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Abstract

Boltzmann machine is a classic model of neural computation, and a
number of methods have been proposed for its estimation. Most methods
are plagued by either very slow convergence, or asymptotic bias in the
resulting estimates. Here we consider estimation in the basic case of fully
visible Boltzmann machines. We show that the old principle of pseudo-
likelihood estimation provides an estimator that is computationally very
simple, yet statistically consistent.

1 Introduction

Assume we observe a binary random vector x € {—1,4+1}" and we want to
model its probability distribution function by

1 1
The parameter matrix M = (my, ..., m,) has to be constrained in some way to

make it well-defined, because M and M7 give the same probability distribution,
and the diagonal elements of M do not interact with x at all. We choose the
conventional constraint that M is symmetric and has zero diagonal. The vector
b is an n-dimensional parameter vector. This is a special case (“fully visible”,
i.e. no latent variables) of the Boltzmann machine framework (Ackley et al.,
1985).
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The central problem in the estimation is that we don’t know the constant
Z (M, b). In principle, Z is given by the sum:

ZMb)= Y exp(1€7ME +b7E) (2)
ge{—-1,+1}»

whose computation is exponential in the dimension n. Thus, for any larger
dimension n, direct numerical computation of Z is out of the question. For
continuous-valued variables, we could use score matching (Hyvérinen, 2005),
but here we have binary variables.

Maximum likelihood estimation of the model is not possible without some
kind of computation of the normalization constant Z, also called the partition
function. Typical methods for maximum likelihood estimation are thus com-
putationally very complex, e.g. Markov Chain Monte Carlo (MCMC) methods.
Different kinds of approximation methods have therefore been developed, in-
cluding pseudolikelihood (Besag, 1975), contrastive divergence (Hinton, 2002),
and linear response theory (Kappen and Rodriguez, 1998). None of these ap-
proximative methods has been shown to be consistent. Our contribution here
is to show that pseudolikelihood is consistent, and it is closely connected to
contrastive divergence.

2 Pseudolikelihood of the model

In pseudolikelihood estimation (Besag, 1975), we consider the conditional prob-
abilities P(z;|21,...,Ti—1,%it1,.--,2n;0), i.e. conditional probabilities of the
random variable given all other variables, where @ denotes the parameter vector.
Let us denote by x# the vector with z; removed:

Xgi:($17--~733i—1,35i+1,-~-,33n) 3)
and the logarithms of the conditional probabilities by
Ci(z4;x%,0) = log P(x;[x%", 0) (4)

We then estimate the model by maximizing these conditional probabilities in
the same way as one would maximize ordinary likelihood. Given a sample
x(1),...,x(T), the pseudolikelihood (normalized as a function of sample size by
dividing by T') is thus of the form

n

Jpr(0) = %Z Ci(zi(t); x%(t),0) (5)

t=1 i=1

Consistency of the pseudolikelihood has been thoroughly investigated for Markov
random fields, see e.g. (Gidas, 1988; Mase, 1995) and the references therein.
However, there seem to be few results for the basic case of a random vector.



It is easy to compute the pseudolikelihood for the model in (1). We have

exp(z;m!'x + bz;)
exp(m’x +b;) + exp(—m!'x — b;)

P(z;|x#" M, b) = (6)

which gives
Cy(z;|x%", M, b) = 2;m? x + b;z; — log cosh(m?'x + b;) — log 2 (7)

and thus, for a given sample x(1),...,x(t) of T observations:

T T
Jpr(M,b) =7 ZZ:@ m; x(t) + b;x;(t) — log cosh(m; x(t) + b;) + const.

t=1 i=1
(8)
where the constant does not depend on the parameters.

3 Consistency proof

We now proceed to prove the consistency of the maximum pseudolikelihood
estimator obtained by maximization of Jp;, with respect to the parameters.

The natural starting point is to analyze the point where the gradient of Jpr,
with respect to the parameters is zero. The point of true parameter values is
one such point, as shown in the following proposition:

Proposition 1 Assume data is generated by the distribution in (1) for param-
eters m;; and b;. Then, the gradient of Jpr, is zero at m;; = M;,b; = b;.

Proof: We first compute the derivative of the pseudolikelihood with respect to
mij, i # j:

gﬁj = : zﬁ:xi(t)%‘ (t) —x;(t) tanh(miTx(t) +b;) (9)

A well-known property of Boltmann machines is that

Ef{a;|x%} = (] X(t) + bi) — exp(—xbx(t) -

exp(rﬁzT () £ 50) F exp(—T () By nnemix+by) (10)

Satiisl

K3

At the point where the parameters have the true values, the derivative thus
becomes

e ij - Bla(Olx* () (1

5mz]

Now, by the basic properties of conditional expectations, z; — F{z;|x#}, which
is the residual in the best prediction of x; given x#', is uncorrelated from x#!



and thus of x;. L Thus, we have in the limit of T — oo

gifL = B{aj} By (i — B{ai|x®}} = B{a;} x 0 12)

because the expectation of the residual is zero: E,,{E{z;|x%'}} = E{x;}. Thus,
the gradient with respect to m;; is zero. As for the b;, we obtain

dJpr

= E{z;} — E{tanh(m”x + b;)} (13)

which is zero by the same logic. Thus, we have proven the proposition.

