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Abstract

We introduce a novel fast algorithm for Independent Component Analysis, which can be used for
blind source separation and feature extraction. It is shown how a neural network learning rule can
be transformed into a fixed-point iteration, which provides an algorithm that is very simple, does not
depend on any user-defined parameters, and is fast to converge to the most accurate solution allowed
by the data. The algorithm finds, one at a time, all non-Gaussian independent components, regardless
of their probability distributions. The computations can be performed either in batch mode or in a
semi-adaptive manner. The convergence of the algorithm is rigorously proven, and the convergence
speed is shown to be cubic. Some comparisons to gradient based algorithms are made, showing that the

new algorithm is usually 10 to 100 times faster, sometimes giving the solution in just a few iterations.

1 Introduction

Independent Component Analysis (ICA) (Comon, 1994; Jutten and Herault, 1991) is a signal processing
technique whose goal is to express a set of random variables as linear combinations of statistically inde-
pendent component variables. Two interesting applications of ICA are blind source separation and feature
extraction. In the simplest form of ICA (Comon, 1994), we observe m scalar random variables vq,va, ..., Un,
which are assumed to be linear combinations of n unknown independent components sy, So, ..., S, that are
mutually statistically independent, and zero-mean. In addition, we must assume n < m. Let us arrange

the observed variables v; into a vector v = (v1,vs,...,v,,)? and the component variables s; into a vector s,



respectively; then the linear relationship is given by
v =As (1)

Here, A is an unknown m x n matrix of full rank, called the mixing matrix. The basic problem of ICA is
then to estimate the original components s; from the mixtures v; or, equivalently, to estimate the mixing
matrix A. The fundamental restriction of the model is that we can only estimate non-Gaussian independent
components (except if just one of the independent components is Gaussian). Moreover, neither the energies
nor the signs of the independent components can be estimated, because any constant multiplying an
independent component in eq. (1) could be cancelled by dividing the corresponding column of the mixing
matrix A by the same constant. For mathematical convenience, we define here that the independent
components s; have unit variance. This makes the (non-Gaussian) independent components unique, up to
their signs. Note that no order is defined between the independent components.

In blind source separation (Cardoso, 1990; Jutten and Herault, 1991), the observed values of v correspond
to a realization of an m-dimensional discrete-time signal v(t), ¢ = 1,2,.... Then the components s;(t) are
called source signals, which are usually original, uncorrupted signals or noise sources.

Another possible application of ICA is feature extraction (Bell and Sejnowski, 1996a; Bell and Sejnowski,
1996b; Hurri et al., 1996). Then the columns of A represent features, and s; signals the presence and the
’amplitude’ of the i-th feature in the observed data v.

The problem of estimating the matrix A in eq. (1) can be somewhat simplified by performing a pre-
liminary sphering or prewhitening of the data v (Cardoso, 1990; Comon, 1994; Oja and Karhunen, 1995).
The observed vector v is linearly transformed to a vector x = Mv such that its elements z; are mutually
uncorrelated and all have unit variance. Thus the correlation matrix of x equals unity: E{xx’} = I. This
transformation is always possible and can be accomplished by classical Principal Component Analysis. At
the same time, the dimensionality of the data should be reduced so that the dimension of the transformed
data vector x equals n, the number of independent components. This also has the effect of reducing noise.
After the transformation we have

x = Mv = MAs = Bs (2)

where B = MA is an orthogonal matrix due to our assumptions on the components s;: it holds E{xx’} =
BE{ss?}B? = BB? = 1. Thus we have reduced the problem of finding an arbitrary full-rank matrix A to
the simpler problem of finding an orthogonal matrix B, which then gives s = BT x. If the i-th column of B
is denoted b;, then the i-th independent component can be computed from the observed x as s; = (b;)”x.

