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Abstract

Distinguishing causes from effects is an important problem in many areas. In this paper,
we propose a very general but well defined nonlinear acyclic causal model, namely, post-
nonlinear acyclic causal model with inner additive noise, to tackle this problem. In this
model, each observed variable is generated by a nonlinear function of its parents, with
additive noise, followed by a nonlinear distortion. The nonlinearity in the second stage
takes into account the effect of sensor distortions, which are usually encountered in practice.
In the two-variable case, if all the nonlinearities involved in the model are invertible, by
relating the proposed model to the post-nonlinear independent component analysis (ICA)
problem, we give the conditions under which the causal relation can be uniquely found.
We present a two-step method, which is constrained nonlinear ICA followed by statistical
independence tests, to distinguish the cause from the effect in the two-variable case. We
apply this method to solve the problem “CauseEffectPairs” in the Pot-luck challenge, and
successfully identify causes from effects.

Keywords: causal discovery, sensor distortion, additive noise, nonlinear independent
component analysis, independence tests

1. Introduction

Given some observable variables, people often wish to know the underlying mechanism gen-
erating them, and in particular, how they are influenced by others. Causal discovery has
attracted much interest in various areas, such as philosophy, psychology, machine learning,
etc. There are some well-known algorithms for causal discovery. For example, conditional
independence tests can be exploited to remove unnecessary connections among the observed
variables and to produce a set of acyclic causal models which are in the d-separation equiv-
alence class (Pearl, 2000; Spirtes et al., 2000).

Recently, some methods have been proposed for model-based causal discovery of contin-
uous variables (see, e.g., Shimizu et al., 2006; Granger, 1980). Model-based causal discovery
assumes a generative model to explain the data generating process. If the assumed model is
close to the true one, such methods could not only detect the causal relations, but also dis-
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cover the form in which each variable is influenced by others. For example, Granger causal-
ity assumes that effects must follow causes and that the causal effects are linear (Granger,
1980). If the data are generated by a linear acyclic causal model and at most one of the
disturbances is Gaussian, independent component analysis (ICA) (Hyvärinen et al., 2001)
can be exploited to discover the causal relations in a convenient way (Shimizu et al., 2006).

However, the above causal models seem too restrictive for real-life problems. If the as-
sumed model is wrong, model-based causal discovery may give misleading results. Therefore,
when the prior knowledge about the data model is not available, the assumed model should
be general enough such that it could be adapted to approximate the true data generating
process. On the other hand, the model should be identifiable such that it could distinguish
causes from effects. In a large class of real-life problems, the following three effects usually
exist. 1. The effect of the causes is usually nonlinear. 2. The final effect received by
the target variable from all its causes contains some noise which is independent from the
causes. 3. Sensors or measurements may introduce nonlinear distortions into the observed
values of the variables. To address these issues, we propose a very realistic model, called
post-nonlinear acyclic causal model with inner additive noise. In the two-variable case, we
show the identifiability of this model under the assumption that the involved nonlinearities
are invertible. We conjecture that this model is identifiable in very general situations, as
illustrated by the experimental results.

2. Proposed Causal Model

Let us use a directed acyclic graph (DAG) to describe the generating process of the observed
variables. We assume that each observed continuous variable xi, corresponding to the ith
node in the DAG, is generated by two stages. The first stage is a nonlinear transformation
of its parents pai, denoted by fi,1(pai), plus some noise (or disturbance) ei (which is inde-
pendent from pai). In the second stage, a nonlinear distortion fi,2 is applied to the output
of the first stage to produce xi. Mathematically, the generating process of xi is

xi = fi,2(fi,1(pai) + ei). (1)

In this model, we assume that the nonlinearities fi,2 are continuous and invertible. fi,1 are
not necessarily invertible. This model is very general, since it accounts for the nonlinear
effect of the causes pai (by using fi,1), the noise effect in the transmission process from pai

to xi (using ei), and the nonlinear distortion caused by the sensor or measurement (using
fi,2). In particular, in this paper we focus on the two-variable case. Suppose that x2 is
caused by x1. The relationship between x1 and x2 is then assumed to be

x2 = f2,2(f2,1(x1) + e2), (2)

where e2 is independent from x1.

3. Identifiability

3.1 Relation to post-nonlinear mixing ICA

We first consider the case where the nonlinear function f2,1 is also invertible. Let s1 ,

f2,1(x1) and s2 , e2. As e2 is independent from x1, obviously s1 is independent from s2.
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The generating process of (x1, x2), given by Eq. 2, can be re-written as
{

x1 = f−1
2,1 (s1),

x2 = f2,2(s1 + s2).
(3)

We can see that clearly x1 and x2 are post-nonlinear (PNL) mixtures of independent sources
s1 and s2 (Taleb and Jutten, 1999). The PNL mixing model is a nice special case of the
general nonlinear ICA model.

