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Abstract

We present new measures of the causal direction, or direction of effect, between two non-Gaussian

random variables. They are based on the likelihood ratio under the linear non-Gaussian acyclic

model (LiNGAM). We also develop simple first-order approximations of the likelihood ratio and

analyze them based on related cumulant-based measures, which can be shown to find the correct

causal directions. We show how to apply these measures to estimate LiNGAM for more than two

variables, and even in the case of more variables than observations. We further extend the method

to cyclic and nonlinear models. The proposed framework is statistically at least as good as existing

ones in the cases of few data points or noisy data, and it is computationally and conceptually very

simple. Results on simulated fMRI data indicate that the method may be useful in neuroimaging

where the number of time points is typically quite small.

Keywords: structural equation model, Bayesian network, non-Gaussianity, causality, independent

component analysis

1. Introduction

Estimating structural equation models (SEMs), or linear Bayesian networks is a challenging prob-

lem with many applications in bioinformatics, neuroinformatics, and econometrics. If the data is

Gaussian, the problem is fundamentally ill-posed. Recently, it has been shown that using the non-

Gaussianity of the data, such models can be identifiable (Shimizu et al., 2006). This led to the

Linear Non-Gaussian Acyclic Model, or LiNGAM.

The original method for estimating LiNGAM was based on first applying independent compo-

nent analysis (ICA) to the data and then deducing the network connections from the results of ICA.

However, we believe that it may be possible to develop better methods for estimating LiNGAM

directly, without resorting to ICA algorithms.
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A framework called DirectLiNGAM was, in fact, proposed by Shimizu et al. (2011) to provide

an alternative to the ICA-based estimation. DirectLiNGAM was shown to give promising results

especially in the case where the number of observed data points is small compared to the dimension

of the data. It can also have algorithmic advantages because it does not need gradient-based iterative

methods. An essential ingredient in DirectLiNGAM is a measure of the causal direction between

two variables.

An alternative approach to estimating SEMs is to first estimate which variables have connec-

tions and then estimate the direction of the connection. While a rigorous justification for such an

approach may be missing, this is intuitively appealing especially in the case where the amount of

data is limited. Determining the directions of the connections can be performed by considering each

connection separately, which requires, again, analysis of the causal direction between two variables.

Such an approach was found to work best by Smith et al. (2011) which considered causal analysis

of simulated functional magnetic resonance imaging (fMRI) data, where the number of time points

is typically small. A closely related approach was proposed by Hoyer et al. (2008), in which the PC

algorithm was used to estimate the existence of connections, followed by a scoring of directions by

an approximate likelihood of the LiNGAM model; see also Ramsey et al. (2011).

Thus, we see that measuring pairwise causal directions is a central problem in the theory of

LiNGAM and related models. In fact, analyzing the causal direction between two non-Gaussian

random variables (with no time structure) is an important problem in its own right, and was consid-

ered in the literature before the advent of LiNGAM (Dodge and Rousson, 2001).

In this paper, we develop new measures of causal direction between two non-Gaussian random

variables, and apply them to the estimation of LiNGAM. The approach uses the ratio of the like-

lihoods of the models corresponding to the two directions of causal influence. A likelihood ratio

is likely to provide a statistically powerful method because of the general optimality properties of

likelihood. We further propose first-order approximations of the likelihood ratio which are easy

to compute and have simple intuitive interpretations. They are also closely related to higher-order

cumulants and may be more resistant to noise. The framework is also simple to extend to cyclic or

nonlinear models.

The paper is structured as follows. The measures of causal directions are derived in Section 2.

In Section 3 we show how to apply them to estimating the model with more than two variables.

The extension to cyclic models is proposed in Section 4 and an extension to a nonlinear model in

Section 5. We report simulations with comparisons to other methods in Section 6, experiments on

simulated brain imaging data in Section 7, and results on a publicly available benchmark data set in

Section 8. Section 9 concludes the paper. Preliminary results were published by Hyvärinen (2010).

2. Finding Causal Direction Between Two Variables

In this section, we present our main contribution: new measures of causal direction between two

random variables.

This section is structured as follows: We first define the problem in Section 2.1. We derive

the likelihood ratio in Section 2.2. We propose a general-purpose approximation for the likelihood

ratio in Section 2.3. The connection to mutual information is explained in Section 2.4. We derive

a particularly simple approximation for the likelihood ratio in Section 2.5, and propose an instance

for the case of sparse, symmetric densities. A theoretical analysis of the approximation based on

cumulants is given in Section 2.6. We give intuitive interpretations of the approximations in Sec-
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tion 2.7, and discuss their noise-tolerance in Section 2.8. Finally, we show how to use the likelihood

ratio approximations in the case of skewed variables in Section 2.9.

For the benefit of the reader, we have further created Table 3 in the Conclusion on page 150 that

lists the main new measures proposed in this paper.

2.1 Problem Definition

Denote the two observed random variables by x and y. Assume they are non-Gaussian, as well as

standardized to zero mean and unit variance. Our goal is to distinguish between two causal models.

The first one we denote by x → y and define as

y = ρx+d

where the disturbance d is independent of x, and the regression coefficient is denoted by ρ. The

second model is denoted by y → x and defined as

x = ρy+ e

where the disturbance e is independent of y. The parameter ρ is the same in the two models because

it is equal to the correlation coefficient. Note that these models belong to the LiNGAM family

(Shimizu et al., 2006) with two variables. In the following, we assume that x,y follow one of these

two models.

Note that in contrast to Dodge and Rousson (2001) or Dodge and Yadegari (2010), we do not

assume that d or e are normal, or have zero cumulants. We make no assumptions on their distribu-

tions. It is not even necessary to assume that they are non-Gaussian; it is enough that x and y are

non-Gaussian. (This is related to the identifiability theorem in ICA which says that one of the latent

variables can be non-Gaussian, see Comon, 1994).

2.2 Likelihood Ratio

An attractive way of deciding between the two models is to compute their likelihoods and their ratio.

Consider a sample (x1,y1), . . . ,(xT ,yT ) of data. The likelihood of the LiNGAM in which x → y was

given by Hyvärinen et al. (2010) as

logL(x → y) =

[

∑
t

Gx(xt)+Gd(
yt −ρxt
√

1−ρ2
)

]

−T log(1−ρ2)

where Gx(u) = log px(u), and Gd is the standardized log-pdf of the residual when regressing y on x.

The last term here is a normalization term due to the use of standardized log-pdf Gd . From this we

can compute the likelihood ratio, which we normalize by 1
T

for convenience:

R =
1

T
logL(x → y)− 1

T
logL(y → x)

=
1

T
∑

t

Gx(xt)+Gd(
yt −ρxt
√

1−ρ2
)−Gy(yt)−Ge(

xt −ρyt
√

1−ρ2
). (1)

We can thus compute R and decide based on it what the causal direction is. If R is positive, we

conclude x → y, and if it is negative, we conclude y → x.
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To use (1) in practice, we need to choose the G’s and estimate ρ. The statistically optimal way

of estimating ρ would be to maximize the likelihood, but in practice it may be better to estimate

it simply by the conventional least-squares solution to the linear regression problem. Nevertheless,

maximization of likelihood might be more robust against outliers, because log-likelihood functions

often grow more slowly than the squaring function when moving away from the origin.

Choosing the four log-pdf’s Gx,Gy,Gd,Ge could, in principle, be done by modelling the relevant

log-pdf’s by parametric (Karvanen and Koivunen, 2002) or non-parametric (Pham and Garrat, 1997)

methods, which will be discussed in more detail below. However, for small sample sizes such

modelling can be very difficult. In the following, we provide various parametric approximations.

2.3 Maximum Entropy Approximations of Likelihood Ratio

The likelihood ratio has a simple information-theoretic interpretation which also means we can use

well-known entropy approximations for its practical computation in the case where we do not want

to postulate functional forms for the G’s.

If we take the asymptotic limit of the likelihood ratio, we obtain

R −→−H(x)−H(d̂/σd)+H(y)+H(ê/σe) (2)

where we denote differential entropy by H, the estimated residuals by d̂ = y−ρx, ê = x−ρy, and

the variances of the estimated residuals by σ2
d ,σ

2
e .

Thus, we can approximate the likelihood ratio using any general, possibly non-parametric, ap-

proximations of differential entropy. For example, we can use the maximum entropy approxima-

tions by Hyvärinen (1998) which are computationally simple. In fact, we only need to approximate

one-dimensional differential entropies, which is much simpler than approximating two-dimensional

entropies.

One version of the approximations by Hyvärinen (1998) is given by

Ĥ(u) = H(ν)− k1[E{logcoshu}− γ]2 − k2[E{uexp(−u2/2)}]2 (3)

where H(ν) = 1
2
(1+ log2π) is the entropy of the standardized Gaussian distribution, and the other

constants are numerically evaluated as

k1 ≈ 79.047,

k2 ≈ 7.4129,

γ ≈ 0.37457.

This approximation is valid for standardized variables; in fact, all the variables in (2) are standard-

ized. The intuitive idea in this approximation is that since the Gaussian distribution has maximum

entropy among all distributions of unit variance, entropy can be approximated by a measure of non-

Gaussianity which is subtracted from H(ν). The sum of the second and third terms on the right-hand

side of (3) is a measure of non-Gaussianity (ignoring their negative signs) since the terms are the

squared differences of certain statistics from the corresponding values obtained for a Gaussian dis-

tribution. In fact, γ is defined as the expectation of logcosh for a standardized Gaussian distribution,

so the second term on the right-hand side is zero for a Gaussian distribution, just like the skewness-

like statistic measured by the last term.
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The expression in (2) also readily gives a simple intuitive interpretation of the estimation of

causal direction. The (negative) entropies can all be interpreted as measures of non-Gaussianity,

since the variables are standardized. Thus, in (2) we essentially compute the sum of the non-

Gaussianities of the explaining variable and the resulting residual, and compare them for the two

directions. The directions which leads to maximum non-Gaussianity is chosen.1

2.4 Connection to Mutual Information

It is also possible to give an information-theoretic interpretation which connects the likelihood ratios

to independence measures.

