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Abstract

Recently, a number of empirical studies have compared thfompeance of PCA and ICA as
feature extraction methods in appearance-based objengmémn systems, with mixed and seemingly
contradictory results. In this paper, we briefly describe ttonnection between the two methods and
argue that whitened PCA may yield identical results to ICAsome cases. Furthermore, we describe

the specific situations in which ICA might significantly ingwe on PCA.

Index Terms

Computer vision, object recognition, principal componamtlysis, independent component analysis.

. INTRODUCTION

Over the last few years, there has been increasing intaregppearance-based object recog-
nition due to its successful results in non-controlled ssecompared to classical model-based
techniques [7], [8], [11]. Appearance-based recognitippraaches are able to manage changes
in illumination conditions, shape, pose and reflectancé & even to handle translation and
partial occlusions [27].

First appearance-based systems found in the literaturé Bsacipal Component Analysis
(PCA) for dimensionality reduction purposes [17], [24]5]2[27], [30], while recently the
use of the independent component analysis (ICA) for featxteaction is preferred by some
authors. In fact, a number of empirical studies have claimed that lG@Aperforms PCA as a
feature extraction method in classification systems [40],[112], [13], [22], [29], [31], [33],
although [23],[32] state that both approaches perform kgua8] suggests that the performance

IAlthough ICA has been connected with sparse represensatinod edge detection [16], this paper only concerns its egtjoin
to dimension reduction for subsequent classification.
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of ICA is very dependent on the data set, and [3], [14] clailat fACA is superior to ICA. The
main goal of this short paper is to explain those seeminghtregdictory results and to clarify

under which circumstances ICA may outperform PCA.

[I. METHODS FOR DIMENSIONALITY REDUCTION

First of all, it is necessary to have a look at the subtle difiees between PCA, Singular Value
Decomposition (SVD) and whitening. Although they are imsically very close, whitening and
PCA transform differ in one important aspect that can aftbet performance of the classifier

used in the recognition system.

A. PCA, SVD and whitening

In the original data matriXX, each column contains the pixels values of one image vector,
and it is assumed that the data has been centered. The PGAotrarof the data matriX of
sizem x n is

Y = UTX (1)

whereU is am x m orthonormal matrix. The principal components (columndfare found
by recursively seeking out the directions of maximum dataavee, under the constraint of
orthogonality. The principal component vectors are eyattie eigenvectors of the covariance
matrix Cx = %XXT in decreasing order of corresponding eigenvalues. Theesargigenvalue
equals the maximal variance, while the corresponding egenr determines the direction with
the maximal variance. The transformation defined in (1) gises uncorrelated components.

In (1), Y is the original data matrix projected on the PCA subspacaeefoy the eigenvectors,
here, it is possible to reduce the dimension of the data jsekecting a subset @f eigenvectors
from the total set™ — R),

Y =U'X (2)
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We can approach PCA from a slightly different point of viewdasonsider thalU is one of the

matrices of the SVD of the data matriX,
X = UAVT (3)

whereU andV arem x r andn x r matrices with orthonormal columns amtl is ar x r
diagonal matrix with the non-negative singular valaesj = 1, ..., r, arranged in nonincreasing
order along the diagonal, and wheres the rank ofX.

From (3) it follows thatXX?U = UAAT and X*XV = VATA, demonstrating that the
columns ofU are the eigenvectors X’ and the columns oV are the eigenvectors &7 X.

Note thatX can be written as the sum ofrank-1 matrices,

X = XT: Jjujva 4)
7j=1

This implies that the zero singular values may be ignoredesthey carry no information. The
equation (5) also shows that it is possible to approxin¥atey just using the firs& columns
of U andV,

k
X =~ Z O'jlle? = UAVT (5)
=1

A zero-mean random vectaris said to bewhite if its elements are uncorrelated and have unit
variances, this obviously means that their covariance imarequal to the unit matrid. As
whitening can be accomplished by decorrelation followedbgling, the PCA technique can be

used, and (6) defines the whitening transform of the origttzah matrix.

