
A quasi-stochastic gradient algorithm for
variance-dependent component analysis

Aapo Hyvärinen1, Shohei Shimizu12

1 Helsinki Institute for Information Technology, University of Helsinki, Finland
2 The Institute of Statistical Mathematics, Japan

http://www.cs.helsinki.fi/hiit bru/index neuro.html

Abstract. We discuss the blind source separation problem where the
sources are not independent but are dependent only through their vari-
ances. Some estimation methods have been proposed on this line. How-
ever, most of them require some additional assumptions: a parametric
model for their dependencies or a temporal structure of the sources,
for example. In previous work, we have proposed a generalized least
squares approach using fourth-order moments to the blind source sepa-
ration problem in the general case where those additional assumptions
do not hold. In this article, we develop a simple optimization algorithm
for the least squares approach, or a quasi-stochastic gradient algorithm.
The new algorithm is able to estimate variance-dependent components
even when the number of variables is large and the number of moments
is computationally prohibitive.

1 Introduction

In blind source separation methods, the observed signals xi(t) (i = 1 · · ·m) are
typically assumed to be linear mixtures of sources sj(t) (j = 1 · · ·n). Let āij

denote the coefficients in the linear mixing between the sources sj(t) and the
observed signals xi(t). Then the mixing can be expressed as

xi(t) =
n∑

j=1

āijsj(t). (1)

The problem of blind source separation is now to estimate both the source signals
si(t) and the mixing coefficient āij based on observations of the xi(t) alone [1].

The model (1) is called independent component analysis (ICA) model if sj(t)
are assumed to be non-gaussian and independent [2]. The ICA model has been
extensively studied for last two decades, and many estimation techniques for the
model are available [3].

Recently, many extensions of the ICA model have started to be considered [4–
6]. A quite interesting extension among them is the case where the source signals
are not independent but dependent only through their variances [6]. To model



such dependencies, [7] assumed that each source signal si(t) can be represented
as a product of two random signals vi(t) and yi(t):

xi(t) =
n∑

j=1

āijvj(t)yj(t), (2)

where vi(t) and yi(t) are independent, yi(t) are independent over time and are
mutually independent of each other. No assumption on the distribution of yi(t)
is made other than yi(t) have zero means. The variance signals vi(t) are non-
negative signals giving general activity levels and are allowed to be statisti-
cally dependent. Thus, the vi(t) could produce dependencies between sources
si(t) = vi(t)yi(t). No particular assumptions on the dependencies between vi(t)
are made. This setting was called double-blind source separation problem be-
cause one neither observes the source signals si(t) nor postulates a parametric
model of their dependencies.

In [7], it was further assumed that the source signals have some time de-
pendencies (autocorrelations) and a method was proposed that uses the time
structure of the observed signals for separating the source signals. The time
dependency assumption is the key to the method, and the method is not appli-
cable to the case where the source signals are not temporally structured and has
a more limited domain of applications, since many kinds of data do not have
temporal structure in practice.

In [8], estimating functions for the model (2) was studied, and the quasi max-
imum likelihood estimation that requires no time dependencies was proposed.
However, one has to appropriately choose the nonlinearity depending on whether
the underlying independent signals yi(t) are supergaussian or subgaussian as in
maximum likelihood methods for the ordinary ICA model. Moreover, they have
to make certain extra assumptions on the signs of certain complicated nonlinear
cross-moments of the sources, and it is not very clear when these are fulfilled.

In previous work [9], we proposed a generalized least squares approach using
second- and fourth-order moment structures of observed signals in the general
case where no temporal structure is available and it is unknown whether the
underlying signals are supergaussian or subgaussian. However, its optimization
using the ordinary gradient descent method is more difficult for larger variables
since the number of moments increases enormously. In this paper, we provide a
computationally efficient algorithm, or a quasi-stochastic gradient algorithm.