A widely-used independence measure is mutual information, defined for two variables x,y as

I(x,y) = H(x)+H(y)−H(x,y)

where H denotes differential entropy. For a linear transformation
(

u

v

)

= A

(

x

y

)

,

we have the entropy transformation formula

H(u,v) = H(x,y)+ log |detA|.
On the other hand, the transformation from x,y to x,d has unit determinant, since

(

x

y

)

=

(

1 0

a 1

)(

x

d

)

.

Thus, we have

H(x,d) = H(x,y)

and likewise for H(y,e). We can now consider the mutual information of the regressors and the

residuals in the two models, and in particular, compute the difference of the mutual informations to

see which one is smaller. In fact, the difference of the mutual informations is asymptotically equal

to the likelihood ratio R since

I(x,d)− I(y,e) = H(x)+H(d)−H(x,d)− (H(y)+H(e)−H(y,e))

= H(x)+H(d)−H(y)−H(e) = H(x)+H(
d

σd

)−H(y)−H(
e

σe

)− logσd + logσe

= H(x)+H(
d

σd

)−H(y)−H(
e

σe

)

where the joint entropies H(x,e) and H(y,d) as well as the variances of the residuals (which are

equal) cancel. Thus, our criterion is equivalent to evaluating the independence of x vs. d and y vs. e

using mutual information, and choosing the direction in which the regressor is more independent of

the residual.

Again, these developments show the important practical advantage that we only need to eval-

uate one-dimensional entropies, although the definition of mutual information contains a two-

dimensional entropy.

1. Note that this is not the same as the simple heuristic approach in which we only compute the non-Gaussianities of the

actual variables x,y and assume that direction must be from the more non-Gaussian variable to the less non-Gaussian

one.
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2.5 First-Order Approximation of Likelihood Ratio

Next we develop some simple approximations of the likelihood ratio. Our goal is to find causality

measures which are simpler (conceptually and possibly also computationally) than the likelihood

ratio or its general approximation given above.

Let us make a first-order approximation

G(
y−ρx

√

1−ρ2
) = G(y)−ρxg(y)+O(ρ2)

where g is the derivative of G, and likewise for the regression in the other direction. Then, we get

the approximation R̃:

R ≈ R̃ =
1

T
∑

t

G(xt)+G(yt)−ρxtg(yt)−G(yt)−G(xt)+ρytg(xt) =
ρ

T
∑

t

−xtg(yt)+g(xt)yt .

Pham and Garrat (1997) proposed a method for estimating the derivatives of log-pdf’s of random

variables. Their method could be directly used for estimating g. However, since our main goal here

is to find methods which work for small sample sizes, we try to avoid such estimation of the g’s

which has potentially a very large number of parameters. Instead, here we assume that we have

some prior knowledge on the distributions of the variables in the model. In fact, a result well-

known in the theory of ICA is that it does not matter very much how we choose the log-pdf’s in the

model as long as they are roughly of the right kind (Hyvärinen et al., 2001). This claim is partly

justified by the cumulant-based analysis and simulations below.

In particular, very good empirical results are usually obtained by modelling any sparse (i.e.,

super-Gaussian, or positively kurtotic), symmetric densities by either the logistic density

G(u) =−2logcosh(
π

2
√

3
u)+ const. (4)

or the Laplacian density

G(u) =−
√

2|u|+ const.

where the additive constants are immaterial. The Laplacian density is not very often used in ICA

because its derivative is discontinuous at zero which leads to problems in maximization of the ICA

likelihood. However, here we do not have such a problem so we can use the Laplacian density as

well.

Thus, if we approximate all the log-pdf’s by (4), we get the “non-linear correlation”

R̃sparse = ρÊ{x tanh(y)− tanh(x)y} (5)

where we have omitted the constant π
2
√

3
which is close to one, as well as a multiplicative scaling

constant. Here, Ê means the sample average. This is the quantity we would use to determine the

causal direction. Under x → y, this is positive, and under y → x, it is negative.

2.6 Cumulant-Based Approach

To get further insight into the likelihood ratio approximation in (5), we consider a cumulant-based

approach which can be analyzed exactly. The theory of ICA has shown that cumulant-based ap-

proaches can shed light into the convergence properties of likelihood-based approaches. However,
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cumulant-based methods tend to be very sensitive to outliers, so their utility is mainly in the theo-

retical analysis; for analysing real data, the measure in (5) is preferred.

Here, an approach based on fourth-order cumulants is possible by defining

R̃c4(x,y) = ρÊ{x3y− xy3} (6)

where the idea is that the third-order monomial analyzes the main nonlinearity in the nonlinear

correlation. In fact, we can approximate tanh by a Taylor expansion

tanh(u) = u− 1

3
u3 +O(u5). (7)

Then, first-order terms are immaterial because they produce terms like Ê{xy−xy} which cancel out,

and the third-order terms can be assumed to determine the qualitative behaviour of the nonlinearity.

Our main results of the cumulant-based approach is the following:

Theorem 1 If the causal direction is x → y, we have

R̃c4 = kurt(x)(ρ2 −ρ4) (8)

where kurt(x) = E{x4}−3 is the kurtosis of x. If the causal direction is the opposite, we have

R̃c4 = kurt(y)(ρ4 −ρ2). (9)

Proof Consider the fourth-order cumulant

C(x,y) = cum(x,x,x,y) = E{x3y}−3E{xy}

where we assume the two variables are standardized. We have kurt(x) = C(x,x) = cum(x,x,x,x).
The nonlinear correlation can be expressed using this cumulant as

R̃c4 = ρ[C(x,y)−C(y,x)]

since the linear correlation terms cancel out. We use next two well-known properties of cumulants.

First, the linearity property says that for any two random variables v,w and constants a,b we have

cum(v,v,v,av+bw) = acum(v,v,v,v)+bcum(v,v,v,w)

and second, cum(v,w,x,y) = 0 if any of the variables v,w,x,y is statistically independent of the

others. Thus, assuming the causal direction is x → y, that is, y = ρx+d with x and d independent,

we have

R̃c4 = ρ[cum(x,x,x,ρx+d)− cum(x,ρx+d,ρx+d,ρx+d)]

= ρ[ρcum(x,x,x,x)+ cum(x,x,x,d)

−ρ3cum(x,x,x,x)−3ρ2cum(x,x,x,d)−3ρcum(x,x,d,d)− cum(x,d,d,d)

= ρ[ρkurt(x)−ρ3kurt(x)] = kurt(x)[ρ2 −ρ4]

which proves (8). The proof of (9) is completely symmetric: exchanging the roles of x and y will

simply change the sign of the nonlinear correlation, and the kurtosis will be taken of y.
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The regression coefficient ρ is always smaller than one in absolute value, and thus ρ2 −ρ4 > 0.

Assuming that the relevant kurtosis is positive, which is very often the case for real data, the sign

of R̃c4 can be used to determine the causal direction in the same way as in the case of the likelihood

approximation R̃ in (5). Thus, the cumulant-based approach allowed us to prove rigorously that a

nonlinear correlation of the form (6) can be used to infer the causal direction, since it takes opposite

signs under the two models. Note that this nonlinear correlation has exactly the same algebraic

form as the likelihood ratio approximation (5); only the nonlinear scalar function is different. In

particular, this analysis shows that the exact form of the nonlinearity is not important: the cubic

nonlinearity is valid for all distributions of positive kurtosis.

If the relevant kurtosis is negative, a simple change of sign is needed. In general, we should thus

multiply R̃c4 by the sign of the kurtosis to obtain

R̃′
c4(x,y) = sign(kurt(x))ρÊ{x3y− xy3}.

Here, we get the complication that we have to choose whether we use the sign of the kurtosis of x

or y. Usually, however, the signs would be the same, and we might have prior information on their

sign, which is in most applications positive.2

Related cumulant-based measure were proposed by Dodge and Rousson (2001) and Dodge and

Yadegari (2010). Their fourth-order measures used the ratio of marginal kurtoses, as opposed to

the cross-cumulants we use here. They further assumed the disturbances to be Gaussian (or at least

to have zero cumulants), which makes their measures less general than ours. In fact, their method

relies on the fact that kurtosis is decreased by adding a Gaussian disturbance, but if the disturbance

is much more kurtotic than the regressor, the opposite can be the case.

2.7 Intuitive Interpretations

Next, we provide some intuitive interpretations of the obtained first-order approximations of the

likelihood ratio.

2.7.1 GRAPHICAL INTERPRETATION

The cumulants and nonlinear correlations have a simple intuitive intepretation. Let us consider the

cumulant first. The expectations E{x3y} or E{xy3} are basically measuring points where both x

and y have large values, but in contrast to ordinary correlation, they are strongly emphasizing large

values of the variable which is raised to the third power.

Assume the data follows x → y, and that both variables are sparse (super-Gaussian). Then, both

variables simultaneously have large values mainly in the cases where x takes a large value, making

y large as well. Now, due to regression towards the mean, that is, |ρ|< 1, the value of x is typically

larger than the value of y. Thus, E{x3y}> E{xy3}. This is why E{x3y}−E{xy3}> 0 under x → y.

The idea is illustrated in Figure 1.

2. In the general case where the (real) kurtoses of x and y are allowed to have different signs, we need to compute

two quantities: R̃′
c4(x,y) = sign(kurt(x))ρÊ{x3y− xy3} and R̃′

c4(y,x) = sign(kurt(y))ρÊ{y3x− yx3}. According to

the analysis above, the former quantity is positive if x → y, and the latter quantity is positive if y → x. However, in

practice, this does not lead to a simple decision rule since due to finite sample size, or violations of the model, it

could be that both of these quantities are positive, or none of them. In such cases, the decision rule should be defined

so as to indicate that the causal direction could not be decided.
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y

x

Figure 1: Intuitive illustration of the nonlinear correlations. Here, x → y and the variables are very

sparse. The nonlinear correlation E{x3y} is larger than E{xy3} because when both vari-

ables are simultaneously large (the “arm” of the distribution on the right and the left), x

attains larger values than y due to regression towards the mean.

