 1996, 1998). As with colour, most
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studies have explicitly or implicitly used only second-order statistics (Li and Atick,
1994; Erwin and Miller, 1996, 1998). The exception is (Shouval et al, 1996) which
used the BCM learning rule (Bienenstock et al, 1982) which isa type of projection
pursuit learning closely linked to ICA. The main differencebetween their work and
the one reported in this chapter is that here we use data from actual stereo images
whereas they used horizontally shifted (misaligned) data from regular images. In
addition, we estimate a complete basis for the data, whereasthey studied only single
receptive fields.

15.3.2 Other modalities, including audition

Further investigations into the statistical structure of other sensory modalities have
been made especially in the context of audition, in which ICAyields interesting
receptive fields whether applied on raw audio data (Bell and Sejnowski, 1996;
Lewicki, 2002; Cavaco and Lewicki, 2007) or spectrograms (Klein et al, 2003).
See also (Schwartz et al, 2003) for work related to music perception, and (Schwartz
and Simoncelli, 2001b) for work on divisive normalization for auditory signals.

Further topics which have been addressed using the statistical structure of the
ecologically valid environment include visual space (Yangand Purves, 2003), so-
matosensory system (Hafner et al, 2003), and place cells (L¨orincz and Buzsáki,
2000). Motion in image sequences is considered in Section 16.2.

For some work on multimodal integration and natural image statistics, see (Hurri,
2006; Krüger and Wörgötter, 2002) (the latter is on imagesequences). An image-
processing application combining spatial, temporal, and chromatic information is in
(Bergner and Drew, 2005).

15.4 Conclusion

In this chapter, we have investigated the use of independentcomponent analysis for
decomposing natural colour and stereo images. ICA applied to colour images yields
features which resemble Gabor functions, with most features achromatic, and the
rest red/green- or blue/yellow-opponent. When ICA is applied on stereo images
we obtain feature pairs which exhibit various degrees of ocular dominance and are
tuned to various disparities. Thus, ICA seems to be a plausible model also for these
modalities and not just grey-scale images.



Chapter 16
Temporal sequences of natural images

Up to this point this book has been concerned with static natural images. However,
in natural environments the scene changes over time. In addition, the observer may
move, or the observer may move its eyes. Temporal sequences of natural images,
temporal properties of the visual system, and temporal models of processing are the
topics of this chapter.

16.1 Natural image sequences and spatiotemporal filtering

Fig. 16.1: An example of an image sequence (van Hateren and Ruderman, 1998) with 5 frames.
Here time proceeds from left to right.

In digital systems, dynamical (time-varying) images are often processed asimage
sequences, which consist offrames, each frame being one static image. Figure 16.1
shows an example of an image sequence with lateral camera movement.

Previous chapters have made clear the importance of linear operators as tools and
models in image processing. In the case of image sequence data, the fundamental
linear operation isspatiotemporal linear filtering, which is a straightforward exten-
sion of the spatial linear filtering discussed in Chapter 2. Remember that in spatial
linear filtering a two-dimensional filter is slid across the image, and the output is
formed by computing a weighted sum of the pixels in the area ofthe filter, with
the weights given by the elements of the filter. In spatiotemporal linear filtering, a

337
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three-dimensionalfilter is slid across the image sequence, and the output is formed
by computing a weighted sum of the pixels in the spatiotemporal area of the filter,
with the weights given by the elements of the filter.

Mathematically, letW(x,y,t) denote the filter weights,I(x,y,t) denote the input
image sequence, andO(x,y,t) denote the output image sequence. The indext is
time. Then linear spatiotemporal filtering is given by

O(x,y,t) =
∞

∑
x∗=−∞

∞

∑
y∗=−∞

∞

∑
t∗=−∞

W(x∗,y∗,t∗)I(x+x∗,y+y∗,t + t∗), (16.1)

where the upper and lower limits of the sums are in practical situations finite. Typ-
ically only filters which do not use future time points are used; mathematically we
will denote thiscausalityrestriction byW(x,y,t) = 0 whent > 0.

The concepts of frequency-based representations, presented in Section 2.2 (p. 29)
are applicable also in the three-dimensional, spatiotemporal case. An image se-
quence can be represented as a sum of spatiotemporal sinusoidal components

I(x,y,t) = ∑
ωx

∑
ωy

∑
ωt

Aωx,ωy,ωt cos
(
ωxx+ ωyy+ ωtt + ψωx,ωy,ωt

)
, (16.2)

whereωx andωy are spatial frequencies andωt is a temporal frequency,Aωx,ωy,ωt

is the amplitude associated with the frequency triple, andψωx,ωy,ωt is the phase
of the frequency triple. You may want to compare Equation (16.2) with its spatial
counterpart, Equation (2.9) on page 33. A spatiotemporal convolution operation is
defined by

H(x,y,t)∗ I(x,y,t) =
∞

∑
x∗=−∞

∞

∑
y∗=−∞

∞

∑
t∗=−∞

I(x−x∗,y−y∗,t− t∗)H(x∗,y∗,t∗), (16.3)

whereH(x,y,t) is the impulse response, which has a straightforward relationship
with the linear filterW(x,y,t)

H(x,y,t) = W(−x,−y,−t). (16.4)

This impulse response has a complex-valued three-dimensional discrete Fourier
transformH̃(u,v,w), the magnitude of which reveals the amplitude response of the
filter, and the angle reveals the phase response.

16.2 Temporal and spatiotemporal receptive fields

With the inclusion of time, we get two new kinds of receptive fields:spatiotemporal
andtemporal; these are illustrated in Figure 16.2 in the case of a neuron from the
lateral geniculate nucleus. A spatiotemporal receptive field W(x,y,t) (Figure 16.2a)
corresponds to a causal spatiotemporal filter: it defines a linear model that relates the
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Fig. 16.2: Spatiotemporal and temporal receptive fields of aneuron in the lateral geniculate nu-
cleus (LGN), estimated from measurement data from the neuron. a) A spatiotemporal recep-
tive field W(x,y, t), the equivalent of a causal linear spatiotemporal filter.b) A two-dimensional
visualization of the RF in a), obtained by summing the spatiotemporal RF along they-axis:
W(x, t) = ∑yW(x,y, t). c) A temporal receptive field, which is a single time-slice of the spatiotem-
poral RF:W(t) = W(xconst,yconst, t). For the description of the original measurement data and its
source see (Dayan and Abbott, 2001; Kara et al, 2000).

history of all pixels in the image sequence to the output of a neuron. These inher-
ently three-dimensional spatiotemporal receptive fields are often visualized in two
dimensions with one spatial dimension and a temporal dimensionW(x,t) by taking
either a slice at wherey is constant (y = yconst) or summing over they-dimension
(Figure 16.2b).1 A temporal receptive field (Figure 16.2c) is the time course of a
single spatial location in a spatiotemporal receptive field: W(t) = W(xconst,yconst,t).
It defines a linear model that relates the history of a single pixel to the output of a
neuron.

Spatiotemporal receptive fields are divided into two qualitatively different types
based on whether or not they can be described as a cascade of a spatial and a tempo-
ral filtering operation. In the case where this is possible, the spatiotemporal filter is
called is calledspace-time separable. Let us denote again the output of the filtering
by O(x,y,t), the spatial filter byWspat(x,y) and the temporal filter byWtemp(t). Then,
the cascade can be combined into a single spatiotemporal filter as follows:

1 When the RF is selective to a certain spatial orientation of the stimulus, this visualization can be
improved by rotating the RF spatially so that the preferred orientation becomes they-axis.
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O(x,y,t) =
∞

∑
x∗=−∞

∞

∑
y∗=−∞

Wspat(x∗,y∗)
∞

∑
t∗=−∞

Wtemp(t∗)I(x+x∗,y+y∗,t + t∗)

=
∞

∑
x∗=−∞

∞

∑
y∗=−∞

∞

∑
t∗=−∞

Wspat(x∗,y∗)Wtemp(t∗)
︸ ︷︷ ︸

=W(x∗,y∗,t∗)

I(x+x∗,y+y∗,t + t∗)

=
∞

∑
x∗=−∞

∞

∑
y∗=−∞

∞

∑
t∗=−∞

W(x∗,y∗,t∗)I(x+x∗,y+y∗,t + t∗).

(16.5)

Thus, the spatiotemporal filter is obtained as a product of the spatial and temporal
parts as

W(x,y,t) = Wspat(x,y)Wtemp(t) (16.6)

By changing the ordering of the sums in Equation (16.5) it is easy to see that in
the space-time separable case, the order in which the spatial and the temporal fil-
tering are done is irrelevant. A spatiotemporal receptive field that is not space-time
separable is calledspace-time inseparable.
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Fig. 16.3: A space-time-separable representation of the spatiotemporal RF of Figure 16.2.a),
b) The optimal spatial RFWspat(x,y) and temporal RFWtemp(t), estimated using the sep-
arability conditionW(x,y, t) = Wspat(x,y)Wtemp(t). c) The resulting space-time-separable RF
Wspat(x,y)Wtemp(t); comparison of this with Figure 16.2a) demonstrates the good match provided
by the separable model for this neuron.

The spatiotemporal receptive field shown in Figure 16.2 is approximately space-
time separable: Figure 16.3 shows the decomposition of the receptive field into the
spatial part and the temporal part, and the resulting space-time-separable approxi-
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mation.2 This suggests that the linear model of the neuron can be divided into a spa-
tial filter and a temporal filter. Intuitively speaking, space-time separability means
that the RF does not contain anything that “moves” from one place to another, be-
cause the spatial profile is all the time in the same place: only its magnitude (and
possibly sign) changes.

16.3 Second-order statistics

16.3.1 Average spatiotemporal power spectrum

Now, we begin the investigation of the statistical structure of natural image se-
quences by characterizing the spatiotemporal correlations between two pixels in
an image sequence. As was discussed in Section 5.6 on p. 116, acharacterization of
the average power spectrum is equivalent to an examination of these second-order
statistics. Therefore, following (Dong and Atick, 1995a),we proceed to analyze the
average spatiotemporal power spectrum of natural image sequences.

The natural image sequences used as data were a subset of those used in (van
Hateren and Ruderman, 1998). The original data set consisted of 216 monochrome,
non-calibrated video clips of 192 seconds each, taken from television broadcasts.
More than half of the videos feature wildlife, the rest show various topics such as
sports and movies. Sampling frequency in the data is 25 frames per second, and
each frame had been block-averaged to a resolution of 128× 128 pixels. For our
experiments this data set was pruned to remove the effect of human-made objects
and artifacts. First, many of the videos feature human-madeobjects, such as houses,
furniture etc. Such videos were removed from the data set, leaving us with 129
videos. Some of these 129 videos had been grabbed from television broadcasts so
that there was a wide black bar with height 15 pixels at the topof each image, prob-
ably because the original broadcast had been in wide screen format. Our sampling
procedure never took samples from this topmost part of the videos.

The results of this section are based on the following procedure. We first took
10,000 samples of size 64× 64× 64 = ∆x×∆y×∆ t from the natural image se-
quence. We then computed the spatiotemporal power spectrumof each of these
samples by computing the squared amplitudes of three-dimensional discrete Fourier
transform of the sample. These power spectra were averaged over all of the sam-
ples to obtain the average power spectrumR(ωx,ωy,ωt). Image data is often as-
sumed to be approximately rotationally invariant (isotropic, see Section 5.7), so
a two-dimensional average power spectrum was computed as a function of spa-

tial frequencyωs =
√

ω2
x + ω2

y by averaging over all spatial orientations, yielding

R(ωs,ωt).

2 The decomposition has been obtained by minimizing the squared Euclidean distance between the
original RF and its space-time-separable version. This canbe solved by employing the singular-
value decomposition approximation of matrices.
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Fig. 16.4: One-dimensional slices of the two-dimensional average spatiotemporal power spectrum
R(ωs,ωt) of natural image sequences.a) Plots in whichωt is held constant.b) Plots in whichωs

is held constant.

a)

10
−2

10
−1

10
0

10
0

10
5

10
10

10
15

ω
s
 (c/p)

R
(ω

s,ω
t)

observed R(ω
s
,ω

t
)

best separable R
s
(ω

s
)R

t
(ω

t
)

b)

10
0

10
1

10
0

10
5

10
10

10
15

ω
t
 (Hz)

R
(ω

s,ω
t)

observed R(ω
s
,ω

t
)

best separable R
s
(ω

s
)R

t
(ω

t
)

Fig. 16.5: The average spatiotemporal power spectrum of natural image sequencesR(ωs,ωt) is
not well approximated by a space-time separableRs(ωs)Rt (ωt ). These plots show the observed
curves plotted in Figure 16.4 along with plots from the best separable spatiotemporal spectrum
(here “best” is defined by minimal least mean square distance). The uppermost curves contain both
the observed and best separated curves on almost exactly on top of each other, which shows that in
the case of the lowest frequencies, the approximation is very good.

One way to visualize the resulting two-dimensional function R(ωs,ωt) is to plot
curves of the function while keeping one of the variables fixed. This has been done in
Figures 16.4a) and b), keepingωt constant in the former andωs in the latter. In order
to analyze the form of this power spectrum in more detail, onecan first fit a space-
time separable power spectrumRs(ωs)Rt(ωt); the best fit (in terms of least mean
square) is visualized in Figure 16.5 in similar plots as those in Figures 16.4, but this
time plotting curves from both the observed and the best space-time separable power
spectrum. As can be seen, at higher frequencies the best separable power spectrum
provides a relatively poor match to the observed one.
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Fig. 16.6: In the frequency-based representation of thes–t-space, the direction of the frequency
vectorω = [ωs ωt ]

T is equivalent to the speed of the pixels of a moving spatial grating in the image
sequence. This is illustrated here for two different(ωs,ωt)-pairs (a, b), for which the frequency-
based representation is shown on the left, and thes–t-representation on the right. One can see that
the pixels in the spatial gratings move with the same speed: for example, looking at the pixel which
starts at the corner position(s, t) = (64,1), it can be seen that in both cases (a, b), the pixel moves
across the whole image when timet runs from 1 to 64, indicating similar speed of movement.

In order to proceed to a more accurate model of the spatiotemporal power spec-
trum of natural image sequences, let us reconsider the frequency representation
of the s–t-space. Referring to our presentation of the two-dimensional frequency-
based representation in Section 2.2.2 – in particular, see Figure 2.5 on page 32 – let
ω = [ωs ωt ]

T . The vectorω has two important properties: direction and magnitude
(length). Now consider the direction of the vector. In the case of a two-dimensional
spatial frequency-based representation, the direction ofthe vector[ωx ωy]

T deter-
mines the spatial orientation of the sinusoidal in thex–y-space. Analogously, in the
spatiotemporal case, the direction of the vectorω = [ωs ωt ]

T determines the ori-
entation of the sinusoidal in thes–t-space. We are able to provide a more intuitive
interpretation for orientation in thes–t-space: it is thespeedof the spatial pattern
that is moving. Figure 16.6 illustrates this. Points in the(ωs,ωt)-space that have the
same speed (direction) lie on a lineωt = cωs, wherec is a constant. Therefore, the
set of(ωs,ωt)-points have the same speed whenωt

ωs
= constant.

It was observed by Dong and Atick (1995b) that the power spectrum has a par-
ticularly simple form as a function of spatial frequencyωs when the speedωt

ωs
is

held constant. Figure 16.7a) shows plots ofR(ωs,ωt) as a function of spatialωs for
different constant values of speedωt

ωs
. As can be seen, in this log-log-plot all the

curves are similar to straight lines with the same slope but different intercepts for
different values ofωt

ωs
. Denoting the common slope by−a, a> 0, and the intercepts

by b
(

ωt
ωs

)

, this suggests that
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Fig. 16.7: The average spatiotemporal power spectrumR(ωs,ωt) of natural image sequences can
be separated into functions depending on spatial frequencyωs and speedωt

ωs
. a) Log-log plots of

R(ωs,ωt) as a function ofωs are straight lines, suggesting thatR(ωs,ωt) ≈ ω−a
s f

(
ωt
ωs

)

, where

a> 0 and f
(

ωt
ωs

)

is a function of speed.b) A plot of f
(

ωt
ωs

)

≈ ω3.7
s R(ωs,ωt). See text for details.

logR(ωs,ωt)≈−alogωs+b

(
ωt

ωs

)

(16.7)

R(ωs,ωt)≈ ω−a
s exp

[

b

(
ωt

ωs

)]

︸ ︷︷ ︸

= f( ωt
ωs)

(16.8)

R(ωs,ωt)≈ ω−a
s f

(
ωt

ωs

)

, (16.9)

where f (·) is an unknown function of speed. When an estimate of the slopea has
been computed (e.g., from the data shown in Figure 16.7a), anapproximate plot of
function f (·) can be obtained from

f

(
ωt

ωs

)

≈ ωa
s R(ωs,ωt); (16.10)

this plot is shown in Figure 16.7b) fora = 3.7.
Dong and Atick (1995a) went two steps further in the characterization ofR(ωs,ωt).

First, they derived Equation (16.9) from the average power spectrum of static images
and a model in which objects move with different velocities at different distances.
Second, by assuming a distribution of object velocities they also derived a para-
metric form for functionf (·) which agrees well with the observedR(ωs,ωt) with
reasonable parameter values. See their paper for more details.

The spatiotemporal power spectrum seems to exhibit some anisotropies (see Sec-
tion 5.7, i.e. it is not the same in all orientations). This can be used to explain some
psychophysical phenomena (Dakin et al, 2005).
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16.3.2 The temporally decorrelating filter

In Section 5.9 (page 126) we saw that the removal of linear correlations – that is,
whitening – forms the basis of a model that results in the emergence of spatial
center-surround receptive fields from natural data. In thissection we apply similar
theory to the case of temporal data and temporal receptive fields (see Figure 16.2c on
page 339). We are examining the statistical properties of purely temporal data here,
that is, samples consisting of time courses of individual pixels (which are sampled
from different spatial locations in the image sequences).

We proceed similarly as in the spatial case. LetRi(ωt) denote the temporal power
spectrum of natural image sequence data (time courses of individual pixels). As in
the spatial case, we assume that noise powerRn(ωt) is constant, and given by

Rn(ωt) =
Ri(ωt,c)

2
for all ωt , (16.11)

whereωt,c is the characteristic frequency at which the data and noise have the same
power. As in the spatial case (see Equation (5.49) on page 133), we define the am-
plitude response of the filter

∣
∣W̃(ωt)

∣
∣ as the product of the amplitude responses of a

whitening filter and a noise-suppressive filter:

∣
∣W̃(ωt)

∣
∣=

1
√

Ri(ωt)

Ri(ωt)−Rn(ωt)

Ri(ωt)
. (16.12)

As was mentioned in Section 5.9, a shortcoming of the decorrelation theory is that
it does not predict the phase response of the filter. Here we use the principle of
minimum energy delay: the phases are specified so that the energy in the impulse
response of the resulting causal filter is delayed the least.The phase response of a
minimum energy delay filter is given by theHilbert transformof the logarithm of
the amplitude response; see (Oppenheim and Schafer, 1975) for details. After the
amplitude and the phase responses have been defined, the temporal filter itself can
be obtained by taking the inverse Fourier transform.

The filter properties that result from the application of Equations (16.11) and
(16.12) and the minimum energy delay principle are illustrated in Figure 16.8 for
a characteristic frequency value ofωs,t = 7Hz (the same value was used in (Dong
and Atick, 1995b)). For this experiment, 100,000 signals ofspatial size 1×1 pixels
and a duration of 64 time points (≈ 2.5s) were sampled from the image sequence
data of van Hateren and Ruderman (1998). The average temporal power spectrum
of these signals was then computed and is shown in Figure 16.8a). The squared am-
plitude response of the whitening filter, obtained from Equation (16.12), is shown in
Figure 16.8b). The power spectrum of the filtered data is shown in Figure 16.8c); it
is approximately flat at lower frequencies and drops off at high frequencies because
of the higher relative noise power at high frequencies. The resulting filter is shown
in Figure 16.8d); for comparison, a measured temporal receptive field of an LGN
neuron is shown in Figure 16.8e). Please observe the difference in the time scales
in Figures 16.8d) and e). Here the match between the two linear filters is only qual-
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Fig. 16.8: The application of the whitening principle, combined with noise reduction and minimum
energy delay phase response, leads to the emergence of filters resembling the temporal receptive
fields of neurons in the retina and the LGN.a) The temporal power spectrumRi(ωt) of natural
image sequence data.b) The squared amplitude response of a whitening filter which suppresses
noise: this curve follows the inverse of the data power spectrum at low frequencies, but drops off
at high frequencies, because the proportion of noise is larger at high frequencies.c) The power
spectrum of the resulting (filtered) data, showing approximately flat (white) power at low frequen-
cies, and dropping off at high frequencies.d) The resulting filter which has been obtained from
the amplitude response in b) and by specifying a minimum energy delay phase response; see text
for details.e) For comparison, the temporal receptive field of an LGN neuron. Please note the
differences in the time scales in d) and e).



16.4 Sparse coding and ICA of natural image sequences 347

itative; in experimental animals, the latencies of LGN cells seem to vary from tens
to hundreds milliseconds (Saul and Humphrey, 1990). Similar temporal processing
properties are often attributed to retinal ganglion cells (Meister and Berry II, 1999),
although Dong and Atick (1995a) argue that the temporal frequency response of
retinal cells is typically flat when compared with the response of neurons in the
LGN.

Dong and Atick (1995a) proceed by showing that when combinedwith basic
neural nonlinearities (rectification), the temporally decorrelating filter theory yields
response properties that match the timing and phase response properties of LGN
neurons. For additional experimental evaluation of the model, see (Dan et al, 1996b).

Here we have used a linear neuron model with a constant filter (static receptive
field). In reality the temporal receptive field of a visual neuron may change, and this
adaptation may be related to the short-term changes in stimulus statistics (Hosoya
et al, 2005).

16.4 Sparse coding and ICA of natural image sequences

To analyze the spatiotemporal statistics beyond covariances, the ICA model can be
applied directly to natural image sequences. Instead of vectorizing image patches
(windows), and using them as data in the ICA model, spatiotemporal image se-
quence blocks can be vectorized to form the datax. After a spatiotemporal feature
detector weight vectorw or, alternatively, a spatiotemporal feature vectora has been
learned from the data, it can be visualized as an image sequence after “unvectoriz-
ing” it, just like in the basic spatial case.

Results of estimating spatiotemporal features by ICA are shown in in Figure 16.9.
The data consisted of image sequence blocks of size(11,11,9), where the two first
values are in pixels and the third value is in time steps. We used two different sam-
pling rates, 25Hz and 3.125Hz because that parameter has a visible influence on the
results. The number of spatiotemporal patches was 200,000,and the dimension was
reduced by approximately 50% by PCA. The data set was the samevan Hateren
and Ruderman (1998) dataset as used above. FastICA was run inthe symmetric
mode with nonlinearityg(α) = tanh(α), which corresponds to the familiar log cosh
measure of sparseness (see Section 18.7).

The estimated features shown in Figure 16.9 are spatially Gabor-like, some of
them are separable and other are not. The results clearly depend on the sampling
rate: if the sampling rate is high (a), the features tend to bestatic, i.e., there is hardly
any temporal change. This is intuitively comprehensible: if the time resolution in
the data is too high, there is simply not enough time for any changes to occur. When
the sampling rate is lower (b), there is much more temporal change in the features.

The results are thus quite well in line with those measured insingle-cell record-
ings, in e.g. (DeAngelis et al, 1993a,b, 1995).

Further results on estimating spatiotemporal features vectors obtained by apply-
ing FastICA to natural image sequence data can be found at
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http://hlab.phys.rug.nl/demos/ica/index.html, and the paper
(van Hateren and Ruderman, 1998).

a) b)

Fig. 16.9: Spatiotemporal features estimated by ICA. Each row in each display (a or b) corresponds
to one feature vector, i.e. one column of the matrixA in the ICA model. On a given row, each
frame corresponds to one spatial frame with time index fixed,so that time goes from left to right.
Thus, each feature is basically obtained by “playing” the frames on one row one after the other.a)
Sampling rate 25Hz, i.e., sampled every 40ms.b) Sampling rate 3.125Hz, i.e. sample every 320ms.
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16.5 Temporal coherence in spatial features

16.5.1 Temporal coherence and invariant representation

Our visual environment has inertia: during a short time interval, the scene we see
tends to remain similar in the sense that the same objects persist in our field of
vision, the lighting conditions usually change slowly etc.Could our visual system
utilize this property of our environment?

In particular, it has been proposed that those properties which change more
quickly are often less important for pattern recognition: The identities of the ob-
jects in our visual field change slower than their appearance. For example, when
you talk with somebody, you see the same face for a long time, but its appearance
undergoes various transformations due to the change in the facial expression and the
muscle actions related to speech. So, if you consider those features which change
the slowest, they might be directly related to the identity of the interlocutor.

Thus, it has been proposed that a good internal representation for sensory input
would be one that changes slowly. The termtemporal coherencerefers to a repre-
sentation principle in which, when processing temporal input, the representation in
the computational system is optimized so that it changes as slowly as possible over
time (Hinton, 1989; Földiák, 1991).

In this section, we will take a look at a model of temporal coherence which
results in the emergence of simple-cell-like RF’s from natural image sequence data.
In the next section, this will be extended to a model that exhibit complex-cell-like
behaviour and topographical organization of RF’s.

