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Abstract

We explore the use of independent component analysis (ICA) for the automatic extraction

of linguistic roles or features of words. The extraction is based on the unsupervised analysis

of text corpora. We contrast ICA with singular value decomposition (SVD), widely used in

statistical text analysis, in general, and specifically in latent semantic analysis (LSA). However,

the representations found using the SVD analysis cannot easily be interpreted by humans.

In contrast, ICA applied on word context data gives distinct features which reflect linguistic

categories. In this paper, we provide justification for our approach called WordICA, present

the WordICA method in detail, compare the obtained results with traditional linguistic

categories and with the results achieved using an SVD-based method, and discuss the use of

the method in practical natural language engineering solutions such as machine translation

systems. As the WordICA method is based on unsupervised learning and thus provides a

general means for efficient knowledge acquisition, we foresee that the approach has a clear

potential for practical applications.

1 Introduction

In this paper, we present WordICA, a method designed for automatic extraction of

meaningful word features from text corpora. We begin by providing motivation to

our approach, presenting the basics of the independent component analysis (ICA)

method, describing how the analysis of words in contexts takes place and providing a

short description of a related method, latent semantic analysis (LSA). An important

aspect of ICA is that it conducts unsupervised learning. Unsupervised learning

enables the creation of models in a data-driven manner without any need for

explicit manual labeling or categorization (Hinton and Sejnowski 1999; Oja 2004).
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Language acquisition using unsupervised machine learning is carefully considered

by Clark (2001).

1.1 From manual tagging to automatic word feature extraction

Many natural language engineering applications require a syntactic analysis of the

input to ensure high-quality performance. In many applications, syntactic tagging

(see, e.g., Brill 1992) provides a sufficient alternative to full syntactic parsing. Tagging

can also be performed as an independent preprocessing step, for instance, as a first

step in semantic disambiguation (Wilks and Stevenson 1998). Dialogue systems can

benefit from such disambiguation. Part-of-speech (POS) tags can augment vector

space methods in which surface word forms are often used in a straightforward

manner. In information retrieval, tagging can produce more compact models for

document indexing (Kanaan, al Shalabi and Sawalha 2005). POS tagging has been

investigated in relation to statistical machine translation in which the factor models

can be enriched with the tags (Ueffing and Ney 2003; Koehn and Hoang 2007).

Moreover, the POS tags can be relevant in improving the alignment (Och 1999) and

evaluation processes (Callison-Burch et al. 2008) related to machine translation.

Traditionally, tagging and parsing systems have been based on manually encoded

rules or some other explicit linguistic representations. Church (1988) showed that

statistical tagging can provide comparable results with much less human effort in

developing the tagger. Since then, a large number of statistical and adaptive methods

have been developed, including, e.g., a statistical POS tagger using Markov models

(Brants 2000). However, this kind of supervised learning approach requires large

annotated corpora. Thus, the need for manual work has partly moved from one task

to another and annotated corpora are not available for all languages and specific

language uses.

Summarizing the discussion above, even if statistical methods are in use, they

may not ensure maximally efficient development of natural language engineering

solutions as large annotated training corpora are typically required. One step further

is to use unsupervised learning in bootstrapping: unsupervised learning methods

can be used to analyze an untagged corpus and find similarities in word usage. The

detected similarities can then be applied to perform tagging inductively. Haghighi

and Klein (2006a, 2006b) have presented methods for overcoming this problem by

propagating labels to corpora using a small set of original labeled samples. For

grammar induction, they augment an otherwise standard probabilistic context free

grammar.

There are some approaches that use unsupervised learning to assign tags to text,

such as hidden Markov models (HMM) (Merialdo 1994; Wang and Schuurmans

2005) with a tag set given beforehand. Johnson (2007) has taken this line of research

further by comparing different methods for estimating the HMMs.

In this paper, we describe an approach based on unsupervised learning which (1)

uses plain untagged corpora, and (2) creates a collection of tags (more precisely,

word features) autonomously without human supervision. The emergent results also
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Table 1. The relationship between LSA, TopicICA, HAL, word space, and WordICA

in terms of analyzed units, data, and the computational method

Text analysis Analyzed Context Computational Method’s

method units units method statistics

LSA Word/document Document/word SVD Second order

TopicICA Document Word ICA Higher order

HAL Word Word . . . . . .

Word Space Word Word SVD Second order

WordICA Word Word ICA Higher order

coincide well with traditional linguistic categories as shown by the experiments in

this paper.

POS tagging is a problem in which words in running text are tagged using a

predefined tag set, such as the Brown corpus tag set. Each word in the text is

typically given one of the tags depending, for instance, on the preceding words

and the tags assigned to those. Tagged text can be used as richer information in

other tasks that further process the text, such as word sense disambiguation or

machine translation. In contrast to the manual encoding approaches, we try to

find a distributed feature representation for individual words, where the tag set

is not discrete and manually determined. The occurrences of nearby words are

used as input data to the method, but we are not tagging words in running text.

From a linguistic point of view, our work relates to the idea of emergent grammar

(Hopper 1987) in which language use gives rise to the grammar.

Word features (or components) and POS tags (or categories) are thus interrelated

but not synonymous concepts. However, both can have similar uses in NLP

applications. Word features are emergent representations of word qualities, whereas

POS tags are representations of word qualities based on manually determined human

conceptualization.

In this paper, we will consider two computational methods, singular value

decomposition (SVD) and ICA, both applicable to the analysis of word contexts.

Specifically, we analyze words and utilize the co-occurrences of the analyzed words

with contexts units, namely other words. Table 1 provides a general comparison of

related text analysis methods that utilize SVD, ICA and contexts.

The main difference between the LSA and proposed WordICA approach is that

LSA uses SVD for the statistical analysis, whereas WordICA uses the ICA method.

Moreover, LSA is often used to analyze and represent documents whereas WordICA

is used to do the same for words. However, both the ICA and SVD analysis can

be conducted to representations at the level of documents, paragraphs, sentences or

individual words. Schütze (1992) has developed the Word Space method that utilizes

both word-word matrices and SVD for representing word meaning and senses. Lund,

Burgess and Audet (1996) have developed the Hyperspace Analogue to Language

(HAL) model, which is also based on a word-word matrix, but does not apply any
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dimension reduction or factorization techniques. Kolenda, Hansen and Sigurdsson

(2000) has applied ICA to topic analysis (labeled ‘TopicICA’ in Table 1).

1.2 Motivation for using independent component analysis

In this paper, we show that ICA applied on word context data gives distinct

features that reflect linguistic categories. Hyvärinen, Karhunen and Oja (2001) give

a thorough review of ICA. The WordICA analysis produces features or categories

that are both explicitly computed and can easily be interpreted by humans. This

result can be obtained without any human supervision or tagged corpora that

would have some predetermined morphological, syntactic or semantic information.