This interpretation is valid for the tanh-based nonlinear correlation as well, because we can use

the function h(u) = u− tanh(u) instead of tanh to measure the same correlations but with opposite

sign. In fact, we have

R̃sparse = ρÊ{h(x)y− xh(y)}

because the linear terms cancel each other. The function h is a soft thresholding function, and thus

has the same effect of emphasizing large values as the third power. Thus the same logic applies for

h and the third power.

2.7.2 INTERPRETATION AS IMPLICATION

Even if the data is not assumed to follow any particular model, the nonlinear correlation could be

interpreted as a logical implication. In general, if the existence of event A implies the existence of

event B, but there is no implication in the other direction, a causal influence from A to B might be

inferred. Since A ⇒ B is equivalent to ¬B ⇒¬A, there has to be some clear distinction between the

events and their negations for this interpretation to be meaningful. We assume here that the events

are rare, that is, have small probabilities.

Now, let us consider the events A, defined as “x takes a very large value” and B, defined as “y

takes a relatively large value of the same sign as x”. Notice that because the regression coefficient

is smaller than one, we cannot require y to take particularly large values. It is assumed here that the

thresholds for deciding when a value is large are chosen so that both of these events are rare.

To investigate implication, we can consider how to refute it. To refute A⇒B, we should consider

cases where x takes a very large value but y takes a value of the opposite sign. This can be measured

by Ex3(−y) where x3 looks at large values of x and the minus sign changes this into a measure of

how much large values of x coexist with y’s of opposite sign.
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Thus, Ex3y−Exy3 can be seen as measuring of how much evidence we have to refute y ⇒ x

(latter term) minus the evidence to refute x ⇒ y (negative of first term). If it is large, we accept the

implication x ⇒ y together with its causal interpretation.

It might be argued that the connection between causality and implication could also plausibly

be defined in the opposite direction: If A implies B as defined above, then B causes A. However,

we shall now argue that the interpretation we gave above follows naturally from the definition of a

SEM with two variables. Assume x → y and ρ > 0. If x is very large, y is likely to be large and of

the same sign, since it is not very probable that d would cancel out the effect of ax. Thus, we have

A ⇒ B when x causes y under the SEM framework.

2.8 Noise-Tolerance of the Nonlinear Correlations

An interesting point to note is that the cumulant in (6) is, in principle, immune to additive measure-

ment noise. Assume that instead of the real x,y, we observe noisy versions x̃ = x+n1 and ỹ = y+n2

where the noise variables are independent of each other and x and y. By the basic properties of

cumulants (see proof of Theorem 1), the nonlinear correlations are not affected by the noise at all in

the limit of infinite sample size. Thus, our method in not biased by noise. This is in stark contrast to

ICA algorithms which are strongly affected by additive noise; thus ICA-based LiNGAM (Shimizu

et al., 2006) would not yield consistent estimators in the presence of noise.

To be more precise, we have

E{x̃3ỹ}−E{x̃ỹ3}= cum(x̃, x̃, x̃, ỹ)− cum(x̃, ỹ, ỹ, ỹ)

= cum(x,x,x,y)− cum(x,y,y,y) = E{x3y}−E{xy3}

due to the independence of n1 and n2 of the other variables and each other.

On the other hand, the estimation of ρ is strongly affected by the noise. This implies that R̃c4 is

not immune to noise. Nevertheless, measurement noise would only decrease the absolute value of

ρ and not change its sign. Thus, the sign of R̃c4 is not affected by additive measurement noise in the

limit of infinite sample. This applies for both Gaussian and non-Gaussian noise.

The fact that the ρ is only a multiplicative scaling in the nonlinear correlations (6) or (5) must

be contrasted with its role in the likelihood ratio (1) where its effect is more complicated. Thus,

when ρ is underestimated due to measurement noise, it may have a stronger effect on the likelihood

ratio, while its effect on the nonlinear correlations is likely to be weaker. While this logic is quite

approximative, simulations below seem to support it.

On the other hand, the standardization of the variables is also affected by noise, in particular if

the noise variances are not equal. As long as the noise variances are equal, the error in standard-

ization will affect the measures by a multiplicative constant only, effectively making the cumulants

smaller. Thus, the noise-tolerance of the cumulants may be useful in practice only if the variances

of the noise variables are equal.

2.9 Skewed Variables

Above, the likelihood ratio approximations and cumulants were developed for sparse, typically

symmetrically-distributed variables. Here, we consider the extension to skewed variables. Again,

the underlying motivations is that if we know the distributions are skewed, we can use this prior

knowledge to obtain particularly simple measures of causal direction. The cumulant-based analysis
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is mainly for theoretical interest due to the sensitivity of cumulants to outliers; we provide a more

robust nonlinearity for analysing real data.

2.9.1 CUMULANT-BASED APPROACH

The cumulant-based approach allows for a very simple extension of the framework to skewed vari-

ables. As a simple analogue to (6), we can define a third-order cumulant-based statistic as follows

R̃c3(x,y) = ρÊ{x2y− xy2}. (10)

The justification for this definition is in the following theorem, which is the analogue of Theorem 1:

Theorem 2 If the causal direction is x → y, we have

R̃c3 = skew(x)(ρ2 −ρ3) (11)

and if the causal direction is the opposite, we have

R̃c3 = skew(y)(ρ3 −ρ2). (12)

Proof Consider the third-order cumulant

C(x,y) = cum(x,x,y) = Ex2y

where we assume the two variables are standardized. We have skew(x) = C(x,x) = cum(x,x,x).
The nonlinear correlation can be expressed using this cumulant as

R̃c3 = ρ[C(x,y)−C(y,x)].

Assuming the causal direction is x → y, we have

R̃c3 = ρ[cum(x,x,ρx+d)− cum(x,ρx+d,ρx+d)]

= ρ[ρcum(x,x,x)+ cum(x,x,d)−ρ2cum(x,x,x)−2ρcum(x,x,d)− cum(x,d,d)]

= ρ[ρskew(x)−ρ2skew(x)] = skew(x)[ρ2 −ρ3]

which proves (11). The proof of (12) is again completely symmetric.

To use the measure (10) in practice, we have to take into account the fact that we cannot assume,

in general, the skewnesses of the variables to have some particular sign. In some applications this is

possible: For example, in resting-state fMRI data it might be safe to assume that the skewnesses are

all positive because it is much more common that the signals obtain large values due to activation

than due to inhibition (however, this point needs to be confirmed by empirical investigations of

fMRI data).

In the general case, we propose that before computing these nonlinear correlations, the signs

of the variables are first chosen so that the skewnesses are all positive. This can be accomplished

simply by multiplying the variables by the signs of their skewnesses to get a new variable x∗

x∗ = sign(skew(x))x (13)
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and the same for y (this transformation has to be done before computing ρ). Now, we have a situation

similar to the previous measures: Under x → y, R̃′
c3(x,y) > 0. This is because again, |ρ| < 1, and

therefore ρ2 −ρ3 > 0 regardless of the sign of the coefficient. Likewise, for y → x, R̃′
c3(y,x)< 0.

Our measure is related to the directionality measure proposed by Dodge and Rousson (2001),

which in our notation would be:

R̃DR(x,y) = [Ê{x2y}]2 − [E{xy2}]2 (14)

which has the advantage of of being particularly simple, and does not require the skewnesses to be

of any particular sign. However, our measure is more closely related to likelihood ratios which may

give it some advantage in terms of statistical performance, as will be seen in the simulations below.

2.9.2 ROBUST, LIKELIHOOD-BASED APPROACH

The skewed case might also be approached by defining a skewed log-pdf and using the methods

in previous sections. Unfortunately, in the theory of ICA, general-purpose skewed densities can

hardly be found, and thus it is not clear how to define such densities and how generally they would

be applicable. Nevertheless, a likelihood-based approach is likely to be more robust against outliers

than the cumulant-based one (unless the model pdf has very light tails) which is why we develop

one here.

We propose the following nonlinearity:

gskew(x) = logcosh(max(x,0)) (15)

which can be justified as follows. Consider the following family of pdf’s, defined using the deriva-

tive of the log-pdf

(log p)′(x) = gskew(x)−βx−α (16)

where β and α are parameters. Let us take α and β so that we get a standardized pdf with zero

mean and unit variance. Numerical calculations show that this is obtained by values which are

approximately α0 = 0.188 and β0 = 1.32. The ensuing pdf is illustrated in Figure 2.

Further numerical calculations show that the higher-order cumulants of the standardized pdf are

both positive: Skewness is approximately 0.37 and kurtosis 0.47.

Now, we can add any linear function and/or constant to (log p)′ without changing the value of

the approximative likelihood ratio in (5). In particular, using the true derivative of log-pdf in (16) is

equivalent to using the algebraically simpler gskew.

Thus, we obtain the following approximation for the likelihood ratio:

R̃skrb(x,y) = ρÊ{gskew(x)y− xgskew(y)} (17)

with gskew defined in (15). Again, this applies for positively skewed variables only. If the skewnesses

are not known a priori, they can be made positive by (13).

3. Estimating a Network with More Than Two Variables

In this section, we consider the general case of more than two variables. We present two approaches:

First, we use the pairwise analysis in a DirectLiNGAM framework, and second, we present a two-

stage method where the possible connections in a sparse graph are first pruned using covariance

information.

122



PAIRWISE LIKELIHOOD RATIOS FOR NON-GAUSSIAN SEMS

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

−5 0 5
−20

−15

−10

−5

0

Figure 2: The pdf for robust modelling of skewed densities. Left: the pdf corresponding to the

derivative of log-pdf in (16) is plotted (solid curve) with α and β chosen so that the

density is standardized. For comparison, the Gaussian density of the same mean and

variance is plotted as well (dashed). Right: the logarithms of the same density functions.

3.1 Model Definition

Denote by x = (x1,x2, . . . ,xn)
T the vector of observed variables. The linear non-Gaussian acyclic

model (LiNGAM) proposed by Shimizu et al. (2006) can be expressed as

x = Bx+ e

where e is the vector of disturbances, and B is the matrix that describes the influences of the xi on

each other; the diagonal of B is defined to be zero.