The current algorithms for Independent Component Analysis can be roughly divided into two categories.
The algorithms in the first category (Cardoso, 1992; Comon, 1994) rely on batch computations minimizing
or maximizing some relevant criterion functions. The problem with these algorithms is that they require

very complex matrix or tensorial operations. The second category contains adaptive algorithms often based



on stochastic gradient methods, which may have implementations in neural networks (Amari et al., 1996;
Bell and Sejnowski, 1995; Delfosse and Loubaton, 1995; Hyvérinen and Oja, 1996; Jutten and Herault,
1991; Moreau and Macchi, 1993; Oja and Karhunen, 1995). The main problem with this category is the
slow convergence, and the fact that the convergence depends crucially on the correct choice of the learning
rate parameters.

In this paper we introduce a novel approach for performing the computations needed in ICAl. We
introduce an algorithm using a very simple, yet highly efficient, fized-point iteration scheme for finding the
local extrema of the kurtosis of a linear combination of the observed variables. It is well-known (Delfosse
and Loubaton, 1995) that finding the local extrema of kurtosis is equivalent to estimating the non-Gaussian
independent components. However, the convergence of our algorithm will be proven independently of these
well-known results. The computations can be performed either in batch mode or semi-adaptively.

The new algorithm is introduced and analyzed in Section 3, after presenting in Section 2 a short review

of kurtosis minimization/maximization and its relation to neural network type learning rules.

2 ICA by Kurtosis Minimization and Maximization

Most suggested solutions to the ICA problem use the fourth-order cumulant or kurtosis of the signals,

defined for a zero-mean random variable v as
kurt(v) = E{v*} — 3(E{v?})? (3)

For a Gaussian random variable, kurtosis is zero; for densities peaked at zero, it is positive, and for flatter
densities, negative. Note that for two independent random variables v; and vs and for a scalar a, it holds
kurt(v; +v2) = kurt(v;) + kurt(vs) and kurt(av;) = o kurt(v;).

Let us search for a linear combination of the sphered observations z;, say, w” x, such that it has maximal
or minimal kurtosis. Obviously, this is meaningful only if the norm of w is somehow bounded; let us assume
|lw|| = 1. Using the orthogonal mixing matrix B, let us define z = BTw. Then also ||z|| = 1. Using eq. (2)

and the properties of the kurtosis, we have

n
kurt(w!x) = kurt(w!'Bs) = kurt(z’s) = Z 2} kurt(s;) 4)
i=1
Under the constraint ||w|| = ||z|| = 1, the function (4) has a number of local minima and maxima. For

simplicity, let us assume for the moment that the mixture contains at least one independent component
whose kurtosis is negative, and at least one whose kurtosis is positive. Then, as was shown by Delfosse

and Loubaton (1995), the extremal points of (4) are the canonical base vectors z = *e;, i.e. vectors whose

1Tt was brought to our attention that a similar algorithm for blind deconvolution was proposed by Shalvi and Weinstein

(1993).



all components are zero except one component which equals 1. The corresponding weight vectors are
w = Bz = Be; = b; (perhaps with a minus sign), i.e. the columns of the orthogonal mixing matrix B. So,
by minimizing or maximizing the kurtosis in eq. (4) under the given constraint, the columns of the mixing
matrix are obtained as solutions for w, and the linear combination itself will be one of the independent
components: w!x = (b;)Tx = s;. Equation (4) also shows that Gaussian components cannot be estimated
by this way, because for them kurt(s;) is zero.