The results include both an emergence of clear distinctive features and a distributed

representation. This is based on the fact that a word may belong to several features

simultaneously in a graded manner. We propose that our model could provide

additional understanding on potential cognitive mechanisms in natural language

learning and understanding. Our approach suggests that much of the linguistic

knowledge is emergent in nature and based on specific learning mechanisms.

Our approach is in line with the paradigm that is increasingly common within

the area of cognitive linguistics. For instance, Croft and Cruse (2004) outline three

major hypotheses in the cognitive linguistic approach to language: (1) language

is not an autonomous cognitive faculty, (2) grammar is conceptualization, and

(3) knowledge of language emerges from language use. These three hypotheses

represent a response to the earlier dominant approaches to syntax and semantics,

i.e. generative grammar (Chomsky 1975) and truth-conditional logical semantics

(Tarski 1983; Davidson 2001). The first principle is opposed to the generative

grammar’s hypothesis that language is an autonomous and innate cognitive faculty

or module, separated from nonlinguistic cognitive abilities (Croft and Cruse 2004).

By the second principle, cognitive linguists refer to the idea that representation of

linguistic structures, e.g., syntax, is also basically conceptual. From our point of

view, this means that the basis of syntactic representations is subject to neurally

based knowledge formation processes rather than given in some abstract way or

genetically inherited. The third major principle states the idea that knowledge of

language emerges from language use, i.e. categories and structures in semantics,

syntax, morphology and phonology are built up from our cognition of specific

utterances on specific occasions of use (Croft and Cruse 2004). We relate to this

principle in a straightforward manner: the WordICA method facilitates emergence

of features or categories by analyzing the use of words in their contexts. In the

reported work, we focus on deriving the features from textual context but there is

no principled limitation in using the approach in multimodal contexts (for a related

approach, see Yu, Ballard and Asli 2003; Hansen, Ahrendt and Larsen 2005.)

In general linguistics, it is commonplace to specify a number of features that the

words may have. This specification is based on the intellectual efforts by linguists

who look for regularities in languages. For instance, linguistic features or so-called

tags applied in the widely used Brown corpus (Francis and Kucera 1964) include

predefined categories such as ‘preposition,’ ‘adjective,’ ‘superlative form of adjective,’
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‘noun,’ ‘noun in plural,’ ‘proper noun in plural,’ etc. The number of tags used

in the Brown corpus is 82, including tags for POS categories, function words,

certain individual words, punctuation marks of syntactic importance and inflectional

morphemes. A central question for our work is whether we can learn similar

features from a corpus automatically, and what the fit between the human-specified

features and the automatically generated features would be. If one is able to obtain

automatically a consistent and linguistically well-motivated set of features, it could

facilitate, for instance, automatic generation of useful lexical resources for language

technology applications such as natural language interfaces and machine translation.

In machine translation, the automatically extracted POS-like features can be used

at least in alignment and evaluation, as discussed in the previous section. Moreover,

this kind of result would further support the major hypotheses or principles of

cognitive linguistics listed above.

Next, we consider the use of ICA in the extraction of linguistic features for words

in their contexts. ICA learns features in an unsupervised manner. Several such

features can be present in a word, and ICA gives the explicit values of each feature

for each word. We expect the features to coincide with known linguistic categories:

for instance, we expect ICA to be able to find a feature that is shared by words

such as ‘must,’ ‘can’ and ‘may.’ In earlier studies, ICA has been used for document

level analysis of texts (see, e.g., Kolenda et al. 2000; Bingham, Kabán and Girolami

2002; Bingham, Kuusisto and Lagus 2002) .

We first give a brief outline of SVD as well as the theory of ICA and other basic

concepts.

1.3 Singular value decomposition and principal component analysis

Singular value decomposition is a method for matrix factorization, and it is an

integral part of the LSA method, presented later in the paper. Moreover, SVD is

one alternative as a typical preprocessing step for dimension reduction and whitening

before an ICA analysis.

Suppose X is an m-by-n matrix (m < n). There exists a factorization of the form

X = UDVT (1)

where U is an m-by-m orthogonal matrix, the matrix D is an m-by-m diagonal matrix

with nonnegative real numbers on the diagonal, and VT denotes the transpose of

V, an n-by-m orthogonal matrix. This factorization is called the singular-value

decomposition of X.

The SVD method is closely related to the principal component analysis (PCA)

method that is widely used in statistical data analysis. The PCA method transforms

a number of possibly correlated variables into a smaller number of uncorrelated

variables called principal components. The PCA method is typically used as a

preprocessing step for the ICA analysis to reduce the dimensionality of the original

data, to uncorrelate the data variables, and to normalize the variances of the

variables. As a textbook account on SVD and PCA one can use, e.g., Haykin (1999).
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1.4 Basic theory of independent component analysis

In the classic version of the ICA model (Jutten and Hérault 1991; Comon 1994;

Hyvärinen et al. 2001), each observed random variable is represented as a weighted

sum of independent random variables. An example of an observed random variable

in our case is the frequency of some word in a particular context. The independent

random variables refer to the underlying variables.

We can illustrate some of the intuitions behind the ICA method through a

practical example from another domain. For instance, the cocktail party problem

is a classical blind signal separation task where heard sound signals are studied as

the observed random variables. These are assumed to originate from a number of

separate sources, in this case, the discussants in a cocktail party who are speaking

at the same time. The heard signals are mixtures of the speech signals with different

proportions depending on the relative distance of a listener to each sound source.

The task is to separate the original speech signals from the observed mixtures.

The weights in the sum (which can be negative as well as positive) can be collected

in a matrix, called the mixing matrix. The weights are assumed to be different for

each observed variable, so that the mixing matrix can be inverted, and the values

of the independent components can be computed as some linear functions of the

observed variables.

Mathematically, the classic version of the ICA model can be expressed as

x = As (2)

where x = (x1, x2, . . . , xC )T is the vector of observed random variables, the vector of

the independent latent variables is denoted by s = (s1, s2, . . . , sD)T (the ‘independent

components’), and A is an unknown constant matrix, called the mixing matrix. If

we denote the columns of matrix A by ai the model can be written as

x =

D∑

i=1

aisi (3)

ICA finds the decomposition of (2) in an unsupervised manner. In other words,

the method observes the mixtures of signals, x, and estimates both the mixing

weights, A, and the original signals, s. This decomposition process does not require

any samples of the original signals.