Z=A"U"X=V" (6)
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B. ICA

ICA [16] tries to explain the original data using statistigandependent random vectors. The

observed random data matrk is modelled as
X ~ AS (7)

where S is the matrix containing the statistically independentd@n vectors andA is the

mixing matrix. We can also write (7) as:
S = WX 8

where W is equal to the pseudoinverse matrix Af that isW = Af. Typically, in ICA algo-
rithms, vectorsw; are sought such that the rows ®tave maximally non-gaussian distributions
and are mutually (approximately) uncorrelated. A simpleyv@ do this is to first whiten the

data as in (6), and then seek orthogonal non-normal projestR):
S=R'A'U'X=R"Z (9)

so in (9) it is shown that in fact in this case ICA is a whitenoygeration followed by a rotation,
and the ICA model can be also written as

X ~ UAVT = @&TE — AS (10)

A S

Here, we wish to emphasize that in the ICA model neitAemor W are constrained to be
orthogonal. Rather, the constraint (exact [15] or appr@ten5], depending on the choice of
algorithm) is that the transform be decorrelating, meartimgt the rows ofS are (exactly or
approximately) orthogonal. This is because strongly ndghegonal rows imply strong linear

correlations between the estimated components, whichtigltewed since the goal was to get
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independent components, and independence entails ulatedress. Thus, all ICA algorithms
which output approximately uncorrelated components wijtpraximately equal variances are
essentially performing an orthogonal transform of the eméd data.

A number of popular ICA algorithms exist. These include F2A&t[15], [16], Infomax [5],
[18], Comons algorithm [9], and KernellCA [2]. In the case FedstiCA and KernellCA, the
data is first whitened and subsequently an orthonormal agpgrmatrix is sought, as in (9). In
contrast, Infomax does not strictly enforce complete limgdecorrelation. Note that this implies
that in cases where higher-order dependencies in the datsteong relative to the second-
order dependencies, Infomax may yield a decomposition hvigcnot even approximately an
orthogonal transform of the whitened data. Comon’s algaritnay also give a significantly non-
orthogonal transformation from the whitened data due todifferent normalization employed,
as described later in this section.

In Figures 1 and 2, the results of transforming two-dimenaiartificial data sets using PCA,
whitening and the ICA model (by means of FastICA (Fig.1) amteBded Infomax [18] (Fig.2))
are illustrated. In the top row of each figure, the originaladset has a uniform distribution on
a parallelogram (a subgaussian data set); while the otigiata set in the bottom row has a
sparse distribution (a supergaussian data set).

Figure 1 has been drawn using FastICA, so it shows the ICAstoamation as in (9). In the
top row, the original data set has a uniform distribution opamallelogram (Figure 1(a)) but
the components are not independent and it is possible tocprde value of one of them from
the value of the other. The uncorrelated data set is showngaré& 1(b), the direction with
the maximal variance is the vertical axis, and the secondcypal axis is the horizontal one.
The whitened data is shown in Figure 1(c), whitening gives f@s only up to an orthogonal
transformation. And, finally, the independent data set appen Figure 1(d). The same process

is shown in the bottom row, but in this case the original datahsis a supergaussian distribution.
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ICA transformation by FastICA

(a) origfnal (b) uncérrelated (c) whitened (d) independent (ej all directions

Fig. 1. Two artificial examples: a subgaussian dataset (o) and a supergaussian dataset (bottom row) (a), bothforamsd
by PCA (b), whitening (c) and using the ICA model by means «ftk2A (d). The last figure in each row (e) shows the original
dataset with the ICA41, a2 andwi,wz) and PCA directionsyi, uz).

Figure 1(e) shows the original datasets with the ICA and PGwkctons. There, we may
appreciate that the constraint of orthogonality holds oARIections U) and does not hold
on ICA directions W).

It should be noticed how whitening changes distances betweats and so, the distance
between two points is not the same in the uncorrelated datarenwhitened one. However, the
distance between two points is equal in the whitened datatladdependent one as the two
are equivalent up to a rotation.

In order to show that (for this simple artificial dataset) t#i#s obtained by Infomax are
also, approximately, an orthonormal transformation of Wiatened data, Figure 2 shows the
same artificial data sets as Figure 1 but the IC’s have beenngu (Fig. 2(b)) by means of the

Extended Infomax algorithm [18], which can estimate both-sand supergaussian components.
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ICA transformation by Extended Infomax

(a) original (b) independent (c) whitened (d) all directions

Fig. 2. Two artificial examples: a subgaussian dataset () and a supergaussian dataset (bottom row) (a), bothforamsd
using the ICA model by means of Extended Infomax (b). The evigtl data (c), copied from Fig.1 for comparison. The last
figure in each file (d) shows the original dataset with the IGA,a42 andwi,w2) and PCA directionsyi, uz).

It is possible to see that the independent data (Fig. 2(igiméd from Infomax is, approximately,
a rotated version of the whitened data (Fig. 2(c), copiethfféig.1(c) for comparison purposes).
Note, however, that these results cannot always be extetadeshl-world datasets, where the
results of Infomax may not be orthogonal from the whitenethdd]. This fact will be clearly
shown on section VI.