To actually minimize or maximize kurt(w?x), a neural algorithm based on gradient descent or ascent
can be used (Delfosse and Loubaton, 1995; Hyvéirinen and Oja, 1996). Then w is interpreted as the weight
vector of a neuron with input vector x. The objective function can be simplified because the inputs have

been sphered: it holds
kurt(w'x) = BE{(w'x)*} = 3[E{(w"x)*}]* = E{(w"x)*} - 3||w|* (5)

Also the constraint ||w|| = 1 must be taken into account, e.g. by a penalty term (Hyvirinen and Oja,

1996). Then the final objective function is
J(w) = E{(w"x)"} = 3[|w||* + F([|w]]*) (6)

where F' is a penalty term due to the constraint. Several forms for the penalty term have been suggested
by Hyvérinen and Oja (1996)2. In the following, the exact form of F is not important. Denoting by x(t)
the sequence of observations, by p(t) the learning rate sequence, and by f the derivative of F'/2, the on-line

learning algorithm then has the form

w(t +1) = w(t) £ p() () (w(t) x(1))* = 3[w(t)|Pw(t) + f(Iw@)|I*)w(t)] (7)

The first two terms in brackets are obtained from the gradient of kurt(w?x) when instantaneous values
are used instead of the expectation. The third term in brackets is obtained from the gradient of F(||w||?);
note that as long as this is a function of ||w||? only, its gradient has the form scalar x w. Positive sign
before the brackets means finding the local maxima, negative sign corresponds to local minima.

The convergence of this kind of algorithms can be proven using the principles of stochastic approxima-
tion. The advantage of such neural learning rules is that the inputs x(¢) can be used in the algorithm at
once, thus enabling fast adaptation in a non-stationary environment. A resulting trade-off, however, is that
the convergence is slow, and depends on a good choice of the learning rate sequence u(t). A bad choice of
the learning rate can, in practice, destroy convergence. Therefore, some ways to make the learning radically
faster and more reliable may be needed. The fixed-point iteration algorithms are such an alternative.

The fixed points w of the learning rule (7) are obtained by taking the expectations and equating the
change in the weight to 0:

E{x(w"x)*} = 3[|w|*w + f([[w[*)w = 0 (8)

2Note that in (Hyvérinen and Oja, 1996), the second term in J was also included in the penalty term.




The time index ¢ has been dropped. A deterministic iteration could be formed from eq. (8) by a number of
ways, e.g. by standard numerical algorithms for solving such equations. A very fast iteration is obtained,

as shown in the next section, if we write (8) in the form
w = scalar x (B{x(wTx)3} — 3||w|*w) 9)

Actually, because the norm of w is irrelevant, it is the direction of the right hand side that is important.
Therefore the scalar in eq. (9) is not significant and its effect can be replaced by explicit normalization, or

the projection of w onto the unit sphere.

3 Fixed-Point Algorithm

3.1 The Algorithm
3.1.1 Estimating one independent component

Assume that we have collected a sample of the sphered (or prewhitened) random vector x, which in the
case of blind source separation is a collection of linear mixtures of independent source signals according to

eq. (2). Using the derivation of the preceding section, we get the following fixed-point algorithm for ICA:
1. Take a random initial vector w(0) of norm 1. Let k = 1.

2. Let w(k) = E{x(w(k—1)Tx)3} — 3w(k — 1). The expectation can be estimated using a large sample
of x vectors (say, 1,000 points).

3. Divide w(k) by its norm.

4. If |w(k)Tw(k — 1)| is not close enough to 1, let k = k + 1 and go back to step 2. Otherwise, output
the vector w(k).

The final vector w(k) given by the algorithm equals one of the columns of the (orthogonal) mixing matrix
B. In the case of blind source separation, this means that w(k) separates one of the non-Gaussian source
signals in the sense that w(k)7x(t), t = 1,2, ... equals one of the source signals.

A remarkable property of our algorithm is that a very small number of iterations, usually 5-10, seems to
be enough to obtain the maximal accuracy allowed by the sample data. This is due to the cubic convergence

shown below.

3.1.2 Estimating several independent components

To estimate n independent components, we run this algorithm n times. To ensure that we estimate each

time a different independent component, we only need to add a simple orthogonalizing projection inside



the loop. Recall that the columns of the mixing matrix B are orthonormal because of the sphering. Thus
we can estimate the independent components one by one by projecting the current solution w(k) on the
space orthogonal to the columns of the mixing matrix B previously found. Define the matrix B as a matrix
whose columns are the previously found columns of B. Then add the projection operation in the beginning

of step 3:
3. Let w(k) = w(k) — BB  w(k). Divide w(k) by its norm.