In the cocktail party problem, the goal of ICA is to learn the decomposition of

the signals in an unsupervised manner, which means that we only observe the mixed

signals and have no information about the mixing coefficients, i.e., the mixing matrix

or the contents of the original signals.

ICA can be seen as an extension to PCA and factor analysis, which underlie LSA.

However, ICA is a more powerful technique capable of making underlying factors

explicit when the classic methods would not be able to do that. More precisely,

ICA is more powerful than PCA if the underlying components are non-Gaussian. In

fact, it can be shown that ICA is then capable to identify the original independent

components (Comon 1994), while PCA is not. From a practical point of view, the
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Fig. 1. Illustration on the effect of rotation on variance and kurtosis. The variance does not

change due to the rotation but only slightly because of a limited set of samples. Kurtosis

depends on the rotation and thus provides information beyond what the PCA and factor

analysis can find. Here the variance and kurtosis are measured along the x -axis.

main difference of the two methods is that while PCA finds projections which have

maximum variance, ICA finds projections which are maximally non-Gaussian.

While PCA is clearly inferior to ICA in terms of identifying the underlying factors,

it is useful as a preprocessing technique because it can reduce the dimension of the

data with minimum mean-squares error, by just taking the subspace of the first

principal components. In contrast, the purpose of ICA is not dimension reduction,

and it is not straightforward to reduce dimension with ICA.

The classic methods of PCA and factor analysis are based on second-order

moments (variance) whereas ICA is based on higher-order moments (e.g., kurtosis,

see Hyvärinen et al. 2001). This difference is summarized in Table 1 and the effect

of this difference is illustrated in Figure 1.

The starting point for ICA is the simple assumption that the components si
are statistically independent. Two random variables, y1 and y2, are independent if

information on the value of y1 does not give any information on the value of y2, and

vice versa. This does not need to hold for the observed variables xi. In case of two

variables, the independence holds if and only if p(y1, y2) = p(y1)p(y2). This definition

extends to any number of random variables. For instance in the case of the cocktail

party problem, different original sources are typically approximately independent.

There are three properties of ICA that should be taken into account when

considering the results of the analysis. First, one cannot determine the variances of

the independent components si. The reason is that, both s and A being unknown,

any scalar multiplier in one of the sources si could always be cancelled by dividing

the corresponding column ai of A by the same scalar. As a normalization step, one

can assume that each component has a unit variance, Var{si} = E{si2} = 1, with

zero-mean components, E{si} = 0. The ambiguity of the sign still remains: each

component can be multiplied by −1 without affecting the model.

The second property to be remembered is that the order of the components cannot

be determined. While both s and A are unknown, one can freely change the order

of the terms in (3) and call any of the components the first one.
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The third important property of ICA is that the independent components must

be non-Gaussian for ICA to be possible (Hyvärinen et al. 2001). Then, the mixing

matrix can be estimated up to the indeterminacies of order and sign discussed above.

This stands in stark contrast to such techniques as PCA and factor analysis, which

are only able to estimate the mixing matrix up to a rotation. This would be quite

insufficient for our purposes, as we wish to find components that would be cognitively

interesting by themselves, instead of a latent set of components. Assuming that the

components are independent as well as non-Gaussian, the rotation will separate the

interesting components from the mixtures.

Independent component analysis is computed in a stochastic manner and the

time complexity cannot be directly stated. However, the convergence of the Fast-

ICA algorithm (Hyvärinen 1999) is cubic, which makes it feasible to use with real

applications. Compared to second-order methods such as SVD or PCA, ICA is

always more complex, as it typically utilizes those in preprocessing. An empirical

time complexity evaluation for PCA and ICA is presented in Appendix B.

1.5 Analysis of words in contexts

Contextual information has widely been used in statistical analysis of natural

language corpora (see Church and Hanks 1990; Schüetze 1992; Manning and

Schütze 1999; Sahlgren 2006). Managing computerized form of written language

rests on processing of discrete symbols. How can a symbolic input such as a word

be given to a numeric algorithm? Similarity in the appearance of the words does

not usually correlate with the semantics they refer to. As a simple example one may

consider the words ‘window,’ ‘glass,’ and ‘widow.’ The words ‘window’ and ‘widow’

are phonetically close to each other, whereas the semantic relatedness of the words

‘window’ and ‘glass’ is not reflected by any simple metric. For the reasoning above,

we do not take into account the phonetic or orthographic form of words, but have

a distributional representation instead.

One useful distributional numerical representation can be obtained by taking the

sentential context in which the words occur into account. First, we represent each

word by a vector, and then code each context as a function of vectors representing

the words in that context. A context can be defined, for instance, as a sequence

of consecutive words in text. The basic idea is that the distributional similarity

of words is analyzed. In the simplest case, the dimension is equal to the number

of different word types, each word is represented by a vector with one element

equal to one and others equal to zero. Then the context vector simply gives the

frequency of each word in the context. In information retrieval, this is called the

bag-of-words model, in which the text is represented as an unordered collection of

words, disregarding grammar or word order. The bag-of-words model provides a

straightforward way to represent documents and queries in a shared vector space

(Salton, Wong and Yang 1975). The bag-of-words model can be used to compare

the similarity of contexts, i.e. similar contexts have similar vectorial representations.

For computational reasons, the dimension may be reduced by different methods. A

more compact representation can also be said to generalize similarities in the space
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of the words. A popular dimension reduction technique for text is SVD, which is

explained in more detail in Section 1.3.

1.6 Non-Gaussianity and independence in text data

The assumption of non-Gaussianity for the components in ICA is necessary because

the Gaussian distribution is, in some sense, too simple. Specifically, all the inform-

ation about a multivariate Gaussian distribution is contained in the covariance

matrix. However, the covariance matrix does not contain enough parameters to

constrain the whole matrix A, and thus the problem of estimating A for Gaussian

data is ill-posed (Comon 1994).

Another point of view is that uncorrelated (jointly) Gaussian variables are

necessarily independent. Thus, independence is easy to obtain with Gaussian vari-

ables since transforming multivariate data into uncorrelated linear components is

a straightforward procedure, for instance, with PCA or SVD. For a model with

non-Gaussian components, however, independence is a much stronger property, and

allows the ICA model to be estimated based on the non-Gaussian structure of the

data.

Natural signals based on sensory data are typically non-Gaussian (see, e.g., for

image data, Hyvärinen, Hurri and Hoyer, 2009). Text data is not ‘natural’ in the

same sense, since it is based on an encoding process. However, word contexts seem to

be non-Gaussian because of the sparseness of the data. A sparse distribution is one

in which there is a large probability mass for values close to zero, but also heavy tails

(cf. Zipf’s law). This is shown as values with a large proportion of small values and

zeros and only a few large values, which is intuitively related to ‘on/off’ data with

mostly ‘off’ values. Thus, ICA tries to represent each word with only a few clearly

active components, which is related to sparse coding (Hyvärinen et al. 2009). The

justification for using ICA for word contexts could thus be that human cognition

encodes language in a way similar to such sensory-level sparse coding. We are

not trying to claim, in general, that the brain ‘does ICA,’ but that the underlying

principles of efficient neural coding may be similar.