Although the above equivalence holds for the most widehdU&A algorithms [2], [5], [15],
[16], [18] it does not quite hold for the algorithm of Comon].[9his is because his algorithm
renormalizes the components so that the basis vectorsnfoslwof A) have unit norm. Since
this also changes the variance of the independent comp(@nis ofS), the transform is in

this casenot an approximate rotation from the whitened data. Henceadcss, and angles, may
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change. However, with a few notable exceptions [19], [2R}]] almost all [3], [4], [10], [12],
[13], [14], [22], [23], [28], [29], [31], [32], [33] PCA/ICAcomparisons for pattern recognition

purposes have used FastICA or Infomax (or its extendeda@r$o perform ICA.

[I[l. DIFFERENT ARCHITECTURES INDEPENDENCE INA ORIN S?

Previous papers [4], [10], [32] have described two diff¢érarchitecturesfor the ICA decom-
position of an image set. The difference between these tacsimple choice of where we want
the independence. Do we want thasis imagegcolumns ofA) to be mutually independent, or
do we seek a decomposition where tefficientgrows of S) are mutually independent? The
former corresponds to architecture |, the latter to arcites Il [4], [10].

In equations, the question is whether we wiXex UARR”V7, and optimize the orthogonal
matrix R to makeS = R”V7 as independent and non-gaussian as possible, or whether we
write X ~ URRTAV7, and optimizeR to makeA = UR as independent and non-gaussian
as possible. The concept about the two types of architeciarglustrated in Figure 3.

In either case, thendependent componentthat is the matrix having been optimized for

A 8
- OB RIRI_ v ]
X kxk kxk kxk — kxn
mxn mxk. ........
SA S _
=[0|RERIBI [V ]
X : kxkikxk kxk kxn

mxn mxk

Fig. 3. Different architectures for the ICA decompositioham image set: do we want independence in A or in S?
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independence, is always an orthogonal transformation frleenwhiteneddata given by SVD,
at least in the case of FastICA. As we shall argue in the nesticse this implies that if
a rotationally-symmetric classifier is subsequently ugbére is no point in performing the

optimization ofR.

IV. ROTATION INVARIANT CLASSIFIERS

Most common classifiers are invariant to a rotation of theadgtace. This makes intuitive
sense, if one does not have any pre-existing knowledge orsttheture of the data space, it
seems reasonable to build a classifier which does not card dhta rotations. Typical examples
are all classifiers based on the Euclidean distances, odlmséhe angles, between data points
[17], [24], [30]. As it was shown in Equation (9), and furtreegued in Section 3, the independent
components are the result of a simple rotation of the whdeti&a given by SVD. Hence, a
rotation-invariant classifier will not do any better nor angrse when fed with the independent
components than when fed with the whitened data. Thus, I@&sgyou absolutely no advantage
over SVD. Empirical verification of this claim is given in Sem VI. Note also that, before us,
Yang et al [32] came to the exact same conclusion based orriexqres on the FERET face
database.

However, there are many scenarios in which ICA can give yoiffardnt (and hence possibly
better) result than SVD. First, if the used classifier is notation-invariant, there may be
advantages to performing the rotation ICA gives [6]. Secoifich feature selection step is
employed and only a subset of all components are used fosifitadion [4], the subspaces
selected can differ, and hence the classification resultg difeer as well. And finally, when
using Comon’s algorithm, or in some cases when using Infortrexfound components are not
necessarily a rotation of the whitened data and hence thiesdguce can disappear.

In conclusion, when employing ICA it is important to use eitieature selection or a rotation
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variant classifier, or both, since otherwise there is liftigtification for performing an expensive

ICA optimization, instead of simply employing the SVD.

4
. ClassB

(b)

Fig. 4. Thebestselection of the features may be different depending on khgses of data set. In Fig. 4(a) the classes are
perfectly separated using just the projection over the I@Adiion w1, while in Fig. 4(b), the classes are better separated using
the direction of the eigenvectar,

V. SELECTING SUBSETS OF COMPONENTS

In the previous sections, we showed that, as typically applthere is no reason to prefer
ICA over whitened data. However, the performance of ICA a@AHMnay differ when a subset
of components is used for classification. To illustrate th®, an artificial data set similar to the
subgaussian data in Figure 1 has been assigned to two diffdesses in two extreme examples
in Figure 4. In both plots, the directions of the eigenvegttf, and the ICA directionsW and
A, from the artificial data set are drawn. As both techniquesuarsupervised, these directions
are independent from the classes in the data set, so theygasa for both extreme examples.
In Figure 4(a) it is easy to appreciate how the classes areqilgr separated using just the
projection over the ICA directiorv,, while in Figure 4(b), the classes are better separatedjusin

the direction of eigenvectar,. Therefore, in each example, a feature selection step maytthe
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reduce the dimensionality and improve the classificatibmol feature selection is carried out,
ICA and whitened PCA perform exactly equally well on bothasats, provided a rotationally

symmetric classifier is used.