Also the initial random vector should be projected this way before starting the iterations. To prevent
estimation errors in B from deteriorating the estimate w(k), this projection step can be omitted after the
first few iterations: once the solution w(k) has entered the basin of attraction of one of the fixed points, it
will stay there and converge to that fixed point.

In addition to the hierarchical (or sequential) orthogonalization described above, any other method of
orthogonalizing the weight vectors could also be used. In some applications, a symmetric orthogonalization
might be useful. This means that the fixed-point step is first performed for all the n weight vectors, and then
the matrix W (k) = (wy(k), ..., w,(k)) of the weight vectors is orthogonalized, e.g., using the well-known
formula

Let W (k) = W(k)(W(k)TW (k))~/2 (10)

where (W (k)TW (k))~'/2 is obtained from the eigenvalue decomposition of W (k)T W (k) = EDET as
(W (k)TW (k))~'/2 = ED'/2ET. However, the convergence proof below applies only to the hierarchical

orthogonalization.

3.1.3 A semi-adaptive version

A disadvantage of many batch algorithms is that large amounts of data must be stored simultaneously in
working memory. Our fixed-point algorithm, however, can be used in a semi-adaptive manner so as to
avoid this problem. This can simply be accomplished by computing the expectation E{x(w(k — 1)Tx)3}
by an on-line algorithm for N consecutive sample points, keeping w(k — 1) fixed, and updating the vector
w(k) after the average over all the N sample points has been computed.

This semi-adaptive version also makes adaptation to non-stationary data possible. Thus the semi-
adaptive algorithm combines many of the advantages usually attributed to either on-line or batch algo-

rithms.

3.2 Convergence Proof

Now we prove the convergence of our algorithm. To begin with, make the change of variables z(k) =

BTw(k). Note that the effect of the projection step is to set to zero all components z;(k) of z(k) such that



the ¢-th column of B has already been estimated. Therefore, we can simply consider in the following the
algorithm without the projection step, taking into account that the z;(k) corresponding to the independent
components previously estimated, are zero.

First, using (2), we get the following form for step 2 of the algorithm:
z(k) = E{s(z(k — 1)"s)} — 3z(k — 1) (11)

Expanding the first term, we can calculate explicitly the expectation, and obtain for the i-th component of
the vector z(k):
zi(k) = E{s{}zi(k = 1)* + 3> zj(k —1)%2zi(k — 1) — 3z;(k — 1) (12)
JFi
where we have used the fact that by the statistical independence of the s;, we have E{sfsf} =1, and
E{s}s;} = E{s?s;js;} = E{sisj818m } = 0 for four different indices 4,j,/, and m. Using ||z(k)|| = ||w(k)|| = 1,
eq. (12) simplifies to
2i(k) = kurt(s;) z(k — 1)° (13)
where kurt(s;) = E{s{} — 3 is the kurtosis of the i-th independent component. Note that the subtraction

of 3w(k — 1) from the right side cancelled the term due to the cross-variances, enabling direct access to the

fourth-order cumulants. Choosing j so that kurt(s;) # 0 and z;(k — 1) # 0, we further obtain

iR eurt(s)] ( [alk — DI\?
125 (0]~ [ Taurt(s,)] (|zj<k— 1)|> 14)

Note that the assumption z;(k — 1) # 0 implies that the j-th column of B is not among those already
found. Next note that |z;(k)|/|2; (k)| is not changed by the normalization step 3. It is therefore possible to
solve explicitly |z;(k)|/|z;(k)| from this recursive formula, which yields

k

(15)