It was shown by Shimizu et al. (2006) that the model is identifiable under the following as-

sumptions: a) the ei are non-Gaussian, b) the ei are mutually independent, and c) the matrix B

corresponds to a directed acyclic graph (DAG). It is well-known that the DAG property is equiv-

alent to an existence of an ordering of the variables xi (not necessarily unique) in which there are

only connections “forward” in the ordering; if the variables are re-ordered according to the causal

ordering, the matrix B has all zeros above the diagonal.

3.2 Using Pairwise Measures in the DirectLiNGAM Framework

The first way to use the pairwise analysis developed above to estimate LiNGAM which has more

than two variables is to use the DirectLiNGAM framework (Shimizu et al., 2011).

3.2.1 FINDING ROOT OF GRAPH

In the DirectLiNGAM approach, we first compute the likelihood ratios of all different pairs of

variables, and store the log-likelihood ratio for xi and x j as the (i, j)-th entry of a matrix M. Al-

ternatively, we can use the likelihood ratio approximations which can be all subsumed under the

algebraic form

M = C⊙E{xg(x)T −g(x)xT} (18)
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where ⊙ is element-wise multiplication. The nonlinearity g is typically chosen so that it is g(u) =
tanh(u) for symmetric sparse data and g(u) = −u2 or the function in (15) for skewed data. C is

the covariance matrix of the data; since the data is assumed standardized C equals the matrix of

correlation coefficients.

Now, for the variables xi which have no parents, all entries in the i-th row of M are non-negative,

neglecting random errors. (Note that there is no reason why there would be only one such “root”

variable.) This was shown to be exactly true for the cumulant-based approaches g(u) = −u3 and

g(u) = −u2 (assuming that the kurtoses or skewnesses, respectively, are positive) and is true as a

first-order approximation based on (7) for g(u) = tanh(u). The reverse also holds if we assume

faithfulness.3

Thus, we first find the row, say with index i∗, which is most likely to have all non-negative entries

(the actual estimation procedure is considered below). Then, we regress (“deflate”) the variable xi∗

out of all the other variables (Shimizu et al., 2011). We iterate this procedure by computing M

again for the deflated x. By locating the row which is most likely to have only non-negative entries

in the newly computed M, we thus find a variable which has no parents except for possibly the first

variable found in the previous step. Repeating this, we find variables which are next in the partial

order given by the DAG. Thus in the end we have the causal ordering of the variables.

After such estimation of the causal ordering, estimating the coefficients bi j is easy by just ordi-

nary least-squares estimation (Shimizu et al., 2006).

Alternatively, we could use a simple approximation which is very simple and computationally

efficient. Instead of carrying out deflation by regression as described above, we simply remove the

entries of the rows and columns corresponding to the already “found” variables in the matrix M, and

iterate the procedure. Thus, we obtain the causal ordering directly from a single matrix of nonlinear

correlations, without any deflation. This is an approximation with no rigorous justification (because

when removing the root we should also remove its effect on all the entries of M) and it is likely

to be inconsistent. However, in simulations reported below it works quite well. It has the benefit

of being computationally extremely simple, and it gives a simple conceptual link between causal

ordering and the nonlinear correlations and cumulants.

3.2.2 AGGREGATING PAIRWISE MEASURES

To use the method just described we have to solve the problem of aggregating the pairwise measures.

We need to find the row which is most likely to be all non-negative up to random errors. Obviously,

we could just take the sums of the entries in each row and locate the maximum sum but this is not

likely to be optimal. So, we next develop a more principled way of aggregation.

Consider the mi j, j = 1, . . . ,n for a fixed i, which are the estimates of pairwise likelihood ratios

or some approximations. Assume they are independent and have Gaussian distributions N(µi j,σ
2),

where the variances are assumed to be equal for simplicity. The variance σ2 is the estimation error

due to finite sample, and the µi j are the true values. The posterior of µi j given mi j is then Gaussian

3. For a variable x0 with no parents, any other variable is of the form x j = ax0 + d where a expresses the total effect

coming from x0, and d is a sum of the inputs from other external influences, which are, by definition, independent

of x0. Thus, the pairwise model holds with a d independent of x0 and the pairwise measure is non-negative. On the

other hand, consider xi which does have parents. Now, go backwards in the graph until you find a node x0 which has

no parents (in a DAG, such a variable is guaranteed to exist). According to the logic just given, we have xi = ax0 +d,

again with an independent d. By faithfulness, a 6= 0. Since changing the direction simply changes the sign of our

measures, there will be a negative entry in the i-th row, and it has to be non-zero.
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with mean mi j and variance σ. Thus, the posterior log-probability that all of the µi j, j = 1, . . . ,n are

positive can be calculated as

log∏
j

P(µi j > 0|mi j) = log∏
j

P(
µi j −mi j

σ
>−mi j

σ
|mi j) = ∑

j

logΦ(
mi j

σ
) (19)

where Φ is the cumulative distribution function of the standardized Gaussian distribution. Estimat-

ing σ is possible but we prefer to assume it is very small and make the following approximation:

logΦ(
mi j

σ
)≈− 1

2σ2
min(0,mi j)

2

which can be seen to be quite accurate by a simple numerical comparison, and avoids numerical

problems in computing the logarithm of Φ for large negative values. Now, σ is simply a multiplica-

tive scaling constant which can be ignored when comparing estimates of the log-probabilities in

(19).

Thus, we propose the following way of aggregating the pairwise likelihood ratios. Compute for

each row of M

mi =−∑
j

min(0, [M]i j)
2

which, intuitively speaking, punishes violations of the positivity. The index i∗ with maximum mi is

thus taken as the estimate of a variable with no parents, that is, a first variable in the causal ordering.

3.3 Two-Stage Approach to Estimating a Sparse Model

If the matrix B is known to be sparse, we can use a two-stage method in which we first estimate the

connections in an undirected sense, and then find their directions using our pairwise method. This

two-stage method is interesting from the viewpoint of clearly dividing the estimating problem into

two parts.

We first find undirected connections by using any known method for estimating a Gaussian

undirected model (Spirtes et al., 1993). In the simplest case, this can be based on the inverse

covariance matrix, or the precision matrix. As is well-known in the theory of Gaussian graphical

models, there is an intimate connection between the non-zero entries in the precision matrix and

the existence of connections in the SEM—although the connection is not quite simple, especially

for directed graphs. In contrast, the direction of a connection cannot be easily determined from the

covariances, and is often unidentifiable, which was of course the original motivation for introducing

non-Gaussian models (Shimizu et al., 2006). Nevertheless, as a first approximation, we can prune

the set of candidate connections using the inverse covariance matrix, and apply our pairwise analysis

only on those connections which this covariance-based analysis indicates to be present.

In an estimated inverse covariance matrix, there are of course no exact zeros. Thus, we use

bootstrapping to test if each entry is non-zero. That is, we draw bootstrap samples of the data,

and compute the inverse covariance for each such sample. The ratio of the mean and the standard

deviation of the bootstrap estimates of any given entry is then compared with the relevant quantile

of a standardized Gaussian distribution.4 The test is made separately for each non-diagonal entry of

the inverse covariance matrix.

4. In the simulations below, we also tried methods for sparse estimation of the inverse covariance matrix. However, we

found that this simple testing procedure works by far the best. The sparse inverse estimation methods are, in fact,

developed for the case of a very large number of variables, and thus may not be useful in our simulations where we

typically have 5-10 variables only.
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Depending on the goal of the analysis, it may or may not be necessary to do corrections for

multiple testing. If we do such corrections, we can actually claim that the connections found are

statistically significant. However, this is obtained at the cost of a large number of false negatives. On

the other hand, if we simply consider the existence of the connections as another set of parameters

to estimate, it may be more advantageous not to make such corrections to reduce the overall error

rate. In fact, a false negative (setting an existing connection to zero) could be considered quite a

serious error in this context, so we prefer to use a rather large α. In the simulations below, we thus

set the false positive rate α = 0.01 with no correction for multiple testing. Such corrections will of

course be needed if our aim were to claim that a particular connection exists, but if our goal here

is mainly the inference of the causal ordering, some false positives should not matter since they are

likely to correspond to small values of the coefficients anyway.

Then, for each of those significantly non-zero connections, we determine the direction of causal-

ity using our pairwise tests. There is no need to do any kind of deflation anymore. If we want to

convert the obtained estimates into a total ordering of the variables, we input those connections

which were not pruned to the ordering method presented by Shimizu et al. (2006).

4. Estimating Cyclic Models

An important generalization of the DAG framework would be to estimate cyclic models. Here, we

assume the following well-known generative model for the data. First, the external influences arrive

in the system at time t = 0

x(0) = e

where x(t) is value a hypothetical dynamic system at time point t. Then, at subsequent time steps,

the external influence is completemented by feedback as

x(t +1) = e+Bx(t)

where the matrix B has zero diagonal, which means we do not allow self-loops. Assuming that B

is stable in the sense that its largest eigenvalue is smaller than one in absolute value, we have in the

limit

x = ∑
k≥0

Bke = (I−B)−1e

and thus

x = Bx+ e (20)

where B is now allowed to be cyclic. This gives a simple interpretation of a model of the form

(20) in the case where B is allowed to be cyclic. As above, the ei are assumed independent and

non-Gaussian.

In fact, estimation of such a model by ICA is possible if B is small enough, namely if all its

entries are smaller than one in absolute value. Then, it is possible to estimate the model even by

ICA, since after estimating ICA, we can find the right permutation of the components based on

putting the largest entries of each row in the diagonal. Thus, the model is identifiable under these

assumptions. This is shown in detail in the following Theorem:

Theorem 3 Assume that the data follows the cyclic LiNGAM model in (21) with no self-loops.

Assume further that all the entries in the matrix B have absolute values smaller than one, and that
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the dominant eigenvalue of B is smaller than one in absolute value. Then, the model is uniquely

identifiable, that is, the matrix B can be estimated from the data without any ambiguity.

Proof: The data actually follows the ICA model as

x = (I−B)−1e. (21)

The ICA model is known to be identifiable up to a) the ordering of the components and b) a scalar

multiplier for each of the components (Comon, 1994). The unidentifiability of the scalar multiplier

disappears here because by definition, the diagonal of the inverse of the mixing matrix has all ones

due to the diagonal matrix in (21). Thus, it was shown by Shimizu et al. (2006) that this implies

the idenitifiability of the LiNGAM model if we can solve the indeterminacy of the permutation.