2 Model

We shall define the following model, which we will refer to as variance-dependent
component analysis (VDCA) here. Let us collect the source signals in a vector
s = [s1, · · · , sn]T , and also construct the observed signal vector x in the same
manner. (We omit the time indices in the subsequent part since we do not con-
sider time structures.) Let us further collect the mixing coefficients in a matrix



Ā = [āij ]. The VDCA model for the m-dimensional observed vector x is written
as

x = Ās, (3)

where non-gaussian components si can be expressed as products of two signals vi

and yi, si = viyi, as in (2), where the yi are zero-mean and mutually independent,
and that the set of the yi is independent from the set of the vj . No assumptions
on the dependencies of the vj with each other are made. An important point in
the VDCA model is that no temporal structure is assumed, which is different
from [7]. Here, we further assume Ā to be square, which is a typical assumption
in blind source separation [3].

An illustrative example

To illustrate the VDCA model, let us consider two stereotypical signals for which
ordinary ICA does not work but VDCA does work. Let us define v1, v2, y1 and
y2 as follows:

v1 = 0.2 + exp{−4(t − 7)2} + 0.5 exp{−4(t − 4)2} (4)
v2 = 0.2 + exp{−4(t − 6.8)2} + 0.5 exp{−4(t − 4.2)2} (5)
y1 = sin(50t) (6)
y2 = cos(37t) (7)
(t = 0, 0.01, 0.02, · · · , 10).

Then we define variance-dependent signals s1 = v1y1, s2 = v2y2. Here, the un-
derlying signals yi are subgaussian and variance signals vi are highly correlated.
See Figure 1 for the original source signals si, estimated sources si by VDCA
and FastICA with the hyperbolic tangent nonlinearity [10].

The point is that ICA tries to find a maximally non-gaussian linear com-
bination of the source signals. Now it finds two conflicting goals: in the source
signals, the sinusoids yi inside the envelopes are subgaussian, hence the original
signals maximize subgaussianity inside the envelopes. In contrast, modulation
by vi make the signals si supergaussian, and hence an ICA algorithm should
maximize supergaussianity to maximize non-gaussianity. This conflict between
sub- and super-gaussianity makes ICA fail.

3 A generalized least squares approach

In previous work [9], we have proposed the generalized least squares approach
(GLS) in estimation that utilizes higher-order moment to estimate Ā in (3).

Let us denote by σ2(τ ) the vector that consists of elements of the covariance
matrix based on the model where any duplicates due to symmetry have been
removed and by σ4(τ ) the vector that consists of the tensor of fourth-order
(cross-) moments where duplicate entries have been removed and by τ the vector



Fig. 1. Top left and bottom left: the original sources. Top center and bottom center:
the estimated sources by VDCA. Top right and bottom right: the estimated sources
by FastICA (tanh). The quasi-stochastic gradient algorithm with the stepsize 0.01 was
run 10 times, and the estimates with the smallest value of the objective function were
taken to avoid getting stuck in local minimum. Then our algorithm separated 100% of
the sources (100 replications), whereas FastICA worked poorly (2%).

of source statistics and mixing coefficients that uniquely determines the second-
and fourth-order moment structures of the model σ2(τ ) and σ4(τ ). Then the
σ2(τ ), σ4(τ ) and τ can be written as

σi(τ ) = HiE[
i times︷ ︸︸ ︷

x ⊗ · · · ⊗ x ] (i = 2, 4),
(8)

where the symbol ⊗ denotes the Kronecker product3 and Hi is a selection matrix

of order
„

m + i − 1
i

«

×mi (i = 2, 4) that selects non-duplicated elements. The

parameter vector τ consists of Ā and E(s2
ps

2
q).

In [9], we proposed that the model is estimated using the principle of gen-
eralized least-square estimation. This is a method of matching the moments of
the observed data mi and those based on the model σi(τ ) in a weighted least-
squares sense (i = 2, 4).

Let x1, . . . , xN be a random sample from the VDCA model as defined in
Section 2, and define the sample counterparts to the moments in (8) as

mi =
1
N

Hi

N∑
t=1

i times︷ ︸︸ ︷
xt ⊗ · · · ⊗ xt (i = 2, 4). (9)

3 The Kronecker product X ⊗ Y of matrices X and Y is defined as a partitioned
matrix with (i, j)-th block equal to xijY.



Let us denote by τ 0 the true parameter vector. The σi(τ 0) can be estimated by
the mi when N is enough large: σi(τ 0) ≈ mi (i = 2, 4).