ICA is a statistical technique aiming to recover independent sources from their ob-
served mixtures, without knowing the mixing procedure or any specific knowledge of the
sources (Hyvärinen et al., 2001). The basic ICA model is linear ICA, in which the observed
mixtures, as components of the vector x = (x1, x2 · · · , xn)T , are assumed to be generated
from the independent sources s1, s2 · · · , sn, with a linear transformation A. Mathemati-
cally, we have x = As, where s = (s1, s2 · · · , sn)T . Under weak conditions on the source
distribution and the mixing matrix, ICA can recover the original independent sources up to
the permutation and scaling indeterminacies with another transformation W, by making
the outputs as independent as possible. That is, the outputs of ICA, as components of
y = Wx, produce an estimate of the original sources si. In the general nonlinear ICA prob-
lem, x is assumed to be generated from independent sources si with an invertible nonlinear
mapping F , i.e., x = F(s), and the separation system is y = G(x), where G is another
invertible nonlinear mapping. Generally speaking, nonlinear ICA is ill-posed: its solutions
always exist but they are highly non-unique (Hyvärinen and Pajunen, 1999). To make the
solution to nonlinear ICA meaningful, one usually needs to constrain the mixing mapping
to have some specific forms (Jutten and Taleb, 2000).

The PNL mixing ICA model plays a nice trade-off of linear ICA and general nonlinear
ICA. It is described as a linear transformation of the independent sources s1, s2, ..., sn with
the transformation matrix A, followed by a component-wise invertible nonlinear transfor-
mation f = (f1, f2, ..., fn)T . Mathematically,

xi = fi

(

n
∑

k=1

Aiksk

)

.

In matrix form, it is denoted as x = f(Ax), where x = (x1, x2, ..., xn)T and s = (s1, s2, · · · , sn)T .
In particular, from Eq. 3, one can see that for the causal model Eq. 2, the mixing matrix is

A =

(

1 0
1 1

)

, and the post-nonlinearity is f = (f−1
2,1 , f2,2)

T .

3.2 Identifiability of the Causal Model

The identifiability of the causal model Eq. 2 is then related to the separability of the PNL
mixing ICA model. The PNL mixing model (A, f) is said to be separable if the independent
sources si could be recovered only up to some trivial indeterminacies (which includes the
permutation, scaling, and mean indeterminacies) with a separation system (g,W), The
output of the separation system is y = W · g(x), where g is a component-wise continuous
and invertible nonlinear transformation. The separability of the PNL mixing model has been
discussed in several contributions. As Achard and Jutten (2005) proved the separability
under very general conditions, their result is briefly reviewed below.
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Theorem 1 (Separability of the PNL mixing model, by Achard & Jutten) Let
(A, f) be a PNL mixing system and (g,W) the separation system. Let hi , gi ◦ fi. Assume
the following conditions hold.
• Each source si appears mixed at least once in the observations.
• h1, h2, ..., hn are diffenrentiable and invertible (same conditions as f1, f2, ..., fn).
• There exists at most one Gaussian source.
• The joint density function of the sources si is differentiable, and its derivative is

continuous on its support.
Then the output of the separation system (g,W) has mutually independent components if
and only if each hi is linear and WA is a generalized permutation matrix.

The above theorem states that under the conditions stated above, by making the outputs
of the separation system (g, W) mutually independent, the original sources si and the
mixing matrix A could be uniquely estimated (up to some trivial indeterminacies). If f2,1

is invertible, the causal model Eq. 2, as a special case of the PNL mixing model, can then
be identified. Thus, the theorem above implies the following proposition.

Proposition 1 (Identifiability of the causal model with invertible nonlinearities)
Suppose that x1 and x2 are generated according to the causal model Eq. 2 with both f2,2 and
f2,1 differentiable and invertible. Further assume that at most one of f2,1(x1) and e2 is
Gaussian, and that their joint density is differentiable, with the derivative continuous on its
support. Then the causal relation between x1 and x2 can be uniquely identified.

In the discussions above, we have constrained the nonlinearity f2,1 to be invertible.
Otherwise, f−1

2,1 does not exist, and the causal model Eq. 2 is no longer a PNL mixing
one. A rigorous proof of the identifiability of the causal model in this situation is under
investigation. But it seems that it is identifiable under very general conditions, as verified
by various experiments. It should be noted that when all the nonlinear functions fi,2 are
constrained to be identity mappings, the proposed causal model is reduced to the nonlinear
causal model with additive noise which was recently investigated by Hoyer et al. (2009).
Interestingly, for this model, it was shown that in the two-variable case, the identifiability
actually does not depend on the invertibility of the nonlinear function f2,1.