1.7 Latent semantic analysis

Latent semantic analysis is a technique for analyzing relationships between docu-

ments and terms. LSA was originally introduced as a new approach to automatic

indexing and retrieval (Deerwester et al. 1990), and is often called latent semantic

indexing (LSI) in that field. The technique behind LSA is SVD (1).

In LSA, SVD is used to create a latent semantic space. First, a document-term

matrix X is generated. Every term (for instance, a word) is represented by a column

in matrix X, and every document is represented by a row. An individual entry in X,

xdn, represents the frequency of the term n in document d. The raw frequencies are

typically processed, for instance, with log-entropy or tf-idf weighting. Next, SVD is

used to decompose matrix X into three separate matrices using (1). The first matrix

is a document by concept matrix U. The second matrix is a concept by concept
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matrix D. The third matrix is a concept by term matrix VT . The context for each

word in basic LSA is the whole document. A notable difference is that in our ICA

and SVD experiments (explained later in this paper), we used a local context, i.e.

the immediately preceding and following words, which will bring out more syntactic

information. This contrasts with LSA that uses document-term matrices and finds

topical information. This difference in the effect of using short versus long contexts is

highlighted by comparing the results of earlier experiments using different methods

(see, e.g., Bingham et al. 2001, 2002; Levy, Bullinaria and Patel 1998; Sahlgren 2006)

and the results reported later in this paper. Intuitively, the difference stems from the

fact that the use of long contexts with the bag-of-words model hides practically all

grammatical information.

Landauer and Dumais (1997) describe LSA in terms of learning and cognitive

science. The claim is that LSA acquired knowledge about the full vocabulary

of English at a rate comparable to school-children. The development of LSA

has also been justified through practical applications by Furnas et al. (1987),

such as cross-language retrieval (Dumais et al. 1997), word sense disambiguation

(Niu et al. 2004), text summarization (Steinberger et al. 2005), text segmentation

(Choi, Wiemer-Hastings and Moore 2001), and measurement of textual coherence

(Foltz, Kintsch and Landauer 1998).

One important problem with LSA, however, is that the latent concept space is

difficult to understand by humans. In this paper, we present a method to overcome

this limitation. Earlier related attempts include Finch and Schütze (1992), Schütze

(1995), and Clark (2000). Schütze (1995) presented a method for tag induction

in which the results of SVD were clustered into 200 distinct classes and further

compared with approximately the same number of POS tags used in the Brown

corpus (Francis and Kucera 1964). His method produces one POS tag per word

from a predefined tag set (which very much resembles the approach taken in Ritter

and Kohonen 1989; Honkela Pulkki and Kohonen 1995 using the self-organizing

map as the clustering algorithm). In contrast, our WordICA method automatically

creates a feature representation of the words without human supervision. Our

method can be contrasted with another unsupervised approach by Clark (2000),

in which contexts are clustered to create groups of words that have been used in

similar manner. Clark’s methods handle ambiguity and low frequency words well.

The WordICA method provides multiple emergent features per word. Rather than

clusters, these features are morphological, syntactic and semantic markers. Many of

these features seem to coincide with the traditional tags used, for instance, in the

Brown corpus. We present the comparison in Section 3. Moreover, the values of the

word features are continuous.

2 Data and methods

Here we describe the data sets and methods used in the experiments. We explain how

the contextual information was collected and represented for the two experiments.

The first one is a small scale experiment with manual detailed analysis that shows

that the results follow our initial assumptions. More specifically, the results indicate
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Fig. 2. Illustration on how text documents are transformed into word-document matrices (on

the right hand side) and word-word matrices (below). In this particular word-context matrix,

it has been indicated how many times a context word (e.g., ‘l’) appears immediately to the

left from each word (e.g., ‘b’). The word-document matrix simply indicates the number of

occurrences of each word in each document.

that the emergent representations are sparse and the features, in a qualitative

analysis, correspond to linguistically meaningful categories. The second experiment

uses a larger data set and is used to quantitatively evaluate whether the method

produces features that reflect categories created by human linguistic analysis.

2.1 Data and context matrix formation

We first describe the method for creating context matrices in its general form.

Thereafter, we present the data and the specific preprocessing parameters used in

our experiments. As the first step of the WordICA method, the most frequent

N words, or some other subset of N words, from the corpus are selected as the

vocabulary to be analyzed. For the context words, M of the most frequent words

are selected. Each context is defined by one of the context words and a location

related to the analyzed word. This is illustrated in Figure 2. A location can be, for

instance, the immediately preceding word or any of the two preceding words or two

following words.
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The number of different contexts depends on the selected context words and the

locations. An M-by-N word-word matrix X is formed in which xcn denotes the

number of occurrences of the n:th analyzed word with the c:th context word.

The data matrix X is preprocessed by taking the logarithm of the frequencies

increased by one. Taking the logarithm dampens the differences in the word

frequencies. This makes the computational methods model the most frequent words

less and enables finding more interesting phenomenon from the data. The co-

occurrence frequencies are smoothed by adding one to all frequencies (originating

from Laplace’s rule of succession). This makes the prior assumption that all possible

co-occurrences can happen with equal probability. Furthermore, this makes the

argument for the logarithm positive, without changing the sparsity of the data

matrix as logarithm of one is zero.

This kind of gathering of contextual information and representation of the

produced context-word matrix was conducted separately for the two data sets

explained next with detailed parameter values.

2.1.1 Data set 1: Connectionists e-mails

The data used in the small scale experiment consists of a collection of e-mails sent to

the Connectionists mailing list. The texts were concatenated into one file. Punctuation

marks were removed and all uppercase letters were replaced by the corresponding

lowercase letters. The resulting Connectionists E-mail corpus consists of 4, 921, 934

tokens (words in the running text) and 117, 283 types (different unique words).

The most frequent nouns, verbs, articles, conjunctions, and pronouns were included

in the analysis. In addition, some additional words were added to provide more

complete view on selected categories (e.g., ‘did’ to complement the verb ‘do’ that

belongs to the most frequent words). The list of words (N = 100) is shown in

Appendix A. The contextual information was calculated using the M = 2, 000 most

frequent types, where the context word immediately followed the analyzed word. No

stopword list was in use. This provided a 2, 000×100 matrix X. The data is available

at http://www.cis.hut.fi/research/cog/data/wordica/ including the data matrix and

the list of words used in the analysis.