The GLS estimator of τ is obtained as

τ̂ = arg min
τ

∥∥∥∥[
m2

m4

]
−

[
σ2(τ )
σ4(τ )

]∥∥∥∥2

bU−1

. (10)

(For simplicity, the norm yT My of a vector y associated with a nonnegative
definite matrix M is here expressed as ‖y‖2

M.) Here Û is a weight matrix in
GLS estimation and converges in probability to a certain positive definite matrix
U. The resultant GLS estimator τ̂ determined by (10) is then consistent and
asymptotic normal [11]. We simply take the identity matrix as Û in the following.

4 A quasi-stochastic gradient algorithm

In this section, we propose a simple optimization algorithm for the least squares
approach above. We assume that the data is prewhitened by a whitening matrix
V in an ordinary way [3] and denote by z = Vx the prewhitened signals. Then
we can constrain A = VĀ to be orthogonal, which stabilizes the algorithm
below.

The total objective function (10) in the GLS approach becomes monstrous
because we have sum over all the moments4, and it only works for small di-
mensions. Denote by ãi the i-th row of A and by C a symmetric matrix whose
(i, j)-th element is E(s2

i s
2
j). (Note that τ consists of the elements of A and the

lower triangular elements of C.) A simple way to solve this problem would be
to consider the objective function as a sum over the variable indices i, j, k, l:∑

i,j,k,l

Jijkl(A,C), (11)

where

Jijkl(A,C) =

{
1
N

N∑
t=1

zitzjtzktzlt − E(ãis, ãjs, ãks, ãls)

}2

. (12)

Let us compute the gradient of Jijkl with respect to A and C, denoted by
∇AJijkl and ∇CJijkl, respectively (see Appendix A for the complete formulas).
We can now update the estimate of A and C by taking random indices i, j, k, l
at each iteration and using a simple gradient descent for Jijkl (see Step 4 in the
algorithm below). At each gradient step, we take new random indices i, j, k, l.
This kind of a stochastic gradient descent finds the minimum of the sum of the
Jijkl that we wanted to minimize in the first place, because the gradient is on
the average the same as the gradient of the whole sum.
4 The number of fourth-order moments is of order n4.



To improve the convergence, it is quite useful to perform a projection of the
gradient on the tangent surface of the set of orthogonal matrices [12]. This means
replacing the gradient ∇AJijkl by

∇ort
A Jijkl = ∇AJijkl − A(∇AJijkl)T A. (13)

Thus, the estimation consists of the following steps:

0. Remove the mean from the data and whiten it. Choose (random) initial
values for the matrices A and C.

1. Randomly choose four indices i, j, k, l.
2. Compute the gradients with respect to A and C as given in Appendix A.
3. Compute the projected gradient with respect to A by (13).
4. Do a gradient step

A ← A − µ∇ort
A Jijkl (14)

C ← C − µ∇CJijkl, (15)

where µ is a small stepsize constant.
5. Orthogonalize A by

A ← (AAT )−1/2A. (16)

The five steps 1-5 are repeated until A and C have converged. Then we obtain
the estimate of Ā by V−1A.

5 Simulations

We conducted simulations to study the empirical performance of the algorithm
above. The simulation consisted of 100 source separation trials with three differ-
ent methods: 1) the quasi-stochastic gradient algorithm proposed in the paper;
2) FastICA using kurtosis and 3) FastICA using hyperbolic tangent function [10].
For the two FastICA, the symmetric orthogonalization was made. (The FastICA
with the symmetric orthogonalization using hyperbolic tangent function as the
nonlinearity is basically the same as the quasi-maximum likelihood estimation
[13].) We took 0.1 as the stepsize and stopped the quasi-stochastic gradient iter-
ation when the average change of orthogonalized mixing matrices measured by
1 − min{diag(AT

oldAnew)} over the last 100 iterations is smaller than 0.00015.
In each trial, we generated 10 sources that were dependent through their

variances and created observed signals following the VDCA model as defined in
Section 2. First, we created a random signal v0 with several sample sizes (3,000,
5,000, 10,000, 30,000) where their components were independently distributed
according to the gaussian distribution with zero mean and unit variance. Out-
liers, defined as values larger than a threshold of 3 times the standard deviation,
5 Here, the quasi-stochastic gradient algorithm was run once for each data.



were eliminated from the resulting signals by reducing their values to the above-
mentioned threshold. The variance signals vi were then defined as the absolute
values of the signal, that is, vi = |v0| (i = 1, · · · , 10). The variance signals were
completely dependent on each other since they were identical, but they were in-
dependent over time. (Therefore, the double-blind method [7] that used temporal
correlations was not applicable to this case.)