Acyclicity was used for this purpose by Shimizu et al. (2006). Here, we use the assumption of

absolute values smaller than one. In fact, consider the estimate of the inverse of the mixing matrix.

Normalize it by dividing each row by its maximum element. Then, it equals I−B up to a random

permutation of the rows. Due to our assumption of B, all non-diagonal entries in this matrix are

smaller than one in absolute value. Thus, the original (correct) permutation of the rows can be

found by locating on each row i the unique entry which is equal to one. Denoting its column index

by j(i), the original matrix is given by permuting the rows of the matrix to the ordering given by

j(i), that is, the ordering which puts the ones in the diagonal. �

This also suggests that we can estimate the model using the sparse graphs idea above. We

prune the inverse covariance matrix to find where there are (probably) connections, and then find

the directions of the connections using our pairwise measures. Using pairwise connections makes

sense if we further assume that there are no pairwise loops, that is, connections xi → x j and x j → xi

are not both non-zero. The main justification for this approach is that since the connections are

weak, one can assume that the cyclicity has little effect on local pairwise measures. However, an

exact convergence of such a method to the right parameter values does not seem possible to show

in general.

5. Estimation in Case of Nonlinear Relations

In this Section, we generalize our method to a nonlinear model.

5.1 Definition of Nonlinear Model

Another interesting extension of the linear causal models is obtained by considering nonlinearities

instead of non-Gaussianities (Hoyer et al., 2009). We define the two models as follows. The first

one, x → y, is given by

y = f (x)+d

where f is a nonlinear function, not necessarily invertible or even differentiable. The disturbance

d is again independent of x. Both x and y are standardized to unit variance. The second model is

denoted by y → x and defined as

x = g(y)+ e

where g is another nonlinear function, and e is a disturbance variable. Other approaches to infer-

ring the causal direction with nonlinear relations were introduced by Zhang and Hyvärinen (2009),

Daniušis et al. (2010) and Mooij et al. (2010).
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5.2 Likelihood Ratio for Nonlinear Model

The likelihood of the model x → y can be obtained as the sum of the log-prior of the variable x and

the log-likelihood of the residual:

log p(x,y) = log px(x)+ log pd(y− f (x)) = Gx(x)+Gd(
d̂

σd

)− logσd

where we denote, like above, the variance of the standardized residual by σ2
d , the log-pdf of the

standardized residual by Gd , and the log-pdf of x by Gx. Thus, like in the linear case, we obtain

R =

[

1

T
∑

t

Gx(xt)+Gd(
yt − f (xt)

σd

)−Gy(yt)−Ge(
xt −g(yt)

σe

)

]

− logσd + logσe. (22)

An important difference to the linear case is that the variances of the residuals need not be equal,

σd 6= σe, so they do not cancel. In an information-theoretic formulation, we obtain asymptotically

R −→−H(x)−H(d̂/σd)+H(y)+H(ê/σe)− logσd + logσe. (23)

We can approximate R using the same maximum entropy approximations (Hyvärinen, 1998) as

in the linear case in Section 2.3. The only difference is that we need to add the log-variances of the

residuals to the expression. Thus, an important advantage of our approach is that we do not need any

measures of independence per se; estimation of one-dimensional differential entropies is sufficient.

On the other hand, it may be advantageous to adapt the approximation to the nonlinear case.

First, it does not seem useful to consider the prior non-Gaussianities of the variables, since a non-

linear mixing can change non-Gaussianities in completely unpredictable ways. This is unlike in the

case of ICA, where a linear mixing decreases non-Gaussianity. Second, we can assume that the

residuals tend to be sparse, and model them as Laplacian. This has the further advantage of making

the measure more robust to outliers.

Now, for a Laplacian variable, the scale parameter σ is most naturally estimated as the mean

absolute deviation (MAD), which is the maximum likelihood estimate. If we plug this estimate in

the likelihood ratio, and omit the priors on x and y, we have

R =

[

1

T
∑

t

−
√

2|yt − f (xt)|
σ̂d

)+

√
2|xt −g(yt)|

σ̂e

]

− log σ̂d + log σ̂e

=−
√

2
σ̂d

σ̂d

+
√

2
σ̂e

σ̂e

− log σ̂d + log σ̂e

which gives finally the following objective

R̃mad =− log Ê{|d̂|}+ log Ê{|ê|} (24)

where Ê denotes the sample average, and thus Ê{|.|} denotes the MAD. In other words, we have an

objective which simply compares the mean absolute deviations in the two cases.

The likelihood ratio depends on the estimated nonlinearities f ,g. The estimation of f and g can

be done with classic least-squares estimation methods independently of any developments in this

paper. A large number of non-parametric methods have been developed in the literature, see, for

example, Hoyer et al. (2009) for an example.
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5.3 Connection to Independence-Based Nonlinear Methods

In fact, our method has a close connection to the independence-based method by Hoyer et al. (2009),

generalizing the connection shown in Section 2.4. Using basic information-theoretic properties, we

have under x → y

H(x,y) = H(x)+H(y|x) = H(x)+H(y− f (x)|x) = H(x)+H(d|x) = H(x,d)

and likewise, this is equal to for H(y,e). Now, just like in the linear case, we can consider the

difference between the mutual informations of the regressors and residuals in the two directions,

and obtain

I(x,d)− I(y,e) = H(x)+H(d)−H(y)−H(e) = H(x)+H(
d

σd

)−H(y)−H(
e

σe

)+ logσd − logσe

where two terms equal to h(x,y) cancel. Here, we see that asymptotically, our objective derived from

the likelihood ratio is equal to the difference of the two mutual informations (with sign reversed).

Its sign tells which mutual information is larger, and in particular, in which direction the residual of

the regression is more independent. Thus, using the likelihood ratio is equivalent to using mutual

information as independence measure in the methods by Hoyer et al. (2009).

The developments given above thus show that when comparing independencies of the residuals

like Hoyer et al. (2009), it is not necessary to explicitly estimate mutual information; estimation of

one-dimensional entropies leads to an equivalent result.

6. Simulations

We conducted simulations comparing the different methods proposed in this paper, as well as previ-

ously proposed LiNGAM estimation methods. In all the simulations, we emphasize difficult condi-

tions. In most of the simulations, this means the case where the number of observations is small; the

exception being the simulations with added measurement noise. We also take weakly non-Gaussian

disturbances according to the logistic distribution in Equation (4), with the same aim of simulating

difficult conditions.

The methods were compared with three previously published methods:

• LiNGAM estimated using ICA, as proposed in the original paper introducing LiNGAM by

Shimizu et al. (2006).5

• DirectLiNGAM, specifically the kernel-based version proposed by Shimizu et al. (2011).6

• In case of skewed data, we used the measure proposed by Dodge and Rousson (2001), given

in Equation (14).

The LiNGAM methods were implemented using the software found on the authors’ web sites.

We computed different performance indices for the methods. For acyclic models, we computed

5. Since basic FastICA, which is an integral part of the method, has convergence problems with the basic tanh nonlin-

earity in the case of a small sample size, we used the stabilized version by Hyvärinen (1999) obtained in the standard

FastICA package by the option “stabilize”. For skewed data, we used the skewness as a measure of non-Gaussianity.

6. We did not include the earliest version of DirectLiNGAM proposed by Shimizu et al. (2009) in the comparison

because in later simulations by Sogawa et al. (2010); Hyvärinen (2010), its performance was found clearly inferior

to that of the kernel-based version of DirectLiNGAM.
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1. The Spearman rank-correlation coefficient between the causal ordering given by the method

and the true ordering.

2. The percentage of connections for which a method correctly estimated the direction, consid-

ering only connections existing in the data-generating process. Here, the point was to look at

the abilities of the methods to find the directions locally, and thus the global ordering given

by the method was not used (except for DirectLiNGAM which essentially only computes a

global ordering and derives local ordering from that). For the ICA-based LiNGAM, we com-

puted the measure sign(|bi j|− |b ji|) and used it in the same way as the signs of the pairwise

measures.

3. The percentage of data sets for which a method correctly estimated the first variable in the

causal ordering, that is, the variable with no parents.

For cyclic models, the comparison was based on the second measure only, since the other two are

not well-defined. Furthermore, we computed the CPU time needed for the computations.

Unless otherwise mentioned, the connection matrices were generated completely randomly, giv-

ing a fully connected DAG. The non-zero coefficients in the acyclic B had a uniform distribution in

the union of the intervals [−0.6,−0.2] and [0.2,0.6].

6.1 Simulation 1: Sparse Influences

In the first, basic simulation, sample size and data dimension were varied so that there were in total

four different scenarios:

1. n = 5, T = 100, fully connected DAG

2. n = 2, T = 100, fully connected DAG

3. n = 5, T = 200, fully connected DAG

4. n = 5, T = 400, fully connected DAG

The disturbances had logistic distributions, with standard deviations equal to one. 2,000 data sets

were generated for each scenario; however, for DirectLiNGAM and ICA-LiNGAM only 1,000 were

used due to excessive computational demands.

To estimate the model, we used the following methods proposed above. First, the maximum

entropy approximation to the likelihood ratio in (3) was used in DirectLiNGAM with deflation.

Second, the LR first-order approximation matrix (18) was used in DirectLiNGAM with the non-

linearity g(u) = tanh(u) and with deflation. Third, the nonlinear correlations in (18) were used to

estimate the causal ordering without any deflation, simply by locating the minimum of the row sums

of that matrix, removing the corresponding rows and columns, and so on, as described at the end of

section 3.

See Figure 3 for the results. Typically, the tanh-based likelihood ratio approximation (“tanh”)

with deflation was the best. The method without deflation (“nodf”) gives, by definition, the same re-

sult for the total causal directions correct and first variable found, but looking at the rank-correlations,

we see that it is typically the second best. The maximum entropy approximation is usually the third

best. ICA-based LiNGAM is usually fourth but when there is more data, it can have very good
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performance. The (kernel-based) DirectLiNGAM (“kdir”) is typically last, although not necessarily

worse than ICA-based LiNGAM.