In this experiment, we used a word-context matrix that is a transpose of the

context-word matrix X. Both data matrices X and XT can be given to ICA, however,

the independence assumptions (i.i.d. for the data, independence of components)

are targeted differently given the orientation of the data matrix. A similar idea has

been applied with successful results to functional brain imaging data, where different

orientations produce temporal ICA and spatial ICA for components that span either

time or space, respectively (McKeown et al. 1998). However, the difference is not

significant for the results in the present application.

2.1.2 Data set 2: Gutenberg e-books

We used the same English corpus of a collection of different texts from Project

Gutenberg as in Honkela, Hyvärinen and Väyrynen (2005) and in Väyrynen, Honkela
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and Hyvärinen (2004). The preprocessing was conducted in a simple manner. In

summary, most of the nonalphanumeric characters were removed and the remaining

characters were converted to lowercase. The resulting corpus consisted of 21, 951, 835

tokens with 188, 386 types.

For the analysis, only words that were also present in the Brown corpus (see

Section 2.1.3) were considered. This ensured that there was at least one tag for each

analyzed word. The N = 10, 000 most frequent words in the Gutenberg corpus from

those were selected as the vocabulary to be analyzed. Contextual information was

calculated based on the most frequent thousand words in the Gutenberg corpus,

without the limitation to words in the tagged Brown corpus. Contexts were calculated

separately for the context words immediately following and preceding the analyzed

words (M = 2 × 1, 000 = 2, 000). This resulted in a 2, 000 × 10, 000 data matrix X.

2.1.3 Tagged brown corpus

For evaluation purposes only, we also used the POS tagged Brown corpus (Francis

and Kucera 1964). The word category information was extracted from a subset of

the corpus that had a single word category tag tk assigned to each word token. We

collected the possible tags for each word type.

The word categories collected from the tagged Brown corpus were encoded as

column vectors ck of length N. The element ckn was set to one if the n:th analyzed

word occurred together with the k:th tag, and zero otherwise. Each analyzed word

belonged to at least one word category because all analyzed words were present

in the Brown corpus as well. Word categories without any words in the analyzed

vocabulary were removed, which left K = 58 word categories and binary-valued

word category vectors ck , k = 1, . . . , K .

2.2 Feature extraction

Our goal was to extract a number of features fi from the context-word matrix X.

Next, we show how ICA and SVD are used to extract features from data, and how

SVD can be seen as a preprocessing step to ICA.

Singular value decomposition (see Section 1.3)

X = UDVT (4)

explains the data X in terms of left singular vectors in U, singular values in D, and

right singular vectors in V. The singular vectors are orthogonal

UTU = VTV = I (5)

and D is a diagonal matrix. The vectors in U and V are usually sorted according

to the values of the corresponding singular values in the diagonal of D. Dimension

reduction can be done by selecting the largest singular values and the corresponding

vectors, i.e. setting the smallest singular values to zero. In our experiments, Matlab

command svds was used to extract a pre-specified number of the largest singular

values and vectors. The reduced matrix VT of right singular vectors gives the SVD

feature representation for words.
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The linear generative model

X = AS (6)

of ICA (see Section 1.4) in matrix form explains the rows of the data matrix X in

terms of a mixing matrix A and independent components S by assuming the inde-

pendence of the rows of S. We used the FastICA Matlab package (Hurri et al. 2002)

to extract a prespecified number of features. The independent components in matrix

S gives the ICA feature representation for words.

In the following, we consider only zero mean data (rows of X). If the data is not

zero mean, the mean can simply be removed before applying SVD and ICA. After

the computation, the transformed mean can be returned to the linear models.

In practice, we first perform PCA to decorrelate the data rows and set variances to

one, i.e. the data correlation matrix is a unit matrix. The process is called whitening.

The dimensionality of the data is also reduced with PCA to the number of extracted

features. Any other whitening and dimension reduction method could be used, for

instance, the applied method is equivalent to using SVD and reducing the data

matrix by only retaining the columns of U and V which correspond to the largest

singular values. The preliminary whitening that is typically performed in ICA can

be achieved by taking just the corresponding columns of V as the rows of the

whitened data. The ICA problem now reduces to finding a square whitened mixing

matrix B = UDA which follows the ICA model VT = BS for whitened data. For

whitened data the mixing matrix B is a rotation matrix. Based on the assumption

of independence, ICA is particularly useful for extracting the underlying structure

in the data. More specifically, ICA rotates the original SVD feature space in such

a way that each of the features tends to become a meaningful representation of

some linguistically motivated phenomenon. The feature space thus transforms from

a latent feature space into a space where each of the features carry meaning, for

instance, syntactic or semantic linguistic information in our analysis of words in

contexts. The nature of the emergent features of course depends on the formulation

of the data matrix X. For instance, the result is dependent on how the contexts are

specified and which words are included in the analysis.

The two feature extraction methods (SVD and ICA) are illustrated in Figure 3.

The matrices ST and V have the feature vectors fi as columns. We will use the

notation fi for the feature vectors regardless of the extraction method. The feature

vectors fi were scaled to unit variance as a postprocessing step after the feature

extraction in order to facilitate the comparison between SVD and ICA results. The

feature vectors can be understood to be encoded similarly to the rows of the data

matrix X, where the value of the n:th element says something about the n:th word.

In the experiments, we used the standard maximum-likelihood estimation by

setting the nonlinearity in FastICA (Hyvärinen 1999) to the tanh function, and

using symmetric orthogonalization (Hyvärinen et al. 2001). The dimensionality of

the data was reduced by PCA (this is implemented as part of the software).

Reduction of the dimensionality is often used to reduce noise and overlearning

(Hyvärinen et al. 2001).
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Fig. 3. Illustration on how SVD ((4), top illustration) and ICA ((6), bottom illustration)

are related in the process of analyzing zero-mean context data for words. The dotted lines

represent the whole feature spaces and the full lines represent data after dimension reduction.

Here ICA operates on whitened data VT and the whitened mixing matrix B is a square rotation

matrix. The extracted features for SVD and ICA are the rows of VT and S, respectively.

2.3 Comparison method

The comparison of the emergent features and manually defined tags is not straight-

forward. The basic reason for not using, for example, standard information retrieval

evaluation measures such as precision and recall, is the fact that the analysis

results are continuous, not discrete. More specifically, we do not discretize the

extracted features by, for instance, clustering, which would again deconstruct the

result obtained by the analysis. In other words, we do not want to divide the feature

space into disjoint areas, because the study of the properties of individual features

is an essential task. Another important reason is that the automatically extracted

features do not need to have a one-to-one mapping with the manually defined tags.

