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Abstract

Many methods have been proposed for discovery of causal relations among observed
variables. But one often wants to discover causal relations among latent factors
rather than observed variables. Some methods have been proposed to estimate linear
acyclic models for latent factors that are measured by observed variables. However,
most of the methods use data covariance structure alone for model identification,
and this leads to a number of indistinguishable models. In this paper, we show that a
linear acyclic model for latent factors is identifiable when the data are non-Gaussian.
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1 Introduction

Many algorithms have been proposed for discovery of causal relations among
observed variables [8,12]. But many empirical researchers are more interested
in discovering causal relations among latent factors [11]. Some methods have
been proposed for estimating linear structures of latent factors that are linearly
measured by observed variables [11]. However, most of the methods employ
covariance structure of data alone for model identification even when the data
are non-Gaussian, and this leads to a number of indistinguishable models for
latent factors. In this paper, we show that a linear acyclic model for latent
factors is uniquely identified using non-Gaussian structures of data as well.

Preprint submitted to Elsevier 18 November 2008



2 Background

In [10], a non-Gaussian variant of Bayesian networks was proposed. Assume
that we observe data generated from a process with the following properties;
(a) The generating process can be represented graphically by a DAG. (b) The
relations between variables are linear. Without loss of generality, each observed
variable xi is assumed to have zero mean. Then we have

x = B̄x + e, (1)

where B̄ is a matrix that contains the connection strength from xj to xi

denoted by b̄ij and that could be permuted by simultaneous equal row and
column permutations to strict lower triangularity due to the acyclicity as-
sumption. (Strict lower triangularity is here defined as lower triangular with
all zeros on the diagonal.); (c) The external influences ei are all continuous
random variables having non-Gaussian distributions with zero means and non-
zero variances, and the ei are independent of each other. A model with these
three properties is called a Linear, Non-Gaussian, Acyclic Model (LiNGAM).

Now let us see how one can identify the parameters of the model. Solving
Eq. (1) for x one obtains

x = Āe, (2)

where Ā = (I − B̄)−1. Since the components of e are independent and non-
Gaussian, Eq. (2) defines the standard linear independent component analysis
(ICA) model [5], which is known to be identifiable [1].

While ICA is essentially able to estimate Ā (and W̄ = Ā−1 = I − B̄), there
are permutation and scaling indeterminacies. Therefore, ICA actually gives
W̄ICA=P̄D̄W̄, where P̄ is an unknown permutation matrix, and D̄ is an
unknown diagonal scaling matrix. But in LiNGAM, one can find the correct
permutation as described in [10]: the correct permutation is the only one which
has no zeros in the diagonal. Further, one can find the correct scaling of the
independent components. One only has to re-normalize the rows of D̄W̄ so
that all the diagonal elements equal unity, which gives W̄. Then one can finally
compute the connection strength matrix for observed variables B̄ = I − W̄.

3 A linear non-Gaussian acyclic model for latent factors

Let us consider the following linear model:

f =Bf + d (3)

x =Gf + e, (4)
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where f , d, x and e are random vectors that collect latent factors fi, external
influences di, observed variables xi and errors ei respectively, and B and G
are matrices that collect connection strengths bij and factor loadings gij. We
assume that the relations among latent factors fi can be represented by a
DAG, that is, B can be permuted to be strictly lower-triangular. The e and f
are independent. The ei and di are mutually independent, but fi are allowed
to be dependent due to the DAG structure. Without loss of generality, we
assume that fi are of zero mean and unit variance.

We now make some key assumptions of our approach; i) the Faithfulness 1 [12];
ii) each latent factor fi has at least three pure measurement variables. Pure
measurement variables are defined as observed variables that have a single
latent factor parent [11]; iii) the external influences di are continuous random
variables that follow non-Gaussian distributions whose means are zeros and
moments exist. Note that the errors ei can be either Gaussian or non-Gaussian.
See Fig. 1 for a graphical example of our data generating models.

===== Insert Figure 1 =====

4 Model identification

First let us consider how to estimate the measurement model (4). In [11], the
authors proposed a discovery algorithm called BuildPureClusters algorithm
that returns the number of latent factors and which observed variable purely
measures which latent factor in the model (4). Once the number of latent
factors and their (at least 3) pure measurement variables are known, one can
identify the factor loading matrix G and covariance matrices of factors and
errors (cov(f) and cov(e)) by factor analysis that constrains the pure measure-
ment variables to be pure [9]. For example, in Fig. 1, the BuildPureClusters
algorithm removes impure variables x4 and x8 and find three pure clusters
i) x1, x2, x3, ii) x5, x6, x7, and iii) x9, x10, x11 that are measured by a single
factor. Then we analyze all the observed variables using factor analysis with
three factors constraining such coefficients in G to be zeros that are from
each factor to observed variables the other factors purely measure. Note that
variances of factors var(fi) are fixed to be unity and are not estimated, and
covariances of errors cov(ei, ej) (i 6= j) are zeros due to the model assumption.

Next, we want to estimate the structural model (3). Using the relation f =
(I − B)−1d from (3), the reduced form of (3) and (4) is written as

1 In the context, the faithfulness means that no combined effects of multiple path-
ways cancel out to be zeros and accidentally make correlations and partial correla-
tions of variables equal to zeros [11].
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x =G(I − B)−1d + e

=Ad + e, (5)

where A = G(I − B)−1. Since external influences di are non-Gaussian and
independent, this is an ICA model with additive errors (Noisy ICA), which is
identifiable up to an arbitrary permutation and scaling of columns of A [2,3].