16.5.2 Quantifying temporal coherence

It has been argued that the neural output in the visual systemis characterized tem-
porally as short, intense firing events, or bursts of spikes (Reinagel, 2001). Here we
present a model which optimizes a measure of such temporal coherence of activity
levels – or energy – and which, when applied to a set of naturalimage sequences,
leads to the emergence of RF’s which resemble simple-cell RF’s.3

We use a set of spatial feature detectors (weight vectors)w1, ...,wK to relate in-
put to output. While it may first sound weird to use purely spatial features with
spatiotemporal data, this simplification will make better sense below when we in-
troduce the temporal filtering used in preprocessing; this combination of temporal
and spatial features is equivalent to space-time separablespatiotemporal features
(see Section 16.2, page 339). Let vectorx(t) denote the (preprocessed) input to the
system at timet. The output of thekth feature detector at timet, denoted bysk(t),
is given bysk(t) = wT

k x(t). Let matrix W = [w1 · · ·wK ]T denote a matrix with all

3 This section is based on the article (Hurri and Hyvärinen, 2003a) originally published in Neural
Computation. Copyrightc©2003 MIT Press, used with permission.
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the feature detector weights as rows. Then the input-outputrelationship can be ex-
pressed in vector form bys(t) = Wx(t), where vectors(t) = [s1(t) · · ·sK(t)]T .

To proceed to the objective function, we first define a nonlinearity g(·) that mea-
sures the strength (amplitude) of the feature, and emphasizes large responses over
small ones: we require thatg is strictly convex, even-symmetric (rectifying), and
differentiable. Examples of choices for this nonlinearityareg1(x) = x2, which mea-
sures the energy of the response, andg2(x) = logcoshx, which is a robustified ver-
sion of g1 (less sensitive to outliers). Let the symbol∆ t denote a delay in time.
Temporal response strength correlation, the objective function, is defined by

f (W) =
K

∑
k=1

T

∑
t=1+∆ t

g(sk(t))g(sk(t−∆ t)). (16.13)

A set of feature detectors which has a large temporal response strength correlation
is such that the same features often respond strongly at consecutive time points,
outputting large (either positive or negative) values. This means that the same fea-
tures will respond strongly over short periods of time, thereby expressing temporal
coherence of activity levels in the neuronal population.

To keep the outputs of the features bounded we enforce the unit variance
constraint on each of the output signalssk(t), that is, we enforce the constraint
Et
{

s2
k(t)
}

= wT
k Cxwk = 1 for all k,whereCx is the covariance matrixEt{x(t)xT(t)},

andEt means average overt. Additional constraints are needed to keep the feature
detectors from converging to the same solution. Standard methods are either to force
the set of feature weights to be orthogonal, or to force theiroutputs to be uncorre-
lated, from which we choose the latter, as in preceding chapters. This introduces
additional constraintswT

i Cxw j = 0, i = 1, ...,K, j = 1, ...,K, j 6= i. These uncorre-
latedness constraints limit the number of featuresK we can find so that if the image
data has spatial sizeN×N pixels, thenK ≤ N2. The unit variance constraints and
the uncorrelatedness constraints can be expressed by a single matrix equation

WCxWT = I . (16.14)

Note that if we use a nonlinearityg(x) = x2, and∆ t = 0, the objective function
becomesf (W) = ∑K

k=1Et
{

s4
k(t)
}
. In this case the optimization of the objective

function under the unit variance constraint is equivalent to optimizing the sum of
kurtoses of the outputs. As was discussed in Section 6.2.1 onpage 139, kurtosis is
a commonly used measure in sparse coding. Similarly, in the case of nonlinearity
g(x) = logcoshx and∆ t = 0, the objective function can be interpreted as a non-
quadratic measure of the non-gaussianity of features.

Thus, the receptive fields are learned in the model by maximizing the objective
function in Equation (16.13) under the constraint in Equation (16.14). The opti-
mization algorithm used for this constrained optimizationproblem is a variant of
the gradient projection method described in Section 18.2.4. The optimization ap-
proach employs whitening, that is, a temporary change of coordinates, to transform
the constraint (16.14) into an orthogonality constraint. Then a gradient projection
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algorithm employing optimal symmetric orthogonalizationcan be used. See (Hurri
and Hyvärinen, 2003a) for details.

16.5.3 Interpretation as generative model *

An interpretation of maximization of objective function (16.13) as estimation of a
generative model is possible, based on the concept of sources with non-stationary
(non-constant) variances (Matsuoka et al, 1995; Pham and Cardoso, 2001; Hyvärinen,
2001a). The linear generative model forx(t) is similar to the one in previous chap-
ters:

x(t) = As(t). (16.15)

HereA = [a1 · · ·aK ] denotes a matrix which relates the image sequence patchx(t)
to the activities of the simple cells, so that each columnak, k = 1, ...,K, gives the
feature that is coded by the corresponding simple cell. The dimension ofx(t) is
typically larger than the dimension ofs(t), so that (16.15) is generally not invertible.
A one-to-one correspondence betweenW andA can be established by using the
pseudo-inverse solution (see Section 19.8):

A = WT(WWT)−1. (16.16)
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Fig. 16.10: Illustration of non-stationarity of variance.a) A temporally uncorrelated signals(t)
with non-stationary variance.b) Plot ofs2(t).

The non-stationarity of the variances of sourcess(t) means that their variances
change over time, and the variance of a signal is correlated at nearby time points.
An example of a signal with non-stationary variance is shownin Figure 16.10. It
can be shown (Hyvärinen, 2001a) that optimization of a cumulant-based criterion,
similar to Equation (16.13), can separate independent sources with non-stationary
variances. Thus, the maximization of the objective function can also be interpreted
as estimation of generative models in which the activity levels of the sources vary
over time, and are temporally correlated over time. This situation is analogous to
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the application of measures of sparseness to estimate linear generative models with
independent non-gaussian sources, i.e. the ICA model treated in Chapter 7.

16.5.4 Experiments on natural image sequences

16.5.4.1 Data and preprocessing

The natural image data used in the experiments was describedin Section 16.3.1
(page 341). The final, preprocessed (see below) data set consisted of 200,000 pairs
of consecutive 11× 11 image patches at the same spatial position, but∆ t mil-
liseconds apart from each other. In the main experiment,∆ t = 40ms; other values
were used in the control experiments. However, because of the temporal filtering
used in preprocessing, initially 200,000 longer image sequences with a duration of
∆ t + 400ms, and the same spatial size 11×11, were sampled with the same sam-
pling rate.

The preprocessing in the main experiment consisted of threesteps: temporal
decorrelation, subtraction of local mean, and normalization. The same preprocess-
ing steps were applied in the control experiments; wheneverpreprocessing was var-
ied in control experiments it is explained separately below. Temporal decorrelation
can be motivated in two different ways. First, as was discussed in Section 16.3.2
(page 345) it can be motivated biologically as a model of temporal processing in
the early visual system. Second, as discussed above, for∆ t = 0 the objective func-
tion can be interpreted as a measure of sparseness. Therefore it is important to rule
out the possibility that there is hardly any change in short intervals in video data,
since this would imply that our results could be explained interms of sparse cod-
ing or ICA. To make the distinction between temporal response strength correlation
and measures of sparseness clear, temporal decorrelation was applied because it en-
hances temporal changes. Note, however, that this still does not remove all of the
static part in the video – this issue is addressed in the control experiments below.

Temporal decorrelation was performed with the temporal filter shown in Fig-
ure 16.8d (page 346). As was already mentioned above, the useof such a temporal
filter in conjunction with the learned spatial features makes the overall model spa-
tiotemporal (to be more exact, space-time separable).

16.5.4.2 Results and analysis

In the main experiment, nonlinearityg in objective function (16.13) was chosen to
beg(x) = logcoshx. A set of feature detector weights (rows ofW) learned by the
model is shown in Figure 16.11a). The features resemble Gabor functions. They are
localized, oriented, and have different scales, and thus have the main properties of
simple-cell receptive fields.
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a)

b)

Fig. 16.11: Simple-cell-like filters emerge when temporal response strength correlation is opti-
mized in natural image sequences.a) Feature weightswk, k= 1, ...,120,which maximize temporal
response strength correlation (Equation (16.13)); here the nonlinearityg(x) = logcoshx. The fea-
tures have been ordered according to Et

{
g(sk(t))g(sk(t−∆t))

}
, that is, according to their “con-

tribution” into the final objective value (features with largest values top left).b) A corresponding
set of feature vectorsak, k = 1, ...,120, from a generative-model-based interpretation of the results
(see Equations (16.15) and (16.16)).
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Fig. 16.12: Comparison of properties of receptive fields obtained by optimizing temporal response
strength correlation (left column, histograms a, c, e and g)and estimating ICA (right column,
histograms b, d, f and h). See text for details.

To compare the results obtained with this model against those obtained with ICA,
we ran both this algorithm and the symmetric version of FastICA with nonlinear-
ity tanh 50 times with different initial values and comparedthe resulting two sets
of 6000 (= 50× 120) features against each other. The results are shown in Fig-
ure 16.12. The measured properties were peak spatial frequency (Figures 16.12a and
16.12b, note logarithmic scale, units cycles/pixel), peakorientation (Figures 16.12c
and 16.12d), spatial frequency bandwidth (Figures 16.12e and 16.12f), and orienta-
tion bandwidth (Figures 16.12g and 16.12h). Peak orientation and peak frequency
are simply the orientation and frequency of the highest value in the Fourier power
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spectrum. Bandwidths measure the sharpness of the tuning and were computed from
the tuning curve as the full width at at the point were half themaximum response
was attained (full width at half maximum, FWHM); this measure is widely used in
vision science. See (van Hateren and van der Schaaf, 1998) for more details.

Although there are some differences between the two featuresets, the most im-
portant observation here is the similarity of the histograms. This supports the idea
that ICA / sparse coding and temporal coherence are complementary theories, in
that they both result in the emergence of simple-cell-like receptive fields. As for
the differences, the results obtained using temporal response strength correlation
have a slightly smaller number of high-frequency receptivefields. Also, temporal
response strength correlation seems to produce receptive fields that are somewhat
more localized with respect to both spatial frequency and orientation.4

16.5.5 Why Gabor-like features maximize temporal coherence

A simplified intuitive illustration of why the outputs of Gabor-like feature have such
strong energy correlation over time is shown in Figure 16.13. Most transformations
of objects in the 3D world result in something similar to local translations of lines
and edges in image sequences. This is obvious in the case of 3Dtranslations, and
is illustrated in Figure 16.13a) for two other types of transformations: rotation and
bending. In the case of a local translation, a suitably oriented simple-cell-like RF re-
sponds strongly at consecutive time points, but the sign of the response may change.
Note that when the output of a feature detector is consideredas a continuous sig-
nal, the change of sign implies that the signal reaches zero at some intermediate
time point, which can lead to a weak measured correlation. Thus, a better model of
the dependencies would be to consider dependencies of variances (Matsuoka et al,
1995; Pham and Cardoso, 2001), as in the generative-model interpretation described
above. However, for simplicity, we consider here the magnitude that is a crude ap-
proximation of the underlying variance.

In order to further visualize the correlation of rectified responses at consecutive
time points, we will consider the interaction of features inone dimension (orthog-
onal to the orientation of the feature). This allows us to consider the effect of local
translations in a simplified setting. Figure 16.14 illustrates, in a simplified case, why
the temporal response strengths of lines and edges correlate positively as a result of
Gabor-like feature structure. Prototypes of two differenttypes of image elements
– the profiles of a line and an edge – which both have a zero DC component, are
shown in the topmost row of the figure. The leftmost column shows the profiles of

4 When these results are compared against the results in (van Hateren and van der Schaaf, 1998),
the most important difference is the peak at zero bandwidth in Figures 16.12e and 16.12f. This
difference is probably a consequence of the fact that no dimensionality reduction, anti-aliasing or
noise reduction was performed here, which results in the appearance of very small, checkerboard-
like receptive fields. This effect is more pronounced in ICA,which also explains the stronger peak
at the 45◦ angle in Figure 16.12d).
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a)
t−∆t t t−∆t

t

b)
t−∆t t

Fig. 16.13: A simplified illustration of temporal activity level dependencies of simple-cell-like
features when the input consists of image sequences.a) Transformations of objects induce local
translations of edges and lines in local regions in image sequences: rotation (left) and bending
(right). The solid line shows the position/shape of a line inthe image sequence at timet−∆t, and
the dotted line shows its new position/shape at timet. The dashed square indicates the sampling
window.b) Temporal activity level dependencies: in the case of a localtranslation of an edge or a
line, the response of a simple-cell-like features with a suitable position and orientation is strong at
consecutive time points, but the sign may change. The figure shows a translating line superimposed
on an oriented and localized receptive field at two differenttime instances (timet−∆t, solid line,
left; time t, dotted line, right).

three different features with unit norm and zero DC component: a Gabor-like fea-
ture, a sinusoidal (Fourier basis -like) feature, and an impulse feature. The rest of the
figure shows the square rectified responses of the features tothe inputs as functions
of spatial displacement of the input.

Consider the rectified response of the Gabor-like feature tothe line and the edge,
that is, the first row of responses in Figure 16.14. The squared response at timet−∆ t
(spatial displacement zero) is strongly positively correlated with response at timet,
even if the line or edge is displaced slightly. This shows howsmall local transla-
tions of basic image elements still yield large values of temporal response strength
correlation for Gabor-like features. If you compare the responses of the Gabor-like
feature to the responses of the sinusoidal feature – that is,the second row of re-
sponses in Figure 16.14 – you can see that the responses to thesinusoidal feature
are typically much smaller. This leads to a lower value of ourmeasure of temporal
response strength correlation that emphasizes large values. Also, in the third row of
responses in Figure 16.14 we can see that while the response of an impulse feature
to an edge correlates quite strongly over small spatial displacements, when the input
consists of a line even a very small displacement will take the correlation to almost
zero.

Thus we can see that when considering three important classes of features –
features which are maximally localized in space, maximallylocalized in frequency,
or localized in both – the optimal feature is a Gabor-like feature, which is localized
both in space and in frequency. If the feature is maximally localized in space, it fails
to respond over small spatial displacements of very localized image elements. If the
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filter square-rectified output
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Fig. 16.14: A simplified illustration of why a Gabor-like feature, localized in both space and fre-
quency, yields larger values of temporal response strengthcorrelation than a feature localized only
in space or only in frequency. Top row: cross sections of a line (left) and an edge (right) as func-
tions of spatial position. Leftmost column: cross sectionsof three features with unit norm and zero
DC component – a Gabor-like feature (top), a sinusoidal feature (middle), and an impulse feature
(bottom). The other plots in the figure show the responses of the feature detectors to the inputs as
a function of spatial displacement of the input. The Gabor-like feature yields fairly large positively
correlated values for both types of input. The sinusoidal feature yields small response values. The
impulse feature yields fairly large positively correlatedvalues when the input consists of an edge,
but when the input consists of a line even a small displacement yields a correlation of almost zero.

the feature is maximally localized in frequency, its responses to the localized image
features are not strong enough.

Figure 16.15 shows why we need nonlinear correlations instead of linear ones:
raw output values might correlate either positively or negatively, depending on the
displacement. Thus we see why ordinary linear correlation is not maximized for
Gabor-like features, whereas the rectified (nonlinear) correlation is.
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input
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filter raw output
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Fig. 16.15: A simplified illustration of why nonlinear correlation is needed for the emergence of
the phenomenon. Raw response values of the Gabor-like feature to the line and edge may correlate
positively or negatively, depending on the displacement. (See Figure 16.14 for an explanation of
the layout of the figure.)

16.5.6 Control experiments

To validate the novelty of the results obtained with this model when compared with
ICA and sparse coding, and to examine the effect of differentfactors in the results, a
number of control experiments were made. These experimentsare summarized here,
details can be found in (Hurri and Hyvärinen, 2003a). The control experiments show
that

• the results are qualitatively similar when the static part of the video is removed
altogether by employing Gram-Schmidt orthogonalization,which strengthens the
novelty of this model when compared with static models

• the results are qualitatively similar when no temporal decorrelation is performed
• the results are qualitatively similar when∆ t = 120ms; when∆ is further in-

creased to∆ t = 480ms and∆ t = 960ms, the resulting features start to lose their
spatial localization and gradually also their orientationselectivity; finally, when
the consecutive windows have to temporal relationship (consecutive windows
chosen randomly), the resulting features correspond to noise patterns

• the results are qualitatively similar when observer (camera) movement is com-
pensated by a tracking mechanism in video sampling.

Finally, one further control experiment was made in which the linear correlation
fℓ(wk) = Et

{
sk(t)sk(t−∆ t)

}
was maximized. The unit variance constraint is used

here again, so the problem is equivalent to minimizing Et

{(
sk(t)−sk(t−∆ t)

)2
}

with the same constraint; we will return to this objective function below in Sec-
tion 16.8. The resulting features resemble Fourier basis vectors, and not simple-cell
receptive fields. This shows that nonlinear, higher-order correlation is indeed needed
for the emergence of simple-cell-like features.
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16.6 Spatiotemporal energy correlations in linear features

16.6.1 Definition of the model

Temporal response strength correlation, defined in Equation (16.13) on page 350,
maximizes the “temporal coherence” in the outputs of individual simple cells. Note
that in terms of the generative model described above, the objective functions says
nothing about the interdependencies in differentsk(t)’s – that is, different cells.
Thus, there is an implicit assumption of independence in themodel, at least if it
is interpreted as a probabilistic generative model. In thissection we add another
layer to the generative model to extend the theory to simple-cell interactions, and to
the level of complex cells.5

×
abs(s(t)) s(t)

sign generation
P
(
s
k
(t) > 0

∣
∣
∣
∣s

k
(t−∆t)> 0

)
= Pret

x(t) = As(t)v(t) abs(s(t)) = Mabs(s(t−∆t))+v(t) x(t)

Fig. 16.16: The two layers of the generative model. Letabs(s(t)) = [|s1(t)| · · · |sK(t)|]T denote
the amplitudes of simple cell responses. In the first layer, the driving noise signalv(t) generates
the amplitudes of simple cell responses via an autoregressive model. The signs of the responses
are generated randomly between the first and second layer to yield signed responsess(t). In the
second layer, natural videox(t) is generated linearly from simple cell responses. In addition to
the relations shown here, the generation ofv(t) is affected byMabs(s(t−∆t)) to ensure non-
negativity ofabs(s(t)) . See text for details.

Like in the many generative models discussed in this book, the output layer of
the new model (see Figure 16.16) is linear, and maps cell responsess(t) to image
featuresx(t), but we do not assume that the components ofs(t) are independent.
Instead, we model the temporal dependencies between these components in the first
layer of our model. Letabs(s(t)) = [|s1(t)| · · · |sK(t)|]T denote the activities of the
cells, and letv(t) denote a driving noise signal andM denote aK×K matrix; the
modelled interdependencies will be “coded” inM .. Our model is amultidimensional
first-order autoregressive process, defined by

abs(s(t)) = Mabs(s(t−∆ t))+v(t). (16.17)

Again, we also need to fix the scale of the latent variables by defining Et

{

s
2

k(t)
}

= 1

for k = 1, ...,K.

5 This section is based on the article (Hurri and Hyvärinen, 2003b) originally published in Network:
Computation in Neural Systems. Copyrightc©2003 Institute of Physics, used with permission.
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There are dependencies between the driving noisev(t) and output strengths
abs(s(t)) , caused by the non-negativity ofabs(s(t)) . To take these dependencies
into account, we use the following formalism. Letu(t) denote a random vector with
components which are statistically independent of each other. To ensure the non-
negativity ofabs(s(t)) , we define

v(t) = max(−Mabs(s(t−∆ t)) ,u(t)) , (16.18)

where, for vectorsa andb,max(a,b)= [max(a1,b1) · · · max(an,bn)]
T .We assume

thatu(t) andabs(s(t)) are uncorrelated. The point in this definition is to make sure
that the noise does not drive the absolute values of thesK(t) negative, which would
be absurd.

To make the generative model complete, a mechanism for generating the signs
of cell responsess(t) must be included. We specify that the signs are generated ran-
domly with equal probability for plus or minus after the strengths of the responses
have been generated. Note that one consequence of this is that the differentsk(t)’s
are uncorrelated. In the estimation of the model this uncorrelatedness property is
used as a constraint. When this is combined with the unit variance (scale) constraints
described above, the resulting set of constraints is the same as in the approach de-
scribed above in Section 16.5 (page 349).

In Equation (16.17), a large positive matrix elementM(i, j), or M( j, i), indicates
that there is strong temporal dependency between the outputstrengths of cellsi and
j. Thinking in terms of grouping temporally coherent cells together, matrixM can
be thought of as containing similarities (reciprocals of distances) between different
cells. We will use this property below to derive a topographyof simple-cell receptive
fields fromM .

16.6.2 Estimation of the model

To estimate the model defined above we need to estimate bothM andA. Instead of
estimatingA directly, we estimateW which maps image sequence data to responses

s(t) = Wx(t), (16.19)

and use the pseudo-inverse relationship – that is, Equation(16.16) on page 351 – to
computeA. In what follows, we first show how to estimateM , givenW. We then
describe an objective function which can be used to estimateW, given M . Each
iteration of the estimation algorithm consists of two steps. During the first stepM is
updated, andW is kept constant; during the second step these roles are reversed.

First, regarding the estimation ofM , consider a situation in whichW is kept
constant. It can be shown (Hurri and Hyvärinen, 2003b) thatM can be estimated by
using approximative method of moments, and that the estimate is given by
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M ≈ βEt

{

(abs(s(t))−Et {abs(s(t))}) (abs(s(t−∆ t))−Et {abs(s(t))})T
}

×Et

{

(abs(s(t))−Et {abs(s(t))}) (abs(s(t))−Et {abs(s(t))})T
}−1

,

whereβ > 1. Since this multiplier does not change the relative strengths of the
elements ofM , and since it has a constant linear effect in the objective function of
W given below, its value does not affect the optimalW, so we can simply setβ = 1
in the optimization. The resulting estimator forM is the same as the optimal least
mean squares linear predictor in the case of unconstrainedv(t).

The estimation ofW is more complicated. A rigorous derivation of an objec-
tive function based on well-known estimation principles isvery difficult, because
the statistics involved are non-gaussian, and the processes have difficult interdepen-
dencies. Therefore, instead of deriving an objective function from first principles,
we derived an objective function heuristically (Hurri and Hyvärinen, 2003b), and
verified through simulations that the objective function iscapable of estimating the
two-layer model. The objective function is a weighted sum ofthe covariances of
feature output strengths at timest−∆ t andt, defined by

f (W,M) =
K

∑
i=1

K

∑
j=1

M(i, j)cov
{
|si(t)| ,

∣
∣sj(t−∆ t)

∣
∣
}
. (16.20)

In the actual estimation algorithm,W is updated by employing a gradient projection
approach to the optimization off in Equation (16.20) under the constraints. The
initial value ofW is selected randomly.

The fact that the algorithm described above is able to estimate the two-layer
model has been verified through extensive simulations. These simulations show that
matrix W can be estimated fairly reliably, and that the relative error of the estimate
of matrixM also decreases reliably in the estimation, but the remaining error forM
is larger than in the case of matrixW. This difference is probably due to the approx-
imation made in the estimation ofM ; see (Hurri and Hyvärinen, 2003b). However,
the simulations suggest that the error in the estimate ofM is largely due to a sys-
tematic, monotonic, nonlinear element-wise bias, which does not affect greatly our
interpretation of the elements ofM , since we are mostly interested in their relative
magnitudes. See (Hurri and Hyvärinen, 2003b) for details.A very closely related
model which can be analyzed in detail is in (Hyvärinen and Hurri, 2004), which
shows that a rigorous justification for our objective function above can be found in
the case where we use the quadratic function instead of the absolute value function.
See also (Valpola et al, 2003) for related theoretical work.

16.6.3 Experiments on natural images

The estimation algorithm was run on the same data set as for the basic temporal
coherence model in Section 16.5 to obtain estimates forM andA. Figure 16.17
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Fig. 16.17: The estimation of the two-layer generative model from natural visual stimuli results
in the emergence of localized, oriented receptive fields with multiple scales. The feature vectors
(columns ofA) shown here are in no particular order.

shows the resulting feature vectors – that is, columns ofA. As can be seen, the
resulting features are localized, oriented, and have multiple scales, thereby fulfilling
the most important defining criteria of simple-cell receptive fields. This suggests
that, as far as receptive-field structure is concerned, the method yields receptive
fields with similar qualitative properties to those obtained with sparse coding, ICA,
or temporal response strength correlation.

What is truly novel in this model is the estimation of matrixM , which captures
the temporal and spatiotemporal activity-level dependencies between the feature
vectors shown in Figure 16.17. The extracted matricesA and M can be visual-
ized simultaneously by using the interpretation ofM as a similarity matrix (see
page 360). Figure 16.18 illustrates the feature vectors – that is, columns ofA – laid
out at spatial coordinates derived fromM in a way explained below. The resulting
feature vectors are again oriented, localized and multiscale, as in the basic temporal
coherence model in Section 16.5.

In the resulting planar representation shown in Figure 16.18, the temporal coher-
ence between the outputs of two cellsi and j is reflected in the distance between
the corresponding receptive fields: the larger the elementsM(i, j) andM( j, i) are,
the closer the receptive fields are to each other. We can see that local topography
emerges in the results: those basis vectors which are close to each other seem to be
mostly coding for similarly oriented features at nearby spatial positions. This kind
of grouping is characteristic of pooling of simple cell outputs at complex cell level
(Palmer, 1999). Some global topography also emerges: thosebasis vectors which
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Fig. 16.18: Results of estimating the two-layer generativemodel from natural image sequences.
Features (columns ofA) plotted at spatial coordinates given by applying multidimensional scal-
ing to M . Matrix M was first converted to a non-negative similarity matrixM s by subtracting
mini, j M(i, j) from each of its elements, and by setting each of the diagonalelements at value 1.
Multidimensional scaling was then applied toM s by interpreting entriesM s(i, j) andM s( j , i) as
similarity measures between cellsi and j . Some of the resulting coordinates were very close to
each other, so tight cell clusters were magnified for purposes of visual display. Details are given in
(Hurri and Hyvärinen, 2003b).

code for horizontal features are on the left in the figure, while those that code for
vertical features are on the right.