4. Method for Identification

Given two variables x1 and x2, we identify their causal relation by finding which one of
the possible relations (x1 → x2 and x2 → x1) satisfies the assumed causal model. If the
causal relation is x1 → x2 (i.e., x1 and x2 satisfy the model Eq. 2), we can invert the data
generating process Eq. 2 to recover the disturbance e2, which is expected to be independent
from x1. One can then examine if a possible causal model is preferred in two steps: the first
step is actually a constrained nonlinear ICA problem which aims to retrieve the disturbance
corresponding to the assume causal relation; in the second step we verify if the estimated
disturbance is independent from the assume cause using statistical tests.

4.1 A two-step method

Suppose the causal relation under examination is x1 → x2. According to Eq. 2, if this
causal relation holds, there exist nonlinear functions f−1

2,2 and f2,1 such that e2 = f−1
2,2 (x2)−
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f2,1(x1) is independent from x1. Thus, we first perform nonlinear ICA using the structure
in Figure 1. The outputs of this system are y1 = x1, and y2 = g2(x2) − g1(x1). In our
experiments, we use multi-layer perceptrons (MLP’s) to model the nonlinearities g1 and g2.
Parameters in g1 and g2 are learned by making y1 and y2 as independent as possible, which
is achieved by minimizing the mutual information between y1 and y2. The joint density of
y = (y1, y2)

T is py(y) = px(x)/|J|, where J is the Jacobian matrix of the transformation
from (x1, x2) to (y1, y2), i.e., J =

[

∂(y1, y2)
/

∂(x1, x2)
]

. Clearly |J| = |g′2|. The joint entropy
of y is then

H(y) = −E{log py(y)} = −E{log px(x)− log |J|} = H(x) + E{log |J|}.

Finally, the mutual information between y1 and y2 is

I(y1, y2) = H(y1) + H(y2)−H(y)

= H(y1) + H(y2)− E{log |J|} −H(x)

= −E{py1
(y1)} − E{py2

(y2)} − E{log |g′2|} −H(x),

where H(x) does not depend on the parameters in g1 and g2 and can be considered as
constant. One can easily find the gradient of I(y1, y2) w.r.t. the parameters in g1 and
g2, and minimize I(y1, y2) using gradient-descent methods. Details of the algorithm are
skipped.

x2

x1

g1

+
-

g2

y1

y2

Figure 1: The constrained
nonlinear ICA sys-
tem used to verify if
the causal relation
x1 → x2 holds.

y1 and y2 produced by the first step are the assumed
cause and the estimated corresponding disturbance, respec-
tively. In the second step, one needs to verify if they are in-
dependent, using statistical independence tests. We adopt
the kernel-based statistical test (Gretton et al., 2008), with
the significance level α = 0.01. If y1 and y2 are not inde-
pendent, indicating that x1 → x2 does not hold, we repeat
the above procedure (with x1 and x2 exchanged) to verify
if x2 → x1 holds. If y1 and y2 are independent, usually we
can conclude that x1 causes x2, and that g1 and g2 provide
an estimate of f2,1 and f−1

2,2 , respectively. However, it is
possible that both x1 → x2 and x2 → x1 hold, although
the chance is very small. Therefore, for the sake of reliability, in this situation we also test
if x2 → x1 holds. Finally, we can find the relationship between x1 and x2 among all four
possible scenarios: 1. x1 → x2, 2. x2 → x1, 3. both causal relations are possible, and 4.
there is no causal relation between x1 and x2 which follows our model.

4.2 Practical considerations

The first issue that needs considering in practical implementation of our method is the model
complexity, which is controlled by the number of hidden units in the MLP’s modelling g1

and g2 in Figure 1. The system should have enough flexibility, and at the same time, to
avoid overfitting, it should be as simple as possible. To this end, two ways are used. One is
10-fold cross-validation. The other is heuristic: we try different numbers of hidden units in
a reasonable range (say, between 4 and 10); if the resulting causal relation does not change,
we conclude that the result is feasible.
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Data Set #1 #2 #3 #4 #5 #6 #7 #8

Result x1 → x2 x1 → x2 x1 → x2 x1 ←
‡ x2 x1 ← x2 x1 → x2 x1 ← x2 x1 → x2

Table 1: Causal directions obtained. (‡ indicates that the causal relation is not significant.)