We still have to make sure that this critical point is really the global maxi-
mum of pseudolikelihood. For this end, we have to make the following assump-
tion. Denote by X7 = (x1,...,2,,1)T an augmented data vector. We assume

E{(q"%)? cosh™?(mTx + b)} >0 (14)

for any vector q € R"*! of non-zero norm, and for any m € R” and b € R. This
is not a very strong assumption because obviously, the expectation is always
non-negative (cosh is a positive function). Basically, the expectation could be
zero only in some pathological cases.

Now we use the concavity of Jpy, which is possible due to the following
proposition:

Proposition 2 Assuming (14), and in the limit of an infinite sample, Jpy, is
strictly concave with respect to the vector consisting of the elements of M and
b.

Proof: Since a sum of strictly concave functions is still strictly concave, we can
consider each term in the sum with respect to ¢ separately. Each such term is a
function of [m;, b;] only. So, we only have to prove that

Ji(my, b;) = E{z;m?x + byx; — log cosh(m? x + b;)} (15)
is strictly concave. The Hessian of J; with respect to m; equals
Hp, Jpr = —E{xx" cosh72(mlrx +b;)} (16)
The second derivative with respect to b; equals
—E{cosh™?(mTx + b;)} (17)

and the cross-derivatives equal

9J; _ T -2 T )
Omob, E{x" cosh™“(m; x+ b;)} (18)

n general, we have for any two random variables x, y:
Bay{(E{yle} —y)a} = [, [,([,, p(¥/|2) v dy’ = — zy) p(z, y)dzdy
= [, p |z) 2y’ dy') ([, p(z,y)dy)dz — [, [, p(z,y)zy dyde.
Since fy p(z,y)dy p(y'|z) = p(z,y’), the two terms are equal, and the difference is zero.



Collecting these in a single matrix, we see that the total Hessian equals
Him, pJi = —B{xxT coshfz(miTx +b)} (19)

which is, by our assumption in (14), negative-definite for any values of the
parameters. A function whose Hessian is always negative-definite is strictly
concave. Thus, we have proven the strict concavity of Jpy,.

This leads us finally to the theorem

Theorem 1 Assume (14). Then the pseudolikelihood estimator is (globally)
consistent for the model in (1).

Proof: A strictly concave function defined in a real space has a single maximum.
If the function is differentiable (as Jpy here), the maximum is obtained at the
point of zero gradient. This would seem to prove the theorem. However, we
have one additional complication because M is constrained to be symmetric and
to have zero diagonal. This is actually not problematic since it only means that
the optimization is constrained to a linear subspace. The restriction of a strictly
concave function on a linear subspace is still strictly concave. Also, since the
gradient is zero for the true parameter values, the projection of the gradient is
zero for the true parameter values. Thus, the restrictions of symmetricity and
zero diagonal do not change anything. So, we have proven that in the limit
of an infinite sample, the pseudolikelihood is maximized by the true parameter
values alone. This implies the theorem.

4 Gradient algorithm

Let us briefly consider how pseudolikelihood can be computationally maximized.
The simplest way of maximizing the pseudolikelihood is by gradient ascent. The
relevant gradients were already given above. However, since M is constrained
to be symmetric and to have zero diagonal, the gradient has to be projected on
this linear space. Thus, we compute the symmetrized gradient

_1Jpy  1Jpg

D(1ny;) (20)
where the derivatives are given in (9), and evaluated at the current estimates
fot the parameters. We then update the current estimates 7;;, for ¢ # j only,
using this projected gradient in a gradient ascent step:

Am; = pD(1h,;) for all i # j (21)
where 1 is a step size. As for the b;, we can use the gradient directly and update
- dJpr
Ab; = 22
T (22)

where the derivative is given in (13).

The algorithm we have given here is a batch algorithm, using the whole
sample to calculate the pseudolikelihood. On-line variants are easy to construct
as well.



5 Connection to contrastive divergence

Contrastive divergence (Hinton, 2002) is an approximation of MCMC methods.
It consists of two related ideas: first, we fix the initial values in the MCMC
method to be equal to the sample points themselves, and second, we take a
small number of steps in the MCMC method, perhaps just one. This is a gen-
eral framework that can be applied on non-normalized models with continuous-
valued or discrete-valued variables and also in latent variable models.