Thus, the estimation of our two-layer model from natural image sequences yields
both simple-cell-like receptive fields, and grouping similar to the pooling of simple
cell outputs. Linear receptive fields emerge in the second layer (matrixA), and cell
output grouping emerges in the first layer (matrixM ). Both of these layers are es-
timated simultaneously. This is an important property whencompared with other
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statistical models of early vision, because no a priori fixing of either of these lay-
ers is needed. The results thus compare with the two-layer models for static images
discussed in Section 11.8 and (Köster and Hyvärinen, 2007, 2008). The main differ-
ence is that here,M describes “lateral” interactions between the featuressk, whereas
in Section 11.8 considered another stage in hierarchical processing.

16.6.4 Intuitive explanation of results

The results shown in Figure 16.18 suggest that features which prefer similar orien-
tation but different spatial location have spatiotemporalactivity dependencies. Why
is this the case?

temporal

spatial spatiotemporal

cell 1

cell 2

t−∆t t

Fig. 16.19: A simplified illustration of static and short-time activity-level dependencies of simple-
cell-like receptive fields. For a translating edge or line, the responses of two similar receptive fields
with slightly different positions (cell 1, top row; cell 2, bottom row) are large at nearby time in-
stances (timet − ∆t, solid line, left column; timet, dotted line, right column). Each subfigure
shows the translating line superimposed on a receptive field. The magnitudes of the responses of
both cells are large atboth time instances. This introduces three types of activity-level depen-
dencies: temporal (in the output of a single cell at nearby time instances), spatial (between two
different cells at a single time instance) and spatiotemporal (between two different cells at nearby
time instances). The multivariate autoregressive model discussed in this section includes temporal
and spatiotemporal activity-level dependencies (marked with solid lines). Spatial activity-level de-
pendency (dashed line) is an example of energy dependenciesmodelled in work on static images
in Chapters 9–11.

Temporal activity-level dependencies, illustrated in Figure 16.13, are not the only
type of activity-level dependencies in a set of simple-cell-like features. Figure 16.19
illustrates how twodifferentcells with similar receptive field profiles – having the
same orientation but slightly different positions – respond at consecutive time in-
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stances when the input is a translating line. The receptive fields are otherwise iden-
tical, except that one is a slightly translated version of the other. It can be seen that
both cellsare highly active atboth time instances,but again, the signs of the outputs
vary. This means that in addition to temporal activity dependencies (the activity of
a cell is large at timet−∆ t and timet), there are two other kinds of activity-level
dependencies.

spatial (static) dependencies Both cells are highly activeat a single time instance.
This kind of dependency is an example of the energy dependencies earlier mod-
elled in static images in Chapters 9–11.

spatiotemporal dependencies The activity levels of different cells are also related
over time. For example, the activity of cell 1 at timet−∆ t is related to the activity
of cell 2 at timet.

What makes these dependencies important is that they seem tobe reflected in
the structure of the topography in the primary visual cortex. The results presented
in this section suggest that combining temporal activity level dependencies with
spatiotemporal dependencies yields both simple-cell-like receptive fields and a set
of connections between these receptive fields. These connections can be related to
both the way in which complex cells seem to pool simple-cell outputs, and to the
topographic organization observed in the primary visual cortex, in the same way
as described in Chapter 11. Therefore, the principle of activity level dependencies
seems to explain both receptive field structure and their organization.

16.7 Unifying model of spatiotemporal dependencies

In order to motivate the development of a model which unifies anumber of statistical
properties in natural image sequences, let us summarize thekey results on proba-
bilistic modelling of the properties of the neural representation at the simple-cell
level.

1. Results obtained using sparse coding / independent component analysis suggest
that, on the average, at a single time instant relatively fewsimple cells are active
on the cortex (see Chapter 6); furthermore, each cell is active only rarely.

2. In this chapter, we have described a complementary model,which suggests that
simple cells tend to be highly active at consecutive time instants – that is, their
outputs are burst-like (see Section 16.5).

3. Models on static dependencies between simple-cell-likefeatures, and the rela-
tionship between these dependencies and cortical topography, suggest that the
active cells tend to be located close to each other on the cortex, as in Chapter 11.

4. As we saw in the preceding section, temporal correlationsalso lead to topo-
graphic properties resembling cortical topography, basedon a model which uti-
lizes temporal correlations between the outputs of different features.

These four different principles – sparseness, temporal coherence of activity levels,
spatial activity level dependencies, and spatiotemporal activity level dependencies –
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are not conflicting. That is, none of the principles excludesthe existence of another.
Perhaps, then, each of these models offers just a limited view to a more complete
model of cortical coding at the simple-cell level. In fact, the following description
of simple-cell activation is in accordance with all of the principles: when an animal
is viewing a natural scene, a relatively small number of patches of cortical area are
highly active in the primary visual cortex, and the activityin these areas tends to be
sustained for a while. That is, activity is sparse, and contiguous both in space and
time. This is thebubble codingmodel (Hyvärinen et al, 2003).

In the bubble coding model, the final generative mapping fromlatent components
to natural image sequence data is linear, like in the previous sections:x(t) = As(t).
The main idea in the bubble coding model is generation of thes(t) so that they
have bubble-like activity. This is accomplished by introducing a bubble-like vari-
ance signal fors(t), as illustrated by an example in Figure 16.20. The spatiotem-
poral locations of the variance bubbles are determined by a sparse processu(t)
(Figure 16.20a). A temporal filterφ and spatial pooling functionh, both of which
are fixed a priori in the model, spread the variance bubbles temporally and spa-
tially (Figures 16.20b and c). The resulting variance bubbles can also overlap each
other, in which case the variance in the overlapping area is obtained as a sum of
the variances in each bubble; in Figure 16.20, however, the variance bubbles are
non-overlapping for illustrative purposes. It is also possible that at this point a fixed
static nonlinearityf is applied to rescale the magnitudes of the variance bubbles.
These steps yield the variance signals

vk(t) = f

(

∑
ℓ

h(k, ℓ) [φ(t)∗uℓ(t)]

)

. (16.21)

where∗ denotes temporal convolution. The burst-like oscillatingnature of the com-
ponents inside the bubbles is introduced through a gaussiantemporally uncorrelated
(white noise) processz(t) (Figure 16.20d). Thus, the componentssk(t) are gener-
ated from the variance bubbles and the noise signals by multiplying the two together
(Figure 16.20e):

sk(t) = vk(t)zk(t). (16.22)

Note that all three different types of activity level dependencies – temporal, spatial,
and spatiotemporal (see Figure 16.19 on page 364) – are present in the bubble-
coding model, as well as sparseness. To complete this generative model, thesk(t)
are finally linearly transformed to the image using a linear transformation, as in
almost all models in this book.

An approximative maximum likelihood scheme can be used to estimate the bub-
ble coding model; details can be found in (Hyvärinen et al, 2003). Note that because
the pooling functionh is fixed, it enforces the spatial pooling, while in the two-layer
model described in the previous section, this pooling was learned from the data. The
temporal smoothing (low-pass) filterφ is also fixed in the model.

Figure 16.21 shows the resulting spatial basis vectors, obtained when the bubble
coding model was estimated from natural image sequence data. The basis consists
of simple-cell-like linear receptive-field models, similar to those obtained by topo-
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graphic ICA from static images (Figure 11.4 on page 258), or using the temporal
models in Section 16.6. The orientation and the location of the feature coded by
the vectors change smoothly when moving on the topographic grid. Low-frequency
basis vectors are spatially segregated from the other vectors, so there also seems to
be some ordering based on preferred spatial frequency. Suchan organization with
respect to orientation, location, and spatial frequency issimilar to the topographic
ordering of simple cells in the primary visual cortex, as wasdiscussed in Chapter 11.

One can also estimate spatiotemporal features with this model. An animated ex-
ample of the resulting spatiotemporal features can be foundat
www.cs.helsinki.fi/group/nis/animations/bubbleanimation.gif.

The features obtained by the bubble coding models are thus hardly any different
from what were obtained by the topographic ICA model, for example. The signifi-
cance of the model is mainly theoretical in the sense that it gives a unified framework
for understanding the different models involved.

16.8 Features with minimal average temporal change

16.8.1 Slow feature analysis

16.8.1.1 Motivation and history

All of the models of temporal coherence discussed above – temporal response
strength correlation, the two-layer autoregressive model, and the bubble-coding
model – are based on temporal patterns in output energies (variances)s2(t). What
happens if we just minimize a measure of the temporal change in the outputs of the
model neurons? That is, ifs(t) is the output of a model at timet, andw is our vector
of model parameters, we could for example minimize the squared difference of the
output at close-by time points

fSFA(w) = Et

{

(s(t)−s(t−∆ t))2
}

. (16.23)

An explicit formalization of this principle was given by Mitchison (1991) who sim-
ply described it as “removal of time variation” (see also (Hinton, 1989; Földiák,
1991; Stone, 1996)). The principle was also used in blind source separation, in
which a number of sophisticated methods for its algorithmicimplementation have
been developed (Tong et al, 1991; Belouchrani et al, 1997; Hyvärinen et al, 2001b).
Recently the principle has been given the nameslow feature analysis(Wiskott and
Sejnowski, 2002), thus the subscript SFA in the definition ofthe objective function.

In order to relate the SFA objective function to the models wehave discussed
above, let us analyze it in more detail. Expanding the squareand taking the expec-
tations of the resulting terms we get
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fSFA(w) = Et
{

s2(t)−2s(t)s(t−∆ t)+s2(t−∆ t)
}

= Et
{

s2(t)
}
−2Et {s(t)s(t−∆ t)}+Et

{
s2(t−∆ t)

}

︸ ︷︷ ︸

=Et{s2(t)}
= 2

(
Et
{

s2(t)
}
−Et {s(t)s(t−∆ t)}

)

(16.24)

The objective function is non-negative, and a trivial way tominimize it is to compute
a zero outputs(t) = 0 for all t. A standard way to avoid this anomaly is to constrain
the “energy” (second moment) of the output signal to unity, that is, define constraint

Et
{

s2(t)
}

= 1, (16.25)

in which case the objective function become simpler:

fSFA(w) = 2(1−Et {s(t)s(t−∆ t)}) , (16.26)

which shows that under the unit energy constraint, SFA is equivalent to maximiza-
tion of the linear temporal correlation in the output. This is in contrast to the model
in Section 16.5 (page 349), which was based on maximization of nonlinear tem-
poral correlation. Also note that if mean output is zero, that is, if Et {s(t)} = 0,
then the unit energy constraint is equivalent to the unit variance constraint, since
var(s(t)) = Et

{
s2(t)

}
− (Et {s(t)})2 .

16.8.1.2 SFA in a linear neuron model

In Section 16.5 (page 349) we mentioned that in a linear neuron model, maximiza-
tion of linear temporal correlation results in receptive fields which resemble fre-
quency components and not simple-cell-like receptive fields or Gabor functions. In

Fig. 16.20: (opposite page) Illustration of the generation of componentssk(t) in the bubble coding
model. For simplicity of illustration, we use a one-dimensional topography instead of the more
conventional two-dimensional one.a) The starting point is the set of sparse signalsuk(t). b) Each
sparse signaluk(t) is filtered with a temporal low-pass filterφ(t), yielding signalsφ(t)∗uk(t). In
this example, the filterφ(t) simply spreads the impulses uniformly over an interval.c) In the next
step, a neighbourhood functionh(k, ℓ) is applied to spread the bubbles spatially; this is like a spatial
low-pass filter. A static nonlinearityf may also be applied at this point to rescale the magnitudes
of the variance bubbles. This yields variance bubble signals vk(t) = f

(

∑ℓ h(k, ℓ) [φ(t)∗uℓ(t)]
)
. In

this example, the neighbourhood functionh is simply 1 close-by and 0 elsewhere, and the static
nonlinearity f is just the identity mappingf (α)= α . d) Next, we generate gaussian temporally un-
correlated (white noise) signalszk(t). e) Linear components (responses) are defined as products of
the gaussian white noise signals and the spatiotemporally spread bubble signals:sk(t) = zk(t)vk(t).
These are transformed linearly by the matrixA to give the observed image data (not shown). (Note
that in subfigures a)–c), white denotes value zero and black denotes value 1, while in subfigures
d) and e), medium grey denotes zero, and black and white denote negative and positive values,
respectively.)
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Fig. 16.21: A set of spatial features, estimated from natural image using the bubble coding estima-
tion method, and laid out at spatial coordinates defined by the topographic grid in the bubble coding
model. The topographic organization of the features exhibits ordering with respect to orientation,
location, and spatial frequency of the vectors, being very similar to that obtained by topographic
ICA.

such a linear model, slow feature analysis can be analyzed mathematically in detail.
Let s(t) denote the output of the unit at timet :

s(t) = wTx(t). (16.27)

Assume that the inputx(t) has zero mean (Et {x(t)} = 0), and that we impose the
unit variance constraint to avoid the trivial solutionw = 0. Then the unit energy
constraint also holds, and instead of minimizing the SFA objective function (16.26)
we can just maximize linear temporal correlation

fLTC(w) = Et {s(t)s(t−∆ t)}= Et
{

wTx(t)x(t−∆ t)Tw
}

= wTEt
{

x(t)x(t−∆ t)T}w
(16.28)
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with the constraint

Et
{

s2(t)
}

= 1⇔ wTEt
{

x(t)x(t)T}w = 1 (16.29)

A solution can be derived by adapting the mathematics of PCA described in Sec-
tion 5.8.1. The connection becomes clear if we first whiten the datax(t) (spatially,
i.e. in the same way as in Chapter 5, ignoring the temporal dependencies). For sim-
plicity, we denote the whitened data byx(t) in the following. For the whitened data,
the constraint of unit variance is equivalent to the constraint thatw has unit norm,
because Et

{
x(t)x(t)T

}
is the identity matrix.

Thus, we have a maximization of a quadratic function under unit norm constraint,
just as in PCA. There is a small difference, though: The matrix Et

{
x(t)x(t−∆ t)T

}

defining the quadratic function is not necessarily symmetric. Fortunately, it is not
difficult to prove that actually, this maximization is equivalent to maximization using
a symmetric version of the matrix:

fLTC(w) = wT
[

1
2

Et
{

x(t)x(t−∆ t)T}+
1
2

Et
{

x(t−∆ t)x(t)T}
]

w (16.30)

Thus, the same principle of computing the eigenvalue decomposition applies here
(Tong et al, 1991). The optimal vectorw is obtained as the one corresponding to the
largest eigenvalue of this matrix. If we want to extract a setof RF’s, we can use the
following result: assuming that the output of the next selected RF has to be uncor-
related with the outputs of the previously selected ones, then the next maximum is
the eigenvector with the next largest eigenvalue.

Figure 16.22 shows the filters that result from such optimization in a linear neu-
ron model. The data set and preprocessing in this experimentwas identical to the
one in Section 16.5. As can be seen, the resulting filters correspond to frequency
(Fourier) features, and not the localized RF’s in the early visual system.

16.8.2 Quadratic slow feature analysis

As shown above, SFA in the case of a linear neuron model does not produce very
interesting results. In contrast, application of the principle in the nonlinear case has
proven more promising, although results for real natural image sequences have not
been reported.

A straightforward and computationally simple way to designnonlinear models
is the basis expansionapproach. As a simple example, assume that out original
input data is a single scalarx. This data can be expanded by computing the square
of the data pointx2. We can then design a model that is linear in the parameters
a = (a1 a2)

T

y = a1x+a2x
2 = aT

(
x
x2

)

(16.31)
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Fig. 16.22: The set of filters which optimize the objective function in slow feature analysis from
natural image data in the case of a linear neuron model. As canbe seen, the resulting filters do not
resemble localized receptive fields of either retina/LGN orV1.

but obviously nonlinear in the datax (here, it is quadratic). A very nice property
of this approach is that the analysis developed for the linear case is immediately
applicable: all we need to do is to replace the original data with the expanded data.
In the SFA case, letf (x(t)) = [ f1(x(t)) f2(x(t)) · · · fM(x(t))]T denote a nonlinear
expansion of the data. Then the output is

s(t) = wT f (x(t)) , (16.32)

and all of the optimization results apply afterx(t) is replaced withf (x(t)) .
The form of basis expansion we are particularly interested in is that of a quadratic

basis. Letx(t) = [x1(t) x2(t) · · · xK(t)]T denote our original data. Then a data vector
in our quadratic data setf (x(t)) includes, in addition to the original components
x1(t),x2(t), ...,xK(t), the products of all pairs of componentsxk(t)xℓ(t), k = 1, ...,K,
ℓ= 1, ...,K; note that this also includes the squaresx2

1(t),x
2
2(t), ...,x

2
K(t).
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While the computation of the optimum in the case of basis-expanded SFA is
straightforward, the interpretation of the results is moredifficult: unlike in the case
of linear data, the obtained parameters can not simply be interpreted as a template
of weights at different positions in the image, because someof the parameters corre-
spond to the quadratic termsxk(t)xℓ(t), k= 1, ...,K, ℓ= 1, ...,K.One way to analyze
the learned parameter vectorsw1, ...,wM is to compute the input images that elicit
maximal and minimal responses, while constraining the norm(energy) of the im-
ages to make the problem well-posed; that is, ifc> 0 is a constant

xmax = argmax‖x‖=cwT f(x) (16.33)

xmin = argmin‖x‖=cwT f(x). (16.34)

A procedure for findingxmax andxmin is described in (Berkes and Wiskott, 2007).

a) b)

Fig. 16.23: Quadratic SFA of image sequence datagenerated from static image data. a) Input
imagesxmax that correspond to maximum output.b) Input imagesxmin that correspond to min-
imum output. The maximum and minimum input images are at corresponding locations in the
lattices. Most of the optimal input images are oriented and bandpass, and also spatially localized
to some degree. The maximum and minimum input images of the units have interesting relation-
ships; for example, they may have different preferred orientations, different locations, or one can
be orientation-selective while the other is not.

Berkes and Wiskott (2005) applied quadratic SFA tosimulatedimage sequence
data: the image sequencesx(t) were obtained from static natural images by selecting
an initial image location, obtaining asx(0) from the location with random orienta-
tion and zoom factor, and then obtainingx(t), t > 0, by applying all of the following
transformations at the location ofx(t−1) : translation, rotation, and zooming. An
important property of the results obtained by Berkes and Wiskott (2005) using SFA
with simulated image sequence data is the phase invariance of the quadratic units.
This has lead to an association between SFA and complex cells; in fact, Berkes and
Wiskott (2005) report a number of observed properties in quadratic SFA models
that match those of complex cells. See Figure 16.23 for a reproduction of those re-
sults. However, the results by Berkes and Wiskott were obtained bysimulatedimage
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sequences, whose temporal correlations were basically determined by the experi-
menters themselves. Thus, they do not really provide a basisfor making conclusions
about the connection between ecologically valid stimuli and visual processing.

Hashimoto (2003) applied quadratic SFA toreal natural image sequences. She
found that the obtained features were only weakly related tocomplex cells, and
proposed that better results could be found by asparsevariant of SFA. This will be
treated next.

16.8.3 Sparse slow feature analysis

In sparse SFA, the measure of change is changed to one that emphasizes sparse-
ness. In the original objective in Equation (16.23), it is not necessary to take the
squared error. The squared error is used here for algebraic and computational sim-
plicity only: it allows us to maximize the objective function using the eigenvalue
decomposition. In general, we can consider objective function of the form

fSSFA(w) = Et {G(s(t)−s(t−∆ t))} . (16.35)

whereG is some even-symmetric function. A statistically optimal choice ofG is
presumably one that corresponds to a sparse pdf, because changes in images are
usually abrupt, as in edges. We call resulting model Sparse SFA. The statistical
justification is based on modelling the data with an autoregressive model in which
the driving noise term (innovation process) is super-gaussian or sparse (Hyvärinen,
2001b).

The same sparse model (using aG which is not the square function) can be used
in the context of quadratic SFA because quadratic SFA simplymeans defining the
input data in a new way. This leads to the concept of sparse quadratic SFA. It is
important not to confuse the two ways in which an SFA model canbe quadratic: It
can use squared error (i.e. takeG(u) = u2), or it can use a quadratic expansion of
the input data (using products of the original input variables as new input variables).

Using sparse quadratic SFA, Hashimoto (2003) obtained energy detectors which
seem to be much closer to quadrature-phase filter pairs and complex cells than those
obtained by ordinary quadratic SFA. Those results were obtained on real natural
image sequences, from which ordinary quadratic SFA does notseem to learn very
complex-cell like energy detectors.

Thus, we see how sparseness is ubiquitous in natural image statistics modelling,
and seems to be necessary even in the context of SFA.
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16.9 Conclusion

Different models of temporal coherence have been applied tosimulated and natural
visual data. The results that emerge from these models agreewith neurophysiologi-
cal observations to varying degrees. Thus far the principlehas mostly been applied
to model V1 cells – that is, simple and complex cells. In this chapter we focused
on models which have resulted in the emergence ofspatially localizedfilters with
multiple scales (responding to different frequencies) from natural image sequence
data. That is, we required that the spatial localization hasnot been forced in the
model, but emerges from learning, as happened in all the sparse coding and ICA-
related models treated in this book so far; this is in contrast to some temporal coher-
ence models, in which spatial localization isenforcedby sampling with a gaussian
weighting window, so that the RF’s are then necessarily localized in the center of
the patch. Also, we required that the image sequences come from a video camera
or a similar device, which is in contrast to some work in whichone takes static im-
ages and then artificially creates sequence by sampling fromthem. Further work on
temporal coherence, in addition to the work already cited above, include (Kohonen,
1996; Kohonen et al, 1997; Bray and Martinez, 2003; Kayser etal, 2003; Körding
et al, 2004; Wyss et al, 2006).

A more philosophical question concerns the priorities between models of static
images and image sequences. We have seen models which produce quite similar
results in the two cases. For example, simple cell RF’s can belearned by sparse
coding and ICA from static natural images, or, alternatively, using temporal coher-
ence from natural image sequences. Which model is, then, more “interesting”? This
is certainly a deep question which depends very much of the justification of the
assumptions in the models. Yet, one argument can be put forward in general: We
should always prefer the simpler model, if both models have the same explanatory
power. This is a general principle in modelling, called parsimony, or Occam’s ra-
zor. In our case, it could be argued that since static images are necessarily simpler
than image sequences, we should prefer models which use static images—at least
if the models have similar conceptual simplicity. Thus, onecould argue that models
on image sequences are mainly interesting if they enable learning of aspects which
cannot be learned with static images. This may not have been the case with many
models we considered in this chapter; however, the principles introduced may very
well to lead to discoveries of new properties which cannot beeasily, if at all, found
in static images.

An important related question concerns learning image transformations (Memi-
sevic and Hinton, 2007). One can view image sequences from a viewpoint where
each image (frame) is a transformation of the preceding one.This is, in a sense,
complementary to the viewpoint of temporal coherence, in which one tries to cap-
ture features which are not transformed. It also seems to be closely related to the
idea of predictive coding, see Section 14.3.
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Chapter 17
Conclusion and future prospects

In this chapter, we first provide a short overview of this book. Then, we discuss
some open questions in the field, as well as alternative approaches to natural image
statistics which we did not consider in detail in this book. We conclude with some
remarks on possible future developments.

17.1 Short overview

We started this book in Chapter 1 by motivating the research on natural image
statistics from an ecological-statistical viewpoint: Thevisual system is assumed to
be adapted to the statistical structure of natural images, because it needs to use
Bayesian inference. Next, we prepared the reader by introducing well-known math-
ematical tools which are needed in natural image statisticsmodels (Part I, i.e. Chap-
ters 2–4). The rest of the book, up to this chapter, was mainlya succession of differ-
ent statistical models for natural images.

Part II was dedicated to models using purely linear receptive fields. The first
model we considered was principal component analysis in Chapter 5. It is an im-
portant model for historical reasons, and also because it provides a preprocessing
method (dimension reduction accompanied by whitening) which is used in most
subsequent models. However, it does not provide a proper model for receptive fields
in the primary visual cortex (V1).

In Chapter 6, the failure of principal component analysis was explained as the
failure to consider the sparse, non-gaussian structure of the data. In fact, natural
images have a very sparse structure; the outputs of typical linear filters all have
strongly positive kurtosis. Based on this property, we developed a method in which
we find the feature weights by maximizing the sparseness of the output when the
input to the feature detectors is natural images. Thus, we obtained a fundamental
result: sparse coding finds receptive fields which are quite similar to those in V1
simple cells in the sense that they are spatially localized,oriented, and band-pass
(localized in Fourier space).

379
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Chapter 7 further elaborated on the linear sparse coding model and brought it
firmly into the realm of generative probabilistic models. Italso brought the view-
point of independence: instead of maximizing the sparseness of single features, we
can maximize their statistical independence. A most fundamental theoretical results
says that these two goals are equivalent for linear features. The resulting model has
been named independent component analysis (ICA) in the signal-processing litera-
ture. An information-theoretic interpretation of the model was considered Chapter 8,
as an alternative to the Bayesian one.

Part III took a clear step forward by introducing nonlinear feature detectors. It
turns out that independent component analysis is not able tocancel all the depen-
dencies between the components, despite the name of the method. If we measure
the dependencies of components given by ICA by computing different kinds of cor-
relations, we see that the squares of the components tend to be strongly correlated
(Chapter 9). Such squares are called “energies” for historical reasons. We can model
such dependencies by introducing a random variable which controls the variances
of all the components at the same time. This enables the reduction of the depen-
dencies based on processing which is quite similar to neurophysiological models of
interactions between cells in V1, based on divisive normalization.

In Chapter 10, we used the same kind of energy dependencies tomodel strongly
nonlinear features. Here, the nonlinearities took the formof computing the squares
of linear feature detectors and summing (“pooling”) such squares together. Just as
with linear features, we can maximize the sparseness of suchnonlinear features
when the input is natural images. The resulting features arequite similar to complex
cells in V1. Again, we can build a probabilistic model, independent subspace anal-
ysis, based on this maximization of sparseness. Interestingly, the model can also be
considered a nonlinear version of independent component analysis.