Therefore, we have developed a comparison method for this specific need, strongly

suggesting that this approach is necessary because of the unusual comparison

setting.

Next, we describe in detail the method we used to compare the results of feature

extraction methods (SVD and ICA) with manually constructed tags. Considering

two word categories k and l and the corresponding word category vectors ck and cl ,

the words wn in the vocabulary can be divided into four types:

(1) words belonging to category k and not to l,

(2) words belonging to category l and not to k,

(3) words belonging to both categories k and l, and

(4) words belonging neither to category k nor to l,

where each word wn belongs to exactly one of these types. This is illustrated in

Figure 4. Considering only two feature for each word, we can examine how well

those features with continuous values correspond to the crisp categories.

A two-dimensional subspace of two feature vectors fi and fj can be visualized as

a scatterplot, where the points (xn, yn) = (fi(n), fj(n)), n = 1, . . . , N are the words

wn in the vocabulary. The separation capability of the individual features can be

analyzed by studying the locations of the four disjoint types of words in the plane.
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Fig. 4. Illustration of the four types of words when considering categories k and l. The space

of all words in the vocabulary inside the dotted ellipse is divided into four disjoint areas.

Each word wn in the vocabulary belongs to exactly one of these areas.

What we want is to see type 1 and 2 words (see above) in their own axis away from

the origin, type 3 words away from the origin, and type 4 words in the origin. A

novel separation measure (Väyrynen and Honkela 2005) rewards or penalizes words

depending on the position on the plane and the type of the word. The words in type

3 represent ambiguity in language and are considered separately from the words in

the first two types.

Next, we will describe the separation measure we used in comparing the learned

features (Väyrynen and Honkela 2005). The measure works in three steps. First we

calculate the amount of separation that two features create for two word categories.

Secondly, we choose the best feature pair separating two categories. Finally, we

consider the mean separation capability of a set of features for a set of categories.

This average measures how well the emergent features are organized with respect to

the given categories.

The separation capability of two features i and j and two word categories k and

l is calculated as the mean of the rewards and penalties over all N words as

sep(k, l, i, j) =
1

N
(r10 + r01 + r11 + r00)

with the rewards split into four parts corresponding to the four disjoint types:

r10 =

N∑

n=1

ckn(1 − cln)(|xn| − |yn|)

r01 =

N∑

n=1

(1 − ckn)cln(|yn| − |xn|)

r11 =

N∑

n=1

cknckn(|xn|p + |yn|p)
1
p and

r00 = −
N∑

n=1

(1 − ckn)(1 − cln)(|xn|p + |yn|p)
1
p
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where distance from the origin is calculated using the p-norm distance metric.

In our experiments, we had the Euclidean distance (p = 2). A positive value is

given to a word located in a place that is beneficial to the separation of the word

categories and acts as a reward, whereas a negative value is considered a penalty.

The larger the value of sep(k, l, i, j), the better the separation is according to the

measure.

With the method, we can see if a word category is always best separated by the

same feature when compared against other word categories. If the learned features

are mixtures of the word categories, the best separating feature might differ when

tested against different word categories. The best feature pair (ikl , jkl) for the word

category pair (k, l) is selected as the pair giving the highest value with the separation

measure

sep(k, l) = max
i,j

sep(k, l, i, j)

(ikl , jkl) = arg max
i,j

sep(k, l, i, j)
(7)

The separation capability of a feature set is measured as the mean of the best

separation over all word category pairs

sep =
2

K2 + K

∑

k≥l

sep(k, l) (8)

where K is the number of word categories.

It is important to compare the capability of single features or feature pairs to

separate categories because this measures how well the obtained features correspond

to the categories. In fact, when all features are used, the separation capabilities of

ICA and SVD are comparable because the total information present is the same, as

discussed in detail by Vicente, Hoyer and Hyvärinen (2007). The reason for not using

standard information retrieval evaluation measures such as precision and recall is

the fact that the analysis results are continuous, not discrete. Another reason is that

we do not expect and require the results to have a one-to-one mapping between the

manually defined tags and ICA-based emergent features.

3 Results

We now turn to the results and evaluation of the extracted features from the two

experiments. The first experiment used a rather small text corpus of Connectionists

e-mails, introduced in Section 2.1.1, with 100 analyzed words, 2, 000 different contexts

and 10 extracted features. The resulting features were analyzed in detail by hand.

The study showed that our initial assumptions of the nature of the emergent

features were correct. In particular, the features correspond reasonably well with

linguistically motivated categories and they also form a sparse representation of the

data.

The second experiment used a larger corpus of Gutenberg e-books, introduced in

Section 2.1.2, with 10, 000 analyzed words, 2, 000 different contexts and 100 extracted

features. A manual analysis is not feasible due to the large number of words and



294 T. Honkela et al.

features. The match between the extracted features and syntactic tags for words

extracted from the tagged Brown corpus was computed for features extracted with

both SVD and ICA using the separation measure introduced in Section 2.3.

3.1 Experiment with connectionists list

The results of the ICA analysis corresponded in most cases very well or at least

reasonably well with our preliminary intuitions. The system was able to create

automatically distributed representations as a meaningful collection of emergent

linguistic features; each independent component was one such feature.

Next, we will show several examples of the analysis results. In considering the

feature distributions, it is good to keep in mind that the sign of the features is

arbitrary. Again, as was mentioned earlier, this is because of the ambiguity of the

sign: the components can be multiplied by −1 without affecting the model (see

Section 1.4).

Figure 5(a) shows how the third component is strong in the case of nouns in

singular form. A similar pattern was present in all the nouns with three exceptional

cases with an additional strong fourth component indicated in Figure 5(b). The

reason appears to be that ‘psychology’, ‘neuroscience’, and ‘science’ share a semantic

feature of being a science or a scientific discipline. This group of words provides a

clear example of distributed representation where, in this case, two components are

involved.

An interesting point of comparison for Figure 5(a) is the collection of plural

forms of the same nouns in Figure 5(c). The third component is strong as with the

singular nouns but now there is another strong component, the fifth.

Figure 6 shows how all the possessive pronouns share the feature number nine.

Modal verbs are represented clearly with component number ten as shown in

Figure 7. Here, slightly disappointingly, the modal verbs are not directly linked with

verbs in general through a shared component. This may be because of the distinct

nature of the modal verbs. Moreover, one has to remember that in this analysis we

used ten as the number of ICA features which sets a limit on the complexity of the

feature encoding. We used this limit in order to demonstrate the powerfulness and

usefulness of the method in a simple manner. A higher number of features can be

used to obtain more detailed feature distinctions.