VI. EXPERIMENTAL RESULTS

Some experiments with real data have been carried out irr ¢odest our hypothesis about
the ICA/whitened PCA equivalence. Both the ORL face datljakand the COIL-100 object
database [26] have been used, and the results have beemeobbath for FastiCA and Infomax
algorithms. The classifier used is a 1-NN with Euclideanattise. Due to space limitations, only a
summary of the results obtained is shown in this paper; thedét of experiments and the Matlab
code used are available latt p: / /i sa. unh. es/ arvc/ per sonal / suni /i ca_pca/ i ndex. htm .

Figure 5 (experiment2 of the above mentioned url) shows the results obtained byewad
PCA, FastICA and Infomax with the ORL face database. For abmimof components ranging
from 5 to 200, the average and standard deviationl 0frepetitions of the same experiment are
shown. No feature selection is performed.

From these results, it becomes clear that FastiCA and wdutd?CA perform equally, and
that Infomax shows some differences. These differencesrame clear when the number of
components used is either very low or very high. ParticyJlasihen the number of components
is very high, the recognition rates obtained by Infomax dearty better than those of FastiICA
or whitened PCA. Although these good results are found whennumber of components is
far from the optimum in terms of recognition rates, they alese further study in order to find
an explanation, which may be related to the non-orthogtynafi the components returned by
Infomax. Such study is left for further work, as it falls beybthe scope of this short paper.

Figure 6 shows similar experiments to those of figure 5 butswtering feature selection

(experiment21 of the above mentioned url). In these figures, the origindh ¢ classes with
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10 examples per class, so the sizeXfis 10304 x 400) has been reduced to just 10 and 20
componentsi x 400, 10 x 400 and20 x 400) by means of whitening, Infomax and FastICA. For
each method, the best component is selected as the one wWiachtbe best classification results
when used alone. The same process is performed to find theltestt o2 and3 components
using an exhaustive search or "brute force” method, so we lcamputed the recognition rates
of all possible subsets af and 3 components. In this way, the results show the recognition
rates that could be obtained with each algorithm if a peréetéction of components is carried
out. We have used a quite small number of components in omldretable to perform an
exhaustive search. Such search quickly becomes commadyiantractable when the number

of components grows.

Whitening — FastICA — Infomax
T T T T T

i
90 E q
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[ FastiCA
85 Il Infomax
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o
o
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5 10 20 40

RumoetPuecol® 140 190 10 20

Fig. 5. ICA/whitened PCA comparison using the ORL face dasabusing all components.

The results show clearly that a feature selection processimge a strong influence in the
recognition rates obtained by each algorithm. FastICA amitemed PCA no longer perform
equally; and the same applies to Infomax. Eventhough thdtsesf the three algorithms differ

to a great extent, there is no clear winner. As all the alporg are unsupervised, the results
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Results obtained using the best possible component subset
T T T T T

70 f
[ Whitening
[ FastiICA

Hl Infomax A A

60 -

Recognition Rate
I a
] o
T T

w
(=]
T

20

10 ﬂii ﬂii ﬂii

5/1 5/2 5/3 10/1 10/2 10/3 20/1 20/2 20/3
Total number of components / Selected components

Fig. 6. ICA/whitened PCA comparison using the ORL databakennan exhaustive feature selection process is carried out.

are highly dependent on the class distributions. This faad previously illustrated in section V

with the artificial datasets from figure 4.

VIl. DISCUSSION

Visual appearance-based object recognition methods ar@lydased on feature extraction
techniques such as PCA and ICA. In the present paper it has $femvn how ICA and PCA
are closely connected and under which circumstances tlegforpance is totally equivalent.
Their performance may differ significantly if (1) a featurelextion process is carried out, (2) a
non-rotationally-invariant classifier is used, (3) a renalization such as that used in Comon’s
algorithm is performed, or (4) Infomax is used and the datldg independent components

which are not close to an orthogonal transform from the wiatedata.
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