The same idea of maximization of sparseness of energies was extended to model
the spatial (“topographic”) arrangement of cells in the cortex in Chapter 11. This
model is really a simple modification of the complex cells model of the preceding
chapter. We order the simple cells or linear feature detectors on a regular grid, which
thus defines which cells are close to each other. Then, we maximize the sparsenesses
of energy detectors which pool the energies of close-by simple cells; we take the
sum of such sparsenesses over all grid locations. This leadsto a spatial arrangement
of linear features which is similar to the one in V1 in the sense that preferred ori-
entations and frequencies of the cells change smoothly whenwe move on the grid
(or cortex); the same applies to the locations of the centresof the features. Because
of the close connection to the complex cell model, the pooledenergies of close-by
cells (i.e. sums of squares of feature detectors which are close to each other on the
grid) have the properties of complex cells just like in the preceding chapter.

In Chapter 12 even more complicated nonlinear features werelearned, although
we didn’t introduce any new probabilistic models. The trickwas to fix the initial
feature extraction to computation of energies as in complexcell models. Then we
can just estimate a linear model, basic ICA, of the outputs ofsuch nonlinear feature
detectors. Effectively, we are then estimating a hierarchical three-layer model. The
results show that there are strong dependencies between outputs of complex cells
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which are collinear, even if they are in different frequencybands. Thus, the learned
features can be interpreted as short line segments which are, in contrast to the fea-
tures computed by simple or complex cells, not restricted toa single frequency band
(and they are also more elongated).

Chapter 13 we went back to the basic linear models such as ICA,and introduced
two important extensions. First, we considered the case where the number of com-
ponents is arbitrarily large, which results in what is called an overcomplete basis.
Overcomplete bases seem to be important for building a good probabilistic model,
although the receptive fields learned are not unlike those learned by basic ICA. A
related extension is Markov random fields which may allow extension of the models
to whole images instead of image patches.

To conclude Part III, we showed how the concept of feedback emerges naturally
from Bayesian inference in models of natural image statistics (Chapter 14). Feed-
back can be interpreted as a communication between different feature sets to com-
pute the best estimates of the feature values. Computing thevalues of the features
was straightforward in models considered earlier, but if weassume that there is noise
in the system or we have an overcomplete basis, things are much more complicated.
The features are interpreted latent (hidden) random variables, and computing the op-
timal Bayesian estimates of the features is a straightforward application of Bayesian
inference. However, computationally it can be quite complicated, and requires up-
dating estimates of some features based on estimates of others; hence the need for
feedback from one cortical area to another, or between groups of cells inside the
same cortical area. This topic is not yet well developed, butholds great promise to
explain the complicated phenomena of cortical feedback which are wide-spread in
the brain.

Part IV considered images which are not simple static grey-scale images. For
colour images and stereo images (mimicking the capture of visual information by
the two eyes), ICA gives features which are similar to the corresponding processing
in V1, as shown in Chapter 15. For motion (Chapter 16), the same is true, at least to
some extent; more interestingly, motion leads to a completely new kind of statistical
property, or learning principle. This is temporal coherence or stability, which is
based on finding features which change slowly.

17.2 Open, or frequently asked, questions

Next, we consider some questions on the general framework and fundamental as-
sumptions adopted in this book.
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17.2.1 What is the real learning principle in the brain?

There has been some debate on what is the actual learning principle which the vi-
sual cortex “follows”, or which it should follow. There are really two questions
here: What is the learning principle which the brainshouldfollow according to the
ecological-statistical approach, and what is the learningprinciple which best ex-
plains the functioning of the brain. Answering the latter question seems impossible
considering our modest knowledge of the workings of the visual cortex, but the for-
mer question needs some comment because it may seem the existing theory provides
several contradictory answers.

In fact, in this book, we saw a few different proposals for thelearning principle:
sparseness in Chapter 6, independence in Chapter 7, and temporal coherence in
Chapter 16. However, in our view, there is no need to argue which one of these is
the best since they are all subsumed under the greater principle of describing the
statistical structure of natural images as well as possible.

Having a good statistical model of the input is what the visual system needs in
order to perform Bayesian inference. Yet, it is true that Bayesian inference may
not be the only goal for which the system needs input statistics. Sparse coding,
as well as topography, may be useful for reducing metabolic costs (Section 6.5 and
Section 11.5). Information theoretic approaches (Chapter8) assume that the ultimate
goal is to store and to transmit the data in noisy channels of limited capacity — the
limited capacity being presumably due to metabolic costs.

Our personal viewpoint is that the image analysis and pattern recognition are so
immensely difficult tasks that the visual system needs to be optimized to perform
them. Metabolic costs may not be such a major factor in the design of the brain.
However, we admit that this is, at best, an educated guess, and future research may
prove it to be wrong.

In principle, we can compare different models and learning principles as the the-
ory of statistical estimation gives us clear guidelines on how to measure how well a
model describes a data set. There may not be a single answer, because one could use,
for example, either the likelihood or the score matching distance. However, these
different measures of model fit are likely to give very similar answers on which
models are good and which are not. In the future, such calculations may shed some
light on the optimality of various learning principles.

17.2.2 Nature vs. nurture

One question which we have barely touched is whether the formation of receptive
fields is governed by genes or the input from the environment.One answer to this
question is simply that we don’t care: the statistical models are modelling the final
result of genetic instructions and individual development, and we don’t even try
to figure out which part has what kind of contribution. The question of nature vs.
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nurture seems to be highly complex in the case of the visual system, and trying to
disentangle the two effects has not produced very conclusive results.

What makes the situation even more complicated in vision research is that there is
ample evidence thatpre-natalexperience in the uterus has an important effect on the
receptive field properties, see (Wong, 1999) for a review. Infact, the retinal ganglion
cells exhibit spontaneous activity which is characterizedby synchronised bursts,
and they generate waves of activity that periodically sweepacross the retina. If such
“travelling waves” are disrupted by experimental manipulations, the development
of the visual cortex suffers considerably (Cang et al, 2005).

Spontaneous retinal waves may, in fact, be considered as a primitive form of vi-
sual stimuli from which the visual cortex might learn in rather similar ways as it
learns from natural images. Application of ICA on such travelling waves can gen-
erate something similar to ICA of natural images. Thus, travelling waves may be
a method of enabling the rudimentary learning of some basic receptive field prop-
erties even before the eyes receive any input. One might speculate that such waves
are a clever method, devised by evolution, of simulating some of the most funda-
mental statistical properties of natural images. Such learning would bridge the gap
between nature and nurture, since it is both innate (presentat birth) and learned from
“stimuli” external to the visual cortex (Albert et al, 2008).

17.2.3 How to model whole images

Our approach was based on the idea of considering images as random vectors. This
means, in particular, that we neglect their two-dimensional structure, and the fact
that different parts of the image tend to have rather similarstatistical regularities.
Our approach was motivated by the desire to be sure that the properties we esti-
mate are really about the statistics of images and not due to our assumptions. The
downside is that this is computationally a very demanding approach: the number of
parameters can be very large even for small image patches, which means that we
need large amounts of data and the computational resources needed can be near the
limit of what is available — at the time of this writing.

The situation can be greatly simplified if we assume that the dependencies of
pixels are just the same regardless of whether the pixels considered are in, say, the
upper-left corner of the image, or in the centre. We have already considered one
approach based on this idea, Markov random fields in Section 13.1.7, and wavelet
approaches to be considered below in Section 17.3.2 are another.

Wavelet theory has been successfully used in many practicalengineering tasks
to model whole images. A major problem is that it does not really answer the ques-
tion of what are the statistically optimal receptive fields;the receptive fields are
determined largely by mathematical convenience, the desire to imitate V1 receptive
fields, or, more recently, the desire to imitate ICA results.

On the other hand, the theory of Markov random fields offers a promising alter-
native in which we presumably can estimate receptive fields from natural images, as
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well as obtain a computationally feasible probability model for Bayesian inference.
However, at present, the theory is really not developed enough to see whether that
promise will be fulfilled.

17.2.4 Are there clear-cut cell types?

There has been a lot of debate about the categorization of V1 cells into simple and
complex cells. Some investigators argue that the cells cannot be meaningfully di-
vided into two classes. They argue that there is a continuum of cell types, meaning
that there are many cells which are between the stereotypical simple cells and com-
plex cells.

Consider some quantity (such as phase-variance) which can be measured from
cells in the primary visual cortex. The basic point in the debate is whether we can
find a quantity such that its distribution is bimodal. This isillustrated in Figure 17.1.
In some authors’ view, only such bimodality can justify classification to simple and
complex cells. Thus, there is not much debate on whether there are some cells which
fit the classical picture of simple cells, and others which fitthe complex cell cate-
gory. The debate is mainly on whether there is a clear distinction or division between
these two classes.
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Fig. 17.1: Hypothetical histogram of some quantity for cells in the primary visual cortex. Some au-
thors argue that the histogram should be bimodal (solid curve) to justify classification of cells into
simple and complex cells. On the other hand, even if the distribution is flat (dashed curve), charac-
terizing the cells at the two ends of the distribution may be an interesting approach, especially in
computational models which always require some level of abstraction.
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This debate is rather complicated because there are very different dimensions in
which one could assume simple and complex cells to be form twoclasses. One can
consider, for example, their response properties as measured by phase-invariance, or
some more basic physiological or anatomical quantities in the cells. It has, in fact,
been argued that even marked differences in response properties need not imply any
fundamental physiological difference which would justifyconsidering two different
cell types (Mechler and Ringach, 2002).

A related debate is on the validity of the hierarchical model, in which complex
cell responses are computed from simple cell responses. It has been argued that
complex cell responses might be due to lateral connections in a system with no hi-
erarchical distinction between simple and complex cells (Chance et al, 1999). This
dimension, hierarchy vs. lateral connections, might be considered another dimen-
sion along which the bimodality or flatness of the distribution could be considered.

We would argue that this debate is not necessarily very relevant for natural image
statistics. Even if the distribution of simple and complex cells is not bimodal with
respect to any interesting quantity, it still makes sense tomodel the two ends of the
distribution. This is a useful abstraction even if it neglects the cells in the middle
of the distribution. Furthermore, if we have models of the cells at the ends of the
“spectrum”, it may not be very difficult to combine them into one to provide a more
complete model. In any case, mathematical and computational modelling always re-
quire some level of abstraction; this includes classification of objects into categories
which are not strictly separated in reality.1

17.2.5 How far can we go?

So far, the research on natural image statistics has mainly been modelling V1, using
the classic distinction of simple and complex cells. Chapter 12 presented an attempt
to go beyond these two processing layers. How far is it possible to go with this
modelling approach?

A central assumption in natural image statistics research is that learning isunsu-
pervised. In the terminology of machine learning, this means learning in which we
do not know what is good and what is bad; nor do we know what is the right output
of the system in contrast to classic regression methods. Thus, if the system knows
that bananas are good (in the sense of increasing some objective function), we are
in a domain which is perhaps outside of natural image statistics. So, the question
really is: How much of the visual system is involved in processing which applies
equally to all stimuli, and does not require knowledge of what the organism needs?

Unsupervised learning may be enough for typical signal-processing tasks such
as noise reduction and compression. Noise reduction shouldbe taken here in a

1 In fact, when we talk about response properties of a cell, there is always a certain amount of
abstraction involves since the response properties change(adapt) depending on various parame-
ters. For example, the contrast level may change the classification of a cell to simple or complex
(Crowder et al, 2007).
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very general sense, including operations such as contour completion. More sophisti-
cated tasks which may be possible in an unsupervised settinginclude segmentation,
amodal completion (completion of occluded contours), and various kinds of filling-
in of image areas which are not seen due to anatomical restrictions or pathologies.

Certainly, there need not be any clear-cut distinction between processing based
on unsupervised learning and the rest. For example, the system might be able to
perform a rudimentary segmentation based on generic knowledge of natural image
statistics; if that results in recognition of, say, a banana, the prior knowledge about
the banana can be used to refine the segmentation. That is, knowledge of the general
shapes of objects can be complemented by knowledge about specific objects, the
latter being perhaps outside of the domain of natural image statistics.

The greatest obstacle in answering the question in the titleof this section is our
lack of knowledge of the general functioning of the visual system. We simply don’t
know enough to make a reasonable estimate on which parts could be modelled by
natural image statistics. So, it may be better to leave this question entirely to future
research.

17.3 Other mathematical models of images

In this book, data-driven analysis was paramount: We took natural images and an-
alyzed them with models which are as general as possible. A complementary ap-
proach is to construct mathematical models of images based on some theoretical
assumptions, and then find the best representation. The obvious advantage is that
the features can be found in a more elegant mathematical form, although usually
not as a simple formula. The equally obvious disadvantage isthat the utility of such
a model crucially depends on how realistic the assumptions are. An ancestor of this
line of research is Fourier analysis, as well as the more elaborate Gabor analysis,
which were discussed in Chapter 2.

In this section, we consider some of the most important models developed using
this approach.

17.3.1 Scaling laws

Most of the mathematical models in this section are related to scaling laws, which
are one of the oldest observations of the statistical structure of natural images. Scal-
ing laws basically describe the approximately 1/ f 2 behaviour of the power spectrum
which we discussed in Section 5.6.1. As reviewed in (Srivastava et al, 2003), they
were first found by television engineers in the 1950’s (Deriugin, 1956; Kretzmer,
1952).

The observed scaling is very closely related to scale-invariance. The idea is to
consider how natural image statistics change when you look at natural images at dif-
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ferent scales (resolutions). The basic observation, or assumption, is that they don’t:
natural images look just the same if you zoom in or zoom out. Such scale-invariance
is one of the basic motivations of a highly influential theoryof signal and image
analysis: wavelet theory, which we consider next.

17.3.2 Wavelet theory

Beginning from the 1980’s the theory of wavelets became veryprominent in signal
and image processing. Wavelets provide a basis for one-dimensional signals; the
basis is typically orthogonal. The key idea is that all the basis vectors (or functions,
since the original formulation uses a continuous formalism) are based on asingle
prototype function called the mother waveletφ(x). The functions in the wavelet
basis are obtained by translationsφ(x+ l) and “dilations” (rescalings)φ(2−sx):

φs,l (x) = 2−s/2φ(2−sx− l) (17.1)

wheresandl are integers that represent scale and translation, respectively. The fun-
damental property of a wavelet basis isself-similarity, which means that the same
function is used in different scales without changing it shape. This is motivated
by the scale-invariance of natural images. Wavelet theory can be applied on sig-
nals sampled with a finite resolution by considering discretized versions of these
functions, just like in Fourier analysis we can move from a continuous-time repre-
sentation to a discretized one.

Much of the excitement around wavelets is based on mathematical analysis which
shows that the representation is optimal for several statistical signal-processing tasks
such as denoising (Donoho et al, 1995). However, such theoretical results always as-
sume that the input data comes from a certain theoretical distribution (in this case,
from certain function spaces defined using sophisticated functional analysis theory).
Another great advantage is the existence of fast algorithmsfor computing the coef-
ficients in such a basis (Mallat, 1989).

This classic formulation of wavelets is for one-dimensional signals, which is
a major disadvantage for image analysis. Although it is straightforward to apply a
one-dimensional analysis on images by first doing the analysis in, say, the horizontal
direction, and then, the vertical direction, this is not very satisfactory because then
the analysis does not properly contain features of different orientations. In practical
image processing, the fact that basic wavelets form an orthogonal basis may also
be problematic: It implies that the number of features equals the number of pixels,
whereas in engineering applications, an overcomplete basis is usually required. Var-
ious bases which are similar to wavelets, but better for images, have therefore been
developed. In fact, the theory of multiresolution decompositions of images was one
of the original motivations for the general theory of wavelets (Burt and Adelson,
1983).
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Wavelet-like bases specifically developed for images typically include features
of different orientations, as well as some overcompleteness. “Steerable pyramids”
are based on steerable filters, and therefore provide implicitly all possible orienta-
tions, see, e.g. (Freeman and Adelson, 1991; Simoncelli et al, 1992). One of the
most recent systems is “curvelets”. Curvelets can be shown to provide an optimally
sparse representation of edges (Candès et al, 2005), thus providing a basis set which
is mathematically well-defined and statistically optimal.However, such strong theo-
retical optimality results only come at the cost of considering edge representation in
an artificial setting, and their relevance to natural imagesremains to be investigated.
In any case, such ready-made bases may be very useful in engineering applications.

An interesting hybrid approach is to use a wavelet basis which is partly learned
(Olshausen et al, 2001; Sallee and Olshausen, 2003), thus bridging the wavelet the-
ory and the theory in this book; see also (Turiel and Parga, 2000).

17.3.3 Physically inspired models

Another line of research models the process which generatednatural images in the
first place. As with wavelet analysis, scale-invariance plays a very important role in
these models. In the review by (Srivastava et al, 2003), these models were divided
into two classes, superposition models and occlusion models.

In the superposition models (Mumford and Gidas, 2001; Grenander and Srivas-
tava, 2001), it is assumed that the images are a linear sum of many independent
“objects”. In spirit, the models are not very different fromthe linear superposition
we have encountered ever since the ICA model in Chapter 7. What is different from
ICA is that first, the objects come from a predefined model which is not learned, and
second, the predefined model is typically richer than the oneused in ICA. In fact,
the objects can be from a space which defines different sizes,shapes and textures
(Grenander and Srivastava, 2001). One of the basic results in this line of research is
to show that such superposition models can exhibit both scale-invariance and non-
gaussianity for well-chosen distributions of the sizes of the objects (Mumford and
Gidas, 2001).

In occlusion models, the objects are not added linearly; they can occlude each
other if placed close to each other. An example is the “dead leaves” model, which
was originally proposed in mathematical morphology, see (Srivastava et al, 2003).
It can be shown that scale-invariance can be explained with this class of models as
well (Ruderman, 1997; Lee et al, 2001).

17.4 Future work

Modern research in natural statistics essentially startedin the mid-1990’s with the
publication of the seminal sparse coding paper by Olshausenand Field (1996). It co-
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incided with a tremendous increase of interest in independent component analysis
(Comon, 1994; Bell and Sejnowski, 1995; Delfosse and Loubaton, 1995; Cardoso
and Laheld, 1996; Amari et al, 1996; Hyvärinen and Oja, 1997) and the highly in-
fluential work by Donoho, Johnstone and others on application of wavelets to statis-
tical signal processing (Donoho et al, 1995; Donoho, 1995; Donoho and Johnstone,
1995). What we have tried to capture in this book is the developments of these ideas
in the last 10-15 years.

What might be the next wave in natural image statistics? Multilayer models are
seen by many as the Holy Grail, especially if we were able to estimate an arbitrary
number of layers, as in classical multilayer perceptrons. Markov random fields may
open the way to new successful engineering applications even if their impact of
neuroscientific modelling may be modest. Some would argue that image sequences
are the key because their structure is much richer than thoseof static images.

People outside of the mainstream natural image statistics research might put for-
ward arguments in favour of embodiment, i.e., we cannot dissociate information pro-
cessing from behaviour, and possibly not from metabolic needs either. This would
mean we need research on robots, or simulated robot-like agents, which interact
with their environment. On the other hand, science has oftenadvanced faster when
it hasdissociated one problem from the rest; it may be that using robots makes
modelling technically too difficult.

Whatever future research may bring, natural image statistics seems to have con-
solidated its place as the dominant functional explanationof why V1 receptive fields
are as they are. Hopefully, it will lead to new insights on howthe rest of the visual
system works. Combined with more high-level theories of pattern recognition by
Bayesian inference, it has the potential of providing a “grand unified theory” of
visual processing in the brain.
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Chapter 18
Optimization theory and algorithms

In this book, we have considered features which are defined bysome optimality
properties, such as maximum sparseness. In this chapter, webriefly explain how
those optimal features can be numerically computed. The solutions are based ei-
ther on general-purpose optimization methods, such as gradient methods, or specific
tailor-made methods such as fixed-point algorithms.

18.1 Levels of modelling

First, it is important to understand the different levels onwhich we can model vision.
A well-known classification is due to Marr (1982), who distinguished between the
computational, algorithmic, and implementation levels. In our context, we can actu-
ally distinguish even more levels. We can consider, at least, the following different
levels:

1. Abstract principle. The modelling begins by formulating an abstract optimality
principle for learning. For example, we assume that the visual system should
have a good model of the statistical properties of the typical input, or that the
representation should be sparse to decrease metabolic costs.

2. Probabilistic model. Typically, the abstract principle leads to a number of con-
crete quantitative models. For example, independent component analysis is one
model which tries to give a good model of the statistics of typical input.

3. Objective function. Based on the probabilistic model, or sometimes directly us-
ing the abstract principle, we formulate an objective function which we want to
optimize. For example, we formulate the likelihood of a probabilistic model.

4. Optimization algorithm. This is the focus of this Chapter. The algorithm allows
us to find the maximum or minimum of the objective function.

5. Physical implementation. This is the detailed physical implementation of the op-
timization algorithm. The same algorithm can be implemented in different kinds
of hardware: a digital computer or a brain, for example. Actually, this level is

393
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quite complex and could be further divided into a number of levels: the phys-
ical implementation can be described at the level of networks, single cells, or
molecules, whereas the detailed implementation of the numerical operations (e.g.
matrix multiplication and nonlinear scalar functions) is an interesting issue in it-
self. We will not go into details regarding this level.

Some of the levels may be missing in some cases. For example, in the basic
sparse coding approach in Chapter 6, we don’t have a probabilistic model: We go
directly from the level of principles to the level of objective functions. However,
the central idea of this book is that weshouldinclude the probabilistic modelling
level—which was one motivation for going from sparse codingto ICA.

An important choice made in this book is that the level of objective function is
alwayspresent. All our learning was based on optimization of objective functions—
which are almost always based on probabilistic modelling principles. In some other
approaches, one may go directly from the representational principle to an algorithm.
The danger with such an approach is that it may be difficult to understand what
such algorithms actually do. Going systematically throughthe levels of probabilis-
tic modelling, and objective function formulation, we gaina deeper understanding
of what the algorithm does based on the theory of statistics.Also, this approach
constrains the modelling because we have to respect the rules of probabilistic mod-
elling, and avoids completely ad hoc methods.

Since we always have an objective function, we always need anoptimization
algorithm. In preceding chapters, we omitted any discussion on how such optimiza-
tion algorithms can be constructed. One reason for this is that it is possible to use
general-purpose optimization methods readily implemented in many scientific com-
puting environments. So, one could numerically optimize the objective functions
without knowing anything, or at least not much, on the theoryof optimization.

However, it is of course very useful to understand optimization theory when do-
ing natural image statistics modelling for several reasons:

• One can better choose a suitable optimization method, and fine-tune its parame-
ters.

• Some optimization methods have interesting neurophysiological interpretations
(in particular, Hebbian learning in Section 18.4).

• Some methods have tailor-made optimization methods (FastICA in Section 18.7).

That is why in this chapter, we review the optimization theory needed for under-
standing how to optimize the objective functions obtained in this book.
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18.2 Gradient method

18.2.1 Definition and meaning of gradient

The gradient method is the most fundamental method for maximizing a continuous-
valued, smooth function in a multidimensional space.

We consider the general problem of finding the maximum of a function that takes
real values in ann-dimensional real space. Finding the minimum is just findingthe
maximum of the negative of the function, so the same theory isdirectly applicable
to both cases. We consider here maximization because that iswhat we needed in
preceding chapters. Let us denote the function to be maximized by f (w) where
w = (w1, . . . ,wn) is just ann-dimensional vector. The function to be optimized is
usually called the objective function.

The gradient off , denoted by∇ f is defined as the vector of the partial deriva-
tives:

∇ f (w) =







∂ f (w)
∂w1
...

∂ f (w)
∂wn







(18.1)

The meaning of the gradient is that it points in the directionwhere the function
grows the fastest. More precisely, suppose we want to find a vectorv which is such
that f (w+v) is as large as possible when we constrain the norm ofv to be fixed and
very small. Then the optimalv is given by a suitably short vector in the direction
of the gradient vector. Likewise, the vector that reduces the value of f as much as
possible is given by−∇ f (w), multiplied by a small constant. Thus, the gradient is
the direction of “steepest ascent”, and−∇ f (w) is the direction of steepest descent.

Geometrically, the gradient is always orthogonal to the curves in a contour plot
of the function (i.e. to the curves that show wheref has the same value), pointing in
the direction of growingf .

For illustration, let us consider the following function:

f (w) = exp(−5(x−1)2−10(y−1)2) (18.2)

which is, incidentally, like a gaussian pdf. The function isplotted in Figure 18.1 a).
Its maximum is at the point (1,1). The gradient is equal to

∇ f (w) =

(
−10(x−1)exp(−5(x−1)2−10(y−1)2)
−20(y−1)exp(−5(x−1)2−10(y−1)2)

)

(18.3)

Some contours where the function is constant are shown in Fig. 18.1 b). Also, the
gradient at one point is shown. We can see that taking a small step in the direction
of the gradient, one gets closer to the maximizing point. However, if one takes a big
enough step, one actually misses the maximizing point, so the step really has to be
small.
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Fig. 18.1: The geometrical meaning of the gradient. Consider the function in Equation (18.3),
plotted ina). In b), the closed curves are the sets where the functionf has a constant value. The
gradient at point (0.5,1.42) is shown and it is orthogonal tothe curve.

18.2.2 Gradient and optimization

The gradient method for finding the maximum of a function consists of repeatedly
taking small steps in the direction of the gradient,∇ f (w), recomputing the gradient
at the current point after each step. We have to take small steps because we know
that this direction leads to an increase in the value off only locally — actually,
we can be sure of this only when the steps are infinitely small.The direction of the
gradient is, of course, different at each point and needs to be computed again in the
new point. The method can then be expressed as

w←w+ µ∇ f (w) (18.4)

where the parameterµ is a small step size, typically much smaller than 1. The
iteration in (18.4) is repeated over and over again until thealgorithm converges to
a point. This can be tested by looking at the change inw between two subsequent
iterations: if it is small enough, we assume the algorithm has converged.