Since the orders of columns of G would be different from A due to the permu-
tation indeterminacy of factor analysis and noisy ICA, we obtain W=I − B
with a random row permutation by (GTA)−1(GTG) using the relation A =
G(I − B)−1. Further, there is the scaling indeterminacy of columns of A or
rows of W. That is, we obtain WnoisyICA=PDW, where P is an unknown
permutation matrix, and D is an unknown diagonal scaling matrix. Fortu-
nately, we can fix the permutation and scaling and obtain W in the same
manner as the LiNGAM method described in Section 2. Thus, we can obtain
the connection strength matrix for latent factors B = I − W.

Existing estimation methods [6,7] for the noisy ICA model (5) with errors that
follow arbitrary distributions are not computationally very feasible especially
for large dimensions [5]. Therefore, we here use an approximate solution. We
first perform principal component analysis (PCA) and subsequently apply
ordinary noise-free ICA (FastICA [4] here) to the principal components. This
is validated when the measurement errors are small enough or a large number
of measurement variables for each factor are available [5].

5 Estimation procedure

We now propose an estimation procedure for the model in Section 3:

(1) Find the number of latent factors and which observed variable purely
measures which latent factor by the BuildPureClusters algorithm.

(2) Estimate G by factor analysis constraining pure xi found in Step (1) to
be pure.

(3) Estimate A by noisy ICA. (Here we use PCA+FastICA.)
(4) Compute an estimate of W by (ĜT Â)−1(ĜT Ĝ).
(5) Do the LiNGAM permutation and re-normalizing on estimated W to get

an estimate of B:
(a) Find the one and only permutation of rows of the estimated W which

yields a matrix W̃ without any zeros on the main diagonal. In prac-
tice, the permutation is sought which minimizes

∑
i 1/|W̃ii|.

(b) Divide each row of W̃ by its corresponding diagonal element, to yield
a new matrix W̃′ with all ones on the diagonal.

(c) Compute an estimate B̂ of B using B̂ = I − W̃′.
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In the next section, we conduct simulations to see the empirical performance.

6 Simulation experiments

As a sanity check of our method, we performed an experiment with simulated
data. We generated data in the following manner:

(1) First, we randomly constructed a strictly lower-triangular matrix B for
four latent factors so that standard deviations of factors fi owing to par-
ent factors ranged in the interval [0.5, 1.5] and also randomly selected
standard deviations of the external influence variables di from the inter-
val [0.5, 1.5]. Then we normalized the factors so that they were of unit
variance. We made the factor correlations range from -0.81 to 0.81. Both
fully connected and sparse networks were created.

(2) Next, we generated data with sample size 1,000 by independently drawing
the external influence variables di from various non-Gaussian distribu-
tions with zero mean and unit variance 2 . The values of the latent factors
fi were generated according to the assumed recursive process.

(3) We randomly permuted the order of the factors fi to hide the causal order
with which the data was generated. We also permuted B as well as the
variances of the external influence variables to match the new order.

(4) We generated measurement errors (ei) in the same manner as generating
external influences (di) in Step 2. We randomly generated the factor load-
ing matrix G with pure and impure measurement variables. The number
of pure measurement variables was 4 for each latent factor. The number
of impure measurement variables that have all the latent factor as their
parent was 8. Thus, the total number of observed variables was 24.

(5) We normalized the rows of G so that variances of xi were 1 when mea-
surement errors above were added. We varied var(ei) from 0.2 to 0.6.

(6) We mixed the generated latent factors fi and measurement errors ei to
create the observed data xi.

===== Insert Figure 2 =====

Fig. 2 gives scatterplots of the elements of estimated B and G versus the gen-
erating ones. The left is the scatterplot of the estimated connection strengths
bij versus the original (generating) values. The right is the scatterplot of the

2 We first generated a Gaussian variable z with zero mean and unit variance and
subsequently transformed it to a non-Gaussian variable by ei = sign(z)|z|q. The
nonlinear exponent q was selected to lie in [0.5, 0.8] or [1.2, 2.0]. The former gave a
sub-Gaussian variable, and the latter a super-Gaussian variable. Finally, the trans-
formed variable was standardized to have zero mean and unit variance.
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estimated factor loadings gij versus the generating values. We can see that
most of the data points are close enough to the main diagonal, which confirms
the validity of our estimation procedure.

7 Conclusion

In this paper, we showed that a linear non-Gaussian acyclic model for latent
factors is completely identified. This would be an important step for developing
advanced methods to discover structures of latent factors.
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Fig. 1. A graphical example of our data generating models. Latent factors are en-
closed in circles, and observed variables are in rectangular boxes. The x4 and x8 are
impure measurement variables that measure more than one latent factor, and the
other observed variables are pure measurement variables that have a single latent
factor parent.

Fig. 2. Left: Scatterplot of the estimated bij versus the original values. Right: Scat-
terplot of the estimated gij versus the original (generating) values. Five data sets
with 1,000 observations were generated for each of the scatterplots. Since the or-
dering and signs of latent factors cannot be defined, we first permuted columns
of estimated G and multiplied them by -1 if necessary so that the difference be-
tween estimated G and generating G was minimized and compared estimated and
generating B.
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