Figure 8(a) shows how the adjectives are related to each other through the

shared feature number eight, and even number nine in the opposite direction. Quite

interestingly, this component number nine is associated with ing-ending verbs (see

Figure 8b) such as ‘modeling,’ ‘training,’ and ‘learning’ that can, naturally, serve in

the position of an adjective or a noun (consider, for instance, ‘training set’ versus

‘network training’).

Finally, there are individual words, particularly some verbs, for which the result is

not as clear as for other words. In Figure 9 it is shown how the verb ‘include’ and the

copula ‘is’ have several features present in a distributed manner. The word ‘is’ clearly

shares, however, the feature number two with the word ‘have.’ This slight anomaly

particularly concerning ‘include’ may also be related to the fact that ten features
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Fig. 5. (a) ICA representation for ‘model,’ ‘network,’ and ‘problem.’ (b) ICA representation

for ‘neuroscience,’ ‘psychology,’ and ‘science.’ (c) ICA representation for ‘models,’ ‘networks,’

and ‘problems.’
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Fig. 6. ICA representation for ‘his’, ‘our,’ and ‘their.’
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Fig. 7. ICA representation for ‘can’, ‘may,’ and ‘must.’
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Fig. 8. (a) ICA representation for ‘adaptive,’ ‘artificial,’ and ‘cognitive.’ (b) ICA

representation for ‘modeling,’ ‘training,’ and ‘learning.’

were used for the hundred words. For a related reason, a collection of particles and

similar frequent words were excluded from the analysis because many of them are

rather unique in their use considering the contexts in which they appear. In other

words, representatives of linguistics categories such as nouns and verbs share general

characteristics in the patterns of their use, whereas each particle has a specific role

profile which clearly differs from the use of other particles. This phenomenon was

already discernable in the analysis of word contexts using the self-organizing map

(Honkela et al. 1995).

The categorical nature of each component can also be illustrated by listing

the words that are strongest in each component (see Tables 2 and 3). The result

shows some very clear components such as 3–5 which can be considered noun
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Fig. 9. ICA representation for ‘include’, ‘is,’ and ‘have.’

Table 2. The most representative words for the first five features, in the order of

representativeness, top is highest

1 2 3 4 5

or is paper science networks

and are information university systems

is have it engineering learning

are has papers research models

have i system psychology processing

has we work neuroscience algorithms

use they networks technology recognition

. . . . . . . . . . . . . . .

categories. These three components were already discussed earlier. Component

number 8 is populated by adjectives, whereas number 10 contains modal verbs.

Verbs ‘to be’ and ‘have’ are in their different forms in the component 2. We can

also see a certain kind of component overloading in components 1 and 2. This is

explained by the limited number of component in use. With a larger number of

components, a more detailed representation of the linguistic phenomenon can be

gained (Borschbach and Pyka 2007). In general, the issue of choosing an optimal

number of components is an open question both for an ICA-based method as well

as for an SVD-based method such as LSA.

Table 3. The most representative words for the last five features, in the order of

representativeness, top is highest

6 7 8 9 10

a the neural their will

the an computational our can

and and cognitive your may

or or network my should

their their adaptive learning would

its its control research must

your are learning processing did

. . . . . . . . . . . . . . .
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Fig. 10. The best ICA feature pair separating the JJ (adjective) and the VB (verb) categories

with (7). The two upper diagrams show the distribution of the words belonging only to

the category JJ (upper left) and VB (upper right). The lower left scatter plot shows the

distribution of the words that belong to both categories. The lower right diagram consists of

words from neither category. Some of the words on the right from the origin appear to have

the characteristics of the listed adjectives, including adverbs and untagged adjectives.

The nouns ‘network’ and ‘control’ in component 8 in Figure 3 are often used in

the corpus in noun phrases like ‘neural network society.’ In general, the area and

style of the texts in the corpus are, of course, reflected in the analysis results.

3.2 Experiment with Gutenberg corpus

Next, we show several examples of the analysis results based on the Gutenberg

corpus. As was mentioned earlier, because of the ambiguity of the sign the

components can be multiplied by −1 without affecting the model.

Figures 10 and 11 compare a single word category pair with the best found

feature pair separating the word categories according to (7). The tag naming

is adopted from the Brown corpus, with JJ for category ‘adjective’ and VB for

category ‘verb, base: uninflected present, imperative or infinitive.’ In both figures, 60

features were extracted using SVD and ICA. The best found feature pair separating

the two categories is more clearly aligned with the coordinate axis for the ICA-

based features. With both methods, the shown features were consistently chosen



WordICA 299

−5 0 5 10 15

−10

−5

0

5

10

x

y

−5 0 5 10 15

−10

−5

0

5

10

x

y

−5 0 5 10 15

−10

−5

0

5

10

x

y

−5 0 5 10 15

−10

−5

0

5

10

x

y

Fig. 11. The found best SVD feature pair separating the JJ (adjective) and the VB (verb)

categories with (7). The scatter plots show the words in the four types plotted in the subspace

created by the two features. The basic interpretation of the diagram is the same as for

Figure 10. The result clearly indicates that the SVD analysis is unable to detect single features

that would correspond to existing categories based on linguistic intuition and analysis.

to represent the JJ and VB categories when they were tested against all feature

pairs.

Figure 12 shows the average separation over the feature set with (8) for the

ICA-based and the SVD-based features as a function of the number of extracted

features. Compared to SVD, the FastICA algorithm is not guaranteed to give exactly

the same features for each computation because it starts from a random starting

point. This variation was taken into account by running the ICA algorithm five

times and calculating the mean and standard deviation of the separation measure

for each extracted feature set. The ICA-based features give clearly higher separation

compared to SVD-based features. The separation capability increases with the

number of extracted features, as would be expected.

4 Conclusions and discussion

We have shown how ICA can find explicit features that characterize words in

an intuitively appealing manner, in comparison with, for instance, SVD as the

underlying computational method for LSA. We have considered WordICA for
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Fig. 12. Comparison between ICA (upper curve) and SVD (lower curve) as a function of the

number of extracted features. The y-axis shows the separation calculated with (8), and higher

values indicate better separation. For the ICA-based features the mean and one standard

deviation of five different runs is shown.

the analysis of words as they appear in text corpora. ICA appears to enable a

qualitatively new kind of result. It provides automatically a result that resembles

the manual formalization, e.g., based on the classical case grammar Fillmore

(1968) and other similar approaches that represent the linguistic roles of words.

SVD provides comparable results lacking, however, the explicitness of the distinct

emergent features.