When does such an algorithm converge? Obviously, if it arrives at a point where
the gradient it zero, it will not move away from it. This is notsurprising because
the basic principles of optimization theory tell that at themaximizing points, the
gradient is zero; this is a generalization of the elementarycalculus result which says
that in one dimension, the minima or maxima of a function are obtained at those
points where the derivative is zero.

If the gradient method is used forminimizationof the function, as is more con-
ventional in the literature, the sign of the increment in (18.4) is negative, i.e.

w←w− µ∇ f (w) (18.5)

Choosing a good step size parameterµ is crucial. If it is too large, the algorithm
will not work at all; if it is too small, the algorithm will be too slow. One method,
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which we used in the ISA and topographic ICA experiments in this book, is to adapt
the step size during the iterations. At each step, we consider the step size used in
the previous iteration (sayµ0), and a larger one (say 2µ0) and a smaller one (µ0/2).
Then, we compute the value of the objective function that results from using any
of these three step sizes in the current step, and choose the step size which gives
the largest value for the objective function, and use it as the µ0 in the next iteration.
Such adaptation makes each step a bit slower, but it makes sure that the step sizes
are reasonable.

18.2.3 Optimization of function of matrix

Many functions we want to maximize are actually functions ofa matrix. However,
in this context, such matrices are treated just like vectors. That is, an×n matrix is
treated as an ordinaryn2-dimensional vector. Just like we vectorize image patches
and consider them as very long vectors, we consider the parameter matrices as if
they had been vectorized. In practice, we don’t need to concretely vectorize the
parameter matrices we optimize, but that is the underlying idea.

For example, the gradient of the likelihood of the ICA model in Equation (7.15)
is given by (see (Hyvärinen et al, 2001b) for derivation):

T

∑
t=1

g(Vzt)zT
t +(V−1)T (18.6)

where the latter term is the gradient of log|detV|. Here,g is a function of the pdf
of the independent components:g = p′i/pi wherepi is the pdf of an independent
component. Thus, a gradient method for maximizing the likelihood of ICA is given
by:

V← V + µ [
T

∑
t=1

g(Vzt)zT
t +(V−1)T ] (18.7)

whereµ is the learning rate, not necessarily constant in time. Actually, in this case
it is possible to use a very simple trick to speed up computation. If the gradient is
multiplied byVTV from the right, we obtain a simpler version

V← V + µ
T

∑
t=1

[I +g(yt)yT
t ]V. (18.8)

whereyt = Vzt . This turns out to be a valid method for maximizing likelihood.
Simply, the algorithm can be assumed to converge to the same points as the one in
Equation (18.7) becauseVTV is invertible, and thus the points where the change
in V is zero are the same. A more rigorous justification of this natural or relative
gradient method is given in (Cardoso and Laheld, 1996; Amari, 1998).
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18.2.4 Constrained optimization

It is often necessary to maximize a function under some constraints. That is, the
vectorw is not allowed to take any value in then-dimensional real space. The most
common constraint that we will encounter is that the norm ofw is fixed to be con-
stant, typically equal to one:‖w‖ = 1. The set of allowed values is called the con-
straint set. Some changes are needed in the gradient method to take such constraints
into account, but in the cases that we are interested in, the changes are actually quite
simple.

18.2.4.1 Projecting back to constraint set

The basic idea of the gradient method can be used in the constrained case as well.
Only a simple modification is needed: after each iteration of(18.4), weproject the
vectorw onto the constraint set. Projecting means going to the pointin the constraint
set which is closest. Projection to the constraint set is illustrated in Figure 18.2 a).

a)
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Fig. 18.2: Projection onto the constraint set (a), and projection of the gradient (b). A function (not
shown explicitly) is to be minimized on the unit sphere.a) Starting at the point marked with “o”, a
small gradient step is taken, as shown by the arrow. Then, thepoint is projected to the closest point
on the unit sphere, which is marked by “x”. This is one iteration of the method.b) The gradient
(dashed arrow) points in a direction in which is it dangerousto take a big step. The projected
gradient (solid arrow) points in a better direction, which is “tangential” to the constraint set. Then,
a small step in this projected direction is taken (the step isnot shown here).

In general, computing the projection can be very difficult, but in some special
cases, it is a simple operation. For example, if the constraint set consists of vectors
with norm equal to one, the projection is performed simply bythe division:

w← w/‖w‖ (18.9)
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Another common constraint is orthogonality of a matrix. In that case, the projec-
tion onto the constraint set is given by

W← (WWT)−1/2W (18.10)

Here, we see a rather involved operation: the inverse of the square root of the matrix.
We shall not go into details on how it can be computed; suffice it to say that most nu-
merical software can compute it quite efficiently.1 This operation often called sym-
metric orthogonalization, and it is the way that symmetric decorrelation in sparse
coding and other algorithms is usually implemented.

18.2.4.2 Projection of the gradient

Actually, an even better method is obtained if we first project the gradient onto the
“tangent space” of the constraint set, and then take a step inthat direction instead
of the ordinary gradient direction. What this means is that we compute a direction
that is “inside” the constraint set in the sense that infinitely small changes along that
direction do not get us out of the constraint set, yet the movement in that direction
maximally increases the value of the objective function. This improves the method
because then we can usually take larger step sizes and obtainlarger increases in the
objective function without going in a completely wrong direction as is always the
danger when taking large steps. The projection onto the constraint set has to done
even in this case. Projection of the gradient is illustratedin Figure 18.2 b).

This is quite useful in the case where we are maximizing with respect to a pa-
rameter matrix that is constrained to be orthogonal. The projection can be shown to
equal (Edelman et al, 1998):

∇̃ f (W) = ∇ f (W)−WT∇ f (W)WT (18.11)

where∇ f (W) is the ordinary gradient of the functionf .
In Section 18.5 below we will see an example of how these ideasof constrained

optimization are used in practice.

18.3 Global and local maxima

An important distinction is between global and local maxima. Consider the one-
dimensional function in Figure 18.3. The global maximum of the function is at the
point x = 6; this is the “real” maximum point where the function attains its very
largest value. However, there are also two local maxima, atx= 2 andx = 9. A local

1 If you really want to know: the inverse square root(WWT)−1/2 of the symmetric matrixWWT

is obtained from the eigenvalue decomposition ofWWT = Ediag(λ1, . . . ,λn)ET as(WWT)−1/2 =
Ediag(1/

√
λ1, . . . ,1/

√
λn)ET . It is easy to see that if you multiply this matrix with itself, you get

the inverse of the original matrix. See also Section 5.9.2
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maximum is a point in which the function obtains a value whichis greater than the
values in all neighbouring points close-by.

An important point to understand is that the result of a gradient algorithm de-
pends on theinitial point, that is, the point where the algorithm starts in the first
iteration. The algorithm only sees the local behaviour of the function, so it will find
the closest local maximum. Thus, if in Figure 18.3, the algorithm is started in the
point marked by circles, it will find the global maximum. In contrast, if it is started
in one of the points marked by crosses, it will converge to oneof the local maxima.

In many cases, we are only interested in the global maximum. Then, the be-
haviour of the gradient method can be rather unsatisfactory, because it only finds
a local optimum. This is, actually, the case with most optimization algorithms. So,
when running optimization algorithms, we have to always keep in mind that that
algorithm only gives a local optimum, not the global one.
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Fig. 18.3: Local vs. global maxima. The function has a globalmaximum atx = 6 and two local
maxima atx = 2 andx = 9. If a gradient algorithm starts near one of the local maxima(e.g. at the
points marked by crosses), it will get stuck at one of the local maxima and it will not find the global
maximum. Only if the algorithm starts sufficiently close to the global maximum (e.g. at the points
marked by circles), it will find the global maximum.

18.4 Hebb’s rule and gradient methods

18.4.1 Hebb’s rule

Hebb’s rule, or Hebbian learning, is a principle which is central in modern research
on learning and memory. It attempts to explain why certain synaptic connections get
strengthened as a result of experience, and others don’t; this is calledplasticity in
neuroscience, andlearning is a more cognitive context. Donald Hebb proposed in
1949 that
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When an axon of cell A (...) excites cell B and repeatedly or persistently takes part in firing
it, some growth process of metabolic change takes place in one or both cells so that A’s
efficiency as one of the cells firing B is increased. (Quoted in(Kandel et al, 2000))

This proposal can be readily considered in probabilistic terms: A statistical analysis
is about things which happen “repeatedly or persistently”.

A basic interpretation of Hebb’s rule is in terms of thecovarianceof the firing
rates of cells A and B: the change in the synaptic connection should be proportional
to that covariance. This is because if the firing rates of A andB are both high at
the same time, their covariance is typically large. The covariance interpretation is
actually stronger because it would also imply that if both cells are silent (firing rate
below average) at the same time, the synaptic connection is strengthened. Even more
than that: if one of the cells is typically silent when the other one fires strongly, this
has a negative contribution to the covariance, and the synaptic connection should be
decreased. Such an extension of Hebb’s rule seems to be quitein line with Hebb’s
original idea (Dayan and Abbott, 2001).

Note a difference between this covariance interpretation,in which only the cor-
relation of the firing rates matters, and the original formulation, in which cell A is
assumed to “take part in firing [cell B]”, i.e. to have acausalinfluence on cell B’s
firing. This difference may be partly resolved by recent research which shows that
the exact timing of the action potentials in cell A and cell B is important, a phe-
nomenon calledspike-timing dependent plasticity(Dan and Poo, 2004), but we will
not consider this difference here.

18.4.2 Hebb’s rule and optimization

Hebb’s rule can be readily interpreted as an optimization process, closely related
to gradient methods. Consider an objective function of the form which we have
extensively used in this book:

J(w) = ∑
t

G(
n

∑
i=1

wixi(t)) (18.12)

To compute the gradient, we use two elementary rules. First,the derivative of a sum
is the sum of the derivatives, so we just need to take the derivative ofG(∑n

i=1wixi(t))
and take its sum overt. Second, we use the chain rule which gives the deriva-
tive of a compound functionf1( f2(w)) as f ′2(w) f ′1( f2(w)). Now, the derivative of
∑n

i=1wixi(t) with respect towi is simplyxi(t), and we denote byg = G′ the deriva-
tive of G. Thus, the partial derivatives are obtained as

∂J
∂wi

= ∑
t

xi(t)g(
n

∑
i=1

wixi(t)) (18.13)

So, a gradient method to maximize this function would be of the form
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wi ← wi + µ ∑
t

xi(t)g(
n

∑
i=1

wixi(t)), for all i. (18.14)

Now, let us interpret the terms in Equation (18.14). Assume that

1. thexi(t) are the inputs to thei-th dendrite of a neuron at time pointt,
2. thewi are the strengths of the synapses at those dendrites, and
3. the firing rate of the neuron at time pointt is equal to∑n

i=1wixi(t)
4. the inputsxi have zero mean, i.e. they describe changes around the mean firing

rate.

Further, let us assume that the functiong is increasing.
Then, the gradient method in Equation (18.14) is quite similar to a Hebbian learn-

ing process. Consider the connection strength of one of the synapsesi. Then, the
connectionwi is increased ifxi(t) is repeatedly high at the same time as the firing
rate of the neuron in question. In fact, the term multiplied by the learning rateµ is
nothing else that the covariance between the input to thei-th dendrite and an increas-
ing function of the firing rate of the neuron, as in the covariance-based extension of
Hebb’s rule.

Such a “learning rule” would be incomplete, however. The reason is that we
have to constrainw somehow, otherwise it might simply go to zero or infinity. In
preceding chapters, we usually constrained the norm ofw to be equal to unity. This
is quite a valid constraint here as well. So, we assume that inaddition to Hebb’s
rule, some kind of normalization process is operating in cell B.

18.4.3 Stochastic gradient methods

The form of Hebb’s rule in Equation (18.14) uses the statistics of the data in the
sense that it computes the correlation over many observations ofx. This is not very
realistic in terms of neurobiological modelling. A simple solution for this problem
is offered by the theory of stochastic gradient methods (Kushner and Clark, 1978).

The idea in a stochastic gradient is simple and very general.Assume we want to
maximize some expectation, sayE{g(w,x)} wherex is a random vector, andw is a
parameter vector. The gradient method for maximizing this with respect tow gives

w←w+ µE{∇wg(w,x)} (18.15)

where the gradient is computed with respect tow, as emphasized by the subscript in
the∇ operator. Note that we have taken the gradient inside the expectation operator,
which is valid because expectation is basically a sum, and the derivative of a sum is
the sum of the derivatives as noted above.

The stochastic gradient method now proposes that we don’t need to compute the
expectation before taking the gradient step. Foreach observationx, we can use the
gradient iteration given that single observation:
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w←w+ µ∇wg(w,x) (18.16)

So, when given a sample of observations ofx, we compute the update in Equa-
tion (18.16) for each observation separately. This is reasonable because the update
in the gradient will be,on the average, equal to the update in the original gradient
with the expectation given in Equation (18.15). The step size has to be much smaller,
though, because of the large random fluctuations in this “instantaneous” gradient.

So, we can consider Hebbian learning in Equation (18.14) so that the sum over
t is omitted, and each incoming observation, i.e. stimulus, is immediately used in
learning:

wi ← wi + µxi(t)g(
n

∑
i=1

wixi(t)) (18.17)

Such a learning method still performs maximization of the objective function, but
is more realistic in terms of neurophysiological modelling: at each time point, the
input and output of the neuron make a small change in the synaptic weights.

18.4.4 Role of the Hebbian nonlinearity

By changing the nonlinearityg in the learning rule, and thus theG in the objective
function, we see that Hebb’s rule is quite flexible and allowsdifferent kinds of learn-
ing to take place. If we assume thatg is linear the original functionG is quadratic.
Then, Hebb’s rule is actually doing PCA (Oja, 1982), since itis simply maximizing
the variance ofwTx under the constraint thatw has unit norm.

On the other hand, ifg is nonlinear,G is non-quadratic. Then, we can go back to
the framework of basic sparse coding in Chapter 6. There, we used the expression
h(s2) instead ofG(s) in order to investigate the convexity ofh. So, if G is such that
it corresponds to a convexh, Hebb’s rule can be interpreted as doing sparse coding!
The is no contradiction in that almost same rule is able to do both PCA and sparse
coding, because in Chapter 6 we also assumed that the data is whitened. So, we see
that the operation of Hebb’s rule depends very much on the preprocessing of the
data.

What kind of nonlinearities does sparse coding require? Consider the widely-
used choiceG1(s) =− logcoshs. This would give

g1(s) =− tanhs (18.18)

This function (plotted in Fig. 18.4) would be rather odd to use as such in Hebb’s
rule, because it is decreasing, and the whole idea of Hebb’s rule would be inverted.
(Actually, such “anti-Hebbian” learning has been observedin some contexts (Bell
et al, 1993), and is considered important in some computational models (Földiák,
1990)).

However, because the data is whitened, we can find a way of interpreting this
maximization as Hebbian learning. The point is that for whitened data, we can add
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a quadratic term toG, and consider

G2(s) =
1
2

s2− logcoshs (18.19)

Since the data is whitened andw is constrained to unit norm, the expectation of
s2 = (wTx)2 is constant, and thus the maximization ofG2 produces just the same
result as maximization ofG1. Now, the derivative ofG2 is

g2(s) = s− tanhs (18.20)

which is an increasing function, see Fig. 18.4.
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Fig. 18.4: Two nonlinearities:g1 in Equation (18.18), dash-dotted line, andg2 in Equation (18.20),
solid line. For comparison, the linex = y is given as dotted line.

So, using a nonlinearity such asg2, sparse coding does have a meaningful inter-
pretation as a special case of Hebb’s rule. The nonlinearityg2 even makes intuitive
sense: it is a kind of a thresholding function (actually, a shrinkage function, see
Section 14.1.2.2), which ignores activations which are small.

18.4.5 Receptive fields vs. synaptic strengths

In the Hebbian learning context, the feature weightsWi are related to synaptic
strengths in the visual cells. However, the visual input reaches the cortex only after
passing through several neurons in the retina and the thalamus. Thus, theWi actually
model the compound effect of transformations in all those processing stages. How
can we then interpret optimization of a function such asG(∑x,yW(x,y)I(x,y)) in
terms of Hebb’s rule?

In Section 5.9 we discussed the idea that the retina and LGN perform some-
thing similar to a whitening of the data. Thus, as a rough approximation, we could
consider thecanonically preprocesseddata as the input to the visual cortex. Then
maximization of a function such asG(vTz), wherez is the preprocessed data, is in
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fact modelling the plasticity of synapses of the cells the primary visual cortex. So,
Hebbian learning in that stage can be modelled just as we did above.

18.4.6 The problem of feedback

In the Hebbian implementation of ICA and related learning rules, there is one more
problem which needs to be solved. This is the implementationof the constraint of
orthogonality. The constraint is necessary to prevent the neurons from all learning
the same feature. A simple approach would be to consider the minimization of some
measure of the covariance of the outputs (assuming the data is whitened as a pre-
processing stage):

Q(v1, . . . ,vn) =−M ∑
j 6=i

[E{sisj}]2 =−M ∑
i 6= j

[E{(vT
i z)(vT

j z)}]2 (18.21)

whereM is a large constant (say,M = 100). We can add this function as a so-called
penaltyto the measures of sparseness. If we then consider the gradient with respect
to vi , this leads to the addition of a term of the form

∇vi Q =−2M ∑
j 6=i

E{zsj}E{sisj} (18.22)

to the learning rule forvi . BecauseM is large, after maximization the sum of the
[E{sisj}]2 will be very close to zero—corresponding to the case where thesi are all
uncorrelated. Thus, this penalty approximately reinforces the constraint of uncorre-
latedness.

The addition ofQ to the sparseness measure thus results in the addition of a
feedbackterm of the form in Equation (18.22).

18.5 Optimization in topographic ICA *

As an illustration of the gradient method and constrained optimization, we con-
sider in this section maximization of likelihood of the topographic ICA in Equa-
tion (11.5). This section can be skipped by readers not interested in mathematical
details.

Because independent subspace analysis is formally a special case of topographic
ICA, obtained by a special definition of the neighbourhood function, the obtained
learning rule is also the gradient method for independent subspace analysis.

First note that we constrainV to be orthogonal, so detV is constant (equal to one),
and can be ignored in this optimization. Another simple trick to simplify the problem
is to note is that we can ignore the sum overt and just compute the “instantaneous”
gradient as in stochastic gradient methods. We can always goback to the sum over
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t by just summing the gradient overt, because the gradient of a sum is the sum of
the gradients. In fact, we can simplify the problem even further by computing the
gradient of the likelihood for each term of in the sum overi in the likelihood in
Equation (11.5), and taking the sum afterwards.

So, the computation of the gradient is essentially reduced to computing the gra-
dient of

Li(v1, . . . ,vn) = h(
n

∑
j=1

π(i, j)(vT
j zt)

2) (18.23)

Denote byvl
k the l -th component ofvk. By the chain rule, applied twice, we obtain

∂Li

∂vl
k

= 2zl
tπ(i,k)(vT

k zt)h
′(

n

∑
j=1

π(i, j)(vT
j zt)

2) (18.24)

This can be written in vector form by simply collecting thesepartial derivatives for
all l in a single vector:

∇vkLi = 2ztπ(i,k)(vT
k zt)h

′(
n

∑
j=1

π(i, j)(vT
j zt)

2) (18.25)

(This is not really the whole gradient because it is just the partial derivatives with
respect to some of the entries inV, but the notation using∇ is still often used.)

Since the log-likelihood is simply the sum of theLi ’s we obtain

∇vk logL =
T

∑
t=1

n

∑
i=1

∇vkLi = 2
T

∑
t=1

zt(vT
k zt)

n

∑
i=1

π(i,k)h′(
n

∑
j=1

π(i, j)(vT
j zt)

2) (18.26)

We can omit the constant 2 which does not change the directionof the gradient.
So, the algorithm for maximizing the likelihood in topographic ICA is finally as

follows:

1. Compute the gradients in Equation (18.26) for allk. Collect them in a matrix
∇V logL which has the∇vk logL as its rows.

2. Compute the projection of this matrix on the tangent spaceof the constraint
space, using the formula in Equation (18.11). Denote the projected matrix as
G̃. (This projection step is optional, but usually it speeds upthe algorithm.)

3. Do a gradient step as
V← V + µG̃ (18.27)

4. Orthogonalize the matrixV. For example, this can be done by the formula in
Equation (18.10).

To see a connection of such an algorithm with Hebbian learning, consider a gra-
dient update for eachvk separately. We obtain the gradient learning rule

vk← vk + µ
T

∑
t=1

zt(vT
k zt)r

k
t (18.28)
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where

rk
t =

n

∑
i=1

π(i,k)h′(
n

∑
j=1

π(i, j)(vT
j zt)

2). (18.29)

Equally well, we could use a stochastic gradient method, ignoring the sum overt.
In a neural interpretation, the Hebbian learning rule in (18.28) can be considered a
“modulated” Hebbian learning, since the ordinary Hebbian learning termzt(vT

k zt)
is modulated by the termrk

t . This term could be considered as top-down feedback,
since it is a function of the local energies which could be theoutputs of higher-order
neurons (complex cells).

18.6 Beyond basic gradient methods *

This section can be skipped by readers not interested in mathematical theory. Here,
we briefly describe two further well-known classes of optimization methods. Actu-
ally, in our context, these are not very often better than thebasic gradient method,
so our description is very brief.

18.6.1 Newton’s method

As discussed above, the optima of an objective function are found in points where
the gradient is zero. So, optimization can be approached as the problem of solving
a system of equations given by

∂ f
∂w1

(w) = 0 (18.30)

... (18.31)

∂ f
∂wn

(w) = 0 (18.32)

A classic method for solving such a system of equations is Newton’s method. It
can be used to solve any system of equations, but we consider here the case of the
gradient only.

Basically, the idea is to approximate the function linearlyusing its derivatives. In
one dimension, the idea is simply to approximate the graph ofthe function using its
tangent, whose slope is given by the derivative. That is, fora general functiong:

g(w)≈ g(w0)+g′(w0)(w−w0) (18.33)

This very general idea of finding the point where the functionattains the value zero
is illustrated in Figure 18.5.
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w w
0

Fig. 18.5: Illustration of Newton’s method for solving an equation (which we use in optimization
to solve the equation which says that the gradient is zero). The function is linearly approximated by
its tangent. The point where the tangent intersects with thex-axis is taken as the next approximation
of the point where the function is zero.

In our case,g corresponds to the gradient, so we use the derivatives of thegradi-
ents, which are second partial derivatives of the original function f . Also, we need
to use a multidimensional version of this approximation. This gives

∇ f (w) = ∇ f (w0)+H(w0)(w−w0) (18.34)

where the functionH, called the Hessian matrix, is the matrix of second partial
derivatives:

H i j =
∂ 2 f

∂wi∂wj
(18.35)

Now, we can at every step of the method, find the new point as theone for which
this linear approximation is zero. Thus, we solve

∇ f (w0)+H(w0)(w−w0) = 0 (18.36)

which gives
w = w0−H(w0)

−1(∇ f (w0)) (18.37)

This is the idea in the Newton iteration. Starting from a random point, we iteratively
updatew according to Equation (18.37), i.e. compute the right-handside for the
current value ofw, and take that as the new value ofw. Using the same notation as
with the gradient methods, we have the iteration

w← w−H(w)−1(∇ f (w)) (18.38)

Note that this iteration is related to the gradient method. If the matrixH(w0)
−1

in Equation (18.37) is replaced by a scalar step sizeµ , we actually get the gradient
method. So, the difference between the methods is threefold:

1. In Newton’s method the direction wherew “moves” is not given by the gradient
directly, but the gradient multiplied by the inverse of the Hessian.
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2. This “step size” is not always very small: It is directly given by the inverse of the
Hessian matrix, and can be quite large.

3. In the gradient method, one can choose between minimization and maximiza-
tion of the objective function, by choosing the sign in the algorithm (cf. Equa-
tions (18.4) and (18.5)). In the Newton method, no such choice is possible. The
algorithm just tries to find a local extremum in which the gradient is zero, and
this can be either a minimum or a maximum.

The Newton iteration has some advantages and disadvantagescompared to the
basic gradient method. It usually requires a smaller numberof steps to converge.
However, the computations needed at each step are much more demanding, because
one has to first compute the Hessian matrix, and then computeH(w)−1(∇ f (w))
(which is best obtained by solving the linear systemH(w)v = ∇ f (w)).

In practice, however, the main problem with the Newton method is that its be-
haviour can be quite erratic. There is no guarantee any one iteration gives aw which
increasesf (w). In fact, a typical empirical observation is that for some functions
this does not happen, and the algorithm may completely diverge, i.e. go to arbitrary
values ofw, eventually reaching infinity. This is because the step sizecan be arbi-
trarily large, unlike in the gradient methods. This lack of robustness is why Newton’s
method is not often used in practice.

As an example of this phenomenon, consider the function

f (w) = exp(−1
2

w2) (18.39)

which has a single maximum asw = 0. The first and second derivatives, which
are the one-dimensional equivalents of the gradient and theHessian, can be easily
calculated as

f ′(w) =−wexp(−1
2

w2) (18.40)

f ′′(w) = (w2−1)exp(−1
2

w2) (18.41)

which gives the Newton iteration as

w←w+
w

w2−1
(18.42)

Now, assume that we start the iteration at any point wherew> 1. Then, the change
w

w2−1
is positive, which means thatw is increased and it moves further and further

away from zero! In this case, the method fails completely andw goes to infinity
without finding the maximum at zero. (In contrast, a gradientmethod, with a rea-
sonably small step size, would find the maximum.)

However, different variants of the Newton method have proven useful. For ex-
ample, methods which do something between the gradient method and Newton’s
method (e.g. the Levenberg-Marquardt algorithm) have proven useful in some ap-
plications. In ICA, the FastICA algorithm (see below) uses the basic iteration of
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Newton’s method but with a modification which takes the special structure of the
objective function into account.

18.6.2 Conjugate gradient methods

Conjugate gradient methods are often considered as the mostefficient general-
purpose optimization methods. The theory is rather complicated and non-intuitive,
so we do not try to explain it in detail.