Regarding computational load, the methods proposed here are one to two orders of magnitude

faster than the others.

6.2 Simulation 2: Sparse Influences with Noise

In the second simulation, we tested the noise-tolerance of the algorithms. The data dimension was

varied from n = 2 to n = 8 and fully connected DAGs were used as above. The sample size was set

to T = 10,000, which means we are now analyzing the statistical consistency7 of the method only

and neglecting random effects by taking a very large sample size. The noise was Gaussian and had

unit variance. The performance indices and algorithms are as in the first simulation. The results are

shown in Figure 4. We can see that the tanh-based approximation is clearly the best, as predicted

by our cumulant-based analysis. ICA-based LiNGAM, the maximum entropy approximations, and

especially kernel-based DirectLiNGAM seem to be more sensitive to noise.

6.3 Simulation 3: Skewed Influences

In the third simulation, we tested the performance of the methods with skewed data. We used the

nonlinear correlation based on the third order cumulant (“skew”), introduced in Section 2.9, as well

as the robust measure in Equation (15), denoted by “skw2”.

We used two different skewed distributions for the disturbances. In both cases, the data was

obtained from a Gaussian mixture. One of the Gaussian distributions in the mixture had zero mean

and unit variance, while the other had mean equal to three and unit variance. The two distributions

we generated were distinguished by the amount of data points drawn from the two Gaussians. In

the first case (“pdf 1”), the “outlying” distribution with mean three generated 20% of the data, while

in the second case (“pdf 2”), it generated only 5%. Thus, pdf 2 was quite sparse whereas pdf 1 was

not. We would then expect sparsity-based methods to work well with pdf 2 but not very well with

pdf 1. The data dimension were to n = 2,n = 5 and sample sizes T = 100,200, respectively. DAGs

were generated to be fully connected.

The results are shown in Figure 5. We see that all the methods have very similar performance,

except the Dodge-Rousson measure which was somewhat worse. However, the computational loads

are very different, our two likelihood ratio approximations being faster than the earlier LiNGAM

methods by at least an order of magnitude.

6.4 Simulation 4: Skewed Influences with Noise

We further conducted a simulation with observational noise added to the skewed data. Again, we

fixed the sample size to T = 10,000 and the noise variance to two (larger than above since these

methods seem to be more tolerant to Gaussian noise), while the dimension and the skew data distri-

bution were varied. We used only the skewed and sparse pdf 2. The results are in Figure 6. Here,

we start seeing clear differences in the statistical performances of the methods. In line with our

theoretical analysis, the skewness cumulant-based method is the most resistant to noise. The robust

skewed LR approximation in Section 2.9.2 is second.

7. That is, convergence in the limit of infinite sample.
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Figure 3: Simulation 1. Results of basic simulation with sparse, non-skewed data without noise.

Top left: Mean of rank-correlation coefficients between the estimated causal ordering

and the true ordering. The error bars are standard errors of the mean. Top right: The

proportion of (really existing) connections for which the method estimated the direction

correctly (chance level is 50%). Bottom left: The proportion of data sets for which the

method estimated the first variable in the causal ordering correctly, that is, the variable

with no parents. Bottom right: Computation times of one run of the different algorithms

in milliseconds; note the logarithmic scale. Different colours are different data-generating

scenarios. The algorithms used are as follows:

“tanh”: LR approximations in (18) based on tanh nonlinearity, combined with deflation

in DirectLiNGAM;

“nodf”: no deflation in likelihood ratio approximations, that is, ordering based on the LR

approximation matrix in (18) without any recomputation of the matrix;

“mxnt”: maximum entropy approximation in (3) for likelihood ratios;

“ICA”: LiNGAM estimated by ICA;

“kdir”: kernel-based DirectLiNGAM.
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Figure 4: Simulation 2, with noise. Legend as in Figure 3, and with T = 10,000. The noise standard

deviations were all equal to one.

6.5 Simulations 5 and 6: Two-Stage Approach and Sparse Graphs

Next we investigated the utility of the two-stage approach of Section 3.3. We generated sparse

graphs only. The graphs were based on a simple “serial” structure x1 → x2 → . . . → xn with a

random connection strength in the same range as above. We further added 0, 1, or 2 connections

in random locations in the graph (preserving the DAG structure), the number of connections having

equal probabilities for the three values. The data sizes were 500, 900, 900, 900 and the number

of variables 5, 9, 15, 20, respectively. We used higher dimensions than above because otherwise

the networks could not be very sparse. In the testing for the existence of connections, we set the

false-positive rate to α = 0.01 without correction for multiple testing, as motivated above.

In Simulation 5, we used sparse, non-skewed (logistic) influences, and in Simulation 6, skewed

influences as in Simulation 3. To add more realism to the simulations, we also added noise to the

data. The noise standard deviations were 0.2 in Simulation 5 and 0.6 in Simulation 6.

The results for Simulation 5 are shown in Figure 7. We can see that the two-stage method has

a performance which compares quite favourably with the other methods: ICA-LiNGAM and Di-

rectLiNGAM perform quite badly with these combinations of sample size and dimension. Note that
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Figure 5: Simulation 3, with skewed data. Legend as in Figure 3, with the following new algo-

rithms:

“skew”: cumulant-based LR approximation in (10), combined with deflation in Di-

rectLiNGAM;

“skw2”: the robust LR approximation proposed in Section 2.9.2; and

“D-R”: the measure by Dodge and Rousson (2001).

for “total causal directions correct”, the two-stage method has, by definition, the same performance

as “tanh” and “nodf”. In fact, if our interest in only to discover the directions without bothering to

estimate which variables are connected, or we are given perfect prior knowledge on which variables

are connected, there is in fact no need to do the pruning in the first stage of the method.

So, the utility of the new method (“icth”) is mainly seen in the mean rank correlations plot:

There is a modest improvement. The point here is that knowledge of which variables are connected

improves the estimation of the causal ordering (DAG structure) by showing which directionalities

should be used when pooling their information together, and which directionalities should be dis-

carded (because the variables are not connected at all).
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Figure 6: Simulation 4, with skewed data with noise. Legend as in Figure 5.

Interestingly, all the methods proposed in this paper are clearly superior to the methods pro-

posed earlier (ICA-based LiNGAM and kernel-based DirectLiNGAM). Thus, the main utility of

the present framework may indeed be in estimating directionality in sparse networks.

We carried out the same simulation for skewed influences using the skewed pdf 1. Results are

in Figure 8. When looking at methods using the same causality measure (“skew” vs. “icsk”, and

“skw2” vs. “ics2”), we see that the pruning methods are better in terms of the mean rank correlations.

However, the maximum entropy method without pruning is actually the best.

6.6 Overview of Simulations 1–6

To provide a succinct overview of the simulations reported above, we averaged the performance

indices over the different scenarios (taking into account only scenarios in which the algorithm took

part). Furthermore, we divided the simulations into three groups: basic data (simulations 1 and 2),

skewed data (simulations 3 and 4) and sparse connections either with sparse data (simulation 5) or

skewed data (simulation 6). We further averaged the performance indices inside these groups.

The results are shown in Figure 9.
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Figure 7: Simulation 5, with the two-stage pruning method and only sparse graphs. Legend as in

Figure 3, but now including the new algorithm “icth” which prunes the graph based on

inverse covariance and then estimates the directions using the same method as “tanh”.

(Note that only “icth” uses information on the pruned inverse covariance, other methods

are as in Simulation 1.)

6.7 Simulation 7: More Variables than Observations

Next, we considered the case where there are more variables than observations, or at least the

number of variables is equal to the number of observations. We considered four scenarios, with n

ranging from 100 to 200 and T ranging from 100 to 400. In preliminary simulations, it turned out

that the problem was too difficult for logistic disturbances, so we used Laplacian disturbances here.

We only attempted to estimate the first two variables and not the whole causal ordering. The

very first variables in the causal ordering can be considered to be the exogenous ones and thus

finding them is of special interest (Sogawa et al., 2011). We only used three of the new proposed

methods because none of implementations of the existing LiNGAM methods was such that it could

readily be used for this case.

The results are shown in Figure 10. While the performance of the methods is not very good, it

is very much above chance level (which would be 0.01 or less for finding the first variable). It is
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Figure 8: Simulation 6, with skewed data, the two-stage pruning method and only sparse graphs.

Legend as in Figure 5, but now including the new algorithm “icsk” which prunes the

graph based on inverse covariance and estimates the directions based on the skewness

cumulant, and “ics2” which uses the robust skewness measure.

interesting to note that here the first-order approximation of likelihood is more than 100 times faster

than the maximum entropy approximation.

6.8 Simulation 8: Cyclic Graphs

To test the new framework in the case of cyclic graphs, we created cyclic graphs by a simple ring

structure: x1 → x2, . . . ,xn → x1. Further connections (0, 1, or 2) were added in random locations as

in Simulation 5 above. Such data were created according to the generating model in Section 4. We

further added noise with standard deviation 0.2. The dimensions of the data and the sample sizes

were as in Simulations 5 and 6. The influences had logistic distributions.

The only methods we compared were ICA-based LiNGAM and our two-stage pruning methods,

since the DirectLiNGAM methods cannot be used in the cyclic case. The results are shown in

Figure 11. The first observation is that both methods performed relatively well, obtaining 70%-

90% percent of the directions right. Our new method is slightly better than ICA-based LiNGAM.
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Figure 9: Overview of Simulations 1–6. Median correlations (blue, solid) and average directions

correct (green, dashed) are plotted averaged over different scenarios and similar simula-

tions.

It should be emphasized here that our method assumes that there are no self-loops, so there is no

indeterminacy in the results, as shown in Section 4.

6.9 Simulation 9: Nonlinear Relations

Finally, we performed simulations on the nonlinear model. We generated data from a model

x2 = αsign(x1)|x1|γ +d (25)

where both x1 and d were standardized Gaussian. The exponents γ were given values 0.5 and 2, and

the parameter α was randomly drawn between 0.5 and 1.5. The sample sizes were either T = 200

or T = 500.