The analysis results show how the ICA analysis is able to reveal underlying

linguistic features solely based on the contextual information. The results include

both the emergence of clear distinctive categories or features as well as a distributed

representation based on the fact that a word may belong to several categories

simultaneously.

An important question is why the ICA analysis is able to reveal meaningful

features when SVD and related methods are not. The methodologically oriented

answer is based on the fact that independent components are typically found

by finding maximally non-Gaussian components. This often means learning a

maximally sparse representation for the data. The reasoning is that human cognition

encodes information in a very similar fashion. We do not claim in general that

the brain does ICA, but that the underlying principles of efficient neural coding

brings forth quite similar representations. Suggestive evidence exists supporting the

claim that process-level similarity between brain and ICA-like processes can be

found in, at least, the area of visual cognition (Hyvärinen et al. 2009). The results

shown in this paper suggest that this could be true also in the case of linguistic

processing.



WordICA 301

The distributed representation can be used as a low-dimensional encoding for

words in various applications. The limited number of dimensions brings computa-

tional efficiency whereas the meaningful interpretation of each component provides

a basis for intelligent processing. In Section 3.2, we showed that there is a clear

relationship between emergent features and syntactic features.

Unsupervised learning can provide better generalization capability than supervised

methods that are restricted to the annotated corpus, even if more unannotated

material is readily available. Also, a linguistically motivated structure or typology

may not be the perfect solution to each application. A good example of this is

given in (Hirsimäki et al. 2006), where unsupervised morphological analysis of

words gave better results than traditional morphological analysis in the applica-

tion of unlimited vocabulary automatic speech recognition. The applied method

(Creutz and Lagus 2007) segments words into statistical morphemes based on a

corpus of text only, i.e. it does not depend on any given set of morphemes, and is

able to segment previously unseen words. How these out-of-vocabulary words are

dealt with is often crucial to the performance of a natural language engineering

applications such as speech recognition (Bazzi and Glass 2000).

In the future, we will also evaluate the usefulness of the WordICA method in

various applications including natural language generation and machine translation.

For machine translation, it seems that the WordICA method can be expanded into

the analysis of parallel corpora. Preliminary experiments show that related words in

different languages appear close to each other in the component space. This might

even make it possible to find translations for words and phrases between languages

(Väyrynen and Lindh-Knuutila 2006). It would also be interesting to adapt the

topical analysis models of latent Dirichlet allocation (Blei, Ng and Jordan 2003)

and discrete PCA (Buntine and Jakulin 2004) to word analysis and compare the

results to ICA. Moreover, it is also worth while to study how encoding the relative

position of terms in a sliding window influences the results of the analysis (Jones

and Mewhort 2007; Sahlgren, Holst and Kanerva 2008).

In summary, we are optimistic that the WordICA method will be relevant

in language technology applications such as information retrieval and machine

translation, as well as in cognitive linguistics as a provider of additional un-

derstanding on potential cognitive mechanisms in natural language learning and

understanding.
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Appendix A: Connectionists data

The list of the 100 words with their frequencies used in the Connectionists experiment

is shown below. The full data is available at http://www.cis.hut.fi/research/cog/data/

wordica/.

the 186,182 model 6,441 its 3,332

and 116,247 cognitive 6,259 send 3,326

a 78,343 applications 6,234 was 3,317

is 45,708 workshop 5,731 psychology 3,272

neural 25,956 computational 5,695 results 3,209

are 24,831 department 5,592 neuroscience 3,195

university 21,325 their 5,208 include 3,182

will 19,527 system 5,171 language 3,120

or 19,240 your 5,138 center 3,095

learning 18,255 algorithms 4,844 technology 3,052

networks 15,713 institute 4,716 used 3,034

an 14,527 work 4,613 list 3,019

it 14,499 analysis 4,579 technical 2,988

I 14,422 subject 4,571 international 2,965

research 13,671 engineering 4,420 must 2,958

we 12,671 recognition 4,352 memory 2,941

systems 11,672 control 4,262 visual 2,888

can 11,223 artificial 4,132 application 2,887

have 11,029 would 4,129 pattern 2,871

network 10,671 number 4,115 text 2,862

you 9,997 theory 4,097 different 2,856

information 9,874 brain 4,066 form 2,822

science 8,624 training 3,988 computation 2,776

papers 7,896 program 3,973 knowledge 2,758

paper 7,478 problem 3,970 adaptive 2,719

models 7,261 registration 3,940 modeling 2,697

conference 7,202 use 3,928 my 2,477

should 7,118 methods 3,836 his 1,297

computer 7,114 do 3,819 biology 1,179

data 6,876 problems 3,799 result 868

has 6,818 they 3,762 develop 728

may 6,720 algorithm 3,714 did 353

new 6,657 our 3,710

processing 6,547 machine 3,474
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Fig. 13. PCA timings for an N-by-M matrix as the number of extracted features.

Appendix B: Time complexity evaluation

Running times for PCA and ICA as a function of the number of extracted features

are presented in the following. All the experiments were run in Matlab. PCA was

computed with the eigs command for the covariance matrix of the data. PCA

timings include computing the covariance matrix, computing PCA, projecting the

data to a reduced space, and whitening. ICA was computed with the FastICA

Matlab package (Hurri et al. 2002) for the whitened data with reduced dimension,

and thus does not include the time used for preprocessing. The ICA timings include

computing the ICA rotation and projecting the rotated whitened data back to the

original space. The command cputime was used to measure the used CPU time in

seconds. Each experiment was run 100 times and the average timings are shown.

PCA was computed for several N-by-M cooccurrence matrices computed from

the Gutenberg corpus. The most frequent words were selected as the words chosen

for the four experiments with different matrix sizes: 100-by-500, 250-by-500, 100-

by-2, 000, and 250-by-2, 000. PCA was used to whiten the data and reduce the

dimension to the number of extracted features. PCA timings are shown in Figure 13.

The output of PCA was selected as the input to ICA, which rotated the whitened

data and projected the result back to the original space. ICA timings are shown in

Figure 14.

Even though this experiment considers only small input matrices, some conclusions

can be made. The timings for PCA are considerably lower than for ICA. More

significantly, the PCA timings grow roughly linearly with the number of features,
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Fig. 14. ICA timings for an N-by-M matrix, which has already been whitened and reduced

to an F-by-M matrix with PCA, as the number of extracted features F .

whereas the ICA timings grow more rapidly. The number of rows (N) has a greater

effect for PCA, whereas the ICA timings are clearly dominated by the number of

columns (M). This is because PCA is calculated for the covariance matrix with size

N-by-N, whereas ICA uses the projected lower dimensional data that has the same

number of rows as the number of extracted features, which is typically lower than

the number of columns.