Conjugate gradient methods try to find a direction which is better than the gra-
dient direction. The idea is illustrated in Figure. 18.6. While the gradient direction
is good for a very small step size (actually, it is still the best for an infinitely small
step size), it is not very good for a moderately large step size. The conjugate gra-
dient method tries to find a better direction based on information on the gradient
directions in previous iterations. In this respect, the method is similar to Newton’s
method, which also modifies the gradient direction.
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Fig. 18.6: A problem with the gradient method. The gradient direction may be very bad for anything
but the very smallest step sizes. Here, the gradient goes rather completely in the wrong direction
due to the strongly non-circular (non-symmetric) structure of the objective function. The conjugate
gradient method tries to find a better direction.

In fact, conjugate gradient methods do not just take a step ofa fixed size in the di-
rection they have found. An essential ingredient, which is actually necessary for the
method to work, is a one-dimensionline search. This means that once the direction,
sayd, in which w should move has been chosen (using the complicated theory of
conjugate gradient methods), many different step sizesµ are tried out, and the best
one is chosen. In other words, a one-dimensional optimization is performed on the
functionh(µ) = f (w + µd), andµ maximizing this function is chosen. (Such line
search could also be used in the basic gradient method. However, in the conjugate
gradient method it is completely necessary.)

Conjugate gradient methods are thus much more complicated than ordinary gra-
dient methods. This is not a major problem if one uses a scientific computing en-
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vironment in which the method is already programmed. Sometimes, the method is
much more efficient than the ordinary gradient methods, but this is not always the
case.

18.7 FastICA, a fixed-point algorithm for ICA

Development of tailor-made algorithms for solving the optimization problems in
ICA is a subject of an extensive literature. Here we explain briefly one popular
algorithm for performing the maximization, more information and details can be
found in the ICA book (Hyvärinen et al, 2001b).

18.7.1 The FastICA algorithm

Assume that the datat,t = 1, . . . ,T, is whitened and has zero mean. The basic form
of the FastICA algorithm is as follows:

1. Choose an initial (e.g. random) weight vectorw.
2. Letw← ∑t ztg(wTzt)−w∑t g′(wTzt)
3. Letw← w/‖w‖
4. If not converged, go back to 2.

Note that the sign ofw may change from one iteration to the next; this is in line
with the fact that the signs of the components in ICA are not well-defined. Thus,
the convergence of the algorithm must use a criterion which is immune to this. For
example, one might stop the iteration if|wTwold| is sufficiently close to one, where
wold is the value ofw at the previous iteration.

To use FastICA forseveralfeatures, the iteration step 2 is applied separately
for the weight vector of each unit. After updating all the weight vectors, they are or-
thogonalized (assuming whitened data). This means projecting the matrixW, which
contains the vectorswi as its rows, on the space of orthogonal matrices, which can be
accomplished, for example, by the classical method involving matrix square roots,
given in Eq. (18.10). See Chapter 6 of (Hyvärinen et al, 2001b) for more information
on orthogonalization.

18.7.2 Choice of the FastICA nonlinearity

The FastICA algorithm uses a nonlinearity, usually denotedby g. This comes from
a measure of non-gaussianity. Non-gaussianity is measuredasE{G(s)} for some
non-quadraticfunction. The functiong is then the derivative ofG.
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Note that in Chapter 6 we measured non-gaussianity (or sparseness) asE{h(s2)}.
Then, we haveG(s) = h(s2) which impliesg(s) = 2h′(s2)s. So, we must make a
clear distinction between the nonlinearitiesh and the functionsG andg; they are all
different functions but they can be derived from one another.

The choice of the measure of non-gaussianity, or the nonlinearity, is actually
quite free in FastICA. We are not restricted to functions such that maximization of
G corresponds to maximization of sparseness, or such thatG corresponds to the log-
pdf of the components. We can use, for example, measures of skewness, i.e. the lack
of symmetry of the pdf.

In practice, it has been found thatG(s) = logcoshsworks quite well in a variety
of domains; it corresponds to the tanh nonlinearity asg. (In FastICA, it makes no
difference if we take tanh or− tanh, the algorithm is immune to the change of sign.)

18.7.3 Mathematics of FastICA *

Here, we present the derivation of the FastICA algorithm, and show its connection
to gradient methods. This can be skipped by readers not interested in mathematical
details.

18.7.3.1 Derivation of the fixed-point iteration

To begin with, we shall derive the fixed-point algorithm foronefeature, using an ob-
jective function motivated by projection pursuit, see (Hyvärinen, 1999a) for details.
Denote the weight vector corresponding to one feature detector byw, and the canon-
ically preprocessed input byz. The goal is to find the extrema ofE{G(wTz)} for
a given non-quadratic functionG, under the constraintE{(wTz)2} = 1. According
to the Lagrange conditions (Luenberger, 1969), the extremaare obtained at points
where

E{zg(wTz)}−βCw = 0 (18.43)

whereC = E{zzT}, andβ is a constant that can be easily evaluated to giveβ =
E{wT

0 zg(wT
0 z)}, wherew0 is the value ofw at the optimum. Let us try to solve this

equation by the classical Newton’s method, see Section 18.6.1 above. Denoting the
function on the left-hand side of (18.43) byF, we obtain its Jacobian matrix, i.e. the
matrix of partial derivatives,JF(w) as

JF(w) = E{zzTg′(wTz)}−βC (18.44)

To simplify the inversion of this matrix, we decide to approximate the first term in
(18.44). A reasonable approximation in this context seems to beE{zzTg′(wTz)} ≈
E{zzT}E{g′(wTz)} = E{g′(wTz)}C. The obtained approximation of the Jacobian
matrix can be inverted easily:
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JF(w)−1≈ C−1/(E{g′(wTz)}−β ). (18.45)

We also approximateβ using the current value ofw instead ofw0. Thus we obtain
the following approximative Newton iteration:

w←w− [C−1E{zg(wTz)}−βw]/[E{g′(wTz)}−β ] (18.46)

wherew+ denotes the new value ofw, andβ = E{wTzg(wTz)}. After every step,
w+ is normalized by dividing it by

√

(w+)TCw+ to improve stability. This algo-
rithm can be further algebraically simplified (see (Hyvärinen, 1999a)) to obtain the
original form the fixed-point algorithm:

w← C−1E{zg(wTz)}−E{g′(wTz)}w. (18.47)

These two forms are equivalent. Note that for whitened data,C−1 disappears, giving
an extremely simple form of the Newton iteration. In (Hyvärinen and Oja, 1997),
this learning rule was derived as a fixed-point iteration of agradient method max-
imizing kurtosis, hence the name of the algorithm. However,image analysis must
use the more general form in (Hyvärinen, 1999a) because of the non-robustness of
kurtosis.

18.7.3.2 Connection to gradient methods

There is a simple an interesting connection between the FastICA algorithm and
gradient algorithms for ICA.

Let us assume that the number of independent components to beestimated equals
the number of observed variables, i.e.n = m and A is square. Denote byW the
estimate of the inverse ofA.

Now, consider the preliminary form of the algorithm in (18.46). To avoid the
inversion of the covariance matrix, we can approximate it asC−1 ≈WTW, since
C = AAT . Thus, collecting the updates for all the rows ofW into a single equation,
we obtain the following form of the fixed-point algorithm:

W←W +D[diag(−βi)+E{g(y)y}]W (18.48)

wherey = Wz, βi = E{yig(yi)}, andD = diag(1/(βi −E{g′(yi)})). This can be
compared to the natural gradient algorithm for maximization of the likelihood in
Eq. (18.8). We can see that the algorithms are very closely related. First, the expec-
tation in (18.48) is in practice computed as a sample averageas in (18.8). So, the
main difference is that in the natural gradient algorithm, the βi are all set to one,
andD is replaced by identity times the step sizeµ . So,D is actually like a step size,
although in the form of a matrix here, but it does not affect tothe point where the
algorithm converges (i.e. the update is zero). So, the only real difference is theβi .
Now, it can be proven that if theg really is the derivative of the log-likelihood, then
theβi are also (for infinite sample) equal to one (Hyvärinen et al,2001b). In theory,
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then, even this difference vanishes and the algorithms really converge to the same
points.

It must be noted that the FastICA algorithm does not maximizesparseness but
non-gaussianity. Thus, in the case of sub-gaussian features, it may actually be min-
imizing sparseness, see Section 7.9.3.



Chapter 19
Crash course on linear algebra

This chapter explains basic linear algebra on a very elementary level. This is mainly
meant as a reminder: The readers hopefully already know thismaterial.

19.1 Vectors

A vector in ann-dimensional real space is an ordered collection ofn real numbers.
In this book, a vector is typically either the grey-scale values of pixels in an image
patch, or the weights in a linear filter or feature detector. The number of pixels is
n in the former case, and the number of weights isn in the latter case. We denote
images byI(x,y) and the weights of a feature detector typically byW(x,y). It is
assumed that the indexx takes values from 1 tonx and the indexy takes values from
1 to ny, where the dimensions fulfilln = nx×ny. In all the sums that follow, this is
implicitly assumed and not explicitly written to simplify notation.

One of the main points in linear algebra is to provide a notation in which many
operations take a simple form. In linear algebra, the vectors such asI(x,y) and
W(x,y) are expressed as one-dimensional columns or rows of numbers. Thus, we
need to index all the pixels by a single indexi that goes from 1 ton. This is obviously
possible by scanning the image row by row, or column by column(see Section 4.1
for details on such vectorization). It does not make any difference which method is
used. A vector is usually expressed in column form as

v =








v1

v2
...

vn








(19.1)

In this book, the vector containing image data (typically after some preprocessing
steps) will be usually denoted byz, and the vector giving the weights of a feature de-

415
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tector byv. In the following, we will use both the vector- and image-based notations
side-by-side.

The (Euclidean)normof a vector is defined as

‖W(x,y)‖ =
√

∑
x,y

W(x,y)2, or ‖v‖=
√

∑
i

v2
i (19.2)

The norm gives the length (or “size”) of a vector. There are also other ways of
defining the norm, but the Euclidean one is the most common.

Thedot-product(or inner productbetween two vectors is defined as

〈W, I〉= ∑
x,y

W(x,y)I(x,y) (19.3)

If W is a feature detector, this could express the value of the feature when the input
image isI . It basically computes amatchbetweenI andW. In vector notation, we
use the transpose operator, given byvT , to express the same operation:

vTz =
n

∑
i=1

vizi (19.4)

If the dot-product is zero, the vectorsW and I are calledorthogonal. The dot-
product of a vector with itself equals the square of its norm.

19.2 Linear transformations

A linear transformation is the simplest kind of transformation in ann-dimensional
vector space. A vectorI is transformed to a vectorJ by taking weighted sums:

J(x,y) = ∑
x′y′

m(x,y,x′,y′)I(x′,y′), for all x,y (19.5)

The weights in the sum are different for every point(x,y). The indicesx′ andy′ take
all the same values asx andy. Typical linear transformations include smoothing and
edge detection.

We can compound linear transformations by taking a linear transformation ofJ
using weights denoted byn(x,y,x′,y′). This gives the new vector as
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K(x,y) = ∑
x′′y′′

n(x,y,x′′,y′′)J(x′′,y′′)

= ∑
x′′y′′

n(x,y,x′′,y′′)∑
x′y′

m(x′′,y′′,x′,y′)I(x′,y′)

= ∑
x′y′

(

∑
x′′y′′

n(x,y,x′′,y′′)m(x′′,y′′,x′,y′)

)

I(x′,y′) (19.6)

Defining
p(x,y,x′,y′) = ∑

x′′y′′
n(x,y,x′′,y′′)m(x′′,y′′,x′,y′) (19.7)

we see that the compounded transformation is a linear transformation with the
weights given byp.

19.3 Matrices

In matrix algebra, linear transformations and linear systems of equations (see below)
can be succinctly expressed by products (multiplications). In this book we avoid
using too much linear algebra to keep things as simple as possible. However, it
is necessary to understand how matrices are used to express linear transformation,
because in some cases, the notation becomes just too complicated, and also because
most numerical software takes matrices as input.

A matrix M of sizen1×n2 is a collection of real numbers arranged inton1 rows
andn2 columns. The single entries are denoted bymi j wherei is the row andj is the
column. We can convert the weightsm(x,y,x′,y′) expressing a linear transformation
by the same scanning process as was done with vectors. Thus,

M =






m11 m12 . . . m1m
...

...
mn1 mn2 . . . mnm




 (19.8)

The linear transformation of a vectorz is then denoted by

y = Mz (19.9)

which is basically a short-cut notation for

yi =
n2

∑
j=1

mi j zj , for all i (19.10)

This operation is also the definition of the product of a matrix and a vector.
If we concatenate two linear transformations, defining
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s= Ny (19.11)

we get another linear transformation. The matrixP that expresses this linear trans-
formation is obtained by

pi j =
n1

∑
k=1

nikmk j (19.12)

This is the definition of the product of two matrices: the new matrix P is denoted by

P = MN (19.13)

This is the matrix version of Equation (19.7). The definitionis quite useful, because
it means we can multiply matrices and vectors in any order when we computes. In
fact, we have

s= Ny = N(Mz) = (NM)z (19.14)

Another important operation with matrices is the transpose. The transposeMT

of a matrixM is the matrix where the indices are exchanged: thei, j-th entry ofMT

is mji . A matrix M is called symmetric ifmi j = mji , i.e., if M equals its transpose.

19.4 Determinant

The determinant answers the question: how are volumes changed when the data
space is transformed by the linear transformationm? That is, ifI takes values in a
cube whose edges are all of length one, what is the volume of the set of the valuesJ
in Equation (19.5)?. The answer is given by the absolute value of the determinant,
denoted by|det(M)| whereM is the matrix form ofm.

Two basic properties of the determinant are very useful.

1. The determinant of a product is the product of the determinants: det(MN) =
det(M)det(N). If you think that the first transformation changes the volume by
a factor or 2 and the second by a factor of 3, it is obvious that when you do both
transformation, the change in volume is by a factor of 2×3= 6.

2. The determinant of a diagonal matrix equals the product ofthe diagonal elements.
If you think is two dimensions, a diagonal matrix simply stretches one coordinate
by a factor of, say 2, and the other coordinate by a factor of, say 3, so the volume
of a square of area equal to 1 then becomes 2×3= 6.

(In Section 19.7 we will see a further important result on thedeterminant of an
orthogonal matrix).
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19.5 Inverse

If a linear transformation in Equation (19.5) does not change the dimension of the
data, i.e. the number of pixels, the transformation can usually be inverted. That is,
Equation (19.5) can usually be solved forI : if we know J andm, we can compute
what was the originalI . This is the case if the linear transformation is invertible— a
technical condition that is almost always true. In this book, we will always assume
that a linear transformation is invertible if not otherwisementioned.

In fact, we can then find a matrix of coefficientsn(x,y), so that

I(x,y) = ∑
x′y′

n(x,y,x′,y′)J(x′,y′), for all x,y. (19.15)

This is the inverse transformation ofm. In matrix algebra, the coefficient are ob-
tained by computing the inverse of the matrixM , denoted byM−1. So, solving for
y in (19.9) we have

y = M−1z (19.16)

A multitude of numerical methods for computing the inverse of the matrix exist.
Note that the determinant of the inverse matrix is simply theinverse of the deter-

minant: det(M−1) = 1/det(M). Logically, if the transformation changes the volume
by a factor of 5 (say), then the inverse must change the volumeby a factor of 1/5.

The product of a matrix with its inverse equals theidentity matrixI :

MM −1 = M−1M = I (19.17)

The identity matrix is a matrix whose diagonal elements are all ones and the off-
diagonal elements are all zero. It corresponds to the idenity transformation, i.e., a
transformation which does not change the vector. This meanswe have

Iz = z (19.18)

for anyz.

19.6 Basis representations

An important interpretation of the mathematics in the preceding sections is the rep-
resentation of an image in a basis. Assume we have a number of featuresAi(x,y)
wherei goes from 1 ton. Given an imageI(x,y), we want to represent it as a linear
sum of these feature vectors:

I(x,y) =
n

∑
i=1

Ai(x,y)si (19.19)
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Thesi are thecoefficientsof the feature vectorsAi . They can be considered as the
values of the features in the imageI , since they tell “to what extent” the features are
in the image. If, for example,s1 = 0, that means that the featureA1 is not present in
the image.

Using vector notation, the basis representation can be given as

z =
n

∑
i=1

aisi (19.20)

Interestingly, this equation can be further simplified by putting all thesi into a single
vectors, and forming a matrixA so that the columns of that matrix are the vectors
ai , that is:

A = [a1,a2, . . . ,an] =











a11
...

an1











a12
...

an2




 . . .






a1n
...

an3









 (19.21)

Then we have equivalently
z = As (19.22)

From this equation, we see how we can apply all the linear algebra machinery to
answer the following questions:

• How do we compute the coefficientssi? This is done by computing the inverse
matrix of A (hoping that one exists), and then multiplyingz with the inverse,
sinces= A−1z.

• When is it possible to represent anyz using the givenai? This question was
already posed in the preceding section. The answer is: if thenumber of basis
vectors equals the dimension ofz, the matrixA is invertible practically always.
In such a case, we say that theai (or theAi) form a basis.

A further important question is: What happens then if the number of vectorsai is
smallerthan the dimension of the vectorz? Then, we cannot represent all the possi-
ble z’s using those features. However, we can find the best possible approximation
for anyz based on those features, which is treated in Section 19.8.

The opposite case is when we havemorevectorsai than the dimension of the
data. Then, we can represent any vectorz using those features; in fact, there are
usually many ways of representing anyz, and the coefficientssi are not uniquely
defined. This case is calledovercomplete basisand treated in Section 13.1.

19.7 Orthogonality

A linear transformation is calledorthogonalif it does not change the norm of the
vector. Likewise, a matrixA is called orthogonal if the corresponding transformation
is orthogonal. An equivalent condition for orthogonality is
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ATA = I (19.23)

If you think about the meaning of this equation in detail, youwill realize that it says
two things: the column vectors of the matrixA are orthogonal, and all normalized to
unit norm. This is because the entries in the matrixATA are the dot-productsaT

i a j

between the column vectors of the matrixA.
An orthogonal basis is nothing else than a basis in which the basis vectors are

orthogonal and have unit norm; in other words, if we collect the basis vectors into a
matrix as in Equation (19.21), that matrix is orthogonal.

Equation (19.23) shows that the inverse of an orthogonal matrix (or an orthogonal
transformation) is trivial to compute: we just need to rearrange the entries by taking
the transpose. This means thatsi = aT

i z, or

si = ∑
x,y

Ai(x,y)I(x,y) (19.24)

So, in an orthogonal basis we obtain the coefficients as simple dot-products with the
basis vectors. Note that this isnot true unless the basis is orthogonal.

The compound transformation of two orthogonal transformation is orthogonal.
This is natural since if neither of the transformations changes the norm of the image,
then doing one transformation after the other does not change the norm either.

The determinant of an orthogonal matrix is equal to plus or minus one. This
is because because an orthogonal transformation does not change volumes, so the
absolute value has to be one. The change in sign is related to reflections. Think of
multiplying one-dimenasional data by−1: This does not change the “volumes”, but
“reflects” the data with respect to 0, and corresponds to a determinant of−1.

19.8 Pseudo-inverse *

Sometimes transformations change the dimension, and the inversion is more com-
plicated. If there are more variables iny than in z in Equation (19.9), there are
basically more equations than free variables, so there is nosolution in general. That
is, we cannot find a matrix̃M so that for any giveny, z = M̃y is a solution for
Equation (19.9). However, in many cases it is useful to consider an approximative
solution: Find a matrixM+ so that forz = M+y, the error‖y−Mz‖ is as small
as possible. In this case, the optimal “approximative inverse” matrix can be easily
computed as:

M+ = (MTM)−1MT (19.25)

On the other hand, if the matrixM has fewer rows than columns (fewer variables
in y than inz), there are more free variables than there are constrainingequations.
Thus, there are many solutionsz for (19.9) for a giveny, and we have to choose one
of them. One option is to choose the solution that has the smallest Euclidean norm.
The matrix that gives this solution asM+y is given by
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M+ = MT(MM T)−1 (19.26)

The matrixM+ in both of these cases is called the (Moore-Penrose) pseudo-inverse
of M . (A more sophisticated solution for the latter case, using sparseness, is consid-
ered in Section 13.1.3.)



Chapter 20
The discrete Fourier transform

This chapter is a mathematically sophisticated treatment of the theory of Fourier
analysis. It concentrates on the discrete Fourier transform which is the variant used
in image analysis practice.

It is not necessary to know this material to understand the developments in this
book; this is meant as supplementary material.

20.1 Linear shift-invariant systems

Let us consider a systemH operating on one-dimensional input signalsI(x). The
system islinear if for inputs I1(x) andI2(x), and scalarα

H {I1(x)+ I2(x)} = H {I1(x)}+H {I2(x)} (20.1)

H {αI1(x)} = αH {I1(x)} ; (20.2)

similar definitions apply in the two-dimensional case. A systemH is shift-invariant
if a shift in the input results in a shift of the same size in theoutput; that is, if
H {I(x)}= O(x), then for any integerm

H {I(x+m)}= O(x+m); (20.3)

or, in the two-dimensional case, for any integersmandn,

H {I(x+m,y+n)}= O(x+m,y+n). (20.4)

A linear shift-invariant systemH operating on signals (or, in the two-dimensional
case, on images) can be implemented by either linear filtering with a filter, or another
operation, theconvolutionof the input and theimpulse responseof the system. The
impulse responseH(x) is the response of the system to an impulse

423
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δ (x) =

{

1, if x = 0

0, otherwise,
(20.5)

that is
H(x) = H {δ (x)} . (20.6)

By noting that I(x) = ∑∞
k=−∞ I(k)δ (x− k), and by applying linearity and shift-

invariance properties (Equations (20.1)–(20.3)) it is easy to show that

O(x) = H {I(x)}=
∞

∑
k=−∞

I(k)H(x−k) = I(x)∗H(x), (20.7)

where the last equality sign defines convolution∗. Note that convolution is a sym-
metric operator since by making the change in summation index ℓ= x−k (implying
k = x− ℓ)

I(x)∗H(x) =
∞

∑
k=−∞

I(k)H(x−k) =
∞

∑
ℓ=−∞

H(ℓ)I(x− ℓ) = H(x)∗ I(x). (20.8)

20.2 One-dimensional discrete Fourier transform

20.2.1 Euler’s formula

For purposes of mathematical convenience, in Fourier analysis the frequency rep-
resentation is complex-valued: both the basis images and the weights consist of
complex numbers; this is called the representation of an image in theFourier space.
The fundamental reason for this is Euler’s formula, which states that

eai = cosa+ i sina (20.9)

wherei is the imaginary unit. Thus, a complex exponential containsboth the sin and
cos function in a way that turns out to be algebraically very convenient. One of the
basic reasons for this is that the absolute value of a complexnumber contains the
sum-of-squares operation:

|a+bi|=
√

a2 +b2 (20.10)

which is related to the formula in Equation (2.16) on page 41 which gives the power
of a sinusoidal component. We will see below that we can indeed compute the
Fourier power as the absolute value (modulus) of some complex numbers.

In fact, we will see that the argument of a complex number on the complex plane
is related to the phase in signal processing. The argument ofa complex numberc is
a real numberφ ∈ (−π ,π ] such that

c = |c|eφ i (20.11)
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We will use here the signal-processing notation∠c for the argument.
We will also use the complex conjugate of a complex numberc= a+bi, denoted

by c̄, which can be obtained either asa− bi or, equivalently, as|c|e−φ i . Thus, the
complex conjugate has the same absolute value, but oppositeargument (“phase”).

20.2.2 Representation in complex exponentials

In signal processing theory, sinusoidals are usually represented in the form of the
following complex exponential signal

eiωx = cos(ωx)+ i sin(ωx), x = 1, ...,M, (20.12)

A fundamental mathematical reason for this is that these signals areeigensignals
of linear shift-invariant systems. An eigensignal is a generalization of the concept
of an eigenvector in linear algebra (see Section 5.8.1). Denote byH(x) the impulse
response of a linear shift-invariant systemH . Then

H
{

eiωx}= H(x)∗eiωx =
∞

∑
k=−∞

H(k)eiω(x−k) = eiωx
∞

∑
k=−∞

H(k)e−iωk

︸ ︷︷ ︸

=H̃(ω)

= H̃(ω)eiωx,

(20.13)

where we have assumed that the sum∑∞
k=−∞ H(k)e−iωk converges, and have de-

noted this complex number bỹH(ω). Equation (20.13) shows that when a complex
exponential is input into a linear shift-invariant system,the output is the same com-
plex exponential multiplied bỹH(ω); the complex exponential is therefore called
an eigensignal of the system.

To illustrate the usefulness of the representation in complex exponentials in an-
alytic calculations, let us derive the response of a linear shift-invariant system to a
sinusoidal. This derivation uses the identity

cos(φ) =
1
2

(
eiφ +e−iφ) , (20.14)

which can be verified by applying Equation (20.12). LetH be a linear shift-
invariant system, andAcos(ωx+ ψ) be an input signal; then

H {Acos(ωx+ ψ)}=
A
2

H

{

ei(ωx+ψ) +e−i(ωx+ψ)
}

=
A
2

(
eiψ

H
{

eiωx}+e−iψ
H
{

e−iωx})

=
A
2

(
eiψH̃(ω)eiωx +e−iψH̃(−ω)e−iωx) .

(20.15)
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By the definition ofH̃(ω) (see Equation 20.13),̃H(−ω)= H̃(ω)=
∣
∣H̃(ω)

∣
∣e−i∠H̃(ω).