(k)| _ /Tkurt(s,)] <¢| Kurt(s,)] |24(0) )
li () /Thurt(s))] \ /Tkurt(s;)[ |2 (0)]
for all k > 0. For j = arg max;, \/[kurt(sp)| |2,(0)|, we see that all the other components z;(k), i # j
quickly become small compared to z;(k). Taking the normalization ||z(k)|| = ||w(k)|| = 1 into account,
this means that z;(k) — 1 and z;(k) — 0 for all ¢ # j. This implies that w(k) = Bz(k) converges to the
column b; of the mixing matrix B, for which the kurtosis of the corresponding independent component s;

is not zero, and which has not yet been found. This proves the convergence of our algorithm.

4 Simulation Results

The fixed-point algorithm was applied to blind separation of 4 source signals from 4 observed mixtures.

Two of the source signals had a uniform distribution, and the other two were obtained as cubes of Gaussian



variables. Thus, the source signals included both sub-Gaussian and super-Gaussian signals. Using different
random mixing matrices and initial values w(0), five iterations were usually sufficient for estimation of one
column of the orthogonal mixing matrix to an accuracy of 4 decimal places.

Next, the convergence speed of our algorithm was compared with the speed of the corresponding neural
stochastic gradient algorithm. In the neural algorithm, an empirically optimized learning rate sequence was
used. The computational overhead of the fixed-point algorithm was optimized by initially using a small
sample size (200 points) in step 2 of the algorithm, and increasing it at every iteration for greater accuracy.
The number of floating point operations was calculated for both methods.

The fixed-point algorithm needed only 10 per cent of the floating point operations required by the neural
algorithm. Note that this result was achieved with an empirically optimized learning rate. If we had been
obliged to choose the learning rate without preliminary testing, the speed-up factor would have been of the
order of 100. In fact, the neural stochastic gradient algorithm might not have converged at all.

These simulation results confirm the theoretical implications of very fast convergence.

5 Discussion

We introduced a batch version of a neural learning algorithm for Independent Component Analysis. This
algorithm, which is based on the fixed-point method, has several advantages as compared to other suggested

ICA methods.

1. Equation (15) shows that the convergence of our algorithm is cubic. This means very fast convergence
and is rather unique among the ICA algorithms. It is also in contrast to other similar fixed-point
algorithms, like the power method, which often have only linear convergence. In fact, our algorithm

can be considered a higher-order generalization of the power method for tensors.

2. Contrary to gradient-based algorithms, there is no learning rate or other adjustable parameters in

the algorithm, which makes it easy to use, and more reliable.

3. The algorithm, in its hierarchical version, finds the independent components one at a time, instead
of working in parallel like most of the suggested ICA algorithms that solve the entire mixing matrix.
This makes it possible to estimate only certain desired independent components, provided we have
sufficient prior information of the weight matrices corresponding to those components. For example,
if the initial weight vector of the algorithm is the first principal component, the algorithm finds
probably the most important independent component, i.e. such that the norm of the corresponding

column in the original mixing matrix A is the largest.

4. Both components of negative kurtosis (i.e. sub-Gaussian components) and components of positive

kurtosis (i.e. super-Gaussian components) can be found, by starting the algorithm from different



initial points, and possibly removing the effect of the already found independent components by a
projection onto an orthogonal subspace. If just one of the independent components is Gaussian (or
otherwise has zero kurtosis), it can be estimated as the residual that is left over after extracting all
other independent components. Recall that more than one Gaussian independent component cannot

be estimated in the ICA model.

5. Although the algorithm was motivated above as a short-cut method to make neural learning for
kurtosis minimization / maximization faster, its convergence was proven independently of the neural
algorithm and the well-known results on the connection between ICA and kurtosis. Indeed, our proof

is based on principles different from those used so far in ICA, and thus opens new lines for research.

Recent developments of the theory presented in this paper can be found in (Hyvérinen, 1997a; Hyvérinen,

1997b).
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