Next the source signals si were created by multiplying the variance signals vi

by ten-dimensional random signals yi, that is, si = viyi. Here, the ten underlying
signals yi were i.i.d. (white) zero-mean subgaussian random processes to create
enough variance dependencies [7]. (The subgaussian signals were signed fourth
root of zero mean-uniform variables.) The source signals were normalized to have
zero means and unit variances. Finally, a random mixing matrix Ā was created,
and the signals were mixed to provide the observed signals xi, i = 1, · · · , 10.

The three methods were then applied on the data after prewhitening it.
The performance of each method was assessed as follows. Denoting by W the
transpose of the obtained estimate of the orthogonalized mixing matrix A (with
permutation and sign indeterminacies), we looked at the matrix WVĀ. We
computed how many elements in this matrix had an absolute value that was
larger than 0.90. First of all, it must be noted that the matrix WVĀ is rather
exactly orthogonal (up to insignificant errors occurred in the estimation of the
whitening matrix), so there can be no more than 10 such elements in the matrix,
and no row or column can contain more than one such element. In the ideal
case where WVĀ is a signed permutation matrix, there would be exactly 10
such elements. Thus, this gave a measure of how many source signals had been
separated.

The results are shown in Table 1. Our method separated more than 97.0%
of the components for the reasonable sample sizes (5,000, 10,000, 30,000). On
the other hand, both FastICAs could not separate the components at all (0%)
since FastICA is based on independence of sources. Thus, our method was quite
good, while not being perfect.

Table 1. Percentage of components recovered (100 replications)

Sample size
3,000 5,000 10,000 30,000

Stoc. grad. alg. 87.4 97.6 97.8 97.6
FastICA (kurtosis) 0 0 0 0
FastICA (tanh) 0 0 0 0

6 Conclusions

We proposed a quasi-stochastic gradient algorithm for the GLS approach using
second- and fourth-order moment structures of observed signals to the blind



source separation of sources that are dependent only through their variances. In
the approach, we do not have to assume that the sources have some temporal
structures nor postulate any parametric models for their dependencies. This
could be a big advantage of our approach over the conventional methods.

Although our method works well in simulations, moment-based methods of-
ten suffer from sensitivity to outliers when applied on certain kinds of real data.
An important question for future research is to investigate how serious this prob-
lem is and, eventually, how it can be alleviated.
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A Gradient of the objective function

The gradients of the objective function in (12) are as follows:

∇AJijkl = −2

{
1
N

N∑
t=1

zitzjtzktzlt − E(zizjzkzl)

}
∂E(zizjzkzl)

∂A
(17)

∇CJijkl = −2

{
1
N

N∑
t=1

zitzjtzktzlt − E(zizjzkzl)

}
∂E(zizjzkzl)

∂C
. (18)

In what follows, we provide E(zizjzkzl) that were given by the VDCA model
and their first derivatives with respect to A and C to compute ∇AJijkl and
∇CJijkl above.

We first provide the model-based expectations E(zizjzkzl):

E(z4
i ) =

X

p

a4
ipE(s4

p) + 6
X

p<q

a2
ipa2

iqE(s2
ps2

q)

E(z3
i zj) =

X

p

a3
ipajpE(s4

p) + 3
X

p<q

(a2
ipaiqajq + aipajpa2

iq)E(s2
ps2

q)

E(z2
i zjzk) =

X

p

a2
ipajpakpE(s4

p) +
X

p<q

(a2
ipajqakq + 2aipajpaiqakq

+2aipakpaiqajq + a2
iqajpakp)E(s2

ps2
q)

E(z2
i z2

j ) =
X

p

a2
ipa2

jpE(s4
p) +

X

p<q

(a2
ipa2

jq + a2
iqa

2
jp + 4aipajpaiqajq)E(s2

ps2
q)

E(zizjzkzl) =
X

p

aipajpakpalpE(s4
p) +

X

p<q

(aipajpakqalq + aipajqakpalq

+aipajqakqalp + aiqajqakpalp + aiqajpakqalp + aiqajpakpalq)E(s2
ps2

q).