Thus

H {Acos(ωx+ ψ)}=
∣
∣H̃(ω)

∣
∣A

1
2

(

ei(ωx+ψ+∠H̃(ω)) +e−i(ωx+ψ+∠H̃(ω))
)

=
∣
∣H̃(ω)

∣
∣A

︸ ︷︷ ︸

amplitude

cos(ωx+ ψ +∠H̃(ω)
︸ ︷︷ ︸

phase

). (20.16)

Equation (20.16) is a one-dimensional formal version of thetwo statements made
in Section 2.2.3 (page 33):

• When a sinusoidal is input into a linear shift-invariant system, the output is a
sinusoidal with the same frequency.

• The change in amplitude and phase depend only on the frequency ω .

Furthermore, the equation contains another important result, namely that both the
amplitude and the phase response can be read out fromH̃(ω) : the amplitude re-
sponse is

∣
∣H̃(ω)

∣
∣ , and the phase response∠H̃(ω). This also explains the notation

introduced for amplitude and phase responses on page 33.
In order to examine further the use of complex exponentialseiωx, let us derive

the representation of a real-valued signal in terms of thesecomplex-valued signals.
Thus, the imaginary parts have to somehow disappear in the final representation. De-
riving such a representation from the representation in sinusoidals (Equation (2.6),
page 30) can be done by introducingnegative frequenciesω < 0, and using Equa-
tion (20.14). Let us denote the coefficient of the complex exponentialeiωx by Ĩ∗(ω).
The representation can be calculated as follows:

I(x) =
ωM

∑
ω=0

Aω cos(ωx+ ψω) =
ωM

∑
ω=0

Aω

2

(

ei(ωx+ψω ) +e−i(ωx+ψω )
)

=
ωM

∑
ω=0

Aω
2

(

eiψω eiωx +ei(−ψω)ei(−ω)x
)

= A0
︸︷︷︸

=Ĩ∗(0)

+
ωM

∑
ω=−ωM

ω 6=0

A|ω|
2

ei sgn(ω)ψ|ω|

︸ ︷︷ ︸

=Ĩ∗(ω)
whenω 6= 0

eiωx =
ωM

∑
ω=−ωM

Ĩ∗(ω)eiωx.

(20.17)

Note the following properties of the coefficientsĨ∗(ω) :

• In general, the coefficients̃I∗(ω) are complex-valued, except forĨ∗(0) which is
always real.

• Forω ≥ 0, a coefficient̃I∗(ω) contains the information about both the amplitude
and the phase of the sinusoidal representation – amplitude information is given
by the magnitude

∣
∣Ĩ∗(ω)

∣
∣ and phase information by the angle∠Ĩ∗(ω) :
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Aω =

{

Ĩ∗(0), if ω = 0

2
∣
∣Ĩ∗(ω)

∣
∣ , otherwise

(20.18)

ψω =

{

undefined, if ω = 0

∠Ĩ∗(ω), otherwise.
(20.19)

• A closer look at the derivation (20.17) shows that the magnitude and the angle of
the positive and negative frequencies are related to each other as follows:

∣
∣Ĩ∗(−ω)

∣
∣=
∣
∣Ĩ∗(ω)

∣
∣ (20.20)

∠Ĩ∗(−ω) =−∠Ĩ∗(ω) (20.21)

Thus Ĩ∗(w) and Ĩ∗(−w) form a complex-conjugate pair. This also means that
knowing only the coefficients of the positive frequencies – or only the coeffi-
cients of the negative frequencies – is sufficient to reconstruct the whole rep-
resentation. (This is true only for real-valued signals; ifone wants to represent
complex-valued signals, the whole set of coefficients is needed. However, such
representations are not needed in this book.)

Above it was assumed that a frequency-based representationof a signalI(x) ex-
ists:

I(x) =
ωM

∑
ω=0

Aω cos(ωx+ ψω). (20.22)

From that we derived a representation in complex exponentials

I(x) =
ωM

∑
ω=−ωM

Ĩ∗(ω)eiωx (20.23)

Ĩ∗(ω) =

{

A0 whenω = 0
A|ω|

2 ei sgn(ω)ψ|ω| otherwise.
(20.24)

This derivation can be reversed: assuming that a representation in complex expo-
nentials exists – so that the coefficients of the negative andpositive frequencies are
complex-conjugate pairs – a frequency-based representation also exists:

I(x) =
ωM

∑
ω=−ωM

Ĩ∗(ω)eiωx =
ωM

∑
ω=−ωM

∣
∣Ĩ∗(ω)

∣
∣ei(ωx+∠Ĩ∗(ω))

= Ĩ∗(0)+
ωM

∑
ω=ω1

2
∣
∣Ĩ∗(ω)

∣
∣cos

(
ωx+∠Ĩ∗(ω)

)
.

(20.25)
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20.2.3 The discrete Fourier transform and its inverse

Next, we introduce the discrete Fourier transform (DFT) andits inverse, which are
the tools that are used in practice to convert signals to their representation in com-
plex exponentials and back. We will first give a definition of the transforms, and
then relate the properties of these transforms to the discussion we had above.

The word “discrete” refers here to the fact that the signal (or image) is sampled
at a discrete set of points, i.e. the indexx is not continuous. This is in contrast to
the general mathematical definition of the Fourier transform which is defined for
functions which take values in a real-valued space. Anotherpoint is that the DFT
is in a sense closer to what is called the Fourier series in mathematics because the
set of frequencies used is discrete as well. Thus, the theoryof DFT has a number of
differences to the general mathematical definitions used indifferential calculus.

The discrete Fourier transformation is used to compute the coefficients of the
signal’s representation in complex exponentials: this setof coefficients is called the
discrete Fourier transform. The inverse discrete Fourier transformation (IDFT) is
used to compute the signal from its representation in complex exponentials. Let
I(x) be a signal of lengthN. The discrete Fourier transform pair is defined by

DFT: Ĩ(u) =
N−1

∑
x=0

I(x)e−i 2πx
N u, u = 0, ...,N−1. (20.26)

IDFT: I(x) =
1
N

N−1

∑
u=0

Ĩ(u)ei 2πu
N x, x = 0, ...,N−1, (20.27)

Notice that the frequencies utilized in the representationin complex exponentials of
the IDFT (20.27) are

ωu =
2πu
N
, u = 0, ...,N−1. (20.28)

The fact that Equations (20.27) and (20.26) form a valid transform pair – that
is, that the IDFT ofĨ(k) is I(x) – can be shown as follows. LetĨ(u) be defined as
in Equation (20.26). Then – redefining the sum in Equation (20.26) to be overx∗
instead ofx to avoid using the same index twice – the IDFT gives

1
N

N−1

∑
u=0

Ĩ(u)ei 2πu
N x =

1
N

N−1

∑
u=0

(
N−1

∑
x∗=0

I(x∗)e−i 2πx∗
N u

)

ei 2πu
N x

=
1
N

N−1

∑
x∗=0

I(x∗)

(
N−1

∑
u=0

ei 2πu(x−x∗)
N

)

=
1
N

N−1

∑
x∗=0

I(x∗)

[
N−1

∑
u=0

(

ei 2π(x−x∗)
N

)u
]

︸ ︷︷ ︸

term A

.

(20.29)
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If x∗ = x, then term A in Equation (20.29) equalsN; whenx∗ 6= x, the value of this
geometric sum is

N−1

∑
u=0

(

ei 2π(x−x∗)
N

)u
=

=1
︷ ︸︸ ︷
(

ei 2π(x−x∗)
N

)N
−1

ei 2π(x−x∗)
N −1

= 0. (20.30)

Therefore, the IDFT gives

1
N

N−1

∑
u=0

Ĩ(u)ei 2πu
N x =

1
N

I(x)N = I(x). (20.31)

We now discuss several of the properties of the discrete Fourier transform pair.

Negative frequencies and periodicity in the DFT The representation in complex
exponentials in the DFT employs the following frequencies:

ωu =
2πu
N
, u = 0, ...,N−1. (20.32)

In the previous section we discussed the use of negative frequencies in represen-
tations based on complex exponentials. At first sight it looks like no negative fre-
quencies are utilized in the DFT. However, the representation used by the DFT
(Equation 20.27) isperiodic: as a function of the frequency indexu, both the
complex exponentials and their coefficients have a period ofN. That is, for any
integerℓ, for the complex exponentials we have

ei 2π(u+ℓN)
N x = ei 2πu

N x ei2πℓx
︸ ︷︷ ︸

=1

= ei 2πu
N x, (20.33)

and for the coefficients

Ĩ(u+ ℓN) =
N−1

∑
x=0

I(x)e−i 2πx
N (u+ℓN) =

N−1

∑
x=0

I(x)e−i 2πx
N ue−i2πuℓ
︸ ︷︷ ︸

=1

=
N−1

∑
x=0

I(x)e−i 2πx
N u = Ĩ(u).

(20.34)

Therefore, for example, the coefficientĨ(N− 1) corresponding to frequency
2π(N−1)

N is the same as the coefficientĨ(−1) corresponding to frequency−2π
N

would be. In general, the latter half of the DFT can be considered to correspond
to the negative frequencies. To be more precise, for a real-valuedI(x), the DFT
equivalent of the complex-conjugate relationships (20.20) and (20.21) is
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Ĩ(N−u) =
N−1

∑
x=0

I(x)e−i 2πx
N (N−u) =

N−1

∑
x=0

I(x)e−i2πx
︸ ︷︷ ︸

=1

ei 2πx
N u

=
N−1

∑
x=0

I(x)e−i 2πx
N u = Ĩ(u).

(20.35)

This relation also explains why the DFT seems to have “too many numbers” for
real-valued signals. It consists ofN complex-valued numbers, which seems to
contain twice the amount of information as the original signal, which hasN real-
valued numbers. The reason is that half the information in DFT is redundant, due
to the relation in Equation (20.35). For example, if you knowall the values of
Ĩ(u) for u from 0 to(N−1)/2 (assumingN is odd), you can compute all the rest
by just taking complex conjugates.

Periodicity of the IDFT and the convolution theorem The Fourier-transform
pair implicitly assumes that the signalI(x) is periodic: applying a derivation sim-
ilar to (20.34) to the IDFT (20.27) gives

I(x+ ℓN) = I(x). (20.36)

This assumption of periodicity is also important for perhaps the most important
mathematical statement about the discrete Fourier transform, namelythe convo-
lution theorem. Loosely speaking, the convolution theorem states that theFourier
transform of the convolution of two signals is the product ofthe discrete Fourier
transforms of the signals. To be more precise, we have to takeborder effects into
account, i.e. what happens near the beginning and the end of signals, and this is
where the periodicity comes into play.
Now we shall derive the convolution theorem. LetI(x) andH(x) be two signals of
the same lengthN (if they initially have different lengths, one of them can always
be extended by “padding” zeros, i.e. adding a zero signal theend). Denote bỹI(u)
andH̃(u) the Fourier transforms of the signals. Then the product of the Fourier
transforms is

H̃(u)Ĩ(u) =

(
N−1

∑
ℓ=0

H(ℓ)e−i2πℓu/N

)(
N−1

∑
k=0

I(k)e−i2πku/N

)

=
N−1

∑
ℓ=0

N−1

∑
k=0

H(ℓ)I(k)e−i2π(ℓ+k)u/N.

(20.37)

Making a change of indexx = ℓ+k yields
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H̃(u)Ĩ(u) =
N−1

∑
ℓ=0

ℓ+N−1

∑
x=ℓ

H(ℓ)I(x− ℓ)e−i2πxu/N

=
N−1

∑
ℓ=0

[N−1

∑
x=ℓ

H(ℓ)I(x− ℓ)e−i2πxu/N

+
ℓ+N−1

∑
x=N

H(ℓ)I(x− ℓ)e−i2πxu/N

︸ ︷︷ ︸

sum A

]

.

(20.38)

If we assume thatI(x) is periodic with a period ofN, then what has been denoted
by sum A in equation (20.38) can be made simpler: since in thatsumH(ℓ) is
constant ande−i2πxu/N is periodic with a period ofN, the lower and upper limits
in the sum can simply be changed to 0 andℓ−1, respectively, yielding

H̃(u)Ĩ(u)=
N−1

∑
ℓ=0

[N−1

∑
x=ℓ

H(ℓ)I(x− ℓ)e−i2πxu/N

+
ℓ−1

∑
x=0

H(ℓ)I(x− ℓ)e−i2πxu/N
]

=
N−1

∑
ℓ=0

N−1

∑
x=0

H(ℓ)I(x− ℓ)e−i2πxu/N

=
N−1

∑
x=0

N−1

∑
ℓ=0

H(ℓ)I(x− ℓ)
︸ ︷︷ ︸

=O(x)

e−i2πxu/N =
N−1

∑
x=0

O(x)e−i2πxu/N

= Õ(u),

(20.39)

whereÕ(u) is the discrete Fourier transform ofO(x).Notice thatO(x) is obtained
as a convolution ofH(x) andI(x) under the assumption of periodicity. That is,
we define the values of the signal outside of its actual range by assuming that it is
periodic. (If we want to use the basic definition of convolution, we actually have
to define the values of the signal up to infinite values of the indices, because the
definition assumes that the signals have infinite length.) Wecall such an operation
cyclicconvolution.
Equation (20.39) proves the cyclic version of the convolution theorem:the DFT
of the cyclic convolution of two signals is the product of theDFTs of the signals.
Note that the assumption of cyclicity is not needed in the general continuous-
space version of the convolution theorem; it is a special property of the discrete
transform.
In practice, when computing the convolution of two finite-length signals, the
definition of cyclic convolution is often not what one wants,because it means that
values of the signals nearx= 0 can have an effect on the values of the convolution
nearx = N−1. In most cases, one would like to define the convolution so that
the effect of finite length is more limited. Usually, this is done by modifying the
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signals so that the difference between cyclic convolution and other finite-length
versions disappear. For example, this can lead to adding (“padding”) zeros at the
edges. Such zero-padding makes it simple to compute convolutions using DFT’s,
which is usually much faster than using the definition.1

Real- and complex-valued DFT coefficients In general, the coefficients̃I(u) are
complex-valued, except for̃I(0) which is always real-valued. However, if the
signal has an even length so thatN

2 is an integer, then

Ĩ

(
N
2

)

= Ĩ

(

N− N
2

)

= Ĩ

(
N
2

)

, (20.40)

where in the last step we have applied Equation (20.35). Therefore, whenN is
even,Ĩ

(
N
2

)
is also real-valued.

The sinusoidal representation from the DFT If N is odd, then starting from
Equation (20.27), a derivation similar to (20.25) gives

I(x) =
Ĩ(0)

N
︸︷︷︸

=A0

+

N−1
2

∑
u=1

2
∣
∣Ĩ(u)

∣
∣

N
︸ ︷︷ ︸

=Au
whenu 6= 0

cos

(
2πu
N
︸︷︷︸
=ωu

whenu 6= 0

x+ ∠Ĩ(u)
︸ ︷︷ ︸
=ψu

whenu 6= 0

)

. (20.41)

If N is even, then

I(x) =
Ĩ(0)

N
︸︷︷︸

=A0

+

N
2−1

∑
u=1

2
∣
∣Ĩ(u)

∣
∣

N
︸ ︷︷ ︸

=Au
whenu 6= 0
andu 6= N

2

cos

(
2πu
N
︸︷︷︸
=ωu

whenu 6= 0
andu 6= N

2

x+ ∠Ĩ(u)
︸ ︷︷ ︸
=ψu

whenu 6= 0
andu 6= N

2

)

+
Ĩ(N

2 )

N
︸ ︷︷ ︸

=AN
2

cos( π
︸︷︷︸

=ω N
2

x).

(20.42)

Comparing Equation (20.41) to Equation (20.25), we can see that the magni-
tudes of the DFT coefficients are divided byN to get the amplitudes of the si-
nusoidals. This corresponds to the1

N coefficient in front of the IDFT (20.27),
which is needed so that the DFT and the IDFT form a valid transform pair. How-
ever, the placement of this coefficient is ultimately a question of convention: the
derivation in Equations (20.29)–(20.31) is still valid if the coefficient1

N would
be moved in front of the DFT in Equation (20.26), or even if both the IDFT and
DFT equations would have a coefficient of1√

N
in front. The convention adopted

here in the DFT-IDFT equation pair (equations (20.27) and (20.26)) is the same
as in MATLAB .

1 See, for example, the MATLAB reference manual entry for the functionconv for details.



20.3 Two- and three-dimensional discrete Fourier transforms 433

The basis is orthogonal, perhaps up to scaling In terms of a basis representa-
tion, the calculations in Equation (20.29) show that the complex basis vectors
used in DFT are orthogonal to each other. In fact, the dot-product of two basis
vectors with frequenciesu andu∗ is

N−1

∑
x=0

e−i 2πx
N uei 2πx

N u∗ =
N−1

∑
x=0

(

ei 2π
N (u∗−u)

)x
(20.43)

where we have taken the conjugate of the latter term because that is how the dot-
product of complex-valued vectors is defined. Now, this is almost like the “term
A” in Equation (20.29) with the roles ofu andx exchanged (as well as the signs
of u andu∗ flipped and the scaling ofu changed). So, the calculations given there
can be simply adapted to show that foru 6= u∗, this dot-product is zero. However,
the norms of these basis vectors are not equal to one in this definition. This does
not change much because it simply means that the inverse transform rescales the
coefficients accordingly. The coefficients in the basis are still obtained by just
taking dot-products with the basis vectors (and some rescaling if needed). As
pointed out above, different definitions of DFT exist, and insome of them, the
basis vectors are normalized to unit norm, so the basis is exactly orthogonal. (In
such a definition, it is the convolution theorem which needs ascaling coefficient.)

DFT can be computed by the Fast Fourier Transformation A basic way of
computing the DFT would be to use the definition in Equation (20.26). That
would mean that we have to do something likeN2 operations, because com-
puting each coefficient needs a sum withN terms, and there areN coefficients.
A most important algorithm in signal processing is the Fast Fourier Transform
(FFT), which computes the DFT using operations which are of the orderN logN,
based on a recursive formula. This is much faster thanN2 because the logarithm
grows very slowly as a function ofN. Using FFT, one can compute the DFT
for very long signals. Practically all numerical software implementing DFT use
some variant of FFT, and usually the function is calledfft.

20.3 Two- and three-dimensional discrete Fourier transforms

The two- and three-dimensional discrete Fourier transforms are conceptually similar
to the one-dimensional transform. The inverse transform can be thought of as a
representation of the image in complex exponentials

I(x,y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

Ĩ(u,v)ei2π( ux
M + vy

N ),

x = 0, ...,M−1, y = 0, ...,N−1, (20.44)
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and the coefficients̃I(u,v) in this representation are determined by the (forward)
transform

Ĩ(u,v) =
M−1

∑
x=0

N−1

∑
y=0

I(x,y)e−i2π( ux
M + vy

N ),

u = 0, ...,M−1, v = 0, ...,N−1 (20.45)

The horizontal and vertical frequencies (see Section 2.2.2on page 30) in the repre-
sentation in complex exponentials (Equation (20.44)) are

ωx,u =
2πu
M

, u = 0, ...,M−1 (20.46)

ωy,v =
2πv
N
, v = 0, ...,N−1, (20.47)

and the amplitudeAu,v and phaseψu,v of the corresponding frequency components

Au,vcos(ωx,ux+ ωy,vy+ ψu,v), u = 0, ...,M−1, v = 0, ...,N−1, (20.48)

can be “read out” from the magnitude and angle of the complex-valued coefficient
Ĩ(u,v). In a basis interpretation, the DFT thus uses a basis with different frequencies,
phases,andorientations.

Computationally, the two-dimensional DFT can be obtained as follows. First,
compute a one-dimensional DFT along for each row, i.e. for the one-dimensional
slice given by fixingy. For each row, replace the original valuesI(x,y) by the DFT
coefficients. Denote these byI(u,y). Then, just compute a one-dimensional DFT for
each column, i.e. for each fixedu. This gives the final two-dimensional DFTI(u,v).
Thus, the two-dimensional DFT is obtained by applying the one-dimensional DFT
twice; typically, an FFT algorithm is used. The reason why this is possible is the
following relation, which can be obtained by simple rearrangement of the terms in
the definition in Equation (20.45):

Ĩ(u,v) =
M−1

∑
y=0

[
N−1

∑
x=0

I(x,y)e−i2π ux
N

]

e−i2π vy
M (20.49)

in which the term in brackets is just the one-dimensional DFTfor a fixedy.
The three-dimensional discrete Fourier transform pair is defined similarly:

I(x,y,t) =
1

MNT

M−1

∑
u=0

N−1

∑
v=0

T−1

∑
w=0

Ĩ(u,v,w)ei2π( ux
M + vy

N + wt
N ),

x = 0, ...,M−1, y = 0, ...,N−1, t = 0, ...,T−1, (20.50)
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Ĩ(u,v,w) =
M−1

∑
x=0

N−1

∑
y=0

T−1

∑
t=0

I(x,y,y)e−i2π( ux
M + vy

N + wt
N ),

u = 0, ...,M−1, v = 0, ...,N−1, w = 0, ...,T−1, (20.51)

The two- and three-dimensional discrete Fourier transforms enjoy a number of
similar properties as the one-dimensional transform. For example, the properties of
two-dimensional transform pair include:

Complex-conjugate symmetry Ĩ(−u,−v) = I(u,v)
Convolution theorem holds when the convolution is defined asthe cyclic variant
Periodicity of the transform Ĩ(u,v) = Ĩ(u+M,v) = Ĩ(u,v+N) = Ĩ(u+N,v+M)
Periodicity of the inverse I(x,y) = I(x+M,y) = I(x,y+N) = I(x+N,y+M)





Chapter 21
Estimation of non-normalized statistical models

Statistical models are often based on non-normalized probability densities. That
is, the model contains an unknown normalization constant whose computation is
too difficult for practical purposes. Such models were encountered, for example, in
Sections 13.1.5 and 13.1.7. Maximum likelihood estimationis not possible with-
out computation of the normalization constant. In this chapter, we show how such
models can be estimated using a different estimation method. 1

It is not necessary to know this material to understand the developments in this
book; this is meant as supplementary material.

21.1 Non-normalized statistical models

To fix the notation, assume we observe a random vectorx∈R
n which has a probabil-

ity density function (pdf) denoted bypx(.). We have a parametrized density model
p(.;θ ), whereθ is anm-dimensional vector of parameters. We want to estimate the
parameterθ from observations ofx, i.e. we want to approximatepx(.) by p(.; θ̂ ) for
the estimated parameter valueθ̂ . (To avoid confusion between the random variable
and an integrating variable, we useξ as the integrating variable instead ofx in what
follows.)

The problem we consider here is that we only are able to compute the pdf given
by the model up to a multiplicative constant 1/Z(θ ):

p(ξ ;θ ) =
1

Z(θ )
q(ξ ;θ )

That is, we do know the functional form ofq as an analytical expression (or any
form that can be easily computed), but we donot know how to easily computeZ
which is given by an integral that is often analytically intractable:

1 This chapter is based on (Hyvärinen, 2005), first publishedin Journal of Machine Learning
Research. Copyright retained by the author.
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Z(θ ) =

∫

ξ∈Rn
q(ξ ;θ )dξ

In higher dimensions (in fact, for almost anyn> 2), the numerical computation of
this integral is practically impossible as well.

Thus, maximum likelihood estimation cannot be easily performed. One solution
is to approximate the normalization constantZ using Monte Carlo methods, see e.g.
(Mackay, 2003). In this chapter, we discuss a simpler methodcalled score matching.

21.2 Estimation by score matching

In the following, we use extensively the gradient of the log-density with respect to
the data vector. For simplicity, we call this the score function, although according
the conventional definition, it is actually the score function with respect to a hypo-
thetical location parameter (Schervish, 1995). For the model density, we denote the
score function byψ(ξ ;θ ):

ψ(ξ ;θ ) =







∂ log p(ξ ;θ)
∂ξ1
...

∂ log p(ξ ;θ)
∂ξn







=






ψ1(ξ ;θ )
...

ψn(ξ ;θ )




= ∇ξ logp(ξ ;θ )

The point in using the score function is that it does not depend onZ(θ ). In fact we
obviously have

ψ(ξ ;θ ) = ∇ξ logq(ξ ;θ ) (21.1)

Likewise, we denote byψx(.) = ∇ξ logpx(.) the score function of the distribution
of observed datax. This could in principle be estimated by computing the gradient
of the logarithm of a non-parametric estimate of the pdf—butwe will see below that
no such computation is necessary. Note that score functionsare mappings fromRn

to R
n.

We now propose that the model is estimated by minimizing the expected squared
distance between the model score functionψ(.;θ ) and the data score functionψx(.).
We define this squared distance as

J(θ ) =
1
2

∫

ξ∈Rn
px(ξ )‖ψ(ξ ;θ )−ψx(ξ )‖2dξ (21.2)

Thus, ourscore matchingestimator ofθ is given by

θ̂ = argmin
θ

J(θ )

The motivation for this estimator is that the score functioncan be directly com-
puted fromq as in Equation (21.1), and we do not need to computeZ. However,
this may still seem to be a very difficult way of estimatingθ , since we might have to
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compute an estimator of the data score functionψx from the observed sample, which
is basically a non-parametric estimation problem. However, no such non-parametric
estimation is needed. This is because we can use a simple trick of partial integration
to compute the objective function very easily, as shown by the following theorem:

Theorem 1.Assume that the model score functionψ(ξ ;θ ) is differentiable, as well
as some weak regularity conditions.2

Then, the objective function J in Equation (21.2) can be expressed as

J(θ ) =

∫

ξ∈Rn
px(ξ )

n

∑
i=1

[

∂iψi(ξ ;θ )+
1
2

ψi(ξ ;θ )2
]

dξ +const. (21.3)

where the constant does not depend onθ ,

ψi(ξ ;θ ) =
∂ logq(ξ ;θ )

∂ξi

is the i-th element of the model score function, and

∂iψi(ξ ;θ ) =
∂ψi(ξ ;θ )

∂ξi
=

∂ 2 logq(ξ ;θ )

∂ξ 2
i

is the partial derivative of the i-th element of the model score function with respect
to the i-th variable.