We then fitted the nonlinearity of the same functional form (25), that is, using the parameters α

and γ, to the data with a least-squares fit, and estimated the causal direction using the criterion in

(22), or the criterion in (24). (Thus, we did not use a nonparametric model of the nonlinearity. See

Section 8 for estimation with non-parametric nonlinearities.) For comparison, we used the methods
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Figure 10: Simulation 7, with more variables than observations. Legend as in Figure 3. Rank

correlations and causal directions correct are omitted because we only computed the

first two variables for lack of computation time.

tanh and maxent introduced above in a purely linear way (i.e., not fitting the nonlinear function

above, but just a linear function exactly as in previous simulations), to see if linear methods are able

to cope with this data.

Furthermore, we used the criterion of the original method by Hoyer et al. (2009), based on the

HSIC independence test by Gretton et al. (2008) of x (resp. y) and the residual in the regression of

y on x (resp. of x on y). This was implemented by code provided by A. Gretton,8 using the default

setting for the kernel width.

The results are shown in Figure 12. Our likelihood ratio methods both performed relatively

well, although the independence-based method by Hoyer et al. (2009) was arguably better than our

maximum entropy method. However, the HSIC-based method was 10-100 times slower due to the

use of kernel methods. The linear methods did not perform well at all.

8. Downloaded from http://www.gatsby.ucl.ac.uk/˜gretton/indepTestFiles/indep.htm.

139
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Figure 11: Simulation 8, with cyclic sparse graphs. Legend (sample sizes and dimensions) as in

Figure 7.
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Figure 12: Simulation 9, with nonlinear model. The new algorithms are “nlme”, the proposed

likelihood ratio method extended to the nonlinear case using maximum entropy approx-

imation in (22); “mad”, a simplified and robustified approximation of the likelihood

ratio in (24); “hsic”, the original nonlinear method using independence (Hoyer et al.,

2009). Blue: γ = 0.5,T = 200, Green: γ = 2,T = 200, Red: γ = 0.5,T = 500, Cyan:

γ = 2,T = 500.

6.10 Simulation 10: Misspecified Disturbances

We further performed simulations in which the model is misspecified. First, we considered Simula-

tion 1 with the following change: the disturbances generating the data had Laplacian distributions.

Everything else was identical to Simulation 1, including the assumed log-pdf’s and nonlinearities.

Thus, the distribution of the disturbances was not exactly known, and was misspecified in the esti-

mation. We also added the basic skewness method in the set of algorithms.
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Figure 13: Simulation 10. Like Simulation 1 but with Laplacian disturbances used in generating

the data, and the “skew” method added.

The results are in Figure 13. We see that the performance of most methods is actually better.

This was expected in light of the theory of ICA, where it is well-known that if the actual data is more

non-Gaussian than assumed in the estimation method, this is not a problem for most methods, and

only increases the performance of the method compared to the case of less non-Gaussian data. In

fact, the reason why we used the logistic distribution in generating data in many of the simulations

above was in order to make the problem more difficult. On the other hand, the reason for using the

logistic distribution in the algorithms is that it is widely used in ICA and has been empirically found

to work well, partly due to the fact that its log-pdf is smooth, unlike many other super-Gaussian

log-pdf’s including the Laplacian.

Of course, if the non-Gaussianity is completely misspecified in the estimation method, estima-

tion with fixed nonlinearities will inevitably fail. This is why the skewness method was hardly above

chance level.
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6.11 Simulation 11: Latent Variables

We conducted a further simulation to gain some insight into the robustness of the different methods

to the existence of latent variables. We first created data x0 as in Simulation 1, with n = 4,T = 500.

Then, we added a latent variable to the data as

x = x0 +αbs̃

where s̃ is a latent variable with a standardized logistic distribution, b is a weight vector with ele-

ments drawn from a standardized Gaussian distribution, and α is the general strength of the latent

variable, which took the values [0,0.25,0.5,1] in the different scenarios. (The value of α = 0 effec-

tively means no latent variables and is provided for comparison.) The latent variable s̃ violates the

assumption of LiNGAM of having only one (independent) external input for each variable xi.

The results are in Figure 14. Basically, we see that the latent variable deteriorates the perfor-

mance of all the algorithms quite uniformly. It does not seem that any of the algorithms would be

more resistant, or more sensitive, to latent variables than the others.

Recently, the framework presented here was generalized to a model including Gaussian latent

variables by Chen and Chan (2012).

7. Experiments on Simulated fMRI Data

Since causal discovery experiments on real data are very difficult to validate, we use here brain imag-

ing data which has been simulated using state-of-the-art biophysical models (Smith et al., 2011).

7.1 Simulation of fMRI Data

The simulations are described in detail by Smith et al. (2011); here we give a short summary.

Networks of varied complexity were used to simulate fMRI timeseries. The simulations were based

upon the dynamic causal modelling (DCM) forward model (Friston et al., 2003). DCM uses the

nonlinear balloon model (Buxton et al., 1998) for the vascular dynamics, that is, the connection

between the neural activities and the measured signal, sitting above a simple neural network model

of the neural dynamics. Estimating causality from fMRI data is particularly challenging as the

signal-to-noise ratio is relatively poor, fMRI timeseries are fairly Gaussian, and the number of

timepoints is generally in the low hundreds.

We defined a number of nodes, which corresponded to brain regions. First, we generated the

external inputs to the nodes, ui, which are not quite the same as the external influences in the SEM,

although related. They were binary (activity is “up” or “down”) and generated using a Poisson

process that controls the likelihood of switching the state. Neural noise of standard deviation 1/20

of the difference in height between the two states was added. The mean durations of the states

were 2.5s (up) and 10s (down), with the asymmetry representing longer average “rest” than “firing”

durations.

The neural activities zi were then simulated using the DCM neural network model, as defined

by

ż = σAz+Mu

where A is the matrix defining network dynamics and M contains the weights controlling how

the external inputs feed into the network (often just the identity matrix). The off-diagonal terms

142



PAIRWISE LIKELIHOOD RATIOS FOR NON-GAUSSIAN SEMS

     tanh  nodf  mxnt  ICA  kdir      
0

0.2

0.4

0.6

0.8

1
Mean rank correlations

     tanh  nodf  mxnt  ICA  kdir      
0.5

0.6

0.7

0.8

0.9

1
Total causal directions correct

     tanh  nodf  mxnt  ICA  kdir      
0

0.2

0.4

0.6

0.8

1
First variable found

     tanh  nodf  mxnt  ICA  kdir      
1

10

100

1000

10000

100000
Computation time

Figure 14: Simulation 11. Like Simulation 1, with n = 4,T = 500, but with a latent variable added.

The four scenarios (curves) correspond to different strengths of the latent variable, start-

ing with zero strength in blue curve.

in A determine the network connections between nodes, and the diagonal elements are all set to

-1, to model within-node temporal decay; thus σ controls both the within-node (neural) temporal

inertia/smoothing and the neural lag between nodes.

A central problem in fMRI is that the measured signal does not directly correspond to z. To sim-

ulate this, each node’s neural timeseries zi was fed through the nonlinear balloon model for vascular

dynamics responding to changing neural demand. The balloon model parameters were in general

set according to the prior means in DCM. However, it is known that the haemodynamic processes

vary across brain areas and subjects, resulting in different lags between the neural processes and the

BOLD data, with variations of up to at least 1s (Handwerker et al., 2004; Chang et al., 2008). We

therefore added randomness into the balloon model parameters at each node, resulting in variations

in HRF (haemodynamic response function) delay of standard deviation 0.5s. Finally, thermal white

(measurement) noise of standard deviation 0.1–1% (of mean signal level) was added.
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Thus, we obtained the measured fMRI signals. They were sampled with a sampling interval

of 3s (in most simulations), corresponding to a typical time of repetition (TR) in brain imaging

literature.

The simulations comprised 50 separate realisations (or “subjects”), all using the same simulation

parameters, except for having independently generated external inputs and different HRF parameters

at each node (as described above); furthermore, the connection strengths were slightly perturbated

for each subject. Each “subject’s” data was a 10-minute fMRI session (200 timepoints) in many of

the simulations.

For a summary of the specifications for the 28 simulations see Table 1.

Sim n length TR noise HRF std other factors

(mins) (s) (%) (s)

1 5 10 3.00 1.0 0.5

2 10 10 3.00 1.0 0.5

3 15 10 3.00 1.0 0.5

4 50 10 3.00 1.0 0.5

5 5 60 3.00 1.0 0.5

6 10 60 3.00 1.0 0.5

7 5 250 3.00 1.0 0.5

8 5 10 3.00 1.0 0.5 shared inputs

9 5 250 3.00 1.0 0.5 shared inputs

10 5 10 3.00 1.0 0.5 global mean confound

11 10 10 3.00 1.0 0.5 timeseries mixed with each other

12 10 10 3.00 1.0 0.5 new random timeseries mixed in

13 5 10 3.00 1.0 0.5 backwards connections

14 5 10 3.00 1.0 0.5 cyclic connections

15 5 10 3.00 0.1 0.5 stronger connections

16 5 10 3.00 1.0 0.5 more connections

17 10 10 3.00 0.1 0.5

18 5 10 3.00 1.0 0.0

19 5 10 0.25 0.1 0.5 neural lag=100ms

20 5 10 0.25 0.1 0.0 neural lag=100ms

21 5 10 3.00 1.0 0.5 2-group test

22 5 10 3.00 0.1 0.5 nonstationary connection strengths

23 5 10 3.00 0.1 0.5 stationary connection strengths

24 5 10 3.00 0.1 0.5 only one strong external input

25 5 5 3.00 1.0 0.5

26 5 2.5 3.00 1.0 0.5

27 5 2.5 3.00 0.1 0.5

28 5 5 3.00 0.1 0.5

Table 1: Summary of the 28 fMRI simulations’ specifications (from Smith et al., 2011)
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7.2 Estimation Methods for Simulated fMRI Data

We used pairwise measures with three different nonlinearities: tanh, skewness, and the robust mea-

sure of skewness. We did not estimate the existence of connections at all since that is not the main

topic of the paper: We only looked at the estimated directionalities for those connections which

really existed in the simulated data.

Since the skewness of the data was mainly positive, we used this prior information of positive

skewness skewness-based measures. In other words, we skipped the skewness correction in (13).