We shall here prove that for the model in (1), contrastive divergence is
equivalent to pseudolikelihood if we use single-step Gibbs sampling, which is
the most basic setting.

In the general MCMC setting, the expectation of the gradient of m;j,i # j
is given by (Ackley et al., 1985)

Amz—j = EIin - E]y[l’iilij (23)

where F denotes the expectation over the sample distribution, and E; denotes
the expectation over the distribution given by the model with current parameter
values.

In contrastive divergence, the expected gradient update for m;; is given by

Amij = E$i(t)$j (t) — EEg(k)$i(t)$j (t) (24)

where Fg () means the expectation under the distribution given by one step of
Gibbs sampling on the k-th variable, i.e. replacing z(t) by a random variable
which follows the conditional distribution of xj given all other variables. In
the simplest random update sheme, the index k is a random variable that has
uniform distribution over the indices 1,...,n. Note that there are two different
methods called contrastive divergence defined in (Hinton, 2002): one based on
an objective function and the other based on an approximative gradient of that
objective function. We consider here the latter because it is the one to be used
in practice.
As above, the expectation of the conditional distribution can be computed
as
Eguyzi(t) = tanh(m?x(t) + b;) (25)

while Eqryxi(t) = x;(t) for k # i. Now, in the second term on the right-hand
side of (24) there is a probability of (n — 2)/n that the index k is not equal
to i or j. Then, the Gibbs sampling has no effect and can be ignored. With
probability 1/n, k equals ¢ and with the same probability, it equals j. Thus,



(24) equals

(26)
As for the parameters b;, we obtain in a similar way
Ab; = Ex;(t) — EEgwi(t) = Ex(t) — tanh(m] x(t) + b;) (27)

As the gradient step size in contrastive divergence is typically taken from
a sequence that converges to zero fast enough, the convergence of contrastive
divergence is given by the point where the expected gradient is zero. Now,
the expected gradients in (26) and (27) are equal (up the some insignificant
multiplicative constants) to the corresponding symmetrized gradients of the
pseudolikelihood. So, the two methods converge in the same points.

The convergence of contrastive divergence (the same gradient version as we
analyzed here) was analyzed in (Carreira-Perpindn and Hinton, 2005), with the
conclusion that contrastive divergence is asymptotically “biased” for the model
in (1). This discrepancy with our results is due to the difference of the definition
of biages. In (Carreira-Perpinidn and Hinton, 2005) the bias was computed as
the Kullback-Leibler divergence between the distributions given by the model
when the estimated parameters for contrastive divergence or likelihood are used.
Thus, their conclusion was that contrastive divergence gives, in general, a dif-
ferent estimate than likelihood. However, they also noted that the difference
disappears (asymptotically) if the data is really generated by the model, which
is the case we consider here. Different variants of contrastive divergence which
always give the same estimate as maximum likelihood were further developed
in (Carreira-Perpindn and Hinton, 2005). See also (Welling and Sutton, 2005)
for related work.

6 Simulation results

We performed simulation to validate the different estimation methods for the
fully visible Boltmann machine. We created random matrices M so that the
elements had independent normal distributions with zero mean and standard
deviation of .5. The parameters b; were randomly generated from the same
distribution. The dimension n was set to 5 which is small enough to enable
exact sampling from the distribution, which is important in order to be able to
reliably validate the estimation results.

We generated data from the distribution in (1) and estimated the parame-
ters using maximum pseudolikelihood. for various sample sizes: 500, 1000, 2000,



4000, 8000, and 16000. We also estimated the parameters using ordinary likeli-
hood for comparison: exact computation of the maximum likelihood estimator
was possible due to the small dimension. For each sample size, we created 5
different data sets and ran the estimation once on each data set using a random
initial point. For each estimation, the estimation error was computed as the
Euclidean distance of the real matrix [M, b] and its estimate. Finally, we took
the mean of the logarithms of the 5 estimation errors.

The results are shown in Figure 1. The maximum pseudolikelihood estimator
seems to be consistent in the sense that the estimation error seems to go to
zero when the sample size grows, as implied by our Theorem. Surprisingly, its
estimation errors are not really larger than that of ordinary maximum likelihood.
Actually the errors are almost identical; they seem to depend more on the
random parameters generated than on the method.

7 Conclusion

We have shown that pseudolikelihood, a rather old estimation principle (Besag,
1975), provides a consistent estimator for the fully visible Boltzmann machine.
This estimator turns out to be a special case of contrastive divergence. The
literature on Boltzmann machines does not seem to have paid much attention
to pseudolikelihood estimation so far.

We considered the fully visible case only, because that is where pseudolikeli-
hood estimation can be directly applied. Extensions to hidden variables are an
important subject for future work, and have been partly addressed in work on
contrastive divergence (Carreira-Perpindn and Hinton, 2005).
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