The proof, given in (Hyvärinen, 2005), is based on a simple trick of partial integra-
tion.

The theorem shows the remarkable fact that the squared distance of the model
score function from the data score function can be computed as a simple expecta-
tion of certain functions of the non-normalized model pdf. If we have an analytical
expression for the non-normalized density functionq, these functions are readily
obtained by derivation using Equation (21.1) and taking further derivatives.

In practice, we haveT observations of the random vectorx, denoted by
x(1), . . . ,x(T). The sample version ofJ is obviously obtained from Equation (21.3)
as

J̃(θ ) =
1
T

T

∑
t=1

n

∑
i=1

[

∂iψi(x(t);θ )+
1
2

ψi(x(t);θ )2
]

+const. (21.4)

which is asymptotically equivalent toJ due to the law of large numbers. We propose
to estimate the model by minimization ofJ̃ in the case of a real, finite sample.

One may wonder whether it is enough to minimizeJ to estimate the model, or
whether the distance of the score functions can be zero for different parameter val-
ues. Obviously, if the model is degenerate in the sense that two different values ofθ
give the same pdf, we cannot estimateθ . If we assume that the model is not degen-

2 Namely: the data pdfpx(ξ ) is differentiable, the expectationsEx{‖ψ(x;θ)‖2} and
Ex{‖ψx(x)‖2} are finite for anyθ , andpx(ξ )ψ(ξ ;θ) goes to zero for anyθ when‖ξ‖→ ∞.
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erate, and thatq> 0 always, we have local consistency as shown by the following
theorem and the corollary:

Theorem 2.Assume the pdf ofx follows the model: px(.) = p(.;θ ∗) for someθ ∗.
Assume further that no other parameter value gives a pdf thatis equal3 to p(.;θ ∗),
and that q(ξ ;θ )> 0 for all ξ ,θ . Then

J(θ) = 0⇔ θ = θ∗

For a proof, see (Hyvärinen, 2005).

Corollary 1. Under the assumptions of the preceding Theorems, the score matching
estimator obtained by minimization ofJ̃ is consistent, i.e. it converges in probability
towards the true value ofθ when sample size approaches infinity, assuming that the
optimization algorithm is able to find the global minimum.

The corollary is proven by applying the law of large numbers.4

This result of consistency assumes that the global minimum of J̃ is found by the
optimization algorithm used in the estimation. In practice, this may not be true, in
particular because there may be several local minima. Then,the consistency is of
local nature, i.e., the estimator is consistent if the optimization iteration is started
sufficiently close to the true value.

21.3 Example 1: Multivariate gaussian density

As a very simple illustrative example, consider estimationof the parameters of the
multivariate gaussian density:

p(x;M ,µ) =
1

Z(M ,µ)
exp(−1

2
(x− µ)TM(x− µ))

whereM is a symmetric positive-definite matrix (the inverse of the covariance ma-
trix). Of course, the expression forZ is well-known in this case, but this serves as
an illustration of the method. As long as there is no chance ofconfusion, we usex
here as the generaln-dimensional vector. Thus, here we have

q(x) = exp(−1
2
(x− µ)TM(x− µ)) (21.5)

and we obtain
ψ(x;M ,µ) =−M(x− µ)

3 In this theorem, equalities of pdf’s are to be taken in the sense of equal almost everywhere with
respect to the Lebesgue measure.
4 As sample size approaches infinity,J̃ converges toJ (in probability). Thus, the estimator con-
verges to a point whereJ is globally minimized. By Theorem 2, the global minimum is unique and
found at the true parameter value (obviously,J cannot be negative).
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and
∂iψi(x;M ,µ) =−mii

Thus, we obtain

J̃(M ,µ) =
1
T

T

∑
t=1

[∑
i

−mii +
1
2
(x(t)− µ)TMM (x(t)− µ)] (21.6)

To minimize this with respect toµ , it is enough to compute the gradient

∇µ J̃ = MM µ−MM
1
T

T

∑
t=1

x(t)

which is obviously zero if and only ifµ is the sample average1T ∑T
t=1 x(t). This is

truly a minimum because the matrixMM that defines the quadratic form is positive-
definite.

Next, we compute the gradient with respect toM , which gives

∇M J̃ =−I +M
1

2T

T

∑
t=1

(x(t)− µ)(x(t)− µ)T +
1

2T
[

T

∑
t=1

(x(t)− µ)(x(t)− µ)T ]M

which is zero if and only ifM is the inverse of the sample covariance matrix
1
T ∑T

t=1(x(t)− µ)(x(t)− µ)T , which thus gives the score matching estimate.
Interestingly, we see that score matching gives exactly thesame estimator as

maximum likelihood estimation. In fact, the estimators areidentical for any sample
(and not just asymptotically). The maximum likelihood estimator is known to be
consistent, so the score matching estimator is consistent as well.

This example also gives some intuitive insight into the principle of score match-
ing. Let us consider what happened if we just maximized the non-normalized log-
likelihood, i.e., log ofq in Equation (21.5). It is maximized when the scale param-
eters inM are zero, i.e., the model variances are infinite and the pdf iscompletely
flat. This is because then the model assigns the same probability to all possible val-
ues ofx(t), which is equal to 1. In fact, the same applies to the second term in
Equation (21.6), which thus seems to be closely connected tomaximization of the
non-normalized log-likelihood.

Therefore, the first term in Equation (21.3) and Equation (21.6), involving second
derivatives of the logarithm ofq, seems to act as a kind of a normalization term.
Here it is equal to−∑i mii . To minimize this, themii should be made as large (and
positive) as possible. Thus, this term has the opposite effect to the second term.
Since the first term is linear and the second term polynomial in M , the minimum of
the sum is different from zero.

A similar interpretation applies to the general non-gaussian case. The second
term in Equation (21.3), expectation of the norm of score function, is closely re-
lated to maximization of non-normalized likelihood: if thenorm of this gradient is
zero, then in fact the data point is in a local extremum of the non-normalized log-
likelihood. The first term then measures what kind of an extremum this is. If it is
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a minimum, the first term is positive and the value ofJ is increased. To minimize
J, the first term should be negative, in which case the extremumis a maximum.
In fact, the extremum should be as steep a maximum (as opposedto a flat maxi-
mum) as possible to minimizeJ. This counteracts, again, the tendency to assign the
same probability to all data points that is often inherent inthe maximization of the
non-normalized likelihood.

21.4 Example 2: Estimation of basic ICA model

Next, we show how score matching can be used in the estimationof the basic ICA
model, defined as

logp(x) =
n

∑
k=1

G(wT
k x)+Z(w1, . . . ,wn) (21.7)

Again, the normalization constant is well-known and equal to log|detW| where the
matrixW has the vectorswi as rows, but this serves as an illustration of our method.

Here, we choose the distribution of the componentssi to be so-called logistic
with

G(s) =−2logcosh(
π

2
√

3
s)− 4

√
3

π
This distribution is normalized to unit variance as typicalin the theory of ICA. The
score function of the model in (21.7) is given by

ψ(x;W) =
n

∑
k=1

wkg(wT
k x) (21.8)

where the scalar nonlinear functiong is given by

g(s) =− π√
3

tanh(
π

2
√

3
s)

The relevant derivatives of the score function are given by:

∂iψi(x) =
n

∑
k=1

w2
kig
′(wT

k x)

and the sample version of the objective functionJ̃ is given by
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J̃ =
1
T

T

∑
t=1

n

∑
i=1

[
n

∑
k=1

w2
kig
′(wT

k x(t))+
1
2

n

∑
j=1

wji g(wT
j x(t))

n

∑
k=1

wkig(wT
k x(t))

]

=
n

∑
k=1

‖wk‖2
1
T

T

∑
t=1

g′(wT
k x(t))+

1
2

n

∑
j ,k=1

wT
j wk

1
T

T

∑
t=1

g(wT
k x(t))g(wT

j x(t)) (21.9)

21.5 Example 3: Estimation of an overcomplete ICA model

Finally, we how score matching can be applied in the case of the overcomplete basis
model in Section 13.1.5. The likelihood is defined almost as in Equation (21.7), but
the number of componentsm is larger than the dimension of the datan, and we
introduce some extra parameters. The likelihood is given by

logp(x) =
m

∑
k=1

αkG(wT
k x)+Z(w1, . . . ,wn,α1, . . . ,αn) (21.10)

where the vectorswk = (wk1, . . . ,wkn) are constrained to unit norm (unlike in the
preceding example), and theαk are further parameters. We introduce here the extra
parametersαk to account for different distributions for different projections. Con-
strainingαk = 1 andm= n and allowing thewk to have any norm, this becomes the
basic ICA model.

We have the score function

ψ(x;W,α1, . . . ,αm) =
m

∑
k=1

αkwkg(wT
k x)

whereg is the first derivative ofG. Going through similar developments as in the
case of the basic ICA model, the sample version of the objective functionJ̃ can be
shown to equal

J̃ =
m

∑
k=1

αk
1
T

T

∑
t=1

g′(wT
k x(t))+

1
2

m

∑
j ,k=1

α j αkw
T
j wk

1
T

T

∑
t=1

g(wT
k x(t))g(wT

j x(t))

(21.11)
Minimization of this function thus enables estimation of the overcomplete ICA

model using the energy-based formulation. This is how we obtained the results in
Figure 13.1 on page 298.

21.6 Conclusion

Score matching is a simple method to estimate statistical models in the case where
the normalization constant is unknown. Although the estimation of the score func-
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tion is computationally difficult, we showed that the distance of data and model
score functions is very easy to compute. The main assumptions in the method are:
1) all the variables are continuous-valued and defined overR

n, 2) the model pdf is
smooth enough.

We have seen how the method gives an objective function whoseminimization
enables estimation of the model. The objective function is typically given as an
analytical formula, so any classic optimization method, such as gradient methods,
can be used to minimize it.

Two related methods are contrastive divergence (Hinton, 2002) and pseudo-
likelihood (Besag, 1975). The relationships between thesemethods are considered
in (Hyvärinen, 2007).
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action potential, 51
aliasing, 355

and rectangular sampling grid, 111
of phases of highest frequencies, 112
reducing it by dimension reduction, 113

amodal completion, 386
amplitude, 29
amplitude response, 33, 426
analysis by synthesis, 8
anisotropy, 121, 152, 240, 258, 344
argument (of Fourier coefficient), 424
aspect ratio, 58, 275
attention, 318
audition, 336
autocorrelation function, 119
axon, 51

basis
definition, 419
illustration, 39
orthogonal, 40
overcomplete,seeovercomplete basis
undercomplete, 40

basis vector, 290
Bayes’ rule, 85
Bayesian inference, 10

and cortical feedback, 307
as higher-order learning principle, 382
definition, 83
in overcomplete basis, 292

blue sky effect, 216
bottom-up, 307, 308
bubble coding, 366

canonical preprocessing,seepreprocessing,
canonical

category, 314

causal influence, 401
central limit theorem, 178, 231
channel

colour (chromatic), 322
frequency,seefrequency channels
information, 192
limited capacity, 193, 203
ON and OFF, 301

chromatic aberration, 323
coding, 13, 185

bubble, 366
predictive, 316
sparse,seesparse coding

collator units, 284
collector units, 284
colour, 321
colour hexagon, 323
competitive interactions, 315
complex cells, 62, 223, 226, 228

energy model,seeenergy model
hierarchical model critisized, 385
in ISA, 238
in topographic ICA, 254, 259
interactions between, 63

complex exponentials, 425
compression, 13, 185
cones, 322
contours, 284, 308
contrast, 56
contrast gain control, 64, 236

and normalization of variance, 214
relationship to ISA, 234

contrastive divergence, 296
convexity, 172, 173, 227, 245

definition, 141
convolution, 28, 423
correlation
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and Hebb’s rule, 401
between pixels, 99
of squares (energies),seeenergy correlations

correlation coefficient, 80
cortex, 54

extrastriate, 273
striate,seeV1

covariance
and Hebb’s rule, 401
definition, 80

covariance matrix, 80
and PCA, 104
connection to power spectrum, 119

curvelets, 388
cytochrome oxidase blobs, 250, 327

DC component, 97
is not always sparse, 176, 180
removal, 65, 97, 214

as part of canonical preprocessing, 113
dead leaves model, 388
decorrelation

deflationary, 146
symmetric, 147

dendrite, 53
derivatives, 395, 408
determinant

considered constant in likelihoods, 171
definition, 418
in density of linear transform, 167

dimension reduction
as part of canonical preprocessing, 114
by PCA, 108

Dirac filter, 19
discrete cosine transform, 194
disparity, 328
divisive normalization, 65, 215, 236
dot-product, 416
double opponent, 326

ecological adaptation, 6
eigensignal, 425
eigenvalue decomposition

and Fourier analysis, 125
and PCA, 106, 123
and translation-invariant data, 125
definition, 123
finds maximum of quadratic form, 124
of covariance matrix, 123

eigenvectors / eigenvalues,seeeigenvalue
decomposition

embodiment, 389
end-stopping, 315
energy correlations, 211, 230, 245, 355

spatiotemporal, 359, 365
temporal, 350

energy model, 62, 253, 274
as subspace feature in ISA, 225
learning by sparseness, 227

entropy
and coding length, 189
definition, 188
differential, 191

as measure of non-gaussianity, 192
maximum, 192
minimum, 194
of neuron outputs, 197

estimation, 89
maximum a posteriori (MAP), 90
maximum likelihood,seelikelihood,

maximum
Euler’s formula, 424
excitation, 54
expectation

definition, 79
linearity, 80

exponential distribution, 176
extrastriate cortex, 66, 307, 385

FastICA, 150, 347
definition, 411

feature, 18
output statistics, 19

feedback, 307, 405
FFT, 433
filling-in, 386
filter

linear, 25
spatiotemporal, 337
temporally decorrelating, 345

firing rate, 53
modelled as a function of stimulus, 55
spontaneous, 53

Fourier amplitude (seepower spectrum)
1/ f behaviour, 116, 386

Fourier analysis,seeFourier transform
Fourier energy, 33, 63
Fourier power spectrum,seepower spectrum
Fourier space, 424
Fourier transform, 29, 38, 423

connection to PCA, 107
definition, 423
discrete, 38, 428
fast, 433
spatiotemporal, 338
two-dimensional, 433

frame (in image sequences), 337
frequency
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negative, 426
frequency channels, 59, 279, 285

produced by ICA, 182
frequency-based representation, 29, 338

as a basis, 40
function

log cosh, 143, 150, 172, 198, 276, 297, 299,
347, 350, 403, 412

neighbourhood, 250
nonlinear,seenonlinearity
tanh,seenonlinearity, tanh

Gabor filter, 44, 274
Gabor function, 44, 58, 285, 324, 355

in complex cell model, 63
gain control, contrast,seecontrast gain control
gain control, luminance, 65
ganglion cells, 54, 65, 127

learning receptive fields, 130
number compared to V1, 290
receptive fields, 56

gaussian distribution
and PCA, 115
and score matching estimation, 440
generalized, 173
multidimensional, 115
one-dimensional, 72
spherical symmetry when whitened, 164
standardized, 72, 81
uncorrelatedness implies independence, 165

gaze direction, 318
gradient, 395
gradient method, 396

conjugate, 410
stochastic, 402
with constraints, 398

Gram-Schmidt orthogonalization, 156
grandmother cell, 54

Hebb’s rule, 400
and correlation, 401
and orthogonality, 405

Hessian, 408
horizontal interactions

seelateral interactions 307

ice cube model, 249
image, 3
image space, 11
image synthesis

by ICA, 169
by ISA, 241
by PCA, 116

impulse response, 28, 423

independence
as nonlinear uncorrelatedness, 160
definition, 77
implies uncorrelatedness, 81
increased by divisive normalization, 218
of components, 161

independent component analysis, 159
after variance normalization, 217
and Hebb’s rule, 402
and mutual information, 195
and non-gaussianity, 161
and optimal sparseness measures, 172
connection to sparse coding, 170
definition, 161
for preprocessed data, 162
image synthesis, 169
impossibility for gaussian data, 164
indeterminacies, 161
likelihood,seelikelihood, of ICA
maximum likelihood, 167
need not give independent components, 209
nonlinear, 234
of complex cell outputs, 276
of colour images, 323, 330
of image sequences, 347
of natural images, 168
optimization in, 405
pdf defined by, 166
score matching estimation, 442
topographic, 252
vs. whitening, 163

independent subspace analysis, 223
as nonlinear ICA, 234
generative model definition, 229
image synthesis, 241
of natural images, 235
special case of topographic ICA, 254
special case of two-layer model, 266
superiority over ICA, 243

infomax, 196
basic, 197
nonlinear neurons, 198
with non-constant noise variance, 199

information flow
maximization,seeinfomax

information theory, 13, 185
critique of application, 202

inhibition, 54
integrating out, 266
invariance

modelling by subspace features, 224
not possible with linear features, 223
of features, importance, 242
of ISA features, 238
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rotational (of image),seeanisotropy
shift (of a system), 423
to orientation, 229, 247
to phase, of a feature

and sampling grid, 113
in complex cells, 63
in ISA, 228, 235

to position, 224, 242
to scale, 386, 388

and 1/ f 2 power spectrum, 118
to translation, of an image, 125

and relation to PCA, 106
inverse of matrix, 419

kurtosis, 173, 174, 350
and classification of distributions, 175
and estimation of ICA, 180
definition, 140

Laplacian distribution, 172, 312
generalized, 173
two-dimensional generalization, 230

lateral geniculate nucleus,seeLGN
lateral interactions, 307, 315, 318, 364, 385
LGN, 54, 203

learning receptive fields, 130, 345
receptive fields characterized, 56

likelihood, 89, 91, 167
and divisive normalization, 215
maximum, 90, 382, 438
obtained by integrating out, 267
of ICA, 168, 183

and infomax, 198
and differential entropy, 195
and optimal sparseness measures, 172
as a sparseness measure, 170
optimization, 397

of ISA, 229
of topographic ICA, 253, 256
of two-layer model, 267
used for deciding between models, 244

linear features
cannot be invariant, 223

linear-nonlinear model, 61
local maximum, 399
local minimum, 399
localization

simultaneous, 47
log cosh,seefunction, log cosh

Markov random field, 297, 384, 389
matrix

definition, 417
identity, 419

inverse, 419
of orthogonal matrix, 421

optimization of a function of, 397
orthogonal, 111

matrix square root, 129
and orthogonalization, 399
and whitening, 130

maximum entropy, 192
maximum likelihood,seelikelihood, maximum
metabolic economy, 155, 382
minimum entropy, 194

coding in cortex, 196
model

descriptive, 16
different levels, 393
energy,seeenergy model
energy-based, 264, 294
generative, 8, 264
normative, 16, 309, 382
physically inspired, 388
predictive, 273, 285
statistical, 88, 393
two-layer, 264

multilayer models, 389
multimodal integration, 336
music, 336
mutual information, 192, 195, 197

natural images
as random vectors, 69
definition, 12
sequences of, 337
transforming to a vector, 69

nature vs. nurture, 382
neighbourhood function, 250
neuron, 51
Newton’s method, 407
noise

added to pixels, 291
reduction and feedback, 308
reduction by thresholding, 311
white,seewhite noise

non-gaussianity
and independence, 178
different forms, 175
maximization and ICA, 177

non-negative matrix factorization, 300
with sparseness constraints, 302

nonlinearity, 139
convex, 141, 172, 173, 227, 232
gamma, 322
Hebbian, 403
in FastICA, 276, 411
in overcomplete basis, 293
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in three-layer model, 309
square root, 142, 172, 236
tanh, 276, 347, 403, 412

norm, 416
normal distribution,seegaussian distribution
normalization constant, 270, 295, 438

objective function, 394
ocular dominance, 330
optimization, 393

constrained, 398
under orthogonality constraint, 398

orientation columns, 250
orthogonality

and Hebb’s rule, 405
equivalent to uncorrelatedness, 111
of matrix or transformation, 420
of vectors, 416
of vectors vs. of matrix, 111
prevents overcompleteness, 289

orthogonalization
as decorrelation, 146
Gram-Schmidt, 156
symmetric, 399

orthonormality, 111
overcomplete basis

and end-stopping, 315
and PCA, 291
definition, 291
energy-based model, 294

score matching estimation, 443
generative model, 290

partition function,seenormalization constant
PCA,seeprincipal component analysis
pdf, 71

non-normalized, 437
phase, 29, 424

its importance in natural images, 120
phase response, 33, 426
photoreceptors, 54

and colour, 322
pinwheels, 258, 271
place cells, 336
plasticity, 400

spike-time dependent, 401
pooling, 226, 254

frequency, 277
positive matrix factorization, 300
posterior distribution, 84, 85, 308
power spectrum, 33

1/ f 2 behaviour, 116, 386
and covariances, 119
and gaussian model, 120

and PCA, 120
its importance in natural images, 120
of natural images, 116
spatiotemporal, 341
Wiener-Khinchin theorem, 119

preprocessing
by DC removal,seeDC component, removal
canonical, 113, 146, 150, 181, 227, 236, 253

how it changes the models, 162
in sparse coding, 144
input to visual cortex, 404
inversion of, 181

primary visual cortex,seeV1
principal component analysis

and Hebb’s rule, 403
and whitening, 109
as anti-aliasing, 111, 113
as dimension reduction, 108
as generative model, 115
as part of canonical preprocessing, 113
as preprocessing, 107
components are uncorrelated, 124
computation of, 104, 122
connection to Fourier analysis, 107
definition, 100
definition is unsatisfactory, 103
lack of uniqueness, 103, 125
mathematics of, 122
of colour images, 323
of natural images, 102, 104
of stereo images, 329

principal subspace, 108
prior distribution, 6, 10, 85, 86, 166, 292

non-informative, 86
prior information,seeprior distribution
probabilistic model,seemodel, statistical
probability

conditional, 75
joint, 73
marginal, 73

probability density (function),seepdf
products of experts, 296
pseudoinverse, 421
pyramids, 387

quadrature phase, 44, 150, 274
in complex cell model, 63

random vector, 70
receptive field, 55, 57

center-surround, 56, 127, 326, 345
classical and non-classical, 316
definition is problematic, 294, 315
Gabor model, 58
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linear model, 56
space-time inseparable, 340
space-time separable, 339
spatiotemporal, 338
temporal, 338
vs. feature (basis) vector, 180
vs. synaptic strength, 404

rectification, 65, 347, 355
half-wave, 61

redundancy, 13, 190
as predictability, 14
problems with, 190
reduction, 15

representation, 18
frequency-based,seefrequency-based

representation
linear, 18, 38

retina, 54
learning receptive fields, 130
receptive fields characterized, 56

retinotopy, 65, 250
reverse correlation, 57
RGB data, 322

sample, 88
two different meanings, 88

sampling, 3, 111, 328, 347
saturation, 61, 217
scale mixture, 177, 266
scaling laws, 386
score matching, 296, 382, 438
segmentation, 386
selectivities

of ISA features, 238
of simple cells, 58
of sparse coding features, 152

sequences
of natural images, 337

shrinkage, 312, 404
simple cells, 56, 254

distinct from complex cells?, 384
Gabor models, 58
interactions between, 63
linear models, 56
nonlinear responses, 59
selectivities, 58

sinusoidal, 425
skewness, 175, 176

in natural images, 176
slow feature analysis, 367

linear, 369
quadratic, 371
sparse, 374

space-frequency analysis, 41

sparse coding, 137
and compression, 194
and Hebb’s rule, 402, 403
connection to ICA, 170
metabolic economy, 155, 382
optimization in, 405
results with natural images, 145, 150
special case of ICA, 179
utility, 155

sparseness
as non-gaussianity, 175
definition, 137
lifetime vs. population, 148
measure, 139

absolute value, 143
by convex function of square, 141
kurtosis, 140
log cosh, 143
optimal, 159, 172
relation to tanh function, 403

minimization of, 180
of feature vs. of representation, 148
why present in images, 175

spherical symmetry, 231
spike, 51
square root

of a matrix,seematrix square root
statistical-ecological approach, 21
steerable filters, 229, 247, 388
step size, 396, 408
stereo vision, 328
stereopsis, 328
striate cortex,seeV1
sub-gaussianity, 175
subgaussianity

in natural images, 176
subspace features, 224, 225
super-gaussianity, 175

temporal coherence, 349
and spatial energy correlations, 359, 365

temporal response strength correlation,see
temporal coherence

thalamus, 54
theorem

central limit, 178, 231
of density of linear transform, 167
Wiener-Khinchin, 119

three-layer model, 276, 308
thresholding

and feedback, 312, 314
in simple cell response, 61

top-down, 307, 308
topographic grid, 250
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topographic ICA, 252
connection to ISA, 254
optimization in, 405

topographic lattice, 250
topographic organization, 65, 249

utility, 254
transmission

of data, 187
transpose, 418
tuning curve, 59

disparity, 333
of ISA features, 236
of sparse coding features, 152

two-layer model
energy-based, 270
fixed, 274
generative, 264

uncertainty principle, 47
uncorrelatedness

definition, 80
equivalent to orthogonality, 111
implied by independence, 81
nonlinear, 160

uniform distribution, 78
is sub-gaussian, 176
maximum entropy, 192

unsupervised learning, 385

V1, see alsosimple cellsandcomplex cells, 55
V2, 203, 286, 307
V4, 66

V5, 66
variance

as basis for PCA, 100
changing (non-constant), 177, 199, 213,

231, 265, 351
definition, 80

variance variable, 177, 213, 231, 265
vector, 415
vectorization, 70
vision, 3
visual space, 336

wavelets, 221, 387
learning them partly, 388

waves
retinal travelling, 383

white noise, 57, 197, 198, 281, 366
definition, 82

whitening, 109
and center-surround receptive fields, 126
and LGN, 126, 130
and retina, 126, 130
as part of canonical preprocessing, 114
by matrix square root, 130
by PCA, 109
center-surround receptive fields, 130
filter, 130
patch-based and filter-based, 127
symmetric, 130

Wiener-Khinchin theorem, 119
wiring length minimization, 135, 254
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