For comparison, we used two methods by Patel et al. (2006) which were the most successful

of the many methods tested by Smith et al. (2011), as well as basic ICA-based LiNGAM (Shimizu

et al., 2006) which was applied on the whole data (not pairwise).

7.3 Results on Simulated fMRI Data

The goal is thus to recover the directionalities defined by the non-zero entries of the neural dynamics

matrix A by estimating the directionalities given by B in our SEM. We evaluated the results using

the same measures as Smith et al. (2011) to allow for direct comparison.

Our evaluations looked at the distribution of correctly estimated connections over the 50 simu-

lated subjects. We concentrate here on evaluating methods for single subject (single session) data

sets, and only utilise multiple subjects’ data sets in order to characterise variability of results across

multiple random instantiations of the same underlying network simulation. This is in contrast to the

approach by Ramsey et al. (2011) who estimated the network over random subsets of 10 subjects,

which is an easier task, at least if the subjects are not very different.

The raw connection strengths bi j were converted into z-scores in order to make the plots more

qualitatively interpretable, as the connection strengths are then more comparable across the different

methods. The conversion from raw connection strengths to z-scores was achieved by using a null

distribution of connection strengths, obtained by feeding in truly null timeseries data into each of the

estimation methods. The null data was created by testing for connections between timeseries from

different subjects’ data sets, which have no causal connections between them (i.e., we randomly

shuffled the subject labels for each node in the network). See Smith et al. (2011) for details. To

specifically look at estimated directionalities, we use the higher of the two directions’ measures to

be the estimated connection strength.

The results are shown in Figs 15-16. The distributions are over all 50 simulated “subjects” and

over all correct network edges; higher is better. Note, however, that this plot does not take into

account the false positives, that is, the values estimated in the network matrix that should be empty,

and concentrates exclusively on the estimation of causal directions. The plots, known as “violin

plots”, are simply (vertically-oriented) smoothed histograms, reflected in the vertical axis for better

visualisation.

We see that the pairwise methods perform much better than Patel’s measures or ICA-based

LiNGAM on all the simulations. (The comparison to ICA-based LiNGAM may not be entirely fair

since it estimates more than just directionalities.) In fact, our methods perform extremely well in

most simulations. In all the simulations, the pairwise measures are the best, although in two cases

the performances of all methods are so close to chance level that any comparison is difficult. The

results are not very good in the following cases:

• Simulation 13 which has backwards connections (i.e., both x → y and y → x) which is not sur-

prising since it is against the basic philosophy of our modelling. However, the performance is
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HYVÄRINEN AND SMITH

Caption for Figs. 15 and 16 on pages 147 and 148: The z-scores of the different measures used to

determine the directionality, computed over subjects and connections, are shown as violin plots (i.e.,

histograms rotated to be horizontal and made symmetric). If the directions are found completely

correctly, the violin plots are concentrated at the top. The blue dots show the the percentage of

correctly estimated directions. First, we have three pairwise methods, and for comparison, two

methods by Patel, as well as ICA-based LiNGAM. Each panel is one simulation.

clearly better than chance, which shows that our method is able to find the dominant direction

some of the time.

• Simulation 22 which has nonstationary connection strengths, which violates another basic

assumption of the model.

• Simulation 24 in which one of the inputs is strongly dominant. This is presumably because

the effective signal-to-noise ratio is too poor for many of the connections.

• Simulations 25-27 in which the number of data points is smaller (recording length is shorter),

performance being close to chance level for all methods.

Among the pairwise measures, there is no clear winner. However, the robust skewness measure

is most often the best (in those cases where a clear difference can be seen), and never much worse

then the other two.

8. Nonlinear Causal Discovery on Real Data

Finally, we applied our nonlinear methods on the Tübingen-UCI cause-effect data set9 which con-

sists of real measurements in which the true direction of causation in known. We used a total of 81

data sets, consisting of the subset of those data that had exactly two variables. In addition to our

two new nonlinear methods, we applied the original HSIC-based methods by Hoyer et al. (2009),

as well as the linear likelihood ratio with maximum negentropy approximation of Section 2.3. The

relations in this data set are often quite nonlinear, and the linear methods are hardly above chance

level (results not shown except for one method below), so we concentrate on the nonlinear methods

here.

The nonlinear regression was performed by first fitting a least-squares regression curve using a

Gaussian process as implemented in the fit gp package by J. Mooij, based on code by C. E. Ras-

mussen and H. Nickisch. We used only the first 1,000 data points due to the excessive computational

complexity of HSIC.

The results are shown in Table 2. The linear method, as well as our basic nonlinear method

using maximum entropy were hardly better than chance. The method by Hoyer et al. (2009) was

close to 62%. On the other hand, our simplest approximation using mean absolute deviation was

69% correct.

Presumably, one reason for the weak performance of our nonlinear method using maximum

entropy approximations was that many of the data sets have strong outliers. The MAD-based objec-

tive in Equation (24) is quite robust against them (although the nonlinear regression method was not

9. Data set can be found at http://webdav.tuebingen.mpg.de/cause-effect/.
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Simulation 1  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 2  (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 3  (15 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 4  (50 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 5  (5 nodes, 60 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 6  (10 nodes, 60 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 7  (5 nodes, 250 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 8  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , shared inputs)
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Simulation 9  (5 nodes, 250 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , shared inputs)
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Simulation 10  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , global mean confound)
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Simulation 11  (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , bad ROIs (timeseries mixed with each other))
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Simulation 12  (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , bad ROIs (new random timeseries mixed in))
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Simulation 13  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , backwards connections)
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Simulation 14  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , cyclic connections)
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Simulation 15  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , stronger connections)
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Figure 15: Results on simulated fMRI data, first half. See page 146 for caption.
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Simulation 16  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , more connections)
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Simulation 17  (10 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s )
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Simulation 18  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.0s )
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Simulation 19  (5 nodes, 10 minute sessions, TR=0.25s, noise=0.1%,
HRFstd=0.5s , neural lag=100ms)
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Simulation 20  (5 nodes, 10 minute sessions, TR=0.25s, noise=0.1%,
HRFstd=0.0s , neural lag=100ms)
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Simulation 21  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , 2−group test)
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Simulation 22  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , nonstationary connection strengths)
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Simulation 23  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , stationary connection strengths)
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Simulation 24  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , only one strong external input)
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Simulation 25  (5 nodes, 5 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 26  (5 nodes, 2.5 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Figure 16: Results on simulated fMRI data, second half. See page 146 for caption.
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Method % correct

mxnt 50.6

hsic 61.7

nlme 53.1

mad 69.1

Table 2: Nonlinear models applied on the Tübingen-UCI data set. The algorithms are “nlme”,

the nonlinear likelihood ratio with maximum entropy approximation; “mad”, the approx-

imation using mean absolute deviations. For comparison: “hsic”, the original nonlinear

method using the HSIC measure of independence (Hoyer et al., 2009); and “mxnt”, the

linear method using the maximum entropy approximation.

made robust). The maximum entropy approximation might be greatly improved if the estimation of

the variances used in the maximum entropy objective were made robust against outliers. Further-

more, both of our methods might be improved if the nonlinear fitting used a robust criterion instead

of least squares.

9. Conclusion

We proposed very simple measures of the pairwise causal direction based on likelihood ratio tests

and their approximations. We started with general measures based on entropy approximation which

can accommodate different kinds of distributions, in Equations (2) and (3). Assuming that prior

knowledge is available, we can develop more specific methods; for sparse variables we propose (5)

and for skewed variables (17). We further showed how the measures can be extended to cyclic and

nonlinear models. The different measures are recapitulated in Table 3.

We also showed how the pairwise measures can be used to estimate the whole Bayesian network

in two ways. This is possible either in the DirectLiNGAM framework, or by a two-stage method

based on first estimating the existence of the connections and then orienting them using the pairwise

measures.

We also proposed a cumulant-based version of the nonlinear correlations. It was shown that

the cumulant gives the correct pairwise direction. This shows the utility of using cumulants in

theoretical analysis, and gives an intuitive interpretation of a new kind of cumulant. The cumulant-

based analysis also indicated the noise-robustness of the nonlinear correlation methods, which was

confirmed in the simulations. However, in practice the cumulant-based methods may suffer from

sensitivity to outliers and thus their utility may be mainly in theoretical analysis.

The proposed measures seem to be particularly useful in the case where the number of data

points is small compared to the dimension of the data, or the data is noisy. In such a case, the statis-

tical performance of our methods is clearly superior to ICA-based LiNGAM and, to a lesser extent,

DirectLiNGAM. The new methods are also computationally much faster than DirectLiNGAM. The

importance of estimating causal networks with few data points has been recently highlighted by

Smith et al. (2011) in the context of brain imaging. In fact, applied to the simulations by Smith et al.

(2011), the new pairwise measures were clearly better then the methods originally tested.
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Proposed measures for linear acyclic model (LiNGAM)

Assumptions on non-Gaussianity None Sparse Skewed

Equation for main new pairwise measure (2) with (3) (5) (17)

Equation for previous measure by Dodge and Rousson — — (14)

Proposed measures for extensions of LiNGAM

Extension type Cyclic case Nonlinear case

Equation for new pairwise measure Any LiNGAM measure (23) with (3); or (24)

Table 3: The pairwise measures proposed in this paper recapitulated. The new cumulant-based

approximations (Equations 6 and 10) have been omitted since they are mainly for theo-

retical analysis and not for practical use. Some of the measures by Dodge and Rousson

(2001); Dodge and Yadegari (2010) would otherwise fit the “sparse” category but they as-

sume the disturbances to be Gaussian and are thus less general. In the cyclic case, no new

pairwise measures were introduced and it was merely proposed that the LiNGAM mea-

sures can be directly used even in the cyclic case. Of the measures highlighted above, the

sparse-LiNGAM measure in Equation (5) was proposed in an earlier report on this work

(Hyvärinen, 2010) while all others are new.

Thus, when estimating the LiNGAM model, it may be important to choose a suitable algorithm

depending on data dimension, sample size, noise level, the distributions of the external influences,

and other relevant factors.

Basic code for the pairwise measures is distributed on the Internet.10
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