The second issue is the initialization of the nonlinearities g1 and g2 in Figure 1. If the
nonlinear distortions f2,2 and f2,1 are very strong, it may take a long time for the nonlin-
ear ICA algorithm in the first step to converge, and it is also possible that the algorithm
converges to a local optimum. This can be avoided by using reasonable initializations for
g1 and g2. Two schemes are used in our experiments. One is motivated by visual inspec-
tion of the data distribution: we simply use a logarithm-like function to initialize g1 and
g2 to make the transformed data more regular. The other is by making use of Gaussian-
ization (Zhang and Chan, 2005). Roughly speaking, the central limit theorem states that
sums of independent variables tend to be Gaussian. Since f−1

2,2 (x2) in the causal model Eq. 2
is the sum of two independent variables, it is expected to be not very far from Gaussian.
Therefore, for each variable which is very far from Gaussian, its associated nonlinearity (g1

or g2 in Figure 1) is initialized by the strictly increasing function transforming this variable
to standard Gaussian. In all experiments, these two schemes give the same final results.

5. Results

The proposed nonlinear causal discovery method has been applied to the “CauseEffectPairs”
task proposed by Mooij and Janzing (2008) in the Pot-luck challenge. In this task, eight
data sets are given; each of them contains the observed values of two variables x1 and x2.
The goal is to distinguish the cause from the effect for each data set. Figure 2 gives the
scatterplots of x1 and x2 in all the eight data sets. Table 1 summaries our results. In
particular, below we take data sets 1 and 8 as examples to illustrate the performance of our
method.
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10

Data Set 1

x 2 0 1000 2000
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1000

1500

2000
Data Set 2
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Figure 2: Scatterplot of x1 and x2 in each data set of the “CauseEffectPairs” task (Mooij
and Janzing, 2008).
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The variable x1 in Data set 1 is non-negative and extremely non-Gaussian. We initialized
the nonlinearity g1 with the transformation log(2+x1) (Gaussianization was also tested and
it finally produced the same causal relation). The scatterplot of y1 and y2 (as outputs of the
constrained nonlinear ICA system in Figure 1) under each hypothesis (x1 → x2 or x2 → x1)
is given in Figure 3(a,b). Clearly y1 and y2 are much more independent under hypothesis
x1 → x2. This is verified by the independence test results in the third row of Table 2. Note
that a large test statistic tends to reject the null hypothesis (the independence between y1

and y2). Figure 4 shows the result on Data set 8. In this case, we applied the transformation
log(x2 + 50) for initialization. By comparing (a) and (b) in Figure 4, also by inspecting the
independence test results in the fourth row of Table 2, one can see clearly that x1 → x2.

0 1000 2000 3000
−8

−6

−4

−2

0

2

4

y 2 (
es

tim
at

e 
of

 e
2)

(a)

y
1
 (x

1
)

−5 0 5 10 15
−6

−4

−2

0

2

y
1
 (x

2
)

y 2 (
es

tim
at

e 
of

 e
1)

(b)

0 1000 2000 3000
−4

−2

0

2

4

6

x
1

g 1(x
1)

(c)

−5 0 5 10 15
−20

−15

−10

−5

0

5

10

x
2

g 2(x
2)

(d)

Figure 3: Result on Data set 1. (a) y1 vs. y2 under hypothesis x1 → x2. (b) that under
x2 → x1. (c & d) x1 vs. g1(x1) and x2 vs. g2(x2) under hypothesis x1 → x2.
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Figure 4: Result on Data set 8. For captions of the sub-figures, please refer to Figure 3.

Data Set x1 → x2 assumed x2 → x1 assumed
Threshold (α = 0.01) Statistic Threshold (α = 0.01) Statistic

#1 2.3× 10−3 1.7× 10−3 2.2× 10−3 6.5 × 10−3

#8 1.2× 10−4 1.2× 10−4 1.1× 10−4 7.4 × 10−4

Table 2: Result of independence test on y1 and y2 for Data sets 1 and 8 under different
assumed causal directions. For both data sets, the independence hypothesis is
accepted in the scenario x1 → x2, and rejected in the other scenario, with the
significance level α = 0.01.
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6. Conclusion

We proposed a very general nonlinear causal model for model-based causal discovery. This
model takes into account the nonlinear effect of the causes, inner noise effect, and the
sensor distortion, and is capable of approximating the data generating process of some real-
life problems. We presented the identifiability of this model under the assumption that the
involved nonlinearities are invertible. Experimental results illustrated that based on this
model, one could successfully distinguish the cause from the effect, even if the nonlinear
function of the cause is not invertible. An on-going work is to investigate the identifiability
of this model under more general conditions.
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