Next, we give the first derivatives:

∂E(z4
i )

∂aip
= 4a3

ipE(s4
p) + 12

X

q 6=p

aipa2
iqE(s2

ps2
q),

∂E(z4
i )

∂E(arp)
= 0 (r 6= i, l),

∂E(z4
i )

∂E(s4
p)

= a4
ip,

∂E(z4
i )

∂E(s2
ps2

q)
= 6a2

ipa2
iq

∂E(z3
i zj)

∂aip
= 3a2

ipajpE(s4
p) + 3

X

q 6=p

(2aipaiqajq + ajpa2
iq)E(s2

ps2
q)

∂E(z3
i zj)

∂ajp
= a3

ipE(s4
p) + 3

X

q 6=p

aipa2
iqE(s2

ps2
q)

∂E(z3
i zj)

∂arp
= 0 (r 6= i, j),

∂E(z3
i zj)

∂E(s4
p)

= a3
ipajp

∂E(z3
i zj)

∂E(s2
ps2

q)
= 3(a2

ipaiqajq + aipajpa2
iq)



∂E(z2
i zjzk)

∂aip
= 2aipajpakpE(s4

p) +
X

q 6=p

(2aipajqakq + 2ajpaiqakq + 2akpaiqajq)E(s2
ps2

q)

∂E(z2
i zjzk)

∂ajp
= a2

ipakpE(s4
p) +

X

q 6=p

(2aipaiqakq + a2
iqakp)E(s2

ps2
q)

∂E(z2
i zjzk)

∂akp
= a2

ipajpE(s4
p) +

X

q 6=p

(2aipaiqajq + a2
iqajp)E(s2

ps2
q)

∂E(z2
i zjzk)

∂arp
= 0 (r 6= i, j, k),

∂E(z2
i zjzk)

∂E(s4
p)

= a2
ipajpakp

∂E(z2
i zjzk)

∂E(s2
ps2

q)
= a2

ipajqakq + 2aipajpaiqakq + 2aipakpaiqajq + a2
iqajpakp

∂E(z2
i z2

j )

∂aip
= 2aipa2

jpE(s4
p) +

X

q 6=p

(2aipa2
jq + 4ajpaiqajq)E(s2

ps2
q)

∂E(z2
i z2

j )

∂ajp
= 2a2

ipajpE(s4
p) +

X

q 6=p

(2a2
iqajp + 4aipaiqajq)E(s2

ps2
q)

∂E(z2
i z2

j )

∂arp
= 0 (r 6= i, j),

∂E(z2
i z2

j )

∂E(s4
p)

= a2
ipa2

jp

∂E(z2
i z2

j )

∂E(s2
ps2

q)
= a2

ipa2
jq + a2

iqa
2
jp + 4aipajpaiqajq

∂E(zizjzkzl)

∂aip
= ajpakpalpE(s4

p) +
X

q 6=p

(ajpakqalq + ajqakpalq + ajqakqalp)E(s2
ps2

q)

∂E(zizjzkzl)

∂ajp
= aipakpalpE(s4

p) +
X

q 6=p

(aipakqalq + aiqakqalp + aiqakpalq)E(s2
ps2

q)

∂E(zizjzkzl)

∂akp
= aipajpalpE(s4

p) +
X

q 6=p

(aipajqalq + aiqajqalp + aiqajpalq)E(s2
ps2

q)

∂E(zizjzkzl)

∂alp
= aipajpakpE(s4

p) +
X

q 6=p

(aipajqakq + aiqajqakp + aiqajpakq)E(s2
ps2

q)

∂E(zizjzkzl)

∂arp
= 0 (r 6= i, j, k, l),

∂E(zizjzkzl)

∂E(s4
p)

= aipajpakpalp

∂E(zizjzkzl)

∂E(s2
ps2

q)
= aipajpakqalq + aipajqakpalq

+aipajqakqalp + aiqajqakpalp + aiqajpakqalp + aiqajpakpalq.


